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ABSTRACT

Providing efficient device driver support in the Fluke operating system presents
novel challenges, which stem from two conflicting factors: (i) a design and mainte-
nance requirement to reuse unmodified legacy device drivers, and (ii) the mismatch
between the Fluke kernel’s internal execution environment and the execution envi-
ronment expected by these legacy device drivers. This thesis presents a solution to
this conflict: a framework whose design is based on running device drivers as user-
mode servers, which resolves the fundamental execution environment mismatch.

This approach introduces new problems and issues, of which the most important
are synchronization, interrupt delivery, physical memory allocation, access to shared
resources, and performance. We successfully addressed the functional issues, as
demonstrated by the fact that the majority of device drivers execute successfully
without change and are routinely used by Fluke developers. Based on our experience
with the minority of drivers that did require changes, and our experience developing
the framework, we propose guidelines for improving device drivers’ portability
across different execution environments.

Running device drivers in user mode raises serious performance issues but on
the whole they were successfully mitigated. We compare the driver performance
in Fluke with that in the original legacy systems, in terms of latency, bandwidth,
and processor utilization. We find that reasonable performance (between 88-93%
of the best-performing Unix systems in a realistic workload) and acceptable pro-
cessor overhead (between 0-100%) are achievable. The limiting factor is the IPC

performance of the underlying Fluke layers.
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CHAPTER 1

INTRODUCTION

This thesis describes and analyzes the device driver support in Fluke [20, 21], a
research operating system (OS) developed at the University of Utah. We developed
a framework that enables legacy device drivers to be used unmodified and still
achieve reasonable performance. This work was a challenge due to the mismatch
between Fluke’s internal execution environment and the execution environment
expected by the legacy device drivers. The rest of this chapter gives an introduction
to device drivers, outlines the most important kernel execution environment issues
that made this work challenging, and concludes with a summary of the overall

thesis and the work’s contributions.

1.1 Device Drivers

Device drivers are the parts of an operating system that communicate directly
with the hardware and provide higher-level abstractions of the hardware for use
by other software. Writing, debugging, and maintaining device drivers is a long
and tedious process, especially given the enormous number of different hardware
devices available.

Device drivers service requests from the operating system, usually driven by
application requests. Drivers must also service requests from the hardware. By
generating an interrupt, a device informs the driver it has data available or it
has completed a task. Because requests are being sent to the driver from two

b2

“directions,” device drivers are logically divided into a top half, which services
operating system requests, and a bottom half, which services requests from the
hardware, as shown in Figure 1.1. Since the top half executes in response to requests

from applications, or processes, execution in the top half is also referred to as being



Process-Level Requests \1 \1 \1

Top Half
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Bottom Half

L L t Hardware Interrupts

Figure 1.1. Top and bottom halves. The kernel processes requests from applica-
tions (top half), and requests from the hardware (bottom half). Synchronization
between the top and bottom is necessary because of the state shared by the two
halves.

at process level, while interrupt handling in the bottom half is referred to as being
at interrupt level. As an example, the top half of a disk device driver adds read
and write requests to a queue, while the bottom half removes the requests from the
queue as the disk drive completes them.

Synchronization between the two halves of the driver can be accomplished in
many different ways, depending on the operating system, but the device driver and
the operating system must agree on the specific synchronization mechanisms. For
example, some operating systems allow multiple top-half requests to be serviced in
parallel with the bottom half. These systems use locking to coordinate the multiple
outstanding requests. Other operating systems process only one request at a time
and therefore do not require such locking, but still must coordinate the activity
between the top and bottom halves. The particular synchronization mechanisms
used are a crucial part of the kernel’s execution environment.

Since device drivers are an integral part of the operating system, it is necessary
for the device drivers to mesh with the rest of the operating system. This meshing
is normally accomplished by writing device drivers that are tailored for the specific
operating system environment. If device drivers are moved from one operating sys-
tem to another, the kernel facilities may no longer match the device driver writer’s

expectations, which requires that the driver be modified for the new environment.



1.2 Kernel Execution Environments

An execution environment encompasses everything that is visible to the program.
Execution environments include aspects such as the threading/concurrency model,
the instruction set, the available libraries and routines and their semantics, and
other available resources.

The threading model is defined by the semantics of synchronization, scheduling,
and preemption. An important aspect of the threading model is determining when
a thread can block, and what happens to its state when it does block. The state
can remain on the stack, can be explicitly stored in a “continuation” [11], or may
simply be discarded.

An important resource provided by an execution environment is memory: how
it is allocated and managed, how it is mapped, and when it is paged. The available
resources also encompass a notion of privilege, as the available resources generally
depend on the privilege level of the process.

Whereas application execution environments are fairly standardized (26, 34, 64],
the kernel’s execution environment is determined by the kernel’s implementation.
Operating system kernels each have their own internal execution environment,
which can vary from one operating system to another. Some of the ways in which

they vary are discussed in the next few sections.

1.2.1 Blocking
A request blocks when it cannot be completely processed immediately, due to
the need to wait for a resource or an external event, such as the completion of
a disk read. Combined with the kinds of events that can cause blocking, the
kernel’s behavior upon blocking is a driving factor in the entire kernel’s design
and implementation.
Even though the specific events that cause blocking vary between operating

systems, there are only a few models for how blocking is handled.



1.2.1.1 Blocking Model

In the traditional blocking model, every request has an associated kernel stack.
When a request blocks, its state is preserved on that stack. When the request is
allowed to continue, it can resume execution exactly where it left off, with all its
state intact. This approach is used by Windows NT, VMS, and most Unix-like

operating systems [42], as shown in Figure 1.2.

1.2.1.2 Nonblocking Model

With the “nonblocking” model, a request that blocks simply discards all of its
kernel state. When the request restarts, none of the state associated with the
request is still around, so the request must be able to continue without any state
accumulated before it blocked. Since there is no state indicating progress, the
system call is normally restarted from the beginning. Restarting the system call
from the beginning allows the kernel to block in user mode just prior to the system
call, instead of blocking in the kernel.

Not having to keep persistent state allows the kernel to use a single stack to
process all of the requests, as the stack is only used while doing the actual processing
of a request. The use of a single stack is shown in Figure 1.3. Nonblocking

operating systems are generally written to avoid blocking, so they run system calls

Request\ Requeﬂw Requestw Requestw Requ&s[\ Requestw
Stack Stack

Stack Stack Stack

Blocking Blocking
Kernel Kernel

Timel Time2

Figure 1.2. The blocking kernel configuration. In the left diagram at “Time 1,”
the left request is executing, while the other two requests that were previously
executing are blocked. At “Time 2,” as shown in the right diagram, when the left
request blocks the kernel changes stacks to the center request and processes it. The
blocked requests do not have to do anything special, as all of their state is retained
on per-request stacks.



Request\ Requesw Requestw Requestw Requ&s[\ Requestw
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Non-Blocking Non-Blocking
Kernel Kernel
Timel Time2

Figure 1.3. The nonblocking kernel configuration. The left request is executing,
while the other two requests are blocked. When the left request blocks, all of its
state is discarded. The center request gets the empty stack, and restarts its request
from the beginning.

to completion. Operations that require blocking are generally handled in user mode
when possible, or by having the kernel restart the system call from the beginning.
The Cache Kernel [8] and the two exokernel implementations [15, 35] use only the

nonblocking approach in their kernels.

1.2.1.3 Continuations

The continuation-based model falls between the blocking and nonblocking mod-
els. Before blocking, the kernel explicitly stores the request’s state in a small
continuation structure. When the request blocks, it loses its stack, as in the
nonblocking model. Saving the state in a continuation structure allows the request
to explicitly retain state across blocking. When the request is ready to resume, it
receives a stack and the state is restored from the continuation structure. The use
of continuations is shown in Figure 1.4. This approach was used by the V operating
system [7] and in some parts of Draves’ version of the Mach kernel [11]. Fluke also

supports a continuation-based nonblocking model.

1.2.2 Synchronization
Within device drivers, synchronization between the top and bottom halves can
be done using locks, by disabling interrupts, or through the use of atomic primitives.
Traditional Unix kernels process system calls serially either to completion or until

the system call blocks. A Unix kernel can simply disable interrupts in the top



Request\ Requesw Requestw Requestw Requ&s[\ Requestw

Stack /J / Stack

Continuations Continuations

Kernel Kernel
Timel Time?2

Figure 1.4. The continuation-based kernel configuration. The left request is
executing, while the other two requests are blocked. When the left request blocks,
its essential state is saved into a continuation structure, and another request is
resumed by first loading the saved continuation information.

half to prevent the bottom half from running. By processing requests serially, the
synchronization between process-level requests and the interrupt handler is fairly
simple.

Operating systems that support multiprocessors can do so by either serializing
system calls so that there is only one active at a time (Linux 2.0), or by multi-
threading the kernel (Solaris). Multithreaded kernels require sophisticated locking
to coordinate between the multiple outstanding requests and the interrupt handler,
as the interrupt handler may execute on a different processor than the activity that

is attempting to synchronize with it.

1.2.3 Layering and Locking
The kernel’s implementation can restrict the set of functions that may be called
from a routine or impose a locking hierarchy that must be followed. Correctness
requires that device drivers follow these rules. As an example, most operating
systems do not allow the bottom half of the device driver to call blocking routines.

This restriction is one reason it is important to know which routines block.

1.3 Making the Drivers Fit

The software development objective of this work was to take device driver

components from the OSKit [18, 22|, which provides device drivers that assume



the blocking model environment, and run them in Fluke, whose kernel can use the
nonblocking model. Although the blocking model mismatch is the most important
concern, the mismatch between the execution environments is due to more than
just blocking, as all of the previously mentioned areas come into play.

To achieve our goal of running OSKit device drivers in Fluke, it was necessary
to provide an execution environment that resembled the monolithic OS kernel
from which the device drivers originated. Since we found it impossible to run
the device drivers in the Fluke kernel (due to the extreme mismatch of execution
environments), we provide a framework for device drivers in Fluke by running
them in user-mode processes. Running the device drivers in user mode makes them
independent of the kernel’s internal configuration and implementation, as they only

need to deal with the exported kernel API.

1.4 Thesis Overview
1. As described in this chapter, we found that executing legacy device drivers
in user mode is the only practical way to resolve the mismatch between their
execution environment requirements and Fluke’s internal environment. Chap-
ter 2 gives more detail on the structure and internal execution environments
of the software systems that provide the concrete context for this mismatch

and its resolution: Unix, the OSKit, the Fluke kernel, and the Fluke runtime.

2. Running drivers in user mode raises numerous new issues and problems. We
found four issues to be most important: synchronization, interrupt delivery,
physical memory allocation, and access to shared resources. We discuss pro-
tection domain options for user-mode drivers and give background on these

four issues in Chapter 3. The details of our solution for these issues are in

Chapter 4.

3. A side effect of moving drivers to user mode is that doing so isolates them
from the hardware, the kernel, and often, applications. This separation re-

sults in performance problems caused by several areas, including interprocess



communication (IPC), synchronization, and interrupt delivery. However, with
effort we found that it is possible to achieve reasonable performance, which we
quantify along multiple dimensions and driver placement option in Chapter 5.
The limiting factor on performance is the IPC performance of the underlying
kernel and, especially, the runtime. In Chapter 6 we discuss others’ efforts to
build user-level device drivers; notably, hardly any of the other efforts provides

more than a superficial performance evaluation.

