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Abstract

Network emulation is valuable largely because of its abil-

ity to study applications running on real hosts and “some-

what real” networks. However, conservatively allocating

a physical host or network link for each corresponding

virtual entity is costly and limits scale. We present a

system that can faithfully emulate, on low-end PCs, vir-

tual topologies over an order of magnitude larger than

the physical hardware, when running typical classes of

distributed applications that have modest resource re-

quirements. This version of Emulab virtualizes hosts,

routers, and networks, while retaining near-total applica-

tion transparency, good performance fidelity, responsive-

ness suitable for interactive use, high system throughput,

and efficient use of resources. Our key design techniques

are to use the minimum degree of virtualization that pro-

vides transparency to applications, to exploit the hierar-

chy found in real computer networks, to perform opti-

mistic automated resource allocation, and to use feed-

back to adaptively allocate resources. The entire system

is highly automated, making it easy to use even when

scaling to more than a thousand virtual nodes. This paper

identifies the many problems posed in building a practi-

cal system, and describes the system’s motivation, de-

sign, and preliminary evaluation.

1 Introduction

Network experimentation environments that emulate

some aspects of the environment—network testbeds—

play an important role in the design and validation of dis-

tributed systems and networking protocols. In contrast to

simulated environments, testbeds like Emulab [28] and

PlanetLab [20] provide more realistic testing grounds for

developing and experimenting with software. Emulated

environments implement virtual network configurations

atop real hardware: this means that experimenters can

use real operating systems and other software, run their
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applications unmodified, and obtain actual (not simu-

lated) performance measures.

A primary challenge for future emulation environ-

ments is scale. Because emulated environments are sup-

ported by actual hardware, an emulated system that is

“larger” than the underlying physical system requires the

careful allocation and multiplexing of a testbed’s physi-

cal resources. To avoid experimental artifacts, the orig-

inal Emulab used strictly conservative resource alloca-

tion. It mapped virtual network nodes and links one-to-

one onto dedicated PCs and switched Ethernet links. We

have four motivations for relaxing this constraint, allow-

ing controlled multiplexing of virtual onto physical re-

sources. First, some applications such as peer-to-peer

systems or dynamic IP routing algorithms require large

topologies or nodes of high degree for evaluation, yet are

not resource-hungry. Second, much research and edu-

cational use simply does not need perfect performance

fidelity, or does not need it on every run. Third, such

multiplexing provides more efficient use of shared hard-

ware resources; for example, virtual links rarely use their

maximum bandwidth and so waste the underlying phys-

ical link. Fourth, it makes small-scale emulation clusters

much more useful.

In this paper we present a collection of techniques that

allow network emulation environments to virtualize re-

sources such as hosts, routers, and networks in ways

that preserve high performance, high fidelity, and near-

total transparency to applications. Our primary motiva-

tion is scale: i.e., to support larger and more complex

emulated environments, and to allow a single testbed to

emulate more such environments at the same time. Our

techniques allow a testbed to better utilize its physical

resources, and allow a testbed to emulate kinds of re-

sources that it may not have (e.g., hosts with very large

numbers of network interfaces). One goal of our tech-

niques is to preserve the performance fidelity of emu-

lated resources, but our approach can also be used in

cases where users do not require high fidelity, e.g., dur-

ing early software development, in education, or in many



kinds of reliability studies. Our techniques provide ben-

efits to both testbed operators, who can provide better

services with fewer hardware resources, and users, who

have improved access to testbeds and their expanded ser-

vices.

Our goal is that the overall system scales well with in-

creasing size of virtual topologies. Scalability is not only

about speed and size, but also concerns reliability and

ease of use. We are concerned with (i) the time to reliably

instantiate an experiment, which affects system through-

put and Emulab’s interactive usage model; (ii) the num-

ber of physical machines and links required for a partic-

ular virtual topology; (iii) monitoring, control, and vi-

sualization of testbed experiments, both by the user and

the system; and (iv) the user’s time spent in customiz-

ing instrumentation and management infrastructure. In

achieving good scalability, however, we require two con-

straints to be met. One is that the emulation system be,

as much as possible, transparent to applications. Even

if they deal with the network or OS environment in an

idiosyncratic manner, we should not require them to be

modified, recompiled, relinked, or even run with magic

environment variables. Second, we must provide good

(not perfect) performance fidelity, so that experimenters

can trust their results.

To meet our goals, our enhanced testbed multiplexes

virtual entities onto the physical infrastructure using four

key design techniques. First, it uses the minimum degree

of virtualization that will provide sufficient transparency

to applications. Second, it exploits the hierarchy found in

the logical design of computer networks and in the phys-

ical realization of those networks. Our resource allocator

relies on implicit hierarchy in the virtual topology to re-

duce its search space; our IP address assigner infers hier-

archy to provide realistic addresses; and our testbed con-

trol system exploits the hierarchy between virtual nodes

and their physical hosts. Third, our system employs op-

timistic automated resource allocation. The system or

the user makes a “best guess” at the resources required,

which are fed into a resource assigner that uses com-

binatorial optimization. Fourth, our testbed uses feed-

back to allocate resources adaptively. In training runs

and in normal use, system-level and optional application-

specific metrics are monitored. The metrics are used to

detect overload or underload conditions, and to guide re-

source re-allocation. Emulab can automatically execute

this adaptive process.

This paper makes the following contributions:

• It describes levels of virtualization that are appropri-

ate for this domain, and discusses the design trade-

offs.

• It shows how to solve the NP-hard resource assign-

ment problem for networks of thousands of entities,

and describes how to support flexible specification

of arbitrary resources.

• It presents a new feedback-directed technique to

support virtualization and scaling.

• It outlines a new algorithm for efficiently assigning

realistic IP addresses.

• It provides a preliminary experimental evaluation of

various aspects of the system.

• The system it describes provides a useful new facil-

ity and is proven in production use.

One of the lessons of our work is that, in practice,

achieving such a scalable system requires a collection of

techniques covering a wide range of issues. The chal-

lenge is more broad and difficult than simply virtual-

izing an OS or virtualizing network links. It includes

solving difficult problems in IP address assignment, in

allocating node and network resources, in performance

feedback, and in scalable internal control systems. We

believe that this fact—that a host of problems must be

solved to achieve scalable network experimentation in

practice—is not widely recognized.

2 Testbed Context

The Emulab software is the management system for a

network-rich PC cluster that provides a space- and time-

shared public facility for studying networked and dis-

tributed systems. One of Emulab’s goals is to transpar-

ently integrate a variety of different experimental envi-

ronments. Historically, Emulab has supported three such

environments: emulation, simulation, and live-Internet

experimentation. This paper focuses on our work to ex-

pand it into a fourth environment, virtualized emulation.

An “experiment” is Emulab’s central operational en-

tity. An experimenter first submits a network topology

specified in an extended ns [6] syntax. This virtual topol-

ogy can include links and LANs, with associated char-

acteristics such as bandwidth, latency, and packet loss.

Limiting and shaping the traffic on a link, if requested,

is done by interposing “delay nodes” between the end-

points of the link, or by performing traffic shaping on

the nodes themselves. Specifications for hardware and

software resources can also be included for nodes in the

virtual topology.

Once the testbed software parses the specification and

stores it in the database, it starts the process of “swapin”

to physical resources. Resource allocation is the first

step, in which Emulab attempts to map the virtual topol-

ogy onto the PCs and switches with the three-way goal

of meeting all resource requirements, minimizing use of

physical resources, and running quickly. In our case the

physical resources have a complex physical topology:

multiple types of PCs, with each PC connected via four

100 Mbps or 1000 Mbps Ethernet interfaces to switches

that are themselves connected with multi-gigabit links.



The testbed software then instantiates the experiment on

the selected machines and switches. This can mean con-

figuring nodes and their operating systems, setting up

VLANs to emulate links, and creating virtual resources

on top of physical ones. Emulab includes a synchroniza-

tion service as well as a distributed event system through

which both the testbed software and users can control

and monitor experiments.

