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Abstract
The networked and distributed systems research com-
munities have an increasing need for “replayable” re-
search, but our current experimentation resources fall
short of satisfying this need. Replayable activities are
those that can be re-executed, either as-is or in modified
form, yielding new results that can be compared to pre-
vious ones. Replayability requires complete records of
experiment processes and data, of course, but it also re-
quires facilities that allow those processes to actually be
examined, repeated, modified, and reused.

We are now evolving Emulab, our popular network
testbed management system, to be the basis of a new ex-
perimentation workbench in support of realistic, large-
scale, replayable research. We have implemented a new
model of testbed-based experiments that allows people to
move forward and backward through their experimenta-
tion processes. Integrated tools help researchers manage
their activities (both planned and unplanned), software
artifacts, data, and analyses. We present the workbench,
describe its implementation, and report how it has been
used by early adopters. Our initial case studies highlight
both the utility of the current workbench and additional
usability challenges that must be addressed.

1 Introduction

In the networking and operating systems communities,
there is an increasing awareness of the benefits of re-
peated research [5, 14]. A scientific community ad-
vances when its experiments are published, subjected to
scrutiny, and repeated to determine the veracity of re-
sults. Repeated research not only helps to validate the
conclusions of studies, but also to expand on previous
conclusions and suggest new directions for research.

To repeat a piece of research, one first needs access
to the complete records of the experiment that is to
be redone. This obviously includes the results of the
experiment—not only the final data products, but also the
“raw” data products that are the bases for analysis. Data
sets like those being collected in the networking com-
munity [2, 3, 6, 22] allow researchers to repeat analyses,

but by themselves do not help researchers validate or re-
peat the data collection process. Therefore, the records
of a repeatable experiment must also contain descrip-
tions of the procedures that were followed, in sufficient
detail to allow them to be re-executed. For studies of
software-based systems, the documentation of an exper-
iment should also contain copies of the actual software
that was executed, test scripts, and so on.

A second requirement for repeated research is access
to experimental infrastructure, i.e., laboratories. In the
networking community, this need is being served by a
variety of network testbeds: environments that provide
resources for scalable and “real-world” experimentation.
Some testbeds (such as Emulab [26]) focus on provid-
ing high degrees of control and repeatability, whereas
others (such as PlanetLab [19]) focus on exposing net-
worked systems to actual Internet conditions and users.
Network testbeds differ from each other in many ways,
but most have the same primary goal: to provide exper-
imenters with access to resources. Once a person has
obtained these resources, he or she usually receives little
help from the testbed in actually performing an experi-
ment: i.e., configuring it, executing it, and collecting data
from it. Current testbeds offer few features to help users
repeat research in practice. Moreover, they provide little
guidance toward making new experiments repeatable.

Based on our experience in running and using Emulab,
we believe that new testbed-integrated, user-centered
tools will be a necessary third requirement for estab-
lishing repeatable research within the networked systems
community. Emulab is our large and continually grow-
ing testbed: it provides access to many hundred com-
puting devices of diverse types, in conjunction with user
services such as file storage, file distribution, and user-
scheduled events. As Emulab has grown over the past six
years, its users have performed increasingly large-scale
and sophisticated studies. An essential part of these ac-
tivities is managing the many parts of every experiment,
and we have seen first-hand that this can be a heavy load
for Emulab’s users. As both administrators and users
of our testbed, we recognize that network researchers
need better ways to organize, execute, record, and ana-
lyze their work.
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In this paper we present our evolving solution: an inte-
grated experiment management system called the experi-
mentation workbench. The workbench is based on a new
model of testbed-based experiments, one designed to de-
scribe the relationships between multiple parts of exper-
iments and their evolution over time. The workbench
enhances Emulab’s previous model and existing features
in order to help researchers “package” their experiment
definitions, explore variations, capture experiment inputs
and outputs, and perform data analyses.

A key concern of the workbench is automation: we
intend for users to be able to re-execute testbed-based
experiments with minimum effort, either as-is or in mod-
ified form. Repeated research requires both experiment
encapsulation and access to a laboratory. The workbench
combines these things, encompassing both an experi-
ment management facility and an experiment execution
facility. This is in contrast to typical scientific workflow
management systems [27], which automate processes but
do not manage the “laboratories” in which those pro-
cesses operate. Thus, instead of saying that our work-
bench supports repeated research, we say that it supports
replayable research: activities that not only can be re-
executed, but that are based on a framework that includes
the resources necessary for re-execution.

The primary contributions of this paper are (1) the
identification of replayable research as a critical part
of future advances in networked systems; (2) the de-
tailed presentation of our experimentation workbench,
which is our evolving framework for replayable research;
and (3) an evaluation of the current workbench through
case studies of its use in actual research projects. Our
workbench is implemented atop Emulab, but the idea
of replayable research is general and applicable to other
testbed substrates. In fact, two of our case studies utilize
PlanetLab via the Emulab-PlanetLab portal [25].

This paper builds on our previous work [8] by detail-
ing the actual workbench we have built, both at the con-
ceptual level (Section 3) and the implementation level
(Section 4). Our case studies (Section 5) show how the
current workbench has been applied to ongoing network
research activities, including software development and
performance evaluation, within our research group. The
case studies highlight both the usefulness of the current
workbench and ways in which the current workbench
should be improved (Section 5 and Section 6).

2 Background

Since April 2000, our research group has continuously
developed and operated Emulab [26], a highly successful
and general-purpose testbed facility and “operating sys-
tem” for networked and distributed system experimenta-
tion. Emulab provides integrated, Web-based access to

Figure 1: Emulab’s Web interface

a wide range of environments including simulated, em-
ulated, and wide-area network resources. It is a central
resource in the network research and education commu-
nities: as of October 2006, the Utah Emulab site had over
1,500 users from more than 225 institutions around the
globe, and these users ran over 18,000 experiments in
the preceding 12 months. In addition to our testbed site
at Utah, Emulab’s software today operates more than a
dozen other testbeds around the world.