4. Our experience in developing this framework led to insights on some archi-
tectural advantages and disadvantages of Fluke and its runtime and allowed
us to develop some modest guidelines for writing device drivers that are more

portable across different execution environments, reported in Chapter 7.

Besides the above thesis contributions, the software artifacts that we developed
in the course of this work contributed significant concrete benefits to the Fluke
operating system and to the OSKit. Our software facilitated further research based
on Fluke, including a thesis [9] and a paper [58]. The OSKit is a key part of
several ongoing research and development efforts, such as MIT’s ML/OS [57] and
KaffeOS [2], and is widely used by others. The development work underlying this
thesis provided the following benefits:

1. Device driver support in Fluke for dozens of Ethernet devices and disk con-

trollers.

2. Device driver support for all of Fluke’s kernel configurations (except the en-
tirely non-preemptive configuration, which is of no practical use), with several

options for device driver placement.

3. Support in Fluke for the OSKit’s filesystem and network components, which

require a subset of the driver execution environment.

4. Fnhanced OSKit facilities in several areas, such as driver fixes and encapsula-

tion of PCI configuration space.



CHAPTER 2

SOFTWARE SYSTEM CONTEXT

This chapter discusses relevant functional, structural, and execution model as-
pects of the software systems that define the context for our work. These software
systems are Unix, which served as the original source of the OSKit device drivers,

the OSKit, the Fluke kernel, and the three parts of the Fluke IPC runtime.

2.1 Unix

Our device drivers came from Linux [3, 54], a Unix-like operating system. This
section describes the “traditional” Unix kernel execution model, used by the BSD
Unix variants and Linux. Some newer commercial Unix variants, such as So-
laris [28], have moved to a multithreaded kernel with different synchronization
models.

The Unix kernel services synchronous requests (system calls) from user processes
and asynchronous requests (interrupts) from devices [61]. When a Unix process
does a system call, the processor transfers to a dedicated per-process stack in the
Unix kernel. System call activity executes in supervisor mode at process level.
Process-level activity is run to completion unless it blocks on a resource (such as
a lock on a file descriptor), or on a hardware event (such as waiting for a disk
transfer to complete). When the process-level request blocks, its state remains on
the per-process stack inside the kernel, which waits until the request resumes. Only
a single process-level request may be active inside the kernel at a time.

In addition to processing system calls, the Unix kernel also executes interrupt
handlers in response to hardware interrupts. An interrupt handler executes in the
bottom half of a device driver, which preempts the top half and runs without a

true process context. Since it lacks a true process context, the bottom half is not
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allowed to block or access the user’s address space and thus is processed atomically
with respect to the process-level execution [42, Ch. 3|. The top half synchronizes
with the bottom half by disabling interrupts, whereas the bottom half synchronizes

with the top half by waking up blocked requests.

2.2 OSKit/Osenv

The OSKit [18, 22| is software from the University of Utah that provides single-
threaded encapsulated components, such as networking code, filesystems, and de-
vice drivers. These components were taken from pre-existing monolithic Unix
kernels (currently FreeBSD [25, 37], NetBSD [47], and Linux). The premise of
much of the OSKit work is that many operating system components are large and
complex, and it is too much work to continually reimplement the same functionality
for each new research operating system. Therefore, the OSKit attempts to provide
cleanly encapsulated code from existing operating systems which can be easily
adapted to new operating systems. By reusing code from other operating systems,
research efforts can be focused on the “interesting” parts of the OS, rather than
being continually forced to reimplement all the necessary functionality.

To provide this encapsulation capability, the OSKit defines abstraction APIs
and provides “glue” code to implement them. In particular, for each component
the OSKit defines a set of “up side” Component Object Model (COM) [44] interfaces
by which the client OS invokes OSKit services; the per-component OSKit glue code
translates calls on the public OSKit “standard” interfaces such as device_write
into calls to the imported code’s idiosyncratic internal interfaces.

Most relevant to our problem of matching execution environments is the “down
side” interface, through which every component invokes the services of its host
operating system (e.g., memory allocation, interrupt management). For these
services the OSKit defines a standard interface, that is called osenv. The “down
side” glue code translates calls to low-level services made by the imported code into
calls to the equivalent osenv public interfaces. Figure 2.1 is a diagram showing both

sets of interfaces.
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Operating System COM

OSKit Device Driver Glue

"Unmodified" Device Driver

Operating System OSENV

Figure 2.1. Diagram showing an OSKit device driver using an OS-provided osenv
implementation and exporting a COM interface to the operating system.

Therefore, to import an OSKit component into an existing OS, the OS needs to
provide an implementation of the osenv interface and know how to communicate
with the OSKit’s standard interface for that object’s services.

Osenv defines both the functional interfaces and the required execution envi-
ronment. The osenv API and execution environment specifications were driven
both by the desire for simplicity and the blocking nature of the encapsulated code.
Since all of the OSKit components come from a single-threaded Unix environment,
osenv closely follows the Unix execution model. The osenv execution model has
the following requirements: (1) only one process-level request may be in the code at
any point in time; (2) requests must be processed until they complete or yield the
processor; (3) interrupt handlers may not execute while interrupts are “disabled”;
(4) interrupts must appear to be atomic to the top half; and (5) per-request stacks
must be preserved across blocking operations, such as osenv_sleep.

Osenv’s functional interfaces, which deal with interrupts, memory, timers, and
other hardware-specific interfaces, are discussed in detail in the Appendix. Com-
plete osenv documentation is available as part of the OSKit distribution and can

also be found on the Web [16].
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2.3 Fluke Kernel

The Fluke kernel supports many different kernel configurations and execution
models [20]. Since Fluke is a research operating system designed from scratch, its
implementation was not constrained by the necessity of supporting any existing
code or execution environments. In fact, one of the research areas explored by the
Fluke kernel implementation was using a variety of unusual execution models for
uniprocessor and multiprocessor machines. The Fluke kernel is fully multithreaded,
and is able to process multiple requests concurrently, in contrast to the single-
threaded Unix kernel.

The Fluke microkernel was designed with a fairly minimalist approach: the
kernel provides only basic low-level objects, such as threads, mutexes, condition
variables, interprocess communication (IPC), and memory mappings. Applications
use these low-level primitives for multithreaded synchronization and communica-
tion. Any functionality not directly provided by the kernel, such as demand paging
of memory and process management, must be provided by application-level servers.
A subset of POSIX, including pthreads, is implemented using these low-level prim-
itives. A detailed specification of the Fluke API can be found on the Flux Web
pages [19].

2.3.1 Behavior Upon Blocking
The Fluke kernel’s execution environment configurations do not meet the Unix
driver’s execution environment assumptions. In this section we discuss the major
problems with using Unix components in both the nonblocking Fluke kernel and in

the preemptive blocking Fluke kernel.

2.3.1.1 Nonblocking Configurations

In Fluke, much like in Unix, blocking can occur only at well-defined preemption
points, such as when attempting to acquire a lock or encountering a page fault.
Unlike in Unix, in some Fluke kernel configurations the stack is discarded upon
blocking. The continuation information is saved by modifying the thread’s system

call state to represent any progress that has been made. The ability to represent
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the continuation in the system call state is possible because of a carefully selected
kernel API [20], where the kernel exports the intermediate stages of long-running
system calls.

When the thread is awakened, the system call is restarted. Where the thread
restarts the system call depends on how much (if any) recordable progress was made
before the thread blocked. By restarting the system call, the kernel, in effect, blocks
the thread in user mode. Since the stack is discarded and Fluke does not require a
separate continuation structure, this environment is referred to as the nonblocking
model in Fluke.

The OSKit device drivers, which were written for Unix, cannot run without
dedicated stacks, so we cannot use them in the nonblocking kernel configuration.
One solution would be to heavily modify existing drivers, while another solution

would be to write new device drivers. Neither of these solutions is practical.

2.3.1.2 Blocking Configurations

Alternatively, the Fluke kernel can be configured to run as a multithreaded, fully-
preemptive kernel with per-thread stacks. In such an environment, system calls can
be arbitrarily interrupted without blocking. System calls are not guaranteed to run
to completion, as the kernel can arbitrarily preempt them. Providing preemption

and multithreading violates the Unix execution environment’s assumptions.

2.3.2 Strictly Layered Implementation

Fluke’s highly layered kernel implementation poses another problem for device
drivers. There are approximately 30 layers in the current Fluke implementation [17].
A layer may only call down to lower layers, and may not call up. Violating the
layering model by having lower layers call higher layers may yield incorrect results
or, more likely, lead to deadlock. Despite these sometimes awkward constraints,
there are some good design reasons for highly-layered systems. Writing the kernel
in a layered manner simplified the implementation and locking, which made it
practical to support multiple kernel configurations. Since code can only call lower

layers, call cycles have been eliminated, which in turn helps guarantee it is deadlock-
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free. Another advantage is that the layering made the code more assurable; for
example it facilitated the verification of the Fluke IPC path, independent of the
other components [60]. Assurance is a particularly relevant goal for Fluke because
one of its configurations is the “Flask” high-security system [58], developed jointly
with the NSA. There is precedent for such layering; OSF’s MK++ kernel [39] was
also highly layered, strictly due to its high-security goals.

Although the layering offers advantages from a software engineering viewpoint,
it also violates the assumed execution environment of the Unix interrupt handlers.
Interrupt handlers are run very low in the Fluke layering: just high enough to
perform a context switch, but not high enough to allocate memory. Unfortunately,
the Unix device drivers to be used in Fluke rely on allocating memory while handling
an interrupt, which Fluke's strict layering prevents.

The layering also restricts access to synchronization mechanisms needed by the
interrupt handlers. Since an interrupt handler is run on the current thread’s stack,
it cannot do a mutex_lock, as the thread owning the mutex may be the same
thread whose context the interrupt thread is using. Interrupt handlers likewise
cannot manipulate any Fluke objects, look up memory mappings, or do much of
anything else. As a result of these restrictions, about all an interrupt handler can
do is cancel or dispatch a thread.

These layering restrictions prevent us from running legacy drivers’ interrupt han-
dlers in Fluke interrupt handlers. In order to work around the layering restrictions,
we have found it convenient to have the interrupt handler wake up a thread, which

then executes the real interrupt handler.

2.4 Fluke IPC Runtime
The standard Fluke runtime is used by nearly all programs to perform IPC. The
runtime consists of an IDL compiler (Flick), a library that provides a multithreaded
object invocation layer atop the kernel and Flick-generated stubs (MOM), and a set,
of macros that adapt MOM and Flick to the single-threaded COM objects exported
by the OSKit.
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The runtime is needed for many reasons, many of which are mentioned in the
sections below. One important reason is that directly invoking Fluke kernel IPC
system calls is tedious and error-prone; the runtime provides a clean IDL-specified
interface. However, as we will see in later chapters, in gaining this abstraction the
programmer currently loses some of the flexibility of the kernel IPC mechanism,

which leads to performance problems in the device driver framework.

2.4.1 MOM Runtime Support
Above the Fluke kernel is an important runtime layer implementing the “Mini
Object Model,” called MOM [41], used by Fluke operating system servers and
the Fluke client-side libraries for IPC-based communication. Besides simple object
invocation, MOM provides reference counting and a fully multithreaded dispatch
server on top of IPC stubs generated by the Flick IDL compiler [14]. This relatively
sophisticated runtime was designed to support multithreaded Fluke servers handling

multiple concurrent requests from multiple clients.