We have seven years of statistics on 2000 users, do-

ing 69,000 swapins, allocating 806,000 nodes. An im-

portant observation is that people typically use Emulab

interactively. They swap in an experiment, log in to one

or more of their nodes, and spend hours running evalua-

tions, debugging their system, and tweaking parameters,

or sometime spend just a few minutes making a single

run. When done for the morning, day, or run, they swap

out their experiment, releasing the physical resources.

This leads to two points: speed of swapin matters, and

people “reuse” experimental configurations many times.

These points are important drivers of our goals and de-

sign.

3 Minimal Effective Virtualization

Multiplexing logical nodes and networks onto the physi-

cal infrastructure is our approach to scaling. Virtualiza-

tion is the technique we use to make the multiplexing

transparent. Our fundamental goal for virtual entities is

that they behave as much like their real-life counterparts

as possible. In the testbed context, there are three impor-

tant dimensions to that realism: functional equivalence,

performance equivalence, and “control equivalence.” By

the last, we mean similarity with respect to control by

the testbed management system (enabling code reuse)

and by the experimenter (enabling knowledge reuse and

scripting code reuse). This paper concentrates on the first

two dimensions, functional realism, which we call trans-

parency, and performance realism.

Our design approach is to find the minimum level of

virtualization that provides transparency to applications

while maintaining high performance. If a virtualization

mechanism is transparent to applications, it will also

be transparent to experimenters’ control scripts and to

their preconceived concepts. We achieve both high per-

formance and transparency by virtualizing using native

mechanisms: mechanisms that are close to identical to

the base mechanisms.

For virtual nodes, we implement virtualization within

the operating system, extending FreeBSD’s jail abstrac-

tion, so that unmodified applications see a system call in-

terface that is identical to the base operating system. For

virtual links and LANs, we virtualize the network inter-

face and the routing tables. That allows us to provide

key aspects of emulated networks using native switch-

supported mechanisms such as broadcast and multi-

cast. These mechanisms give us high—indeed native—

performance, while providing near functional equiva-

lence to applications. In our current virtual node im-

plementation we give up resource isolation, but we are

saved by our higher-level adaptive approach to resource

allocation and detection of overload.

3.1 Virtual Nodes

There are many possible ways to implement some no-

tion of a “virtual node.” The available technologies

and the trade-offs are well documented in the literature

(e.g., [19]). When choosing the technology for Emulab

virtual nodes, we evaluated each against four criteria, two

from an application perspective, two from a system-wide

perspective:

Application transparency. The extent to which vir-

tual node name spaces (e.g., process, network, filesys-

tem) are isolated from each other. (Can the application

run unchanged?)

Application fidelity. The extent to which virtual node

resources (e.g., CPU, memory, IO bandwidth) are iso-

lated from each other. (Does the application get the re-

sources it needs to function correctly?)

System capacity. The amount of virtualization over-

head. (How many virtual nodes can we host per physical

node?)

System flexibility. The level at which virtualization

takes place (can we run multiple OSes?) and the degree

of portability (can we run on a wide range of hardware?)

3.1.1 Emulab Virtual Nodes

Application transparency is important in the Emulab en-

vironment, requiring at least namespace isolation to be

present. On the other hand, we anticipated that the ini-

tial network applications run inside virtual nodes would

have modest CPU and memory requirements, making

resource isolation—except for the network, which we

already handle—less important. We do at least pro-

vide inter-experiment resource isolation since physical

nodes are dedicated to experiments, hosting virtual nodes

only for that experiment. Finally, we hoped to achieve

at least a ten fold multiplexing factor on low-end PCs

(850 MHz, 512 MB memory), necessitating a lightweight

virtualization mechanism. Considering these require-

ments, a process-level virtualization seemed the best

match. Given our BSD heritage and expertise, we opted

to design and implement our virtual nodes by extending

FreeBSD jails. In the following discussion, we refer to

an instance of our virtual node implementation as a vn-

ode.



Jails. Jails provide filesystem and network namespace

isolation and some degree of superuser privilege restric-

tion. A jailed process and all its descendents are re-

stricted to a unique slice of the filesystem namespace us-

ing chroot. This not only gives each jail a custom, virtual

root filesystem but also insulates them from the filesys-

tem activities of others. Jails also provide the mecha-

nism for virtualizing and restricting access to the net-

work. When a jail is created, it is given a virtual host-

name and a set of IP addresses that it can bind to (the

base jail implementation allowed a single IP address with

a jail, we added the ability to specify multiple IP ad-

dresses). These IP addresses are associated with net-

work interfaces outside of the jail context and cannot be

changed from within the jail. Hence, jails are implicitly

limited to a set of interfaces they may use. We further

extended jails to correctly limit the binding of the IN-

ADDR ANY wildcard address to only those interfaces

visible to the jail and added restricted support for raw

sockets. Finally, jails allow processes within them to run

with diminished root privilege. With root inside a jail,

applications can add, modify and remove whatever files

they want (except for device special files), bind to privi-

leged ports, and kill any other processes in the same jail.

However, jail root cannot perform operations that affect

the global state of the host machine (e.g., reboot).

Virtual disks. Our design of virtual disks made it

easy not only to be efficient in disk use, but also to sup-

port inter-vnode disk space separation. Jails provide lit-

tle help: even though each jail has its own subset of the

filesystem name space, that space is likely to be part of a

larger filesystem. Jails themselves do nothing to limit

how much disk space can be used within the hosting

filesystem.

Our design uses the BSD vd device to create a regu-

lar file with a fixed size and expose it via a disk inter-

face. Filesystem space is only required for blocks that

are allocated in a virtual disk, thus this method is space-

efficient for the typical case where the virtual disk re-

mains mostly empty. These fixed-size virtual disks con-

tain a root filesystem for each jail, mounted at the root of

each jail’s name space. Since the virtual disks are con-

tained in regular files, they are easy and efficient to move

or clone.

Control of vnodes. While enhancing the Emulab sys-

tem with node types other than physical cluster nodes,

we worked to preserve uniformity and transparency be-

tween the different node types wherever possible. The

result is that the system is almost always able to treat a

node the same, regardless of its type, except at the layers

that come in direct contact with unavoidable differences

between node types, or when we aggregate expensive ac-

tions by operating through the parent physical node.

An example of the transparency is the state machines
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Figure 1: A network topology illustrating routing issues due

to the multiplexing of virtual nodes and links. Large boxes

represent physical nodes and links, while small boxes and lines

(with italic labels) represent virtual nodes and links. Virtual

network interfaces (vlinks), virtual LANs (vlans), and physical

links (plinks) have names as shown.

used to monitor and control nodes of all types. While

non-physical nodes have significant differences from

physical nodes, the state machines used to manage them

are almost identical. In addition, the same machine is

used for Emulab vnodes as well as PlanetLab virtual

servers. Reusing—indeed, sharing—such complex and

crucial code contributes to the overall system’s reliabil-

ity.

3.2 Virtual Networks

Virtualizing a network includes not only multiplexing

many logical links onto a smaller number of physical

links, but also dealing with network namespace isolation

issues and the subtleties of interconnecting virtual nodes

within, and between, physical nodes. As with virtual-

izing nodes, there is a range of techniques available for

virtualizing networks. When choosing the technology

for Emulab, the criteria we evaluated against were:

Level of virtualization. A virtual network imple-

mentation can present either a virtual layer 2 (e.g., Eth-

ernet) or a virtual layer 3 (e.g., IP).

Use of encapsulation. Virtual network links may

(e.g., 802.1Q VLANs) or may not (e.g., “fake” MAC ad-

dresses) encapsulate their packets when traversing phys-

ical links.