The primary interface to Emulab is through the Web,
as shown in Figure 1. Once a user logs in, he or she
can start an experiment, which is Emulab’s central unit of
operation. An experiment defines both a static and a dy-
namic configuration of a network as outlined in Figure 2.
Experiments are usually described in an extended version
of the ns language [11], but they may also be described
through a GUI within Emulab’s Web interface.

The static portion describes a network topology: a set
of devices (nodes), the network in which they are con-
tained, and the configurations of those devices and net-
work links. The description includes the type each node
(e.g., a 3 GHz PC, a PlanetLab node, or a virtual ma-
chine), the operating system and other packages that are
to be loaded onto each node, the characteristics of each
network link, and so on. It also includes the definitions
of program agents, which are testbed-managed entities
that run programs as part of an experiment.

The dynamic portion is a description of events: ac-
tivities that are scheduled to occur when the experiment
is executed. An event may be scheduled for a particular
time, e.g., thirty seconds after the start of the experiment.
An event may also be unscheduled. In this case, the user
or a running process may signal the event at run time.
Events can be assembled into event sequences as shown
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set ns [new Simulator]

source tb_compat.tcl

# STATIC PART: nodes, networks, and agents.

set cnode [$ns node] # Define a node

set snode [$ns node]

set lan [$ns make-lan "$cnode $snode" 100Mb 0ms]

set client [$cnode program-agent]

set server [$snode program-agent]

# DYNAMIC PART: events.

set do_client [$ns event-sequence {

$client run -command "setup.sh"

$client run -command "client.sh"

}]

set do_server [$ns event-sequence {

$server run -command "server.sh"

}]

set do_expt [$ns event-sequence {

$do_server start # Do not wait for completion

$do_client run # Run client, wait till end

}]

$ns at 0.0 "$do_expt run"

$ns run

Figure 2: A sample experiment definition

in Figure 2. Each event in a sequence is issued when
the preceding activity completes; some activities (like
start) complete immediately whereas others (like run
to completion) take time. Events are managed and dis-
tributed by Emulab, and are received by various testbed-
managed agents. Some agents are set up automatically
by Emulab, including those that operate on nodes and
links (e.g., to bring them up or down). Others are set up
by a user as part of an experiment. These include the pro-
gram agents mentioned above; traffic generators, which
produce various types of network traffic; and timelines,
which signal user-specified events on a timed schedule.

Through Emulab’s Web interface, a user can submit
an experiment definition and give it a name. Emulab
parses the specification and stores the experiment in its
database. The user can now “swap in” the experiment,
meaning that it is mapped onto physical resources in the
testbed. Nodes and network links are allocated and con-
figured, program agents are created, and so on. When
swap in is complete, the user can login to the allo-
cated machines and do his or her work. A central NFS
file server in Emulab provides persistent storage; this is
available to all the machines within an experiment. Some
users carry out their experiments “by hand,” whereas oth-
ers use events to automate and coordinate their activi-
ties. When the user is done, he or she tells Emulab to
“swap out” the experiment, which releases the experi-
ment’s resources. The experiment itself remains in Em-
ulab’s database so it can be swapped in again later.

3 New Model of Experimentation

Over time, as Emulab was used for increasingly complex
and large-scale research activities, we realized that the
model of experiments described above fails to capture
important aspects of the experimentation process.

3.1 Problems

We identified six key ways that the original Emulab
model of experiments breaks down for users.

1. An experiment entangles the notions of defini-
tion and instance. An experiment combines the idea of
describing a network with the idea of allocating physical
resources for that description. This means, for example,
that a single experiment description cannot be used to
create two concurrent instances of that experiment.

2. The old model cannot describe related experi-
ments, but representing such relationships is important
in practice. Because distributed systems have many vari-
ables, a careful study requires running multiple, related
experiments that cover a parameter space.

3. An experiment does not capture the fact that
a single “session” may encompass multiple subparts,
such as individual tests or trials. These subparts may or
may not be independent of each other. For example, a
test activity may depend on the prior execution of a setup
activity. In contrast to item 2 about relating experiments
to one another, the issue here is relating user sessions to
(possibly many) experiments and/or discrete tasks.

4. Data management is not handled as a first-class
concern. Users must instrument their systems under
study and orchestrate the collection of data. For a large
system with many high-frequency probes, the amount of
data gathered can obviously be very large. Moreover,
users need to analyze all their data: not just within one
experiment, but also across experiments.

5. The old model does not help users manage all
the parts of an experiment. In practice, an experiment
is not defined just by an ns file, but also by all the soft-
ware, input data, configuration parameters, and so on that
is utilized within the experiment. In contrast to item 3
about identifying multiple “units of work,” here we are
concerned about collecting the many components of an
experiment definition.

6. The old model does not help users manage their
studies over time. The artifacts and purpose of exper-
imentation may change in both planned and unplanned
ways over the course of a study, which may span a long
period of time. Saving and recalling history is essen-
tial for many purposes including collaboration, reuse, re-
playing experiments, and reproducing results.
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Figure 3: Summary of the workbench model of experimentation. The diagram illustrates an example of a user’s experimentation
over time. (The information is displayed differently in the workbench GUI, as shown in other figures.) The user first creates a
template and uses it to get one set of results, represented by the leftmost record. He or she then modifies the template to define a
parameter. The new template is used to create two instances, and the activity in the four-node instance fails. The experimenter fixes
the bug and creates a final template instance, in which the activity succeeds.

3.2 Solution: refine the model

The problems above deal with the key concerns of re-
playable research. Addressing the shortcomings of Em-
ulab’s experiment model, therefore, was an essential first
step in the design and implementation of the workbench.

Our solution was to design a new, expanded model of
testbed-based experiments. The original model of Emu-
lab experiments is monolithic in the sense that a single
user-visible entity represents the entirety of an experi-
ment. This notion nevertheless fails to capture all the
aspects of an experiment. Our new model divides the
original notion of an experiment into parts, and then en-
hances those parts with new capabilities.