2.4.2 Flick IDL Compiler

Flick, the Flexible IDL Compiler Kit [14], is a flexible Interface Definition
Language compiler developed at the University of Utah. In Fluke, it is used to
generate RPC stubs from the CORBA IDL [48] specification of the IPC interfaces.
Although Flick does highly-optimized message marshaling, interactions between
MOM and Fluke IPC introduce several additional data copies. Since MOM does
not know what needs to be done with the data, it receives the entire message into
a temporary buffer before handing the data off to Flick. Flick then copies the data
into a buffer more suitable for the application. Work is in progress that will allow an
outgoing data buffer to be sent directly by the Fluke scatter-gather IPC. However,
incoming buffers are still copied out of the temporary storage provided by MOM.
Even though this copy is not always necessary, it does allow the semantics to be

preserved in the future if data is received directly into different buffers.
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2.4.3 COM Wrappers

COM, or the Component Object Model [44], is intended to provide a way for
independently developed components to be easily assembled in a program. Most
OSKit components, including the device drivers, export a COM interface. The
OSKit defines several COM interfaces, which provide a standard interface for
each type of component, such as network device driver, regardless of where the
component originated or how it is implemented. COM allows a Linux disk driver
to have the same interface as a disk driver taken from FreeBSD, for example.

Since many of the components used in Fluke are based on OSKit COM objects, a
set of macros has been developed that allow Flick-generated stubs to call COM ob-
ject methods without the tedious duplication of server dispatch functions. Because
of the single-threaded nature of the COM objects from the OSKit, these macros use
either Fluke mutexes or special locking functions to serialize requests. Although
this locking can introduce significant overhead, it is necessary to guarantee correct
execution. By having the COM wrappers use the osenv process locking functions

(Section 4.3), the serialization of requests is done automatically.



CHAPTER 3

DESIGN ISSUES

Designing a device driver framework is a complicated matter because of issues
like synchronization, interrupt delivery, memory allocation, and shared resources.
Fully specified device driver frameworks like UDI [56] contain hundreds of pages
detailing the functional interfaces and their interactions.

Fortunately, our problem is constrained by the requirements of the encapsulated
osenv device driver components in the OSKit. Although this chapter focuses on
the design issues involved in implementing a user-mode device driver framework for
the osenv execution environment, much of the following discussion is more broadly
applicable. Because the Fluke device driver framework runs in user mode, we start
this discussion with an overview of the device driver protection domain placement
options. We then discuss the major issues of synchronization, interrupt delivery,

memory allocation, and shared resources.

3.1 Protection Domains

In a traditional monolithic operating system such as Unix, all of the core OS
functionality, including device drivers, is provided by a single program called the
kernel, with applications running in separate address spaces. With these monolithic
systems, device drivers and other components are added to the OS either by
building a new kernel, or by dynamically linking them into the running kernel.
Some microkernel operating systems have taken a different approach, and place
device drivers and other OS components in their own separately protected address
spaces. These operating systems add new functionality by simply running another

server process, rather than modifying the kernel.
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The design space for device drivers and other operating system components is
much larger than the above two choices. The large size of the design space is based
on the observation that hardware memory mappings can be set up in many different
arrangements and on the further observation that memory mappings and being
in supervisor mode are orthogonal issues. Privileged instructions are accessible
only from supervisor mode, which is why the kernel runs in supervisor mode and
applications run in user mode.

Figure 3.1 shows four possible arrangements, with arrows used to indicate the
resulting communication paths between an application and a device driver. The
model labeled “A” represents a traditional Unix-style arrangement, in which the
device driver is in the kernel. Here the protection boundaries correspond directly
to the privilege level.

In “B,” the device driver is still in the kernel’s address space, but it executes in
user mode instead of supervisor mode. Here the user-level code is given the same
page mappings as the kernel code. The device driver can directly access kernel
data structures, but the device driver can no longer directly execute privileged
instructions, since it is not in supervisor mode.

Model “C” represents an operating system which has the device driver as a
separate user-mode server. This model is the traditional user-mode device driver
arrangement, and is used by operating systems such as QNX [31, 52]. Although
this configuration may sound radical, it is also used by Unix daemon processes,
which extend the OS functionality. The device drivers are still protected from the
applications, and they are in separate protection domains from the kernel.

In “D,” the application contains the device driver, and can communicate with
the device without operating system intervention or interprocess communication
(IPC). Colocating the application with the device driver is a desired feature for
very high-speed and low-latency network communications [6, 63].

A fifth example (“E,” not shown because it is obvious) is the case in which there
is no distinction made between user and kernel code. The kernel, application, and

device driver are in a single address space and protection domain, so there are
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Figure 3.1. Device driver placement options. This figure shows device drivers
in the kernel (A), in user mode with the kernel’s address space (B), in a separate
process (C), and colocated with an application (D).

no solid interior lines. Many embedded operating systems, as well as MS-DOS,
take this approach. The OSKit allows applications to link themselves with OSKit
libraries and device drivers to provide an operating system with this model.

Our Fluke device driver framework provides the ability to run device drivers as
shown in Figure 3.1 “B,” “C,” and “D.” As noted previously, arrangement “A”
is not supported in Fluke. In the performance section of our thesis, we compare
the performance of these arrangements in Fluke against the performance of Unix
systems using model “A” and against the performance of the OSKit using a single

protection domain (“E”).
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3.2 Synchronization

Proper synchronization between concurrent system calls and interrupt handlers
is a critical aspect of a device driver framework. A device driver receives requests
from two different directions: the top half receives requests coming from multiple
application threads, often concurrently, while the bottom half executes in response
to hardware interrupts. Access to shared data structures must be mediated in
some manner to prevent concurrent accesses finding these shared resources in an
inconsistent state.

The osenv model, as discussed in Section 2.2, imposes the following synchro-
nization constraints: (1) only one top-half (process) thread may be in the code at
any point in time; (2) the bottom-half (interrupt) threads may not execute while
interrupts are “disabled”; and (3) interrupts must appear to be atomic to the top
half. A process-level thread may choose to yield the CPU explicitly, thus logically
exiting the driver and allowing another process-level thread to enter the driver.
However, the thread that does the yield must then compete with other threads to
reenter the driver when it wishes to continue. Although not strictly required by
the osenv model, it is also necessary that an interrupt thread be able to preempt
a process-level thread. This additional constraint is necessary because the legacy
drivers we use often spin at process-level on a condition set by an interrupt handler
(such as delaying for a short time by spinning on the “current time” variable).

These constraints are due to the nature of the current osenv device driver
components. For example, interrupts must be processed atomically because the
interrupt handler may modify state being accessed by the process-level thread.
Process-level threads do not need to disable interrupts while reading the state if
the interrupt handler ensures that the state is consistent upon exit. A common
example of this would be an interrupt handler adding an element to a linked list
used by the top half of the device driver.

Since these constraints are driven by the nature of the Unix device drivers used,
they could be adjusted if we used different device drivers, e.g., multithreaded device

drivers. If the device driver writer were willing to do more explicit synchronization,
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a barrier mechanism could be used to synchronize the top and bottom halves.
Although explicit synchronization may be more efficient when operating in some
environments, such as when it is very expensive to guarantee interrupt atomicity,
the cost of this type of synchronization would most likely be greater for monolithic
uniprocessor device drivers.

It is also possible to write a device driver that handles synchronization between
multiple top-half threads internally, thus allowing concurrent access to the driver.
Concurrent access is especially advantageous when running on a multiprocessor
machine. However, synchronizing multiple process-level threads and interrupt pro-
cessing would be more complicated than the simple “disable interrupts” model

currently assumed by the osenv framework.

3.3 Interrupt Delivery

Most device drivers use interrupts to synchronize between events in the device
driver and events in the hardware. Hardware often takes a long time to accomplish
a task, such as reading a disk block, so it is a good idea for the OS to perform
other tasks while the I/O hardware is busy. Additionally, some events, such as
incoming network traffic, are asynchronous by nature. Polling for either type of
event is inefficient in most situations. Since the device driver needs to know when
its device requires servicing, the device generates an interrupt to signal the device
driver to do more processing.

Interrupts are relatively expensive and are delivered in supervisor mode to a
hardware interrupt handler. It is the responsibility of this handler to call the
interrupt handler for any device drivers using the specified interrupt vector. In
monolithic kernels, calling the interrupt handler is simply a function call, once the
low-level handler sets up any required state. This design provides reasonably low
interrupt processing overhead. With user-mode device drivers, however, the kernel
must instead cause the interrupt to be seen by the device driver in user mode.
Delivering interrupts to user mode is normally done by sending a software signal of

some sort to the device driver process.



22

One of the biggest drawbacks to user-mode device drivers is the cost of signaling
interrupts, due in part to the necessity of doing an extra context switch to the driver
on each interrupt. However, people are investigating ways to make the delivery of
interrupts to user mode more efficient [59]. Additionally, some custom-written
user-mode device drivers use a split-driver model, where the interrupt handler is
loaded into the kernel and executes in supervisor mode, and the process-level work
is done in user mode. The Exokernel allows applications to download code into the
kernel in a similar manner [15]. We do not have that option, since we reuse existing

drivers.

3.3.1 Interrupt Mitigation

Most network interfaces generate an interrupt for every incoming packet. Since
most operating systems process interrupts at high priority, it is possible to spend
most or all of the processor’s time handling interrupts during periods of heavy
network traffic. This problem is well-known, and has historically been addressed
by doing as little as possible in the interrupt handler [12]. Other solutions reduce
the number of interrupts generated by “coalescing” the interrupts with special
hardware. For example, ATM interface cards reassemble the ATM cells before
delivering an interrupt. User-mode device drivers minimize the amount of work
done at high priority in the kernel by having the kernel’s interrupt handler simply
signal a user-level thread.

The frequency at which a user-mode device driver processes interrupts is in-
versely proportional to overall system load, because the interrupt thread will be
scheduled less frequently during periods of heavy load. This scheduling behavior
results in low latency under light load, while maximizing throughput under heavy
load. Processing interrupts in user mode enables the processor to run the tasks that
are currently more important than the interrupt handler. Processing interrupts in
user mode also allows interrupt mitigation on incoming Ethernet packets without
any special hardware. When the system load is low, the interrupts get handled

promptly. As the system load increases, more packets are handled per interrupt,
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which maximizes throughput under load, as fewer interrupts are handled per packet
arrival. Interrupt-driven kernels, by contrast, process more interrupts per second
under heavy load.

Interrupt mitigation techniques are possible because most Ethernet devices sup-
port a chain or ring of buffers into which they receive packets. The device will fill
them without intervention until the buffers are full. By ensuring that there are
enough buffers to receive packets under the anticipated worst scheduling behavior,
no packets will be dropped. This design requires more buffer space, either on the
device or wired by the driver. Under extremely heavy load, higher priority processes
can cause packets to be dropped, which is the desired behavior as the software would
drop the extra packets anyway.

The one case where interrupt mitigation would not work well is with “dumb”
serial ports, such as the 16550 UART [43|. Dumb UARTS have very small buffers,
12-16 bytes, and at 115,200 bps, interrupts must be processed at least 900-1200
times per second to not drop characters. Older UARTS, such as the 8250, do not
have a FIFO and only buffer a single character.