Sharing of interfaces. The end point of a virtual net-

work link as seen by a virtual node may be either a

shared physical interface device or a private virtual one.

This may affect whether interface-centric applications

like tcpdump can be used in a virtual node.

Ability to co-locate virtual nodes. Can there be

more than one virtual node from a given network

topology on the same physical host? If so, there are

additional requirements for correct virtualization.



3.2.1 Emulab Virtual Networks

The Emulab virtual node implementation uses unshared,

virtual Ethernet devices in order to maintain transparency

with the “bare machine” model which presents dedicated

physical Ethernet devices to applications. By default,

these virtual devices are configured to use a custom 16-

byte encapsulation format, allowing use of the virtual

devices with any switching infrastructure. There is also

an option to allow rewriting the source MAC address in

outgoing packets with the virtual MAC address. Since

any physical host is dedicated to a single experiment,

whether using virtual nodes or not, it is necessarily the

case that virtual nodes for a topology will be co-located.

This raises two issues related to forwarding packets that

are addressed in the next sections.

Virtual network interfaces. While the FreeBSD jail

mechanism does provide some degree of network virtu-

alization by limiting network access to specific IP ad-

dresses, it falls short of what we need. In particular,

though jails have their own distinct IP addresses, those IP

addresses are associated directly with shared physical in-

terfaces, and thus have problems with interface-oriented

applications such as tcpdump. Moreover, because we al-

low co-location, it is possible that two virtual nodes in

the same LAN could wind up on the same physical host,

for example B1 and B2 in Figure 1. FreeBSD does not

allow two addresses in the same subnet to be assigned to

one interface.

To solve these problems, we developed a virtual Eth-

ernet interface device (“veth”). The veth driver is an

unusual hybrid of a virtual interface device, an encap-

sulating device and a bridging device. It allows us to

create unbounded numbers of Ethernet interfaces (virtu-

alization), multiplex them on physical interfaces or tie

them together in a loopback fashion (bridging) and have

them communicate transparently through our switch fab-

ric (encapsulation). These devices also provide the han-

dle to which we attach the IPFW/Dummynet rules nec-

essary for doing traffic shaping. Veth devices can be

bridged with each other and with physical interfaces to

create intra- and inter-node topologies and ensure the

correct routing of packets at the link level. For example,

this bridging prevents “short-circuit” delivery of traffic

between co-located nodes A0 and A2 in Figure 1, which

might otherwise occur when FreeBSD recognized that

both interfaces are local. Since multiple veth devices

may be bridged to the same physical device, incoming

packets on that device are demultiplexed based on the

virtual device’s MAC address, which is either contained

in the packet (encapsulation) or is exposed directly as the

packet’s MAC address (no encapsulation).

Virtual routing tables. While virtual Ethernet de-

vices are sufficient to enable construction of virtual Eth-

ernet topologies, they are not sufficient to support arbi-

trary IP topologies. This is due to FreeBSD jails sharing

the host’s IP infrastructure, in particular, the routing ta-

ble. In the routing table, it is only possible to have one

entry per destination. But with a physical node hosting

multiple jails representing different virtual nodes at dif-

ferent points in the topology, we need to be able to sup-

port multiple routes to (next hops for) a single destina-

tion. This is known as the “revisitation” problem [24].

For example, in Figure 1, packets sent from A0 to C0

will pass through host B twice. B0’s next hop for C

needs to be A (for A1) while B1’s needs to be C (for

C0). Thus there need to be separate routing tables for

B0 and B1. Further, even with separate routing tables,

incoming packets to B need context to determine which

routing table to use.

For Emulab, we have adopted and extended the work

of Scandariato and Risso [22] which implements multi-

ple IP routing tables to support multiple VPN end points

on a physical node. Routing tables are identified by a

small integer routing table ID. An ID is the glue that

binds together a jail, its virtual interfaces, and a routing

table. Incoming packets for different jails on a physical

node can thus be differentiated by the ID of the receiv-

ing interface and can be routed differently based on the

content of the associated routing table.

3.2.2 IP Address Assignment

A subtle aspect of implementing virtual networks is as-

signing addresses, in particular IPv4 addresses, to the

potentially thousands of links which make up a topol-

ogy. The topologies submitted to Emulab typically do

not come annotated with IP addresses; most topology

generators do not provide them, and it is cumbersome

and error-prone for experimenters to assign them manu-

ally. We thus require an automated method for producing

“good” IP address assignments, and it must scale to the

large networks enabled by virtualization. A desirable ad-

dress assignment is one that is realistic—that is similar

to how addresses would be allocated in a real network.

In the real world, the primary (though not only) factor

that influences address assignment is the underlying hi-

erarchy of the network. Hierarchical address assignment

also leads to smaller routing tables and thus better scal-

ing. Since real topologies are not strictly hierarchical,

the challenge becomes identifying a suitable hierarchical

embedding of the topology. Our work on IP address as-

signment centers on inferring hierarchy in this practical

setting.

We developed and evaluated three different classes of

algorithms: bottom-up, top-down, and spectral methods,

described in detail elsewhere [8]. The approach we ul-

timately deployed in production, called recursive parti-



tioning, creates the IP address tree in a top-down man-

ner. At the top level, the root of the tree contains every

node in the graph. Then we partition it into two pieces

using a graph-partitioner [17], assigning each half of the

graph to a child of the root. By applying this strategy re-

cursively, we create a tree suitable for IP address assign-

ment. The result is a fast algorithm that produces small

routing tables: for example, it can assign addresses to

networks of 5000 routers—comparable to today’s largest

single-owner networks—in less than 3 seconds.

4 Automated Resource Assignment

When an experimenter submits an experiment, Emulab

automatically chooses a set of physical nodes on which

to instantiate that experiment. This process of map-

ping the virtual topology to a physical topology is called

the network testbed mapping problem [21], and virtual

nodes add new challenges to an already NP-hard prob-

lem. The needs of this mapping are fundamentally sim-

ilar to other virtualized networking environments, such

as the planned GENI facility [10] (where such mapping

will be done by a Slice Embedding Service), and Model-

Net [26].

For an experiment with virtual nodes, a good mapping

is one that “packs” virtual hosts, routers, and links on to

a minimum number of physical nodes without overload-

ing the physical nodes. This means, for example, plac-

ing, when possible, nodes that are adjacent in the virtual

topology on the same physical node, so that the links be-

tween them need not use physical interfaces or switch

capacity. This is particularly difficult because the virtual

nodes may not have uniform resource needs, and physi-

cal nodes may not have identical capacities. Since Emu-

lab is a space-shared testbed, it is also important that bot-

tleneck resources, such as trunk links between switches,

are conserved, since they may be needed by other con-

current experiments. Finally, experimenters may request

nodes with special hardware or software, and the mapper

must satisfy these requests.

Emulab finds an approximate solution to the network

testbed mapping problem by taking a combinatorial op-

timization approach. It uses a complex solver called

assign [21]. assign is built around a simulated an-

nealing core: it uses a randomized heuristic to explore

the solution space, scoring potential mappings based on

how well they match the experimenter’s request, avoid

overloading nodes and links, and conserve bottleneck

resources. We found, however, that Emulab’s existing

assign was not sufficient for mapping virtual node ex-

periments, and enhanced it accordingly.

First, we needed new flexibility in specifying how vir-

tual nodes are to be multiplexed (“packed”) onto physical

nodes. To get efficient use of resources, we found it nec-

essary to add fine-grained resource descriptions, and to

relax assign’s conservative resource allocation policies.

Second, because virtualization allows for topologies

that are an order of magnitude larger than one-to-one

emulation, we ran into scaling problems with assign.

Since it must be run every time an experiment is swapped

in or re-mapped as part of auto-adaptation, runtimes in

the tens of minutes were interfering with the usability of

the system and making auto-adaptation too cumbersome.

To combat this, we made enhancements to assign that

exploit the natural structure of the virtual topologies it is

given to map.