Figure 3 illustrates the main relationships between the
components of the new model. The two most important
components are templates, shown at the top, and records,
shown at the bottom. These components are persistent
and are stored “forever” by the workbench. In contrast,
most of the other model components are transient be-
cause they represent entities that exist only while testbed
resources are being used.

The rest of this section describes the elements of our
new model at a high level. We have implemented the
model (Section 4) and initial user experiences have been
promising (Section 5), but they have also shown ways in
which the model should be further refined (Section 6).

• A template is a repository for the many things that
collectively define a testbed-based environment. It plays
the “definition” role of Emulab’s original experiment ab-
straction. Unlike an experiment, however, a template
contains the many files that are needed for a study—not
just an ns file, but also the source code and/or binaries
of the system under test, input files, and so on. A tem-
plate may also contain other kinds data such as (reified)
database tables and references to external persistent stor-
age, e.g., datapositories [3] and CVS repositories.

Templates have two additional important properties.
First, templates are persistent and versioned. A template
is an immutable object: “editing” a template actually cre-
ates a new template, and the many revisions of a template
form a tree that a user can navigate. Second, templates
have parameters, akin to the parameters to a function.
Parameters allow a template to describe a family of re-
lated environments and activities, not just one.
• A template instance is a container of testbed re-

sources: nodes, links, and so on. A user creates a tem-
plate instance and populates it with resources by using
the workbench’s Web interface, which is an extension to
Emulab’s Web interface. The process of instantiating a
template is very much like the process of swapping in
an experiment in the traditional Emulab Web interface.
There are two obvious differences, however. First, a user
can specify parameter values when a template is instanti-
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ated. These values are accessible to processes within the
instance and are included in records as described below.
Second, a user can instantiate a template even if there is
an existing instance that is associated with the template.

A template instance is a transient entity: it plays the
“resource owner” role of the original, monolithic ex-
periment notion. The resources within an instance may
change over time, as directed by the activities that occur
within it. When the activities are finished, the allocated
resources are released and the instance is destroyed.
• A run is a user-defined context for activities. Con-

ceptually, it is a container of processes that execute and
events that occur within a template instance. In terms
of the monolithic Emulab experiment model, the role of
a run is to represent a user-defined “unit of work.” In
the new model, a user can demarcate separate groups of
activities that might occur within a single template in-
stance. For example, a user could separate the individ-
ual trials of a system under test; these trials could occur
serially or in parallel. (Our current implementation sup-
ports only serial runs.) A run is transient, but the events
that occur within the run, along with the effects of those
events (e.g., output files), are recorded as described be-
low. Like a template instance, a run can have parameter
values, which are specified when the run is created.
• An activity is a collection of processes, workflows,

scripts, and so on that execute within a run. Having
an explicit model component for activities is useful for
two reasons. First, it is necessary for tracking the prove-
nance of artifacts (e.g., output files) and presenting that
provenance to experimenters. Second, it is needed for the
workbench to manipulate activities in rich ways. For ex-
ample, the workbench could execute only the portions of
a workflow that are relevant to a particular output that a
researcher wants to generate. In our current implementa-
tion, activities correspond to Emulab events and event se-
quences, plus the actions that are taken by testbed agents
when events are received.
• A record is the persistent account of the activities

and effects that occurred within a run. A record is a
repository: it contains output files, of course, but it may
also contain input files when those files are not contained
within the template that is associated with the record.
The idea of a record is to be a “flight recorder,” captur-
ing everything that is relevant to the experimenter, at a
user-specified level of detail. Once the record for a run is
complete, it is immutable.

The workbench automatically captures data from well-
defined sources, and special observers such as packet
recorders [9], filesystem monitors [8], and provenance-
aware storage systems [15] can help determine the “ex-
tent” of a testbed-based activity. These can be auto-
matically deployed by a testbed to drastically lower the
experiment-specification burden for users.

Figure 4: Creating a new template

• Finally, metadata are used to annotate templates
and records. Metadata are first-class objects, as opposed
to being contained within other objects. This is important
because templates and records are immutable once they
are created. Through metadata, both users and the work-
bench itself can attach meaningful names, descriptions,
and other mutable properties to templates and records.

4 Using the Workbench

In this section we present our current implementation
of the workbench through an overview of its use. Our
implementation extends Emulab to support replayable
research, based on the conceptual model described in
Section 3. Taken all at once, the model may seem over-
whelming to users. An important part of our work, there-
fore, is to implement the model through GUI extensions
and other tools that build upon the interfaces that testbed
users are already accustomed to.

4.1 Creating templates

A user of the workbench begins by creating a new tem-
plate. He or she logs in to Emulab Web site and navi-
gates to the form for defining a new template, shown in
Figure 4. The form is similar to the page for creating
regular Emulab “experiments,” except that the controls
related to swapping in an experiment are missing. The
form asks the user to specify:
• the project and group for the template. These at-

tributes relate to Emulab’s security model for users,
described elsewhere [26].

• a template ID, which is a user-friendly name for the
template, and an initial description of the template.
These are two initial pieces of metadata.

• an ns file, which describes a network topology and
a set of events, as described in Section 2.
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Parameters. Templates may have parameters, and
these are specified through new syntax in the ns file. A
parameter is defined by a new ns command:

$ns define-template-parameter name value desc

where name is the parameter name, value is the default
value, and desc is an optional descriptive string. These
will be presented to the user when he or she instantiates
the template. A parameter defines a variable in the ns file,
so it may affect the configuration of a template instance.

Datastore. At this point, the user can click the Create
Template button. The ns file is parsed, and the template
is added to the workbench’s database of templates. Now
the user can add other files to the template. (In the future,
we will extend the workbench GUI so that users can add
files to a template as part of the initial creation step.)

When a template is created, the workbench automat-
ically creates a directory representing the template at a
well-known place in Emulab’s filesystem. One can think
of this as a “checkout” of the template from the reposi-
tory that is kept by the workbench. The part of the tem-
plate that contains files is called the datastore, and to put
files into a template, a user places those files in the tem-
plate’s datastore directory.