Despite the difficulties posed by dumb UARTSs and similar devices, it is still
desirable to run their drivers in user mode. An obvious solution, in this case, is to
use an intelligent serial card that has a much larger buffer (on the order of kilobytes,
instead of bytes). This avoids the problem by not using hardware that exhibits the
problem. Alternatively, the user-mode interrupt handler for dumb UARTS could be
run at a higher priority, and immediately dispatched from the kernel. To prevent
possible live-lock and to guarantee fairness, it would be necessary for the user-mode
interrupt handler to disable the device interrupt once its receive buffer became full.
Upon hitting a low-water mark, the driver would then reenable the interrupt vector.
Disabling interrupts when the software buffers become full was first proposed as
a mechanism to eliminate receiver livelock in an interrupt-driven kernel [45, 46).
Emulating larger buffers, at the cost of additional processing time at high-priority,
is similar to the VAX, which did pseudo-DMA by having a lightweight, high-priority
interrupt handler deal with hardware that cannot do DMA [10].
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A final solution would be for the kernel’s interrupt handler to copy the data from
the FIFO to a circular queue. Performing the critical processing in the kernel’s
interrupt handler avoids the problem of user-mode interrupt latency. Even though
this arrangement requires running the interrupt handler in the kernel, the rest of
the processing can be still done in user mode. However, the task of synchronizing
the kernel’s handler with the user-mode processing then becomes more complex.

Deferred processing of interrupts is advantageous, because the device interrupts
should not have a priority inherently higher than other work being done on the
system. Interrupts should only get handled when the device processing becomes
the most important task. With some form of priority inheritance, which causes a
thread doing work on another thread’s behalf to receive the priority of the original
thread, it is possible to prevent priority inversion as well. The device driver would
assume the priority of the highest-priority client thread waiting on it. Minimizing
priority inversion also requires early demultiplexing, which minimizes the work done
before it is known for whom the work is being done.

It is possible to implement deferred interrupt processing in a monolithic kernel
by reducing the priority of processing a hardware interrupt. Hardware interrupts
are normally run at the highest priority, which can lead to receiver livelock [12].
Deferring of interrupts is actually already done to some extent; Windows N'T has
deferred procedure calls (DPCs) [62], and Unix has software interrupts [61]. Both
of these mechanisms minimize the work done in the interrupt handler itself, but

interrupt processing still executes at a higher priority than user-mode code.

3.4 Memory Allocation and Usage
Memory allocation is an important consideration for most applications. Device
driver memory allocation is different in that drivers normally require access to the
physical addresses of buffers, because devices use physical addresses when accessing
memory directly through DMA.
Device drivers do not always use physical addresses, however, as some devices

do not directly access memory, and some devices use virtual addresses to access
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memory, such as the VAX /780 and SBUS devices, which use a memory management
unit (MMU) on the I/O bus [10, 40]. The use of an I/O MMU does not necessarily
make the job any easier for user-mode device drivers, as memory still be made
nonpageable. Additionally, the I/O MMU must be programmed with the correct
mappings, which is not necessary for devices that access physical addresses.
Devices that do not access main memory directly are a good match for user-mode
device drivers. Without a DMA engine writing to main memory, the kernel can be
assured that the device driver will not overwrite critical parts of memory. However,
more and more devices are using DMA to transfer data because of the lower CPU

overhead required compared to programmed 1/O.

3.4.1 Paging

In most monolithic kernels, the entire kernel and all its data are stored in
nonpageable memory, because the kernel cannot handle an unexpected page fault.
Even if pageable kernel memory is supported, it is still generally restricted to a few
subsystems.

Pageable memory offers certain benefits to drivers, but at the price of some new
problems. For device drivers, only the buffers that are being accessed by the device
must be in nonpageable (wired) physical memory. With device drivers in user mode,
it should be possible to page out the rest of the driver’s address space under periods
of high memory consumption. Obviously, one cannot page out the driver doing the
paging. Although a page fault in a device driver will adversely impact performance,
it may be desirable to page out device driver memory that is infrequently accessed to
provide more system resources to other components and applications. The disk I/O
necessary to handle a page fault generally takes about 10ms, which is comparable
to the scheduling quantum on many systems. A user-mode device driver that can
tolerate an occasional 10ms delay in processing should be able to tolerate infrequent
page faults, as well as some delay in processor scheduling. Even though it is easy
to make the scheduling quantum smaller or to improve the scheduling latency, it
is not as easy to reduce the page-fault penalty. Unfortunately, it is not always

possible for the device driver to tolerate such high latency. For example, when
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a network device driver is subject to periods of heavy paging, network packets
would probably be dropped. Dropping packets under excessive load is actually
desirable, as the packets would most likely have be dropped by the higher layers
after additional processing [45].

With the existing osenv device drivers, there is no way to clearly distinguish
memory that must be wired from normal memory allocations. The device drivers
do not make the distinction when they allocate memory, since they were extracted
from a monolithic, nonpageable environment. However, it is possible to distinguish
wired from normal memory allocations for some data allocations. Thus the current
osenv model allows paging of the initial text, data, and bss segments,’ and some
dynamically allocated memory.

It would be possible to page out even device buffers, provided the pager notified
the device driver, and the device driver could deal with those notifications properly.
However, modifying the device drivers in the osenv framework to support paging

notifications is beyond the scope of this thesis.

3.5 Shared Resources

Accesses to resources shared by multiple device drivers must be arbitrated by
the operating system. In a monolithic kernel, it is often the case that the operating
system chooses not to restrict access to a shared resource after the OS has granted a
driver permission to use the resource. For example, once a Linux device driver has
allocated an ISA DMA channel, it may freely program the DMA controller, since
the non-preemptive single-threaded nature of the kernel protects the controller from
concurrent access.

Although this scheme works well in single-threaded monolithic kernels, it does
not work with multiple address spaces, as the serializing properties only hold for a
single address space. Since one of the goals of user-mode device drivers is to be able

to run multiple single-threaded device drivers concurrently, it is necessary to deal

ISeveral of the SCSI drivers access SCSI scripts in their data segment, and do not function
properly without modification unless their data segment is wired and they know the physical
location of the scripts.
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with shared resources in a safe manner, which requires providing synchronization
at the interface used for access.

It is not always possible to provide safe resource sharing between device drivers in
different address spaces without unduly restricting parallelism or making significant
modifications to the device driver. For example, the ISA DMA controller cannot be
used by device drivers in different address spaces, because the original Linux code
accesses the DMA controller directly rather than through a serializable interface.
Other resources, such as the PCI configuration space control registers and the
interrupt controller can be safely shared as the drivers use an interface that can be
safely serialized. Device drivers that share resources without external serialization

must be run in the same address space to maintain the required sharing semantics.

3.6 Summary
This chapter described some of the issues involved in the design of a user-mode
device driver framework and explained how using existing Unix device drivers

restricts this design. In particular:
1. There are multiple address space options.

2. Proper synchronization requires that only a single active process thread and
a single active interrupt thread may be inside the driver at a time, and the

interrupt thread stops the process thread.

3. We dispatch interrupts to user threads for processing, rather than calling an

interrupt handler function in the kernel.

4. We must have an interface that lets drivers allocate nonpageable physical

memory.

5. We must serialize access to shared resources.



CHAPTER 4

IMPLEMENTATION

This chapter contains a detailed description of the implementation of the Fluke
device driver framework, including the device server, controlling access to I/O de-
vices, Ethernet support, and logging. However, the bulk of the chapter, Sections 4.3
through 4.8, contains details on the five most important issues covered at a high level
in the previous chapter: synchronization, voluntary blocking, interrupt delivery,
memory allocation, and access to shared resources. These implementation details
will be useful for those readers facing a device driver implementation challenge
similar to Fluke’s, but can safely be skipped by most others. We now give an

overview of the driver framework before delving into details.

4.1 Device Driver Framework Overview

An overview of the Fluke device driver execution environment is as follows.
Device drivers are run in user-mode processes. Process-level threads handle requests
from applications, and interrupt threads are dispatched by “signals” from the
kernel. Activity between the threads is synchronized through the use of mutex
variables.

To provide the required execution environment for the device drivers, it was
necessary to provide wrappers both between the incoming requests and the drivers,
and between device drivers and the underlying Fluke execution environment. The
wrappers are illustrated in Figure 4.1, which shows the seven layers of the resulting
system.

Using MOM, the device driver framework exports an IPC-based interface to
users of the device drivers. Incoming requests (from the top of the figure) are

coordinated with each other and with interrupt activity through the use of Fluke
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Figure 4.1. Seven layers in the Fluke device driver framework. The shaded areas
represent the code written to allow the legacy device drivers to execute in Fluke.
Application requests come in the top interface and are sent down to the device
driver, while interrupts are delivered up into the device driver from the bottom.
The middle layers are single-threaded while the outer layers are multithreaded. The
device server is discussed in Section 4.2.

synchronization primitives which serialize the multithreaded MOM environment
for the device drivers. In the driver framework, incoming requests are handed off
to server threads, which run at process-level in the device driver. Interrupts are
processed by special dedicated threads, one for each allocated interrupt vector; the
kernel sends a signal to the appropriate thread when a hardware interrupt occurs.

It is possible for an application colocated with the device driver to use the
underlying OSKit interfaces instead of or in addition to the IPC-based interfaces.
Colocated applications can have either exclusive access to the device, or shared
access with other applications accessing the device through IPC.

Even though the driver framework was primarily designed to support the osenv
environment, most of the framework is also intended to be directly usable by

native multithreaded Fluke device drivers. Native device drivers would differ most
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from the legacy device drivers in that we could tune their interfaces for IPC-based
communication, rather than using the more general OSKit interfaces. Native drivers
would also use a synchronization strategy designed for the multithreaded Fluke
environment, and would not require external serialization of incoming requests.
We now discuss how the driver-specific issues were solved for the osenv execution
environment, including synchronization, memory management, interrupt delivery,
and other resources specific to device drivers. We begin this discussion with the

device server.

4.2 Device Server

Although much of the support code necessary is in the driver application, ad-
ditional external support is required to support user-mode device drivers. This
support is provided by the device server, which executes in user mode in the kernel’s
address space as part of the kserver.

The kserver is very much like a normal Fluke application, except that it has
the same memory mappings as the kernel, which corresponds to option “B” in
Figure 3.1. Since the kserver is in the same address space as the kernel, memory
allocation must be be coordinated with the kernel. We do that by providing a
special system call to the kserver, which it uses to allocate memory.

All services that device drivers require that are not available to normal Fluke
applications, such as allocating physical memory, receiving device interrupts, and
allocating 1/O space, are handled by the device server. The device server also
mediates access to other shared resources, such as PCI configuration space and the
interrupt controller. For example, the device server has access to special kernel
hooks that allow it to register a thread to receive hardware interrupts and allocate

physical memory for device drivers.

4.3 Synchronization
Before delving into the implementation, some background on the Fluke kernel
interfaces is necessary. Fluke provides both POSIX-like [34] mutexes and condition

variables [5]. Mutexes provide exclusive access to a region, while condition variables
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are used to wait until signaled by another thread. Condition variables are used
with a mutex for synchronization. This mutex is automatically released while
waiting on the condition variable, and is atomically reacquired by the thread when
the condition variable is signaled. Fluke also provides a mechanism to send an
asynchronous signal to another thread through the use of thread interrupts.