4.1 Flexible Resource Specification

assign must use some criteria to determine how densely

it can pack virtual nodes onto physical nodes. assign

already had the ability to use a coarse-grained packing,

in which each physical node has a specified number of

“slots,” and each virtual node is assumed to occupy a sin-

gle slot. Thus, it can be specified that assign may pack

up to, for example, 20 virtual nodes on each physical

node. It became clear that this would not be sufficiently

fine-grained for many applications, including our auto-

adaptation scheme, because different virtual nodes will

have different roles in the experiment, and thus consume

different amounts of resources.

To address this, we added more packing schemes to

assign. In the first, virtual nodes can fill more than one

slot; experimenters can use this when they have an intu-

itive knowledge, for example, that servers in their topol-

ogy will require more resources than clients by an integer

ratio: 2:1, 10:1, etc.

The second packing scheme models multiple indepen-

dent resources such as CPU cycles and memory, and can

be used when the experimenter has estimated or mea-

sured values for the resource needs of the virtual nodes.

Each virtual node is tagged with the amount of each re-

source that it is estimated to consume, and assign en-

sures that the sum of resource needs for all virtual nodes

assigned to a particular physical node does not exceed

the capacity of the physical node. This scheme builds

on assign’s system of “features and desires”: virtual

nodes can be identified as having “desires” which must

be matched by “features” on the physical nodes they

are mapped to. Features and desires are simply opaque

strings, making this system flexible and extensible. We

have enhanced assign to allow features and desires to

also express capacities, which are then enforced as de-

scribed above. While we use this scheme for relatively

low-level resources (CPU and memory), it could also be

used for higher-level metrics such as sustainable event

rate for discrete event simulators such as ns.

The resource-modeling scheme is particularly useful



for feedback-based auto-adaptation. The values used for

CPU and memory consumption of a virtual node can

simply be obtained by taking measurements of an ear-

lier run of the application. The maximum or steady-state

usage can then be used as input to the mapping process.

The coarse-grained and resource-based packing criteria

can be used in any combination.

In addition to packing nodes, virtual links must be

packed onto physical links. Though the two types of

packing are conceptually similar, a different set of issues

applies to link packing. Some of these issues exist for

one-to-one emulation, but there are also some new chal-

lenges that come with virtual emulation.

Link mapping issues that one-to-one and virtual

emulation have in common. First, physical nodes in

a Emulab-based testbed have multiple interfaces onto

which the virtual links must be packed. Second, the

topology of the experimental network is typically large

enough that it is comprised of multiple switches. These

switches are connected with links that become a bottle-

neck, so the mapping must be careful to avoid over-using

them.

Link mapping challenges that arise with virtual

emulation. When mapping virtual-node experiments,

links between two virtual nodes that are mapped to the

same physical node become “intra-node” links that are

carried over the node’s “loopback” interface. It is advan-

tageous to use intra-node links, as they do not consume

the limited physical interfaces of the physical node. Al-

though the bandwidth on a loopback interface is high,

there are practical limits on it, and for some experiments

that use little CPU time but large amounts of bandwidth,

loopback bandwidth can become the limiting factor for

packing virtual nodes onto physical ones. We have ex-

tended assign to take this finite resource into account.

One of the guiding principles of assign has histor-

ically been conservative resource allocation; when as-

signing links, it ensures that the full bandwidth specified

for the link will always be available. While this makes

sense for artifact-free emulation, is at odds with our goal

of using virtualization to provide best-effort, large-scale

emulation. For example, an experimenter may have a

topology containing a cluster of nodes connected in a

LAN. Though the native speed of this LAN is 100 Mbps,

the nodes in this LAN may never transmit data at the

full line rate. Thus, if assign were to allocate the full

100 Mbps for the LAN, much of that bandwidth would

be wasted. To make more efficient resource utilization

possible, we have added a mechanism so that estimated

or measured bandwidths can be passed to assign. As

with node resources, this bandwidth can be measured as

part of auto-adaptation.

4.2 Improving assign’s Scaling

assign has been designed and tuned to run well on Em-

ulab’s typical one-to-one workload, consisting of topolo-

gies with at most a few hundred nodes. In order to make

assign scale to topologies of the scale enabled by vir-

tual nodes, we developed several new techniques.

4.2.1 Searching the Solution Space

Our first techniques for tackling scaling issues are aimed

at improving the way in which assign searches through

the solution space of possible mappings. assign finds

sets of homogeneous physical nodes and combines them

into equivalence classes; this allows it to avoid large por-

tions of the solution space which are equivalent, and thus

do not need to be searched. However, this strategy breaks

down with the high degree of multiplexing that comes

with virtual-node experiments, because a physical node

that has been partially filled is no longer equivalent to an

empty node. We have addressed this problem by mak-

ing these equivalence classes adapt dynamically at run

time, with physical nodes entering and leaving classes as

virtual nodes are assigned or unassigned to them.

Another improvement to the search strategy came

from the observation that, in a good solution, nodes that

are adjacent in the virtual topology will tend to be placed

on the same physical node. So, we made an enhancement

to the way assign selects new virtual-to-physical map-

pings to try, as it moves through the search space. To

conduct this search, assign takes a potential solution,

selects a virtual node, selects a new physical node to map

it to, and determines whether or not the resulting map-

ping is better than the original. This process is repeated,

typically hundreds of thousands or millions of times, un-

til a no better solutions are found. In our modified

version, rather than selecting a random physical node,

with some probability, assign selects a physical node

that one of the virtual node’s neighbors has already been

mapped to. This improvement made a dramatic differ-

ence in solution quality, leading to much tighter packing

and exhibiting much better behavior in clustering con-

nected nodes together.

4.2.2 Coarsening the Virtual Graph

Though these changes to the search strategy improved

assign’s runtime and solution quality, running assign

on very large topologies could still take more than an

hour, much too long for our purposes. To make the prob-

lem more tractable, we exploit topological features of the

virtual topology.

We expect that most large virtual topologies will be

based on the structure of the Internet; these may come



from actual Internet “maps” from tools like Rocket-

fuel [23] or from topology generators designed to create

Internet-like networks, such as GT-ITM [33], inet [29],

and Orbis [15]. The key realization is that such networks

tend to have subgraphs of well-connected nodes, such

as ISPs, ASes, and enterprises. In addition, we expect

that many topologies will have edge-LANs that represent

clusters, groups of workstations, etc.

We exploit the structure of the input topology by ap-

plying a heuristic coarsening pre-pass to the virtual graph

before running assign. By giving assign a smaller vir-

tual topology, we reduce the solution space that it must

search, in turn reducing the time required to find a good

solution. The goal of this pre-pass is to find sets of vir-

tual nodes that, in a good mapping, will likely be placed

on a single physical node. A new virtual graph is then

generated, with each of these sets combined into a sin-

gle node. These “conglomerates” retain all properties

of their constituent nodes; for example, the CPU needs

of each constituent are summed together to produce the

CPU required for the conglomerate.

We have implemented two coarsening algorithms. The

first stems from the realization that many topologies con-

tain LANs representing groups of clients or farms of

servers. An optimal mapping will almost always place

as many members of these LANs onto a single physical

node as possible. So, we find leaf nodes in LANs (that

is, nodes whose only network interface is in that LAN),

and combine all leaf nodes from the same LAN into a

conglomerate.

The second algorithm uses a graph partitioner,

METIS [17], to partition the nodes in the virtual graph.

We choose a number of partitions such that the aver-

age partition will fit on the “smallest” available physical

node. We then combine the virtual nodes in each parti-

tion into a single conglomerate node. The quality of the

partitions returned by the partitioner is dependent on the

extent to which separable clusters of nodes are present in

the graph. Since we are focusing on Internet-like topolo-

gies with some inherent hierarchy, we expect good re-

sults from this method.