# Navigate to the datastore of the template.

cd .../datastore

# Add scripts, files, etc. to the template.

cp ~/client.sh ~/server.sh .

cp -r ~/input-files .

The user then “commits” the new files to the template.

template_commit

In fact, this action creates a new template. Recall
that templates are immutable, which allows the work-
bench to keep track of history. Thus, a commit re-
sults in a new template, and the workbench records that
the new template is derived from the original. The
template_commit command infers the identity of the
original template from the current working directory.

Our current implementation is based on Subversion,
the popular open-source configuration management and
version control system. This is hidden from users, how-
ever: the directories corresponding to a template are not a
“live” Subversion sandbox. So far, we have implemented
the ability to put ordinary files into a template. Connect-
ing a template to other sources of persistent data, such
as databases or external source repositories, is future im-
plementation work. Emulab already integrates CVS (and
soon Subversion) support for users, so we expect to con-
nect the workbench to those facilities first.

Template history. A template can be “modified” ei-
ther through the filesystem or through the workbench’s

Figure 5: The workbench tracks and displays how templates
are derived

Figure 6: Instantiating a template

Web interface. Each modification results in a new tem-
plate, and a single template may be modified multiple
times—for example, to explore different directions of re-
search. Thus, over a time, a user creates a tree of tem-
plates representing the history of a study. The workbench
tracks this history and can present it to users as shown in
Figure 5. The original template is the root of the tree, at
left; the most recent versions of the template are at the
right. By clicking on the nodes of the tree, a user can
recall and inspect any template in the history. The work-
bench also provides controls that affect the tree display:
e.g., individual nodes or subtrees can be elided.

4.2 Instantiating templates

Through the Web, a user can select a template and instan-
tiate it. The form for instantiating a template is shown in
Figure 6; it is similar to the form for swapping in a reg-
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ular Emulab experiment, with two primary differences.
First, the template form displays the template parameters
and lets the user edit their values. Second, the user must
give a name to the template instance. This name is used
by Emulab to create DNS records for the machines that
are allocated to the template instance.

When a template is instantiated, a new copy of the
template’s datastore is created for the instance. This en-
sures that concurrent instances of a template will not
interfere with each other through modifications to files
from the datastore. This feature also builds on existing
Emulab practices. Users already know that Emulab cre-
ates a directory for each experiment they run; the work-
bench extends this by adding template-specific items,
such as a copy of the datastore, to that directory.

4.3 Defining activities

When a template instance is created, testbed resources
are allocated, configured, and booted. After the network
and devices are up and running, the workbench automat-
ically starts a run (Section 3.2) and starts any presched-
uled activities within that run. The parameters that were
specified for the template instance are communicated to
the agents within the run.

Predefined activities. In our current implementa-
tion, activities are implemented using events and agents.
Agents are part of the infrastructure provided by Emu-
lab; they respond to events and perform actions such as
modifying the characteristics of links or running user-
specified programs. We found that the existing agent and
event model was well suited to describing “pre-scripted”
activities within our initial workbench.

Agents and scripted events are specified in a tem-
plate’s ns file, and commonly, events refer to data that
is external to the ns file. For example, as illustrated in
Figure 2, events for program agents typically refer to ex-
ternal scripts. The workbench makes it possible to en-
capsulate these files within templates, by putting them
in a template’s datastore. When a template is instanti-
ated, the location of the instance’s copy of the datastore
is made available via the DATASTORE variable. An ex-
perimenter can use that to refer to files that are contained
within the template, as shown in this example:

set do_client [$ns event-sequence {

$client run -command {$DATASTORE/setup.sh}

$client run -command {$DATASTORE/client.sh}

}]

Dynamically recording activities. The workbench
also allows a user to record events dynamically, for re-
play in the future. This feature is important for lower-
ing the barrier to entry for the workbench and supporting
multiple modes of use. To record a dynamic event, a user

executes the template_record command on some host
within the template instance. For example, the following
records an event to execute client.sh:

template_record client.sh

A second instance of template_record adds a sec-
ond event to the recording, and so on. The workbench
provides additional commands allow a user to stop and
restart time with respect to the dynamic record, so that
the recording does not contain large pauses when it is
later replayed. When a recording is complete, it can be
edited using a simple Web-based editor.

4.4 Using records

A record is the flight recorder of all the activities and ef-
fects that occur during the lifetime of a run. To achieve
this goal in a transparent way, the workbench needs to
fully instrument the resources and agents that constitute
a template instance. We are gradually adding such instru-
mentation to the testbed, and in the meantime, we use
a combination of automatic and manual (user-directed)
techniques to decide what should be placed in a record.

Creating records. When a run is complete—e.g., be-
cause the experimenter uses the Web interface to ter-
minate the template instance—the workbench creates a
record of the run containing the following things:
• the parameter values that were passed from the tem-

plate instance to the run.
• the logs that were generated by testbed agents.

These are written to well-known places, so the
workbench can collect them automatically.

• files that were written to a special archive direc-
tory. Similar to the datastore directory described
above, every template instance also has an archive
directory in which users can place files that should
be persisted.

• the recorded dynamic events, explained above.
• a dump of the database for the template instance.

Similar to the archive directory, the workbench
automatically creates an online database as part of
every template instance. The activities within a tem-
plate instance can use this database as they see fit.

As described for templates, records are also stored in a
Subversion repository that is internal to the workbench.
We chose this design to save storage space, since we an-
ticipated that the different records derived from a single
template would be largely similar. Our experience, how-
ever, is that Subversion can be too slow for our needs
when it is asked to process large data sets. We describe
our experience with Subversion further in Section 6.

Inspecting records. The workbench stores records
automatically and makes them available to users through
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Figure 7: Viewing the records associated with a template

the Web. From the Web page that describes a tem-
plate, a user can click on the View Records link to access
the records that have been derived from that template.
Figure 7 shows an example. Records are arranged in a
two level hierarchy corresponding to template instances
and runs within those instances. A user can navigate to
any record and inspect its contents. Additional controls
allow a user to reconstitute the database that was dumped
to a record: this is useful for post-mortem analysis, ei-
ther by hand or in the context of another run. Finally,
the workbench provides a command-line program for ex-
porting the full contents of a record.