Synchronization in the Fluke device driver framework is an especially tricky
aspect of the implementation. Synchronization between process-level (top half)
activities and interrupt-level (bottom half) activities is done exclusively with Fluke
mutex and condition variables; the device driver never disables actual physical
interrupt delivery to the processor. Before entering the driver code, process-level
threads acquire a mutex (fdev_lock). Similarly, interrupt threads acquire a dif-
ferent mutex (intr_lock) before executing. Interrupts can be disabled by the
process-level thread simply by acquiring intr_lock. Figure 4.2 shows the process
involved in acquiring and releasing the process-level lock. Figure 4.3 shows the
steps required to enable and disable interrupts.

Since interrupt processing must be atomic with respect to process-level activity,
the interrupt thread must also stop any process-level thread executing in the top-
half code for the duration of the handler. To protect against the race condition in
which the process-level thread changes while the interrupt thread is determining
which thread to stop, the process-level thread may acquire or release the process-
level lock (fdev_lock) only while holding the interrupt lock (intr_lock). This
allows the interrupt thread to easily identify which thread (if any) it needs to stop
before it can execute the device driver’s interrupt handler.

This restriction on when the process lock can be acquired or released brings about
additional complications. Threads may not block trying to acquire the process-level
lock, as they would block holding the interrupt lock. If they blocked while holding
the interrupt lock, the thread holding the process lock would not be able to release
it, and interrupt threads would also be blocked, resulting in deadlock.

To avoid race conditions, if the process-level lock cannot be immediately ac-

quired, the thread uses a condition variable (process_cond) in conjunction with
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Figure 4.2. Simplified diagram showing process_lock and process_unlock.
The signal handler, used to make interrupt handlers atomic with respect to the
process-level thread, is also shown. The signal handler is closely related to
enable_interrupts and disable_interrupts, which are shown in Figure 4.3.
Restore Interrupts calls enable_interrupts only if intr_lock was not held when
disable_interrupts was called. Process Thread returns TRUE if the current thread
is a top-half thread.

the interrupt mutex. When the currently running thread is ready to release the
process lock, it signals the condition variable to wakeup the blocked thread waiting
for the process-level lock. The blocked thread is able to resume execution when it
can reacquire the interrupt lock. It then acquires the process lock to become the

new process-level thread.
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Figure 4.3. Simplified diagram showing disable_interrupts and enable_inter-
rupts. Note that Interrupt Process Thread causes the current process thread to
execute the process interrupt handler routine, shown in Figure 4.2.
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Stopping the process-level thread while the interrupt handler is executing is
done through a cooperative effort between the interrupt and process threads. The
interrupt thread, after it has acquired the interrupt mutex, sends a fluke_thread_ -
interrupt to signal the process-level thread, then waits on a condition variable
(c_stop, protected by the m_stop mutex), which the process thread signals when it
has stopped. The process thread then blocks on the same condition variable, until
the interrupt handler has finished and it signals the process thread. This process
is also shown in Figures 4.2 and 4.3.

There are a couple things to note. The first is that if no process thread currently
holds the process lock, the interrupt thread just acquires it itself and does not
have to signal another thread. This is called the uncontested case. Second, it
would not be necessary to wait for the process thread to stop (dashed box in
Figure 4.3) if sending the signal synchronously stops a thread that has not disabled
signals. It would be possible to optimize this case slightly by having only the
process thread wait in its signal handler. This optimization was not done because
interrupts are only rarely contested, and when this implementation was written,
sending a signal was not guaranteed to synchronously stop the target thread. If
the interrupt thread did not have to explicitly wait for the process thread to stop,
it would eliminate a forced thread context switch to the process thread and back
at the start of the interrupt handler. As a result of this work, the semantics for
fluke thread interrupt have been modified so that the target thread will not
execute any user-mode code between the time the thread interrupt system call
returns and the target thread’s signal handler is executed (provided that the target
thread has thread interrupts enabled). This semantic change allows the code path
inside the dashed boxes in Figures 4.2 and 4.3 to be eliminated.

It turned out that stopping a Fluke thread was a source of huge inefficiency.
Fluke provides only fluke thread get_state to stop a thread; since capturing a
thread’s state requires a consistent view, the kernel stops the thread as a side effect.
However, the kernel performed a large amount of work that was unnecessary for

our purposes, with overhead that caused us to livelock under certain conditions
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while handling the interrupts from a 100Hz clock. When we changed the synchro-
nization code to use the current fluke thread interrupt approach, we reduced
overhead by one to two orders of magnitude. This example highlights some of the

improvements possible with targeted kernel modifications.

4.4 Voluntary Blocking

Device drivers often give a command to a device and then wait for the request
to complete. If the request takes a long time to process, it is advantageous to do
other work during the delay. Generally, upon completion of the task, the device
generates an interrupt to signal that the command has been processed. A good
example of this is a disk read or write. It takes several milliseconds for the disk
drive to move its head to the correct location and transfer the data. While this
request is being processed, it is possible to do other useful work, including having
the device driver process more requests.

The osenv API provides an osenv_sleep/osenv_wakeup interface which allows
process level threads to sleep until awakened, usually by an interrupt thread. It
is important to note that in osenv interrupt processing is not allowed to sleep or
otherwise block.

When a process-level thread needs to wait on an event, it initializes a sleep
record (osenv_sleep_init), and sleeps on it. An interrupt thread in the device
driver is then responsible for doing a wakeup, which allows the thread to run again.
By sleeping, the current thread allows a different process-level thread to enter the
device driver and do work while the old thread is waiting for a wakeup.

Since a new process-level thread may enter the device driver when the cur-
rently executing thread sleeps, the implementation of sleep must be tied into
the process-level synchronization code. They are connected by creating a fluke
condition variable per sleep record, and using it in conjunction with intr_lock and
fdev_lock. The sleep code ties these together by acquiring the interrupt lock and
releasing the process lock, and then blocking on the sleep condition variable using

the interrupt lock for synchronization. When the thread is awakened, it reacquires
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Figure 4.4. Simplified diagram showing the code involved in voluntary blocking:

sleep and wakeup.

the process lock, and returns to where it was executing before it called sleep. The

process involved in going to sleep and being awakened is shown in Figure 4.4.

As mentioned in Section 4.3, the interrupt lock must be held when trying to

acquire or release the process lock. Instead of blindly acquiring the interrupt lock

before acquiring the process-level lock, the code checks to see if it already has

it. After the thread acquires the process lock, it only releases the interrupt lock



37

if it did not have it before it tried to acquire the process lock. The same thing
occurs when the process lock is released. This behavior allows the process lock
to be acquired and released with “interrupts disabled” in the sleep code. The
interrupt lock is released when the thread blocks on the sleep condition variable,
and reacquired when awakened, which allows sleep and wakeup to operate properly
with the process and interrupt locking.

As an optimization, since sleep is called quite frequently and the cost of creating a
Fluke condition variable is reasonably expensive, the condition variables associated
with sleep records are cached in a LIFO linked-list. Even though it may be
desirable to limit the number of condition variables that are cached, the current
implementation caches every condition variable it ever allocates. This means that
the number of condition variables allocated is equal to the maximum number of
simultaneously sleeping threads, which is no greater than the maximum number of

concurrent requests in the device driver.!

4.5 Interrupt Delivery

It is necessary to deliver hardware interrupts to the device driver. Since the
device drivers are executing in user mode, we accomplish this by using a dedicated
thread that is created for each interrupt vector a device driver registers to receive.
This thread does an IPC to the device server to register or unregister for the
interrupt vector. After it has registered for the interrupt vector, it blocks processing
interrupts until it is time to unregister. The device server, in turn, executes a
special privileged system call to notify the kernel to deliver the specified hardware
interrupts to the thread that registered with the device server. Using a device server
allows the policy of determining which threads can receive hardware interrupts
to be implemented outside of the microkernel, although the kernel provides the

mechanism for delivering the hardware interrupt. Hardware interrupts are delivered

'We use a condition variable per thread because it is expensive to wake up all the threads
when one needs to wake up. Using a condition variable per sleep event allows us to only wake
up the correct thread. In turn, this fine-grained control allows us to avoid the “thundering herd”
phenomenon where all the threads are awakened but all but one must block again.
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to the user-mode thread by the kernel’s interrupt handler sending a fluke_thread -
interrupt to the interrupt handler thread. This process is analogous to a Unix
kernel sending a SIGINT to a user process.

There are a few motivating reasons for using a dedicated thread per interrupt
vector. The mechanism used to deliver interrupts to user mode, via fluke_-
thread_interrupt, simply provides an indication that someone sent the thread an
interrupt, but with no associated data. A mechanism for indicating the interrupt
vector could have been added, but the current approach is simpler. The current
approach would also allow us to perform some optimizations that would eliminate
the IPC to the device server when disabling and enabling specific interrupt vectors.

Currently, attempts to disable or enable individual interrupt vectors are handled
by performing an IPC to the device server. Since each interrupt vector is sent to
a different interrupt thread, it is possible to add an additional mutex for each
interrupt vector, and have the interrupt handler acquire that mutex in addition to
the existing interrupt mutex. With some additional complexity, this would then
allow individual interrupts to be disabled on a per-driver basis without performing
an [PC. However, the most common reason for disabling a single interrupt is to
allow different interrupts to occur while the interrupt handler is running. Since the
process of delivering an interrupt to the interrupt handler disables the interrupt,
and we do not allow interrupts to be enabled inside the interrupt handler, there is
usually no need to manipulate individual interrupt enables except during interrupt

probing during driver initialization.

4.5.1 Concurrent Interrupts
To remain responsive to higher-priority interrupts, most operating systems allow
higher-priority interrupts to occur during long-running interrupt handlers. We do
not currently support this in our Fluke user-mode device drivers. It is not currently
possible to reenable other interrupts inside the interrupt handler, as that would
create the situation in which one interrupt thread needed to stop another interrupt
thread. Instead, we can run different device drivers in separate address spaces. The

kernel itself only keeps interrupts disabled for very brief periods.
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While a thread is processing a thread interrupt, further thread interrupts are
disabled for that thread. It would be possible to handle other interrupts by saving
the interrupt state and explicitly reenabling interrupts in the thread interrupt han-
dler, to handle other interrupts. Since the kernel does not reenable that hardware
interrupt until all the handlers have finished execution, there was no reason to add
the complexity of recursive interrupt locks.

Given our use of multiple interrupts threads and a single interrupt lock per ad-
dress space, concurrent interrupts are not feasible, which prevents a high-priority in-
terrupt from preempting a lower-priority interrupt in the same driver process. If the
interrupt thread released the interrupt lock to reenable interrupts, a process-level
thread could acquire the interrupt lock and execute in parallel with it, which would
produce incorrect results, as discussed in Section 3.2. To avoid these problems, any
attempts to reenable interrupts from inside an interrupt handler are ignored.

In practice, the main reason for enabling interrupts in an interrupt handler is to
avoid losing clock interrupts while processing long interrupt handlers, or to allow
higher-priority interrupts to be processed quickly. It usually does not matter if a
device driver occasionally loses a clock interrupt, and the Fluke kernel itself will not
drop clock interrupts. Also, device drivers may be run in separate address spaces
and their interrupt handlers can be run at a higher priority to reduce the impact of
using only a single interrupt lock. Additional steps can be taken to ensure that the
interrupt handlers do very little by deferring as much processing as possible until
later in another thread, which also reduces the amount of time the interrupt lock
is held. This strategy is currently used by the network drivers, where the interrupt
handler queues up the packets at interrupt time without doing any processing of
the data.