The coarsening algorithms (particularly METIS) do

not know the intricacies of the network testbed mapping

problem, such as constraints on node types, resource us-

age, and link bandwidths; this is one reason they are able

to run much faster than assign itself. This leaves us with

the problem that they may return sets of nodes to cluster

that cannot be mapped onto any physical resources; for

example, they may require too much CPU power or have

more bandwidth than a single node can handle. Once

the coarsening algorithm has returned sets of nodes, we

use a multidimensional bin-packing approximation algo-

rithm to pack these into the minimum number of map-

pable conglomerates.
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ening pre-pass.

Both coarsening algorithms help assign to run faster

by making heuristic decisions that limit assign’s search

space, but could, in turn, make clustering decisions that

result in sub-optimal mapping. However, in our domain

obtaining a solution in reasonable time is more impor-

tant than obtaining a near-optimal solution. The map-

pings obtained by assign will always be valid, but it

is possible that some topologies are coarsened in such a

way the mapping does not make the most efficient use of

resources. The biggest potential problem is fragmenta-

tion, in which the coarsening pass makes conglomerates

whose sizes do not pack well into the physical nodes. We

take measures to try to avoid this circumstance, by care-

fully choosing our target conglomerate size. In practice,

the worst fragmentation we have seen caused only a 13%

increase in physical resources used.

To evaluate our new resource mapper as well as to un-

derstand the effects of the coarsening pre-pass, we com-

pared runs of assign with and without the pre-pass.

These runs mapped transit-stub topologies generated by

GT-ITM [33] onto Emulab’s physical topology. Each

test was run ten times. In all cases, the runtime of the

pre-pass itself was negligible compared to the runtime of

assign.

Figure 2 presents the median runtimes for these tests

on a 1.5 GHz Pentium IV, showing the greatly significant

time savings from the pre-pass. As we scale up the num-

ber of virtual nodes the improvement goes from a factor

of 15 at 100 nodes (12.0 to 0.78 seconds), to a factor of

32 at 1000 nodes (6560 to 200 seconds). The absolute

result is also good: it takes just 200 seconds to map 1000

nodes.

This speedup, of course, does not come without a cost.

Figure 3 shows the decrease in solution quality, in terms

of the quality of link mappings. Intra-node links con-

nect two virtual nodes mapped to the same physical node;
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by assign. Larger numbers of intra-node links are better, and

smaller numbers of inter-switch links are better.

they do not use up shared switch resources, so having a

large number of them is an indicator of a good mapping.

Inter-switch links, on the other hand, are an indicator of

a poor mapping, because they consume the shared re-

source of inter-switch links. Though the pre-pass does

cause assign to find somewhat worse mappings, the dif-

ferences are tolerable, and the speedup is a clear win. In

over 70% of the test cases, the number of intra-node links

found when using the pre-pass was within 10% of the

number found by assign by itself. The worst run was

within 16%.

5 Exploiting Physical Hierarchy

In addition to the previously described IP assignment and

mapping problems, a number of more general but severe

“system” scaling issues arose, which prevented us from

reaching large size until we addressed them. Some are

system-wide issues that are the byproducts of the order

of magnitude increase in the potential size of an exper-

iment. Others are per-node issues that are the result of

increasing the resource consumption on a node. In both

cases, we devise solutions that exploit the physical struc-

ture and realities of the physical testbed infrastructure.

Most system-wide problems have to do with accessing

centralized services and the use of unreliable protocols,

primarily during initial experiment setup. The system-

wide scaling problems encountered here are essentially

the same issues faced when increasing the number of

physical machines in the testbed. For example, sharing a

single NFS filesystem does not scale well. We are con-

stantly addressing these types of issues as we expand into

larger virtual node experiments. Ultimately, virtual node

growth will continue to outpace physical resource growth

by 1–2 orders of magnitude. However, by leveraging the

close relationship between virtual nodes and their host

we significantly reduce the burden on the central infras-

tructure as highlighted by the following examples.

There are a number of situations in which we use the

physical host as a caching proxy for its hosted virtual

nodes. Nodes in Emulab “self configure” when they

boot, after obtaining the necessary configuration infor-

mation from a central server. Since the physical host nec-

essarily boots before its virtual nodes, it downloads con-

figuration information for all virtual nodes in a single op-

eration, pre-loading a cache for each, and in some cases,

performing configuration operations itself in a more ef-

ficient manner. Similarly, the physical host acts as an

Emulab event system proxy, using a single connection to

the master event server to collect and distribute control

events for all its virtual nodes.

One of the most compute-intensive parts of instan-

tiating an experiment is calculating routing tables for

all of the nodes. Though Emulab supports dynamic

routing through the use of a routing daemon such as

gated or zebra, most experimenters prefer the con-

sistency and stability offered by computing routing ta-

bles off-line before the experiment begins. Typical al-

gorithms for doing this, however, have runtimes ranging

from O(V 2
· lg(V ) + V · E) (Dijkstra’s algorithm with

a Fibonacci heap) to O(V 3) (Dijkstra’s algorithm with

a linear-array priority queue), with respect to the num-

ber of vertices (nodes) and edges (links) in the topology

graph. To solve this problem, we parallelize route com-

putation across all of the physical nodes in the experi-

ment, with each physical node responsible for the rout-

ing tables of the virtual nodes it hosts. We distribute one

copy of the topology to each physical host, and run Di-

jkstra’s algorithm sourced from each virtual node hosted

on that physical node. Thus the route calculation time

becomes O(V 2
· n), where n is the number of virtual

nodes hosted on each physical node. In practice, with

the size of virtual topologies that are feasible to run on

Emulab and the level of virtual-to-physical multiplexing

possible, this time never exceeds a few seconds.

The original Emulab system could not reliably instan-

tiate an experiment larger than about 100 nodes. Our

improvements in Emulab allow experiments of up to at

least two thousand nodes to be reliably instantiated. A

fundamental limitation on speed of instantiation is that

vnode construction is not parallelizable within a unipro-

cessor host. However, virtual nodes on distinct physical

hosts can be setup in parallel. To demonstrate the degree

to which this parallelism can be successfully exploited,

we performed a simple test in which an experiment con-

sisting of a single LAN was repeatedly instantiated, each

time adding to the LAN one physical node hosting 10

virtual nodes. In the base case of one physical node with

10 virtual nodes in the LAN, setup, including topology

mapping, node configuration and startup, required 194



seconds. At 80 virtual nodes on 8 physical nodes, it took

290 seconds, a 50% increase in time for an 800% in-

crease in size.

6 Feedback-Directed Resource Allocation

Maximum scalability is achieved when Emulab’s physi-

cal nodes and networks can be divided as finely as possi-

ble, each physical resource providing support to as many

emulated and/or simulated entities as possible. How-

ever, for these emulated and simulated environments to

be worthwhile to most Emulab users, they must be ac-

curate recreations of devices in the real world. Meet-

ing our scalability goal and our realism constraint at the

same time means making virtual nodes that are “just real

enough” from the point of view of the software systems

under test.

Finding the proper balance between scalability and fi-

delity is not easy: the ideal tradeoff that is “just real

enough” is inherently specific to the software being

tested. Therefore, to find the appropriate resource map-

pings for a user’s experiment, our technique is to au-

tomatically search for a mapping that minimizes phys-

ical resource use while preserving fidelity according to

application-independent (provided by the system) and/or

application-dependent (provided by the user) feedback.

Testbed users have two options for adapting their ex-

periments: executing a single-stage “training” run that

requires little effort, or running a multi-stage automatic

experiment adapter that requires additional effort.

The first option does not require the experiment to be

fully automated, so is suitable for an interactive style of

experimentation. In this model, the user creates an ex-

periment and swaps it in on virtual nodes mapped one-

to-one on physical nodes to ensure adequate resources.