Replay from records. The Web interface in Figure 7
includes a Replay button, which creates a new template
instance from a record. The replay button allows a user
to create an instance using the parameters and datastore
contents that were used in the original run. The origi-
nal ns file and datastore are retrieved from the template
and/or record, and the parameter values come from the
record. A new instance is created and replayed, eventu-
ally producing a new record of its own.

4.5 Managing runs

A user may choose to enclose all of his or her activities
within a single run. Alternatively, a user may start and
stop multiple runs during the lifetime of a template in-
stance, thus yielding multiple records for his or her activ-
ities. Whenever a new run begins, the user may specify
new parameter values for that run. The set of parameters
are those defined by the template; the user simply has an
opportunity to change their values for the new run.

When a run stops, the workbench stops all the program
agents and tracing agents within the run; collects the
log files from the agents; dumps the template instance’s
database; and commits the contents of the instance’s
archive directory to the record. When a new run begins,
the workbench optionally cleans the agent logs; option-
ally resets the instance’s database; communicates new
parameter values to the program agents; restarts the pro-
gram agents; and restarts “event time” so that scheduled
events in the template’s ns file will reoccur.

In addition to starting and stopping runs interactively,
users can script sequences of runs using the event sys-
tem and/or Emulab’s XML-RPC interface. Through the
event system, an experimenter can use either static (i.e.,
scheduled) or dynamic events to control runs. Using
a command-line program provided by Emulab—or one
written by the user in any language that supports XML-
RPC—a user can start and stop runs programmatically,
providing new parameter values via XML.

5 Case Studies

The experimentation workbench is a work in progress,
and continual feedback from Emulab users is essential
if we are to maximize the applicability and utility of the
workbench overall. We therefore recruited several mem-
bers of our own research group to use our prototype in
late 2006. All were experienced testbed users (and devel-
opers), but not directly involved in the design and imple-
mentation of the workbench. They used the workbench
for about a month for their own research in networked
systems, as described below.

5.1 Study 1: system development

The first study applied the workbench to software devel-
opment tasks within the Flexlab project [7]. Flexlab is
software to support the emulation of “real world” net-
work conditions within Emulab. Specifically, Flexlab
emulates conditions observed in PlanetLab, an Internet-
based overlay testbed, within Emulab. The goal of Flex-
lab is to make it possible for applications that are run
within Emulab to be subject to the network conditions
that would be present if those applications had been run
on PlanetLab. The Flexlab developers used the work-
bench to improve the way in which they were developing
and testing Flexlab itself.

A Flexlab configuration consists of several pairs of
nodes, each pair containing one Emulab node and one
“proxy” of that node in PlanetLab. The Flexlab infras-
tructure continually sends traffic between the PlanetLab
nodes. It observes the resulting behavior, produces a
model of the network, and directs Emulab to condition
its network links to match the model. The details of these
processes are complex and described elsewhere [7].

The original framework for a Flexlab experiment con-
sisted of (1) an ns file, containing variables that control
the topology and the specifics of a particular experiment,
and (2) a set of scripts for launching the Flexlab services,
monitoring application behavior, and collecting results.
A Flexlab developer would start a typical experiment by
modifying the ns file variables as needed, creating an
Emulab experiment with the modified ns file, and run-
ning a “start trial” script to start the Flexlab infrastruc-
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ture. Thus, although all the files were managed via CVS,
each experiment required by-hand modification of the ns
file, and the Emulab experiment was not strongly associ-
ated with the files in the developer’s CVS sandbox.

At this point the experimenter would run additional
scripts to launch an application atop Flexlab. When the
application ended, he or she would run a “stop trial”
script to tear down the Flexlab infrastructure and col-
lect results. He or she would then analyze the results,
and possibly repeat the start, stop, and analysis phases a
number of times. The attributes of each trial could be
changed either by specifying options to the scripts or,
in some cases, by modifying the experiment (via Emu-
lab’s Web interface). Thus, although the collection of
results was automated, the documentation and long-term
archiving of these results were performed by hand—or
not at all. In addition, the configuration of each trial was
accomplished through script parameters, not through a
testbed-monitored mechanism. Finally, if the user mod-
ified the experiment, the change was destructive. Going
back to a previous configuration meant undoing changes
by hand or starting over.

The Flexlab developers used the workbench to start
addressing the problems described above with their
ad hoc Flexlab testing framework. They created a tem-
plate from their existing ns file, and it was straightfor-
ward for them to change the internal variables of their
original ns file to be parameters of the new template.
They moved the start- and stop-trial scripts into the tem-
plate datastore, thus making them part of the template.
The options passed to these scripts also became tem-
plate parameters: this made it possible for the work-
bench to automatically record their values, and for ex-
perimenters to change those values at the start of each
run (Section 4.5). Once the scripts and their options were
elements of the template, it became possible to modify
the template so that the start- and stop-trial scripts would
be automatically triggered at run boundaries. The Flex-
lab developers also integrated the functions of assorted
other maintenance scripts with the start-run and stop-run
hooks. A final but important benefit of the conversion
was that the workbench now performs the collection and
archiving of result files from each Flexlab run.

These changes provided an immediate logistical ben-
efit to the Flexlab developers. A typical experiment now
consists of starting with the Flexlab template, setting the
values for the basic parameters (e.g., number of nodes
in the emulated topology, and whether or not Planet-
Lab nodes will be needed), instantiating the template,
and then performing a series of runs via menu options
in the workbench Web interface. Each run can be param-
eterized separately and given a name and description to
identify results.