If we used a single interrupt thread per driver process, it would be possible to
block fluke thread interrupts to disable hardware interrupt processing, instead
of using the interrupt mutex. Using a variant of the current process-level syn-
chronization code, where the interrupt thread waits until the process-level thread

has stopped, process-level threads could disable thread interrupts to prevent the
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interrupt thread from running. Reenabling thread interrupts inside the interrupt
thread would allow for reentrant interrupt handlers. However, given the cost
of saving the interrupt state, it would only make sense to reenable interrupts if
interrupt handlers execute for a long time and need to be preempted by another
interrupt thread for that device driver.

With the dedicated interrupt threads we use, it is also possible to to use thread
priorities to reflect device priorities. However, since the interrupt thread’s execution
cannot be preempted by another interrupt thread in the same driver, priority
inversion could still occur. It is interesting that the approach that uses a single
interrupt thread allows “higher priority” interrupts to preempt the executing in-
terrupt handler, but it does not allow assigning different priorities to the different

interrupts.

4.5.2 Autoprobing Lessons

Many Linux device drivers auto-probe to determine which interrupt vector a
device is using. They do this by registering for all of the interrupt vectors of interest,
causing the device to generate an interrupt, and unregistering for the interrupts.
Then, by looking at what interrupts occurred, they can normally determine which
interrupt vector the device uses.

The initial Fluke implementation of the interrupt support code did not function
properly in this environment. When registering for an interrupt, the process-level
thread simply created a new thread (whose job it was to register for the interrupt)
and returned. When it was time to unregister, it signaled the interrupt thread to
unregister, and returned immediately. The newly created thread was not given the
opportunity to register for the interrupt before the interrupt was generated, and
the interrupt handler was not given a chance to run before the driver checked to see
if an interrupt had occurred. This behavior resulted in auto-probing the interrupt
vector to fail, as “no interrupts” had occurred.

To provide the synchronous registration and unregistration required by the
device drivers, we use a mutex and a condition variable per interrupt handler. This

allows the process thread to wait until the interrupt thread has accomplished the
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registration or unregistration activity. This design guarantees that the interrupt
thread will be registered before the driver generates the interrupt, and that the
thread will be given the opportunity to process a pending interrupt before the call

to unregister returns.

4.5.3 Shared Interrupts

Some hardware allows multiple devices to use the same interrupt vector. This
is normally accomplished through the use of level-triggered interrupts, where a
device asserts an interrupt until the event that caused the interrupt has been dealt
with. This behavior contrasts with the use of edge-triggered interrupts, where the
interrupt signal is asserted only briefly before being unasserted automatically.

It is important to note that shared interrupts, like any other shared resource,
can cause problems when sharing between buggy or malicious device drivers. If a
device driver is sharing an interrupt line with another device driver, it can refuse
to acknowledge the interrupt, which prevents the other device drivers sharing that
interrupt vector from receiving further interrupts.

Because level-triggered interrupts cannot be reenabled until the cause of the
interrupt has been dealt with, software cannot force the safe sharing of these
interrupts. Edge-triggered interrupts could be reenabled immediately in the kernel,
but the only solution when dealing with level-triggered interrupts would be for the
administrator to ensure that device drivers that do not have the necessary mutual

trust use different interrupt vectors.

4.5.4 Software Interrupts
Linux and other Unix operating systems use a notion of software interrupts.
Software interrupts are used to move processing outside the hardware interrupt
handler so that the processing may be done at a lower priority. Software in-
terrupts are still processed at a higher priority than the process-level activity,
although hardware interrupts may interrupt software interrupt processing. The
OSKit does not export a notion of software interrupts, which are simply processed

in the hardware interrupt handler after reenabling interrupts. Since Fluke does
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not actually reenable interrupts, software interrupts are processed as part of the
hardware interrupt handler without making a distinction.

To minimize the impact of running software interrupts with hardware interrupts
disabled in the driver, most of the processing normally done by software interrupts,
such as TCP/IP protocol processing, is done in the process-level threads. With
networking, we defer the processing by having the interrupt thread place the packet
on a queue, which is emptied by the process-level threads. The process-level threads
may either process the data, or perform an IPC to send the packet to the waiting
application. We were able to defer processing without driver modifications by

writing a Fluke-specific callback function which we passed to the device driver.

4.6 Memory Allocation

Memory allocation in the driver framework is different from other Fluke applica-
tions in two ways. First, the device driver framework tracks two independent pools
of memory: a pool of nonwired virtual memory and a pool of wired physical memory.
The memory type must be explicitly requested. Second, nonwired memory uses the
same allocator as normal Fluke applications, except that we use the interrupt lock
instead of using a separate mutex to protect the memory pool’s data structures.

Memory allocations must use the interrupt lock to avoid deadlock, which other-
wise could be caused if an interrupt handler attempts to acquire the memory lock
after it has stopped a process level thread that holds the memory lock. This locking
results in memory allocation being done with “interrupts disabled,” which provides
the proper synchronization for the osenv environment. Memory allocations are
protected in the BSD kernel in a similar manner, where malloc executes at a very
high priority to protect it against recursive calls from a network driver’s interrupt
handler [42].

A second memory pool, unique to the Fluke device drivers, manages physical
memory. Access to this pool is synchronized the same as for the first pool. Physical

memory regions are allocated through an IPC to the device server (Section 4.2),
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which returns a memory object that can be mapped into the driver’s address space.?
Instead of being mapping physical memory arbitrarily, the driver framework takes
advantage of the fact that only a few pages used for the kernel’s entry points are
normally mapped below 128MB, which is where the program text is loaded in the
address space. The physical memory pool allocator maps memory at the virtual
address corresponding to the physical location. Thus the driver framework only
allocates physical pages below 128MB.

Even though it is not necessary to map memory with identical virtual and
physical addresses, it does have advantages. Many of the Linux device drivers in
the OSKit assume that a virtual address corresponds to the same physical address.
By guaranteeing that assumption, it is possible to run more unmodified device
drivers in Fluke. This convention also assures that virtually contiguous pages are
also physically contiguous, which simplifies tracking of the memory. Also, given the
virtual address, it is trivial to determine if a page is wired and if so, its physical
address.

There are some limitations of this approach. First, it limits the device drivers
to 128MB of physical memory. Also, there is no provision in Fluke to request
that an existing virtual page be wired. This limitation is not usually a problem,
as wired memory is allocated when it is not clear what type to allocate, it does
prevent one class of drivers from working without modifications: SCSI device drivers
that assume the SCSI scripts loaded with their data segment are in wired memory.
Although some of them try to convert the virtual address to a physical address, there
is no underlying wired physical memory as the initial text, data, and bss segments
are all allocated out of virtual memory when the parent created the process. To
get around this problem, those problem device drivers are run with all their code

and data wired, which is done by running them in the root server, or kserver.

2Information on Fluke regions and mappings may be found in the Fluke API reference [19)].
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4.6.1 Blocking and Interrupt Time Behavior

Memory allocation is one of the actions during which Unix-like operating systems
frequently block. Since processing cannot block during interrupt handling, interrupt
handlers must deal with the possibility that memory is unavailable.

One of the reasons that running Unix device drivers on Fluke is difficult is
that Fluke threads block and are preempted at different times than the Unix code
expects. Even though Fluke threads may “block” at inopportune times for the
device driver, we ensure that other requests in the same driver address space do
not see them block. The synchronization provided by the mutex variables prevents
other driver threads from running unless the device driver blocks explicitly. If the
underlying Fluke thread blocks or is preempted, the driver behaves as though it is
simply a slow operation, not a blocking one, even if other threads (outside of that
osenv environment) execute.

Memory allocations are defined by osenv to be blocking, unless the “do-not-
block” flag is explicitly passed as a parameter. Our implementation for Fluke does
not take advantage of the ability to block because not all of the osenv glue code
in the OSKit has been written to properly deal with memory allocations blocking,
even though the underlying driver code can deal with it. Only the “sleep” call
has been properly implemented with respect to blocking, since many of the other
interfaces “allowed” to block have problems in the current implementation of the
OSKit wrappers. In the event that we run out of memory, we return NULL, instead
of blocking until memory becomes available. Since virtual memory is assumed to be
plentiful, that should never occur—pageable memory will get paged as necessary.
The problem is that much of the code is not prepared to receive NULL unless the
do-not-block flag is specified, which will cause problems if we do run out of memory.

In the current Fluke implementation, nonblocking memory allocation is handled
in the same manner as normal blocking allocation: if there is no memory imme-
diately available, either more wired memory is requested via an IPC to the device
server or more virtual memory is allocated, depending on the type of memory

requested.



45

Since IPCs are somewhat expensive, multiple pages are allocated at a time, even
if only a few bytes are required to satisfy the request. An IPC is safe to perform at
interrupt time because it returns from the server without being arbitrarily blocked,
and it does not cause any locks to be released. Once physical memory is allocated,
it is never released until the device driver exits. Virtual memory is also not released,

but may be paged out by the system as necessary.

4.6.2 Future Work

If we implemented blocking memory allocation, it would still be desirable to
have the interrupt handler do an IPC if necessary to allocate memory. In fact, the
do-not-block behavior would be the same: return NULL if the IPC failed to return
more memory. The change would be for requests that could block: they would be
delayed arbitrarily until more memory was available. This change would allow the
driver framework to operate more gracefully under situations where the underlying
operating system ran out of available memory.

Since the drivers execute in a pageable user mode environment, memory alloca-
tions are unlikely to fail, so the advantage of supporting blocking is rather small.
The biggest constraint would be if all 128 MB of physically mappable memory was
allocated. However, since only a fraction of memory allocations require physical
memory, that is not likely to occur in the immediate future. If limiting the
amount of mappable physical memory to 128MB becomes a problem, it would
be necessary to increase the limit or to implement blocking memory allocations.
One disadvantage of the current framework is that physical memory not currently
being used by one device driver process cannot be used by another device driver
process. However less memory is being wired by the drivers than would be wired in
a comparable monolithic kernel, so this would imply that the drivers in a monolithic

kernel would also require more than 128MB of memory to execute.

4.6.3 Lessons
In our early experimentation, we did not do an IPC at interrupt time, instead

expecting that allocations done at the process level would make memory available.
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It was thought that an IPC at interrupt time would be slow and could delay
processing. However, when receiving network packets, all incoming packets were
getting dropped. This behavior was due to an interesting interaction where the
interrupt code was never able to allocate memory because no process-level thread
was ever doing an IPC to request memory. This phenomenon was caused by
the interrupt-driven nature of the device driver. Since all incoming packets were
dropped, there was no need for the application to send a reply at process level, so

no memory was ever being allocated.

4.7 Controlling Access to I/O Devices
4.7.1 Restricting Access to I/O Space

Although some devices support memory-mapped [/O, hardware device registers
are normally mapped into 1/O space on the 80x86. [/O space is different from
memory mapped [/O in that it requires special instructions to access it, and 1/O
addresses are not translated by the MMU.