Users can then login to the nodes, run their programs,

and, when they have determined that the experiment is

in a representative state, click a button to record a pro-

file. This profile is then used in subsequent runs to drive

the resource mapping. Of course, because of the one-to-

one initial mapping, this simplistic manual approach will

not work for large topologies. For those topologies we

will necessarily need to start out with some virtual nodes

multiplexed many to one on physical nodes and thus we

cannot gather an accurate resource requirements profile

with a single run. For these situations we offer the sec-

ond option.

In the multi-stage approach, an experiment is automat-

ically run multiple times, each time adjusting the map-

ping to account for any resource overloads noted in the

previous run. To do this, the user must automate the ex-

ecution of the experiment. Each run of the experiment

starts up a representative workload, monitors resource

usage once that workload reaches a steady state, invokes

a script to gather the monitor output and create a profile,

and then remaps and reinstantiates the experiment based

on that profile. This process continues until there is a run

in which no resource overload is detected.

Our feedback-driven adaptation technique automati-

cally finds virtual-to-physical mappings that provide the

user’s required level of emulation fidelity while allowing

Emulab to make maximally efficient use of its resources.

There is a risk, however, that the mappings set up by the

adapter will fail to provide sufficient fidelity to the user’s

software during “production” testbed runs, e.g., because

the user modifies the software or is driving it in a differ-

ent way. Emulab relies on run-time feedback to detect

such cases and signal the user about possible problems

with his or her experiment.

6.1 Implementation

Ensuring application fidelity when multiplexing virtual

nodes can be achieved quickly and accurately through

monitoring the application’s steady state resource us-

age and feeding this data back into assign. Utilizing

application-independent metrics, like CPU and memory

usage, we can automatically adapt the packing of virtual

resources on to physical hosts. This is done in a way that

minimizes physical resource use while leaving sufficient

headroom for the vnode’s steady state resource consump-

tion. Any available application-specific metrics can then

be used to refine the mapping to account for lack of pre-

cision in the low level data.

On each physical node Emulab gathers a number of

application-independent resource usage statistics to feed

back to the adaptation mechanism. These include CPU

use, interrupt load, disk activity, network traffic rates,

and memory consumption. CPU and memory informa-

tion are also gathered at vnode granularity, which is how

we determine the resource demand of individual vnodes.

The other global statistics allow us to ensure that the

physical node as a whole is not overloaded.

The multi-stage adaptation technique requires that an

experiment be automated, running a particular sequence

of actions. This is easily done using Emulab’s event sys-

tem, which allows for executing operations in parallel, in

sequence, or at specific times relative to the start of the

experiment. The user only needs to create an event se-

quence to perform the steps described earlier. There are

built-in events for two feedback specific activities. One

allows for running the application-independent resource

monitor on all nodes for a fixed length of time. The other

performs the remap itself, a process which includes gath-

ering the log files from all nodes, analyzing the data to

detect overloads and produce new per-node resource us-

age estimates, and finally invoking assign and recon-

figuring the experiment to reflect the new virtual node



layout.

The mechanism for supporting application-dependent

metrics and providing user-directed feedback based on

those metrics is a prototype and likely to change. In

the current implementation, the user must provide three

components. First, he or she provides one or more re-

source monitors that gather and log appropriate resource

usage data. These could be separate programs, or they

could just be the applications themselves, logging rele-

vant information. Second, the user provides a “baseline

summary” file describing the expected behavior of the

system when not constrained by node resources. This

summary file can be in any format, as it is interpreted

by a user-supplied script. That script is the third com-

ponent. The script is automatically invoked at the end

of each run of the experiment, with the log files from

the monitors and the baseline summary as inputs. Its job

is to aggregate the log file information into a new sum-

mary and compare that summary with the baseline to de-

termine if there is a resource overload. If the answer is

“yes,” then the experiment will be remapped.

6.2 Usage Scenarios

We see three common ways in which the auto-adaptation

mechanism can be used. In the first, the user starts with

a one-to-one mapping of virtual nodes to physical nodes

and “packs” the experiment into fewer physical nodes.

Starting with the one-to-one mapping we gather boot-

strap resource data in the first pass. The system then runs

successive passes, increasing or decreasing the packing

until it arrives at a maximally dense packing factor with

virtual node resource use that is consistent with the one-

to-one mapping. At this point, the user will probably

want to increase the size of her or her topology. The sim-

plest approach is to use the bootstrap data for nodes that

will remain in the experiment and perform a bootstrap

on the newly added nodes. Alternatively, the user can

divide nodes into resource classes (e.g., client/server),

which are initialized using data derived from previous

runs.

A second style of adaptation, using the same mech-

anism, is to start with a dense mapping of a topology

and then expand it. A dense mapping is achieved by

providing no initial feedback data, allowing assign to

map strictly on the basis of available physical node and

link characteristics. In this configuration, there can be

no training run to gather clean resource usage data. In-

stead, feedback data are provided by the application-

independent metrics (pushing the experiment away from

obvious overload conditions) or with interactive guid-

ance from the user. This form of adaptation is used with

large topologies where there are not enough physical re-

sources to map it one-to-one.

Finally, in the third scenario, an Emulab experiment

can incorporate purely simulated nodes and networks,

using a modified version of nse [9]. As described in de-

tail elsewhere [12, 13], these simulated entities can be

transparently spread across physical nodes, just as vn-

odes are dispersed. Since these simulated nodes inter-

act with real traffic, the simulator must keep up with real

time. Detecting when virtual time has significantly fallen

behind real time gives us a way to detect overload that is

more straightforward than with vnodes, although there

are subtleties with synchronizing the two that must be

taken into consideration, as described in the above ref-

erences. Our infrastructure can adaptively remap simu-

lated networks similarly to the way it handles virtualized

nodes and links.

7 Results

In the following sections we present a preliminary evalu-

ation of the Emulab virtual node implementation in three

areas: application fidelity, application transparency, and

performance and fidelity of the adaptation mechanism.

All results were gathered on Emulab’s low-end “pc850”

machines, 850 MHz PCs with 512 MB of RAM and four

100 Mb Ethernet interfaces.

7.1 Application Fidelity

Microbenchmarks. To get a lower-level view of fi-

delity with increasing co-location, we performed an ex-

periment in which we ran the pathrate [7] bandwidth-

measurement tool between pairs of nodes co-located

on the same physical host. Each pair of nodes was

connected with a T1-speed (1.5 Mbps) link. We mea-

sured the bandwidth found by pathrate as we increased

the number of node pairs from one to ten. Across

all runs, pathrate measured the correct bandwidth to

within 1 Kbps, with a standard deviation across runs of

pathrate of 0.004.

Applications. We ran a synthetic peer-to-peer file

sharing application called Kindex, which is modeled after

a peer music file sharing network such as KaZaa. Kindex

maintains a distributed peer-to-peer index of file contents

among a collection of peer servers. It also keeps track

of replicas of a file among peers and their proximity, to

expedite subsequent downloads of the same file. In our

simplified experiment, we start a series of 60 clients se-

quentially. Each of 60 clients uploads a single file’s infor-

mation to the global index, and starts randomly searching

for other files, fetching those not previously fetched into

its local disk. Each client generates between 20 to 40

requests per minute for files, whose popularity follows

a Zipf distribution. Each client has sufficient space to

hold all 60 files. Hence after the experiment has run for
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Figure 4: Cumulative system bandwidth for co-location factors

of 0, 10, 15 and 20. “All peers online” is the point in time where

all 60 peers are running and downloading files.

a while, all clients end up caching all files, at which time

we stop the experiment.

The network topology consists of six 10 Mbps cam-

pus LANs connected to a core 40 Mbps LAN of routers

with 100 ms roundtrip between themselves. Each cam-

pus LAN is connected to a router via a 3 Mbps, 20 ms

RTT link.