At the end of the case study, the Flexlab develop-

ers made four main comments about the workbench and
their overall experience. First, they said that although
the experience had yielded a benefit in the end, the initial
fragility of the prototype workbench sometimes made it
more painful and time-consuming to use than their “old”
system. We fixed implementation bugs as they were re-
ported. Second, the developers noted that a great deal
of structuring had already been done in the old Flexlab
environment that mirrors some of what the workbench
provides. Although this can be seen as reinvention, we
see it as a validation that the facilities of the workbench
are needed for serious development efforts. As a result
of the case study, the Flexlab developers can use the
generic facilities provided by the workbench instead of
maintaining their own ad hoc solutions. Third, the Flex-
lab developers noted that they are not yet taking advan-
tage of other facilities that the workbench offers. For
example, they are not recording application data into the
per-instance database (which would support SQL-based
analysis tools), nor are they using the ability to replay
runs using data from previous records. Fourth, the de-
velopers observed that the prototype workbench could
not cooperate with their existing source control system,
CVS. Integrating with such facilities is part of our design
(Section 3.2), but is not yet implemented.

Despite the current limits of the workbench, the Flex-
lab developers were able to use it for real tasks. For
instance, while preparing their current paper [21], they
used the workbench in a collaborative fashion to manage
and review the data from dozens of experiments.

5.2 Study 2: performance analysis

We asked one of the Flexlab developers to use the work-
bench in a second case study, to compare the behavior
of BitTorrent on Flexlab to the behavior of BitTorrent on
PlanetLab.

He created templates to run BitTorrent configurations
on both testbeds. His templates automated the process of
preparing the network (e.g., distributing the BitTorrent
software), running BitTorrent, producing a consolidated
report from numerous log files, and creating graphs using
gnuplot. Data were collected to the database that is set
up by the workbench for each template instance, and the
generated reports and graphs were placed into the record.
These output files were then made available via Emulab’s
Web interface (as part of the record).

Once a run was over, to analyze collected data in
depth, the developer used the workbench Web interface
to reactivate the live database that was produced dur-
ing the run. The performance results that the researcher
obtained through workbench-based experiments—too
lengthy to present here—are included in the previously
cited NSDI ’07 paper about Flexlab [21].
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Figure 8: An example GHETE topology. GHETE utilizes the
many types of emulated and actual devices in Utah’s Emulab.

In terms of evaluating the workbench itself, the de-
veloper in this case study put the most stress on our
prototype—and thereby illuminated important issues for
future workbench improvements. For example, he ini-
tially had problems using the workbench in conjunction
with PlanetLab, because our prototype workbench was
not prepared to handle cases in which nodes become un-
available between runs. He also asked for new features,
such as the ability to change the ns file during a tem-
plate instance, and have those changes become “inputs”
to subsequent runs. We had not previously considered
the idea that a user might want to change not just param-
eter values, but the entire ns file, between runs in a single
template instance. We quickly implemented support for
these features, but we will clearly need to revisit the is-
sues that were raised during this case study. In particular,
it is clear that the issue of handling resource failures will
be important for making the workbench robust and ap-
plicable to testbeds such as PlanetLab.

5.3 Study 3: application monitoring

Another local researcher used our workbench to study
the behavior of an existing large-scale emulation sce-
nario called GHETE (Giant HETerogeneous Experiment).

GHETE was written by the researcher in June 2006
to showcase Emulab’s ability to handle large network
topologies containing many types of nodes and links:
wired and wireless PCs, virtual nodes, software-defined
radio (SDR) nodes, sensor network motes, and mobile
robots carrying motes. GHETE uses these node types in-
side an emulation of a distributed data center, such as the
scenario shown in Figure 8. A data center consists of
two (or more) clusters, each acting as a service center for
large numbers of client nodes. Client nodes send large
TCP streams of data to the cluster servers via iperf,

emulating an Internet service such as a heavily used, dis-
tributed file backup service. Each cluster is monitored for
excessive heat by a collection of fixed and mobile sen-
sor nodes. When excessive heat is detected at a cluster,
the cluster services are stopped, emulating a sudden shut-
down. A load-balancing program monitors cluster band-
width and routes new clients to the least-utilized cluster.
The clients in Figure 8 are connected to the data center
through emulated DSL connections, emulated cable mo-
dem links, and true 802.11 wireless and SDR networks.

The GHETE developer used the workbench template
system to parameterize many aspects of the emulation,
including client network size, bandwidth and latency
characteristics, and node operating systems. Because
the arguments controlling program execution were also
turned into template parameters, the workbench version
of GHETE allows an experimenter to execute multiple
runs (Section 4.5) to quickly evaluate a variety of soft-
ware configurations on a single emulated topology.

Although the workbench version of GHETE provided
many avenues for exploration, we asked the developer to
focus his analysis on the behavior of GHETE’s load bal-
ancer. To perform this study, he defined a GHETE topol-
ogy with two service clusters. The aggregate bandwidth
of each cluster was measured at one-second intervals,
and these measurements were stored in the database that
was created by the workbench for the template instance.
To visualize the effectiveness of the load balancer, the de-
veloper wrote a script for the R statistics system [20] that
analyzes the collected bandwidth measurements. The
script automates post-processing of the data: it executes
SQL queries to process the measurements directly from
the database tables and generates plots of the results.

Figure 9 and Figure 10 show two of the graphs that the
developer produced from his automated activities dur-
ing the study. Each shows the effect of a given load-
balancing strategy by plotting the absolute difference be-
tween the aggregate incoming bandwidths of the two ser-
vice clusters over time. The spikes in the graphs corre-
spond to times when one cluster was “shut down” due
to simulated heat events. The results show that the sec-
ond load balancer (Figure 10) yields more stable behav-
ior, but the details of the load balancers are not our focus
here. Rather, we are interested in how the workbench
was used: did it help the GHETE developer perform his
experiments and analyses more efficiently?