On the 80x86, it is possible to grant access to I/O space in one of two ways:
either allow a process access to all of I/O space, or selectively grant access to only
certain addresses in [/O space through the use of a per-process /O bitmap. The
kernel can also virtualize accesses to I/O space by trapping accesses to 1/O space.
Although trapping access does not grant access to 1/O space, the kernel can then
determine whether to allow the access to proceed, essentially “virtualizing” the
registers. Trapping accesses is not normally done due to the high cost of taking
the trap, and the necessity for the kernel to know as much about the device as the
application or device driver. However, OS/2 virtualized some device registers for
compatibility with DOS applications. Since many DOS applications accessed the
DMA registers directly, virtualizing 1/O space access allowed OS/2 to run them
in pageable memory, and still allowed DOS applications to perform ISA DMA.
Virtualizing the registers also allowed multiple DOS applications running under
0OS/2 to access the real-time clock concurrently, as well as enabling OS/2 to support

most DOS-based games, which programmed the ISA DMA controller directly to
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produce sound. Since the cost of taking the trap is rather high, and one motivation
for moving the device drivers out of the kernel is so that the kernel does not need
to know about the hardware, Fluke does not currently attempt to virtualize any
hardware.

Unfortunately, the x86 processor does not make a distinction between read and
write access to 1/O space. Although the granularity of memory is a page (4KB), the
granularity of I/O space on the x86 is a byte. A byte is not sufficient granularity for
all resources, as several devices share 1/0 space at a finer granularity. Examples of
this are the PS/2 keyboard and mouse, which are controlled by the same registers,
and the IDE and floppy controllers, which use different bits in the same status
register.

On Intel’s Pentium Processor, an unrestricted I/O space access takes four cycles,
while restricting the access through the use of a bitmap requires 21 cycles, plus any
cache misses on the bitmap. The extra cost involved in updating the bitmap on
a context switch may be considerable, depending on the strategy used. As for the
space, with a 16-bit I/O space and one bit per byte of address, the per-process
bitmap is 8KB.

Fluke provides the ability to use both the direct-access and the bitmap-controlled
I/O space access mechanisms. By default, device driver processes are given unre-
stricted access to 1/0O space. However, it is possible to configure the kernel and
the device server to use the bitmap to prevent unauthorized access. The ability to
enforce access controls proved to be invaluable when debugging the device driver
framework code, as well as in exposing many bugs in the original Linux device
drivers. By far the most common problem encountered was simply the absence of
a call to check_region in the original Linux driver to see if the region was already
used before accessing it. However, in several cases the drivers requested the wrong
amount of I/O space or accessed more than they requested.

The bitmap mechanism was implemented to aid in debugging and to show that
access controls could be easily implemented. Since the primary goal was to make

the bitmap mechanism functional, little effort was made to optimize that code path.
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When performing a context switch, the bitmap is updated to contain the values for
the new process. The use of a bitmap adds 8KB of additional state that needs to
be copied on a context switch, although it is possible to compress the state. Since
most drivers only allocate a few small densely-packed regions, updating just those
regions would be significantly more efficient. It would also be possible to store
multiple bitmaps in the TSS (the data structure that contains the bitmap) and
just update the bitmap pointer, or to use a different TSS for each process. Both of
these optimizations would eliminate the copies.

All of the code outside the kernel runs under the assumption that the kernel
disallows access to I/O space unless it has been granted by the device server, even
though it may not be enforced. When a device driver asks if a region is free, the
driver framework attempts to allocate the region. If the device server denies the
request, then the driver is told that the region is in use, and it cannot probe or
access that region. Otherwise, the driver is allowed to access that region.

Since it is likely that a device driver will attempt to probe several regions that
belong to a device driver that has not probed yet, at the end of the driver’s initial-
ization phase, any regions that were not subsequently allocated by the device driver
are returned to the device manager. Note that freeing 1/O space is not necessary
for PCI device drivers, as the configuration space can be inspected to determine

exactly where the devices of interest are without probing random locations.

4.7.2 Memory-Mapped 1/0

Even though most PC devices map their registers into 1/O space, some devices
map their registers into memory addresses instead. Some device drivers also access
configuration information stored in the BIOS. Gaining access to specific physi-
cal addresses is accomplished by calling mmap on /dev/kmem (a file exported by
the kserver that extends over the entire kernel’s virtual address space). Physical
addresses below 128MB are mapped at a virtual address equal to their physical
address, just as with wired memory allocations.

This approach works well for mapping the BIOS and locations below 128MB,

but it does not work well for PCI devices utilizing memory-mapped 1/0, because
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they are mapped into high physical addresses that are beyond the end of physical
memory. Fortunately, the encapsulated device drivers are already able to deal with
these regions being mapped at a different virtual address, so it is possible to map
those buffers into arbitrary virtual address the same as other mmaped buffers.

The ability to map high addresses has not been implemented and is left as future
work. Although there are no significant technical reasons it could not be done, the
extra complexity was not justified given that none of the device drivers we have
tried to use depend on it because most PCI devices that provide a memory-mapped
interface also provide the same registers in I/O space. Some drivers (such as the
NCR/Symbios Logic SCSI driver) attempt to use memory-mapped 1/O and display
a warning message if mapping the device memory fails, but fall back to using the
[/O-space registers.

Other reasons for not implementing memory-mapped /O support are due to the
fact that currently the kernel’s virtual address space only maps physical memory.
It would have been necessary to add code to the device server to map physical
address regions that the kernel did not map. Due to some peculiarities with the
Fluke and kserver memory management schemes, memory-mapped 1/O support
would have taken several days to implement. Because of the current scheme of
mapping physical memory at the equivalent virtual address, virtual-to-physical
address translations are not tracked by the driver framework. It will be necessary

to track these mappings for device registers above 128MB.

4.8 Shared Resources
4.8.1 ISA DMA
ISA devices that use DMA generally do so through the use of a DMA controller
on the motherboard. The ISA DMA controller can be programmed to transfer
memory in the lower 16MB of physical memory, and is extensively used by many
“high-performance” ISA devices, such as SCSI controllers, sound cards, and some
network cards. As the ISA bus offers a relatively low transfer rate, few new devices,
other than some sound cards, now use ISA DMA. In fact, most devices have now

migrated to the PCI bus or other interfaces such as USB.
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We had originally intended to wrap access to the DMA controller much like ac-
cesses to other resources, such as the interrupt controller. However, even though the
Linux device drivers consistently used kernel routines to allocate a DMA channel,
programming the controller is usually done directly by the device drivers, without
even the use of standardized macros. Rather than modify the device drivers to do
the “right” thing, we decided to leave them alone, in the hope that future versions
of the device drivers were more well-behaved than the current drivers. Supporting
ISA DMA is even harder than supporting other shared resources because the Linux
device drivers often access the DMA control registers before they allocated the
DMA channel. This practice was too pervasive to make fixing the device drivers
attractive. Despite these many problems posed by ISA bus devices, we still managed
to support them.

To support ISA DMA, we took several steps. First, we restricted device drivers
that wish to use ISA DMA by requiring them to all execute in a single address space.
This restriction allows accesses to the DMA controller to be serialized properly
by the existing osenv serialization properties. Second, as part of initializing a
device driver, we attempt to allocate the 1/0O space corresponding to the ISA DMA
controller before we run the driver’s initialization code. If the device driver does
not ultimately request a DMA channel, the DMA controller’s I/O space is released
when the other unused I/O space is released, and may be allocated by the next
device driver.

If 1/0 space accesses are enforced, and the DMA registers cannot be allocated,
then accesses to the DMA controller will cause the device driver to take an exception
and probably die as a result of the signal. This exception could occur if the device
server decided not to grant access to the DMA controller, e.g., another another
driver had already allocated it. This behavior is exactly the same behavior that a
device driver will experience when accessing any unallocated I/O space address or
an unmapped memory location.

Although it is possible to modify the device drivers to use a standard interface

to access the DMA controller, the cost of doing an IPC every time it is necessary
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to access the DMA controller would be quite high. This expense means that we
would be likely to retain the restriction on placing all the ISA DMA device drivers
in a single address space for performance reasons, even though we could check the

values used.

4.8.2 PCI Configuration Space

The PCI bus [50] has the traditional notions of memory and 1/O space, but it
also has a third “address space,” called PCI configuration space. Each device has
its own unique set of configuration space registers, which are used for configuration
and initialization of the PCI bus devices.

Accesses to PCI configuration space are mediated by the device server. Fortu-
nately, all the encapsulated PCI device drivers use standard routines to access PCI
configuration space. It was fairly easy to add PCI configuration space access to
the osenv API, and replace the original routines in Linux with ones that used the
osenv versions.

Even though the current device server does not enforce any access controls, it
would be simple to regulate accesses to configuration space, as the device server sees
all the requests. The device server can easily deny access to a device by returning
“-1” for all the register contents. This value tells the device driver that no device is
present at that location, with no harmful effects. Access controls are left as future
work, although the basic hooks are fully implemented.

Additional future work could be done to use the information in PCI configuration
space to further limit the activities of device drivers. If it is known that a device
driver is a networking device driver for a certain vendor’s card, it is trivial to allow
access only to the configuration space for those devices. It is also easily possible to
restrict memory and I/O space accesses to the driver handling the corresponding
device.

Unlike accesses to the ISA DMA controller, PCI configuration accesses are not
performance-critical because device drivers generally only need to access config-
uration space during initialization. Because configuration space cannot contain

registers that are used during normal operation of the device, and device drivers
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cache any values they need from the configuration space, there are no IPCs to read

configuration space during normal execution.

4.8.3 Timers and Clocks

Many of the device drivers need a notion of time. The osenv interface to obtain
the current time simply calls a standard library routine (gettimeofday), which
does an IPC to its time server (normally part of the kserver) to find the time
current time.

The drivers may also register a periodic handler, or a one-shot handler to be
executed some number of clock ticks in the future. Timers are all implemented
on top of a simple periodic timer, driven by hardware clock interrupts, using the
default implementation of the timer support code in the OSKit. In the Linux
drivers, a 100Hz clock is used to increment the ‘jiffies’ variable, which is used by
device drivers to explicitly busy-wait and as an indication of the current time.

Clock interrupts are handled differently by the Fluke kernel than other device
interrupts. Timer interrupts need to be handled by the kernel, for scheduling and
other internal tasks. Additionally, since the timer is an edge-triggered interrupt
shared by all the device drivers in the system, the interrupt is reenabled immediately
by the kernel, to avoid a buggy or malicious driver from “stopping time” for the
entire system. Thus, although a device driver might occasionally miss a clock
interrupt under heavy system load, the kernel will not miss any clock interrupts.

Clock ticks are received by registering for the clock interrupt. If the kernel went
to a 1kHz timer, a few lines of code in the kernel would allow a 100Hz timer by

“dropping” extra interrupts before delivering them to the device driver.

4.9 Ethernet Support
Networking support is a little unusual in that work may be initiated by a remote
node. Because of this, it is possible for another node to cause a computer to perform
excess work. Under severe cases, unsolicited network communication can cause
livelock [45], where the computer spends all its time starting work that it throws

away before completing the overall task. To handle this problem, we wrote the
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network support code to minimize the amount of work that is done at interrupt
level.

In Fluke, an application that wishes to receive packets does a blocking read on
the network file interface. At interrupt time, incoming packets are placed on a
FIFO queue. If the queue is empty with a waiting reader, the reader is awakened,
which then processes the packet at process level. If there is no thread waiting to
read the packet, it remains on the queue. When the queue becomes full, further
packets are simply dropped in the interrupt handler. Not performing the IPC reply
at interrupt time defers all significant processing until later. This design allows
us to keep the interrupt handing time as short as possible, and is analogous to
scheduling software interrupts in Unix.

On transmit, packets are sent to the device driver to be processed. The desired
behavior when the device driver’s transmit queue is full can be selected at open
time. The device driver can either block the request until it is able to add it to the

queue, or return an error to the application and have it retry at a later point.