We plotted the aggregate bandwidth delivered by the

system to all its users as a time line. For this, we mea-

sured the total size of files downloaded by all users in

every 10-second interval. We expect that initially down-

loads are slow, but as popular files are cached widely,

subsequent downloads are more likely to be satisfied

from a peer within the same campus, driving up the ag-

gregate bandwidth due to the higher speed links. How-

ever, due to the fetch-once behavior of clients, as more

files are downloaded by all users, downloads become less

frequent, driving down the aggregate bandwidth.

We ran the experiment in four configurations. First,

we emulated the topology on just physical nodes to es-

tablish a base line. We then repeated the experiment us-

ing virtual nodes with co-location factors of 10, 15 and

20 virtual nodes per physical node. Figure 4 shows the

results. The base line (pack-00) shows the expected be-

havior, aggregate bandwidth increasing to a peak and

then tapering off. At a co-location factor of 10, one

campus LAN mapped per physical node, the behavior

is indistinguishable for the base line. However, as we in-

crease the co-location to 15 and 20, since peers have to

supply files over the faster LAN links, the load on the

local disk rises. This is the reason for the reduced peak

bandwidth and its shift to the right, causing the curve to

be flattened.

While this example shows that we can achieve an order

of magnitude scaling improvement with an IO intensive

application on low-end PCs, it also illustrates the utility

of feedback data for driving virtual node multiplexing.

In this example, some node disks hit 100% busy in both

the pack-15 and pack-20 cases, an event easily detected

by application-independent metrics. However, the user

might also decide that the results from pack-15 were ac-

ceptable, but those in pack-20 were not. In this case they

might construct a custom metric saying that remapping

is only necessary if the disk were saturated for three con-

secutive measurements.

7.2 Application Transparency

Correctly achieved transparency is difficult to rigorously

demonstrate; only failures of transparency are obvious.

Our most compelling evidence is that experimenters have

run thousands of diverse virtual node experiments, yet

generated only a handful of requests for “missing fea-

tures” such as support for multicast routing and IPFW

firewall rules. We did perform one empirical stress test,

running a routing daemon in a complex virtual network

topology. By causing a series of link failures within

the topology, we verified that the routing daemons were

functioning as expected. In that test, we ran unmodified

gated routing daemons on all nodes in a 416 vnode hier-

archical topology on 22 PCs and automatically generated

OSPF configuration scripts. Once we verified the con-

nectivity between some leaf nodes across the diameter

of the topology, we caused a link failure in the interior

to see how OSPF would route around the failure. Be-

fore the failure, a route between two leaf nodes was sym-

metric with 11 hops. We found a 5 second downtime in

one direction and 9 seconds in the reverse direction, after

which alternate 12 hop paths were established. The for-

ward and reverse paths were different in one hop. When

we removed the link failure, it took 22 and 28 seconds

respectively for the route paths to be restored. Finally,

we rebooted two interior nodes in the topology. gated

restored all the routes in a little over a minute.

7.3 Adaptation Results

We evaluated our feedback system in three scenarios: a

Java-based web server and clients, the BitTorrent peer-

to-peer file distribution system, and the Darwin Stream-

ing Server [2].

We first ran a Java-based web server on one host with

69 clients continually downloading a 64 KB file. The

clients were separated into three different types based on

their link characteristics. Nine clients were evenly spread

across three links on a single router using 2 Mb LANs

to emulate cable modem clients. Forty clients were di-

rectly connected to a single router using 2 Mb multi-

plexed links to emulate DSL modems. Finally, 20 clients



Metric 2 Mb 2 Mb 56 Kb

LAN Link Link

74 vnodes on 74 physical nodes

Avg. Transaction Rate 1.19 2.29 0.09

Avg. Response Time (s) 0.84 0.43 10.67

Packed onto 7 phys. nodes after first iteration

Avg. Transaction Rate 1.10 1.85 0.09

Avg. Response Time (s) 0.91 0.53 10.77

Packed onto 7 phys. nodes after second iterations

Avg. Transaction Rate 1.19 2.29 0.09

Avg. Response Time (s) 0.84 0.43 10.70

Table 1: Performance of clients continually downloading a

64 KB file in different vnode mappings.

were directly connected to a single router using 56 Kb

multiplexed links, to emulate phone modem clients. The

feedback loop required three iterations to reach accept-

able application fidelity; the results are shown in Table 1.

The first iteration is a one-to-one mapping that allows

the system to get a clean set of feedback data. The sec-

ond iteration packed the 74 vnodes onto 7 physical nodes

and resulted in a drop in performance because the CPU

intensive server node was co-located with several client

nodes. The final iteration amplifies the feedback data

(i.e., increases the CPU and memory requirements) by

20%, which is enough to isolate the server and return the

application metrics to their original one-to-one values,

without allocating any more physical nodes. It should be

noted that the bad mapping found in the second iteration

could have been avoided with higher precision monitor-

ing. However, in our context a bad initial remapping is a

benefit because it denotes the lower bound on the num-

ber of required nodes and we always wish to minimize

the number of physical nodes required for a topology.

To demonstrate scaling a real application to large

topologies that cannot fit in a one-to-one mapping, we

ran the BitTorrent p2p file distribution program on a 310-

node network packed onto 74 physical nodes. The topol-

ogy consisted of 300 clients communicating over 2 Mb

LANs or links, a single “seed” node with a 100 Mb link,

and nine routers that formed the core. To bootstrap the

mapping we used feedback data from a smaller topology

for the clients, since their resource usage was dependent

on the link constraints and not the number of clients in

the system. However, the resource use of the seed node

and routers is tied to the size of the network, so they were

left one-to-one. In total, it took 19 minutes to instantiate

the topology: seven minutes for assign to map the vir-

tual topology onto the physical topology and twelve min-

utes to load disks onto the machines, reboot, and setup

the individual virtual nodes. This should be compara-

ble to the length of time it would take to setup the same

Mapping Video gap (ms) Audio gap (ms)

Min Max Min Max

One to one 0.93 90.99 48.23 210.96

Phys. Link Shared 0.04 470.3 0.07 531.27

Phys. Link Unshared 0.54 91.99 30.88 232.10

Table 2: Interpacket gap of clients receiving a 100 Kbps video

and audio stream in different configurations where the physical

link is shared and not shared. The values are the median of five

runs.

topology on physical machines (if Emulab had sufficient

nodes). On physical nodes, the assign time would be

less, but the time to setup switch VLANs would exceed

the time required to setup virtual links.

The adaptation mechanism can also accommodate ap-

plications that have throughput constraints as well as tim-

ing sensitivity. We tested the Darwin Streaming Server

sending a 100 Kbps video and audio feed to 20 clients.

When packed densely to 2 physical nodes, the inter-

packet gap variance is high, but if we set the estimated

bandwidth for the client links to 100 Mb, sparser virtual

to physical link mapping results. This in turn forces vir-

tual nodes to relocate onto other physical nodes, raising

the total number physical nodes to 6 (see Table 2). The

oversubscription of network bandwidth thus clears a path

for time sensitive packets.

8 Related Work

The ModelNet network emulator [26] achieves ex-

tremely large scale by foregoing flexibility and option-

ally abstracting away detail in the interior of a network

topology. Edge hosts run the user’s applications on

generic OSes, using IP aliasing and a socket interposition

library to give a weak notion of virtual machine, called

a VN. The VNs route their traffic through one or more

physical “core” machines that emulate the link charac-

teristics of the interior topology. ModelNet has emulated

topologies in excess of 10,000 links. However, it can-

not emulate arbitrary computation in the core of a topol-

ogy, which excludes simple applications like traceroute

as well as more complex services like user-configurable

dynamic routing, unless support for each feature is hard-

wired in (as has been done for DSR) [25].

Compared to Emulab, ModelNet is less transparent to

applications and it is harder to provide performance mon-

itoring, because it currently uses only a very weak no-

tion of virtual machine. For example, it does not virtu-

alize filesystem namespace, VNs cannot be multihomed,

and it provides no network bandwidth isolation between

VNs on the same physical host. ModelNet and the new

Emulab are clearly complementary—ModelNet is per-

fect for generic network interiors, while the new Emulab



is strong in other ways.