The GHETE developer said that the workbench was ex-
tremely useful in evaluating the load balancers in GHETE
and provided insights for future improvements. He listed
three primary ways in which the workbench improved
upon his previous development and testing methods.
First, as noted above, by providing the opportunity to set
new parameter values for each run within a template in-
stance, software controlled by Emulab program agents
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Figure 9: Measured difference in the incoming bandwidths of
the two service clusters, using a simple load balancer
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Figure 10: Measured difference in the incoming bandwidths of
the two service clusters, using an improved load balancer

could be easily configured and reconfigured. This en-
abled rapid trials and reduced experimenter wait time.
Second, via the per-template-instance database, the de-
veloper was able to analyze incoming data in real time
within interactive R sessions. This is in addition to the
post-processing analysis described above. He could also
easily re-instantiate the database from any completed run
for further analysis. Third, since he parameterized all
relevant aspects of GHETE’s emulation software, he was
able to quickly iterate through many different parameters
without wasting time tracking which runs correspond to
which parameter settings. Since the parameter bindings
for each run are archived by the workbench, he was able
to easily recall settings in the analysis phase.

6 Lessons Learned

In this section, we summarize two categories of “lessons
learned” from the case studies and our other experiences
to date with the prototype workbench. First, we discuss
storage issues and the effect of our philosophy to have
the workbench “store everything” by default. Second, we
evaluate how well the workbench’s model of experimen-
tation actually describes the processes and relationships
that are important to testbed-based research.

Record Stored in Elapsed
size (KB) repo. (KB) time (s)

BitTorrent (§5.2) 31,782 19,380 418
GHETE (§5.3) 72,330 20,240 861
Minimal template 88 48 48

Table 1: Space and time consumed for typical records in our
case studies. The first column shows the size of the record, and
the second shows the size of that record in the workbench’s
repository. The third shows the time required to stop a run, col-
lect the data from all nodes, and commit the record. “Minimal
template” describes the overhead imposed by the workbench.

6.1 Storage issues

It is essential for the workbench to store templates and
records efficiently, because we intentionally adopted de-
sign principles that lead to high storage demands: “com-
plete” encapsulation of experiments, proactive experi-
ment monitoring, and saving history “forever” [8]. As
described in Section 4, our prototype uses Subversion to
store both templates and records in a space-efficient man-
ner. We expected that the templates within a history tree
would be quite similar to each other, and thus would be
efficiently stored as deltas within Subversion. This argu-
ment also applies to the many records that arise from a
template, but perhaps to a lesser degree. It was surpris-
ing to us, therefore, when we realized that the two pri-
mary lessons we learned about workbench storage were
not about space, but about time and clutter.

First, as reported by our users, the prototype is too
slow at processing large amounts of data. This is most
commonly seen at the end of a run, when the work-
bench collects data from many nodes and commits the
assembled record. The current workbench forces a user
to wait until a record is complete before he or she
can safely resume experimentation within a template in-
stance. Table 1 describes typical records created from the
templates used in our second and third case studies.

Our conclusion is that the workbench must collect
and persist data more efficiently from the user’s point
of view. This deals partly with the amount of data col-
lected, but more significantly, it deals with when that
data is gathered. Both issues can be addressed by over-
lapping record-making with user activities in time. For
example, the workbench may leave records “open” for a
while. Log collection would occur in parallel with other
user activities, i.e., new runs. Collected data would be
held in escrow, and users would have a window in which
to add or remove items from a record. When the window
closes, user-specified rules would apply, and the record
would be finalized.

To isolate record-gathering and user activities that
run in parallel, we are investigating the use of branch-
ing filesystems. In particular, we have enhanced the
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production-quality Linux “LVM” logical volume man-
ager software [12]. Our extensions support the arbitrary
branching of filesystem snapshots and greatly improve
the performance of chained snapshots overall. A branch-
ing filesystem can prevent new runs from modifying the
files created by previous runs. When deployed for the
workbench repository (i.e., a shared filesystem), snap-
shots can naturally and efficiently encapsulate the con-
tents of both templates and records. When deployed on
the nodes within a template instance, it can remove the
need for users to put all the files that they want saved
into special directories for collection: all the files that
are produced during a particular run can be identified as
part of a particular snapshot. This “universal” archiving
will raise issues of user intent, as sometimes users won’t
wish certain files to be persisted and/or restored. Such
cases can be dealt with as described above, by leaving
records “open” and applying user-specified rules.

The second lesson we learned was that, despite our vi-
sion of a workbench that stores data forever, users have a
strong desire to delete data. Our users continually asked
for the ability to destroy templates and records. These
requests were not motivated by storage space, since we
had plenty available. Instead, our users wanted to reduce
cognitive clutter and maintain their privacy. They did not
want to see their “junk” forever, and neither did they like
the idea that their “mistakes” and other private activities
might be forever viewable by others.

Although the records of old and failed experiments can
be valuable for many reasons, it is clear that we need
to provide a range of deletion options within the work-
bench. These will range from merely hiding templates
and records to expunging them forever. Both present a
challenge in terms of presenting undeleted objects in a
consistent and complete way, and the latter puts a new
requirement on the workbench data repository.

6.2 Model issues

The workbench is based on the model of experimentation
described in Section 3. Based on our experience as users
and administrators of Emulab, we designed the model to
express notions and relationships that we knew needed
to be captured over the course of testbed-based research.
Overall, our experience with the new model has been
very positive. Its abstractions map well to mechanisms
that experimenters design for themselves, as we saw in
our first case study (Section 5.1). Many of the problems
that our users encountered were due to the immaturity
of our prototype—i.e., unimplemented features—as op-
posed to problems with the model.

On the other hand, the users in our first and second
cases studies also had problems that were traceable to
shortcomings of the model. In the first study, there was

confusion about the relationships between runs: does
a run start with the environment (e.g., filesystem and
database) that was left by the preceding run, or does each
run start afresh? In the second study, the experimenter
wanted to substantially change his network topology be-
tween runs, and he had trouble with the workbench when
nodes failed unexpectedly. All these issues stem from the
life cycle concerns of objects and abstractions that are
not clearly represented in our new model of experimen-
tation. We can and will refine the model to address the
issues that emerged during our case studies.

We always expected to refine our model as we gained
experience with the workbench. What we learned is that
many of the problems of our current model stem from
a single key difference between the requirements of our
workbench and the requirements of experiment manage-
ment systems for other scientific domains. It is this: Un-
like systems that track workflows and data within static
laboratories, the workbench must manage a user’s activ-
ities and the user’s dynamic laboratory at the same time.

The user’s laboratory contains his or her testbed re-
sources, which have dynamic state and behavior. The life
cycles of the user’s laboratory and experimental activi-
ties are separate but intertwined. Our workbench models
the separation—it distinguishes template instances from
runs—but not the interactions that should occur between
these two levels of testbed use. For example, it is not
enough for template instances to start and stop; they
should also be able to handle resource failures on their
own, via user-specified procedures. Instances also need
to communicate with runs to coordinate the handling of
failures with users’ experimental activities. Some ex-
isting systems (e.g., Plush [1]) model concerns such as
these, and their models will help to guide the evolution
of our workbench.

7 Related Work

The workbench is an experiment management system,
and there is a growing awareness of the need for such
systems within the networking research community.
Plush [1], for instance, is a framework for managing ex-
periments in PlanetLab. A Plush user writes an XML file
that describes the software that is to be run, the testbed
resources that must be acquired, how the software is to be
deployed onto testbed nodes, and how the running sys-
tem is to be monitored. At run time, Plush provides a
shell-like interface that helps a user perform resource ac-
quisition and application control actions across testbed
nodes. Plush thus provides features that are similar to
those provided by Emulab’s core management software,
which utilizes extended ns files and provides a Web-
based GUI. Our workbench builds atop these services to
address higher-level concerns of experimentation man-
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agement: encapsulation and parameterization via tem-
plates, revision tracking and navigation, data archiving,
data analysis, and user annotation. Plush and our work
are therefore complementary, and it is conceivable that a
future version of the workbench could manage the con-
cerns mentioned above for Plush-driven experiments.

Weevil [24] is a second experiment management sys-
tem that has been applied to PlanetLab-based research.
Weevil is similar to Plush and Emulab’s control system
in that it deals with deploying and executing distributed
applications on testbeds. It is also similar to the work-
bench in that it deals with parameterization and data
collection concerns. Weevil is novel, however, in two
primary ways. First, Weevil uses generative techniques
to produce both testbed-level artifacts (e.g., topologies)
and application-level artifacts (e.g., scripts) from a set
of configuration values. Our workbench uses parameters
to configure network topologies in a direct way, and it
makes parameters available to running applications via
program agents. It does not, however, use parameters to
generate artifacts like application configuration files, al-
though users can automate such tasks for themselves via
program agents. Weevil’s second novel feature is that
it places a strong focus on workload generation as part
of an experiment configuration. Both of the features de-
scribed above would be excellent additions to future ver-
sions of the workbench. As with Plush, Weevil and the
workbench are largely complementary because they ad-
dress different concerns of replayable research.

Many scientific workflow management systems have
been developed for computational science, including Ke-
pler [13], Taverna [17], Triana [23], VisTrails [4], and
others [27]. Many of these are designed for executing
distributed tasks in the Grid. Our workbench has much in
common with these systems in that the benefits of work-
flow management include task definition and annotation,
tracking data products, and promoting exploration and
automation. Our workbench differs from general scien-
tific workflow management systems, however, in terms
of its intended modes of use and focus on networked sys-
tems research. Our experience is that Emulab is most
successful when it does not require special actions from
its users; the workbench is therefore designed to enhance
the use of existing testbeds, not to define a new envi-
ronment. Because the workbench is integrated with a
network testbed’s user interface, resource allocators, and
automation facilities, it can do “better” than Grid work-
flow systems for experiments in networked systems.

Many experiment management systems have also been
developed for domains outside of computer science.
For instance, ZOO [10] is a generic management en-
vironment that is designed to be customized for re-
search in fields such as soil science and biochemistry.
ZOO is designed to run simulators of physical processes

and focuses primarily on data management and explo-
ration. Another experiment management system is Lab-
VIEW [16], a popular commercial product that interfaces
with many scientific instruments. It has been used as
the basis of several “virtual laboratories,” and like Em-
ulab, LabVIEW can help users manage both real and
simulated devices. Our experimentation workbench is
a significant step toward bringing the benefits of exper-
iment management, which are well known in the hard
sciences, to the domain of computer science in general
and networked and distributed systems research in par-
ticular. Networking research presents new challenges for
experiment management: for instance, the “instruments”
in a network testbed consume and produce many com-
plex types of data including software, input and output
files, and databases of results from previous experiments.
Networking also presents new opportunities, such as the
power of testbeds with integrated experiment manage-
ment systems to reproduce experiments “exactly” and
perform new experiments automatically. Thus, whereas
physical scientists must be satisfied with repeatable re-
search, we believe that the goal of computer scientists
should be replayable research: encapsulated activities
plus experiment management systems that help people
re-execute those activities with minimum effort.

8 Conclusion

Vern Paxson described the problems faced by someone
who needs to reproduce his or her own network experi-
ment after a prolonged break [18]: “It is at this point—
we know personally from repeated, painful experience—
that trouble can begin, because the reality is that for a
complex measurement study, the researcher will often
discover that they cannot reproduce the original findings
precisely! The main reason this happens is that the re-
searcher has now lost the rich mental context they de-
veloped during the earlier intense data-analysis period.”
Our goal in building an experimentation workbench for
replayable research is to help researchers overcome such
barriers—not just for re-examining their own work, but
for building on the work of others.

In this paper we have forwarded the idea of replayable
research, which pairs repeatable experiments with the
testbed facilities that are needed to repeat and modify
experiments in practice. We have presented the design
and implementation of our experimentation workbench
that supports replayable research for networked systems,
and we have described how early adopters are apply-
ing the evolving workbench to actual research projects.
Our new model of testbed-based experiments is appli-
cable to network testbeds in general; our implementa-
tion extends the Emulab testbed with new capabilities
for experiment management. The workbench incorpo-
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rates and helps to automate the community practices that
Paxson suggests [18]: e.g., strong data management, ver-
sion control, encompassing “laboratory notebooks,” and
the publication of measurement data. Our goal is to unite
these practices with the testbed facilities that are required
to actually replay and extend experiments, and thereby
advance science within the networking and distributed
systems communities.
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