Building on ModelNet and the Xen [3] virtual machine

monitor, DieCast [11] uses time dilation to run large vir-

tual experiments. In DieCast, time is “slowed down” in-

side of the virtual machines by an amount equal to the

multiplexing factor, resulting in an experiment that takes

much longer to execute, but which provides the illusion

that the full capacity of the host CPU, network band-

width, and other “time-scalable” resources are available

to each virtual node. As a result of this time dilation,

each DieCast virtual node has more of these resources

available to it than ours do, but the overall efficiency of

the testing facility is not improved. Thus, our virtual

nodes are more appropriate for a shared facility. DieCast

represents an alternative approach to scale up experimen-

tation resources, bringing with it a different set of chal-

lenges to solve.

The Virtual Internet architecture [24] is a partially im-

plemented model targeted to deploying virtual IP net-

works as overlay networks on the live Internet. The VI

work identified most of the issues with link virtualiza-

tion at the IP layer that we encountered at the Ether-

net level. It focuses on correct implementation of vir-

tual links when nodes can simultaneously participate in

multiple topologies (concurrence), as multiple nodes in

a single topology (revisitation) and when nodes in a vir-

tual topology can themselves act as base nodes for other

topologies (recursion). It does not virtualize other node

resources.

Virtual machines have a long history, but we discuss

only a few recent examples that have been used specif-

ically to implement network emulation environments.

This related work generally concentrates on node and/or

network virtualization, but we provide a complete sys-

tem including experimenter control, automated resource

assignment and feedback directed virtualization.

IMUNES [32] is an integrated network emulation en-

vironment using FreeBSD jail-based virtual nodes and

the “vimage” virtual network infrastructure work [30,

31] (which is now part of FreeBSD-CURRENT, but was

not available when we started). Rather than virtualize

pieces of the network stack, the authors virtualize the en-

tire stack and associate an instance with each jail. While

conceptually cleaner, the complete duplication of all net-

work resources raises issues of kernel memory fragmen-

tation. Their implementation provides some basic con-

trol over CPU usage that ours currently does not. Al-

though IMUNES topologies can span multiple physical

machines, they do not have the automation support to

layout and control such topologies.

The node virtualization facility added to the Network

Emulation Testbed (NET) [16] provides a lightweight

virtual node mechanism in Linux based on virtual rout-

ing tables and custom Linux modifications. Their en-

vironment provides wireless as well as wired network

emulation. The NET virtual networking implementation

is analogous to ours, with their “vnmux” virtual inter-

face and bridge taking the place of our “veth” device and

the “NETshaper” replacing our Dummynet usage. Some

degree of application transparency is achieved by using

chvrf, a Linux chroot-like utility, to separate process and

network name spaces. The NET work is highly comple-

mentary to ours in that it provides a Linux virtual node

implementation as well as wireless network emulation

that could be integrated with Emulab.

PlanetLab [20] is a geographically distributed network

testbed, with machines time-shared among mutually un-

trusting users. PlanetLab uses Linux vservers [14] en-

hanced with a custom kernel module that provides en-

hanced resource isolation, including CPU and network

bandwidth. Node virtualization is constrained by the fact

that the nodes are subject to the restrictions of the site

at which they reside. For example, since they cannot as-

sume more than a single routable IP address is available

per node, IP name space is not virtualized.

VINI [4] is a virtual network infrastructure designed to

allow multiple, simultaneous experiments with arbitrary

network topologies to run on a “real” shared physical net-

work infrastructure. Specifically, PL-VINI is an imple-

mentation of VINI on PlanetLab nodes. It builds on top

of PlanetLab vservers, adding virtual routers connected

by virtual point-to-point links along with the ability to di-

rect real Internet traffic through the resulting virtual net-

work. The absolute performance of PL-VINI was poor

due to the need to implement forwarding infrastructure

in user mode on the PlanetLab Linux kernel. It also of-

fers only rudimentary traffic shaping and topology setup

mechanisms.

A new implementation of VINI called Trellis [5] im-

proves the performance and capabilities of PL-VINI by

moving the virtual networking into the Linux kernel, en-

abling faster packet forwarding and traffic shaping via

standard Linux tools. We are currently collaborating

with the VINI developers to bring VINI nodes under Em-

ulab control, enabling the full power of Emulab’s exper-

iment creation and control infrastructure.

Auto adaptation, using an automated iterative pro-

cess to best match a workload to available resources, is

also not a new idea. One example is Hippodrome [1], a

tool for optimizing storage system configurations. Hip-

podrome uses storage-relevant metrics (e.g., IOs/sec) to

analyze a target workload. It feeds that information into

a “solver” which uses modeling to find a good candi-

date storage architecture, then reconfigures the underly-

ing storage subsystem accordingly. This process is re-

peated until a configuration is found that satisfies the

workload’s IO requirements.

Compared with our work, Hippodrome is focused on



a much narrower set of resources. They are concen-

trated on IO bandwidth where we must consider a work-

load’s CPU, memory and network resource requirements

as well as storage requirements. As a result, they can use

more sophisticated and specialized analysis and design

tools (e.g., storage system models), allowing quicker

convergence on a suitable resource configuration.

9 Discussion and Conclusion

Our resource allocation and monitoring techniques do

not assure the timeliness of events. In general, assured

timeliness is expensive to provide, requiring real-time

scheduling of CPU and links. However, we do provide

two ways to address the issue, with another planned.

First, the user’s application-specific metrics, if they can

be gathered on unmultiplexed nodes, serve as a safety

mechanism to catch arbitrary performance infidelities.

Second, the user can specify a shorter time period (the

default is 1 second) over which the monitoring daemon

will average, as it looks for overload. Finally, we may

add a kernel mechanism that will detect if any resource

use over very fine time scales, e.g., 1–10 msecs, has ex-

ceeded a user-settable threshold. Given this mechanism

and typical Internet latencies, users can be quite confi-

dent that timing effects regarding network I/O have not

affected their experiments.

Evaluation of packet timeliness and CPU schedul-

ing effects remain to be done, but by offering the user

application-level metrics directing adaptation, that is not

essential. Exhaustive validation of the link emulation

fidelity should be done, similar to the inter-packet ar-

rival and time-variance analysis we do for mixed sim-

ulated/emulated resources [13]. Another issue is that our

default mode of encapsulation decreases the MTU by

a few bytes, which could affect some applications. In

this case we support two other techniques that require

no loss of MTU size: the virtual network devices can be

configured to use fake MAC addresses in place of en-

capsulation, or to use 802.1Q VLAN tagging. We may

add well-known OS resource isolation mechanisms such

as proportional-share scheduling and resource contain-

ers. In a completely different but important area, some

aspects of Emulab’s Web-based user interface, such as

its Graphviz-based topology visualization, are inconve-

nient to use on thousands of nodes. In response we have

built on Munzner’s hyperbolic three-dimensional graph

explorer library[18] to provide an interactive “fish-eye”

visualizer for Emulab, though have not yet put it into

production use. Finally, our node support is limited to

FreeBSD, yet many want Linux or Windows. When

the Trellis work is mature we plan to adopt that to ob-

tain equivalent support for Linux. We currently have

Xen partially supported in Emulab, and are exploring

VMware [27].

In conclusion, we have identified, designed, and im-

plemented the many features necessary to support prac-

tical scalable network experimentation, and deployed

them in a production system. We have shown that, by

relaxing the constraints of conservative resource alloca-

tion, we can significantly increase the scale of topolo-

gies that we can support, or lower the required physical

resources, with minimal loss of fidelity. In the future

we will gather experience on how experimenters use the

feedback and adaptation system, and evolve our system

accordingly.
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