4.10 Logging

Device drivers generate informative messages that are generally displayed on the
system console. We provide a crude logging interface by doing a write on stdout
for driver messages. The current console interface is blocking, with the kernel
using a serial console for 1/0. Although it would be possible to have a separate
thread handle output asynchronously, the low-level kernel output routine would
still busy-wait on the serial port, outputting one character at a time. A desired
kernel enhancement would be to have interrupt-driven console 1/0, which would
allow output to be done asynchronously, and dramatically reduce the processor
overhead required to generate output. An improved console driver would benefit
all applications doing console I/O. Fortunately, doing a printf from a device driver
after initialization is relatively rare, which is why many Unix kernels also implement

kernel printfs using polled 1/0.



CHAPTER 5

PERFORMANCE ANALYSIS

This thesis involved engineering a device driver framework to support the use of
legacy device drivers from a traditional monolithic kernel in the context of our
research microkernel operating system, Fluke. Although functionality was the
primary concern, we also wanted to quantify the device driver performance, which
we did by measuring latency, bandwidth, and processor utilization, and comparing

our measurements with those from other systems as appropriate.

5.1 Methodology

We ran several tests to measure different aspects of device driver performance in
Fluke. Each test was run 35 times consecutively, with the time recorded after each
run. The first run, used to warm the caches, was thrown out and the remaining 34
times were averaged. In all cases, the standard deviation was less than one percent.

Each test program was run under Linux 2.0.29, FreeBSD 2.2.6 (with the 980513-
stable CAM patches), the OSKit, and Fluke. Additionally, Fluke tests were run
both with the application in the same address space as the device driver, and
with the device driver and the application in separate address spaces. For the
OSKit tests, the application was linked with the device driver and the low-level
initialization code, so the test program was the operating system. All of the
operating systems except the OSKit ran the tests in user mode. Linux is included
because it uses the same device drivers as Fluke, and FreeBSD was included to
provide a broader basis for comparison.

All tests were run on a pair of machines with Intel DK440LX motherboards, Pen-
tium I1/300 processors, 128MB ECC SDRAM, and Intel EtherExpress Pro/100+

cards, connected via a crossover Ethernet cable. The disk tests were done using
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an Adaptec 2940UW SCSI controller and a Seagate ST34501W hard drive. The
integrated Adaptec 7895 SCSI controller was used for a 1GB Jaz disk containing
FreeBSD 2.2.6, while Linux 2.0.29 was installed on a 1GB Quantum Fireball IDE
hard drive. Neither the Jaz drive nor the IDE hard drive were accessed during
these tests. The integrated i82557 Ethernet controller was used for normal network
connectivity under FreeBSD and Linux. Since Linux 2.0.29 did not contain a driver
for the EtherExpress Pro/100+ network card, we used the same Linux driver that
we added to the OSKit (Donald Becker’s eeprol00.c: v0.38 2/17/98).

Accurate results were obtained through the use of the performance monitoring
counters found on Intel’s Pentium II processors. Two counters were used: the
Time-Stamp Counter (TSC), which the CPU increments once every processor cycle,
and the CPU_CLK_UNHALTED counter, which the CPU increments once for every
cycle the processor is not in the HALT state. Of the operating systems used for
these tests, Fluke, FreeBSD, and Linux all halt the processor when there is nothing
to do, and they all provide the ability to read these counters. The OSKit, by
contrast, never halts the processor, as it busy-waits when sleeping, which is why we
report, zero idle time for the OSKit tests. The use of the unhalted counter, along
with the cycle counter, enabled a very precise and accurate measurement of elapsed

time and CPU utilization.

5.2 Tests
We ran multiple tests to measure performance across a wide range of uses and
to measure specific features of the device driver performance. We performed disk
reads and writes, sent and received network packets, used the disk and the network

simultaneously, and measured the interrupt processing overhead.

5.2.1 Disk Read Test
The goal of the disk read test was to determine how much of the disk bandwidth
could be utilized by the device drivers, and how much computation was required
to utilize that bandwidth. This test involved reading of various-sized sequential

blocks from the beginning of the hard drive, for a total of 8MB per run. Each run
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consisted of a seek to sector zero, followed by sequential reads. We used the raw
disk device (/dev/rsdl) under FreeBSD, /dev/sda under Linux, and /dev/disk0
for the “separate” Fluke tests. For the OSKit and the “colocated” Fluke tests we
used the OSKit’s block device interface directly. We also read from a “null” device
(/dev/zero) in Fluke, to measure the communication overhead. This Fluke test is
labeled “IPC-only,” and reflects the raw bandwidth achievable through TPC using
the MOM runtime with Flick-generated IPC stubs.

Since Linux does not have a raw block interface and it performs read-ahead
buffering, hdparm' was used to disable the read-ahead buffering on the hard drive
before running the tests. There is no way to bypass the buffer cache in Linux. To
work around this problem with Linux, we had to remove the seek to the beginning
of the disk at the start of each run to avoid re-reading data from the buffer cache.
Although the tests stayed well within the first zone on the drive, the Linux results
do not include the seek to sector zero, which artificially reduces the time per run

by a few milliseconds, or less than 1% of the test execution time.

5.2.1.1 Results

Read bandwidth is shown in Figure 5.1, where larger values indicate better disk
bandwidth. An item to notice is the Linux performance at 512 bytes. Even with disk
read-ahead disabled, Linux still reads data 1KB at a time, which enabled it to do
relatively well on the 512-byte reads. Fluke, even in the colocated case, does worse
than the monolithic systems below 8KB transfer sizes, since it is more expensive in
Fluke to block and wake up threads than in the other operating systems. However,
even the separate Fluke test is able to achieve the maximum disk bandwidth with
16KB transfers. The “IPC-only” transfers (upper-left corner) have been cropped to
show more detail for the other cases. The IPC-only case peaks at 45MB/s for 4KB
transfers, where it remains for the larger transfer sizes. Even though IPC offers

enough bandwidth for disk reads, the additional overhead required to process IPC

'hdparm is a Linux utility that allows the user to get and set various hard disk parameters,
including the read-ahead buffer size.
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Figure 5.1. Read bandwidth of the hard drive. Higher is better. The Fluke
configurations achieve the available disk bandwidth at larger transfer sizes than
the Unix systems.

severely impacts the achievable transfer rate when communicating with the driver
through TPC.

With a 4KB transfer size, a common filesystem block size, the colocated Fluke
driver comes within 94% of the disk bandwidth, while the separate driver achieves
70%. At 8KB transfer sizes, the default filesystem block size under FreeBSD, the
colocated driver has maxed out the drive, while the separate driver is achieving
over 86% of the maximum transfer rate.

The bandwidth results for larger block sizes are encouraging, but they do not
tell the whole story, as Fluke requires extra computation. Figure 5.2 is a plot of the
processor cycles spent busy during the read tests. Larger values indicate that less
processor time is left over for use by other applications. On this test, the traditional
Unix systems do the best, followed by Fluke device drivers colocated with the test

application, followed by Fluke with everything separate. At small transfer sizes,
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Figure 5.2. Busy time while reading the hard drive. Lower is better. Note that
both the OSKit and the TPC-only tests have no idle time, so their lines are at the
top of the graph. The colocated Fluke configuration gets closer to the Linux CPU
utilization at larger transfer rates, while the separate Fluke configuration remains
much higher.

colocated Fluke uses roughly 30% more CPU cycles than the Linux systems, which
decreases to under 10% more CPU cycles for large transfer sizes. In the separate
driver case, Fluke goes from under 50% to nearly 95% higher processor utilization
due to the IPC costs.

The curve of the lines corresponds to the measured disk bandwidth. When the
disk transfer rate becomes the bottleneck, the busy time drops significantly. Knees
in the curves can be seen in all the tests, in particular at 2KB for FreeBSD and
Linux, 8KB for the colocated Fluke driver case, and 16KB for the separate driver
case. The colocated case performance gets very close to Linux at large transfer
sizes, where the Fluke overhead is a smaller part of the execution time. Although
the colocated case does better for larger transfer sizes, the copies along the IPC

path make a bigger difference, as can be seen in Figure 5.2.
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Note that the utilization for both the OSKit and the IPC-only test are at 100%.
The IPC-only test never waits for hardware, and hence is never idle. The OSKit
does not have any idle time because the read requests busy-wait for the request
to complete. At first it may appear unfair to characterize the OSKit as having
zero idle time, but with blocking requests and only a single thread, the time spent
spinning cannot be used anyway, so it does not make sense to measure the spin

time.

5.2.2 Echo Test

Since latency is often a critical component of networking performance, we mea-
sured the round-trip latency of network communications over a 100Mb Ethernet
network. We measured the latency by determining the time it takes to send a UDP
datagram back and forth across the network: Machine A sends a UDP packet to
Machine B, which then sends the same data back to Machine A in a new UDP
packet. Each run timed 100 of these ping-pongs, with the same configuration on
each end. Under FreeBSD and Linux, the native UDP protocol stack was used,
while a simple UDP implementation in the application was used for the OSKit and
Fluke tests.

To isolate the Fluke IPC costs from the rest of the device driver overhead in the
echo test, we also ran a test in which a single process sends the datagrams via IPC
to a loopback server on the same machine. The loopback server simply buffers the
data when written, and returns the same data when read. A single application did
a write/read combination to the loopback server twice per “packet,” which is the

same number of [PCs done in the separate test case.

5.2.2.1 Results

The per-packet ping-pong times are shown in Figure 5.3, and the corresponding
CPU utilization is shown in Figure 5.4. The OSKit achieves the lowest latency, but
worse CPU utilization. Following the OSKit are the colocated Fluke configuration
and the monolithic Unix operating systems, with the separate Fluke configuration

achieving the worst latency results. With the exception of the separate Fluke
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Figure 5.3. UDP round-trip time. Lower is better. Colocated Fluke does slightly
better than the Unix systems, while the separate Fluke case has a much higher
latency.

configuration, all of the operating systems perform approximately the same.

Fluke gets very good latency when running colocated with the device driver.
The latency difference between the OSKit and the colocated echo test program is
in the 20 to 30us range, which is the additional overhead involved in moving the
device driver to the Fluke user-mode environment, including interrupt delivery and
thread synchronization.

An interesting observation in Figure 5.3 is that the loopback Ethernet device is
actually slower (for minimum-size packets) than the colocated driver communicat-
ing over the 100Mb network. Even though IPC has more bandwidth available than
a 100Mb Ethernet, there is more per-packet control overhead involved in processing
the IPC-based requests than in transmitting and receiving a packet. The relatively
poor performance is caused by inefficiencies in the IPC runtime layers, which copy

the data and also create and destroy a connection for every transfer.
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Figure 5.4. Busy time while sending and receiving UDP packets as fast as possible.
Lower is better. The OSKit and IPC-only tests are pegged at 100%. The colocated
Fluke case tracks Linux at all but the smallest packet sizes, while the separate
configuration remains higher throughout.

The separate case, where the network driver is accessed through IPC, is much
slower than any of the other cases. It has twice the latency for small packets. The
high latency is due to the control overhead of Fluke IPC, both in the Flick/MOM
runtime and in the kernel IPC path. The separate round-trip time is nearly
identical to the colocated time plus the IPC-only time. The separate case consumes
considerably more CPU time than the other cases, as shown in Figure 5.4. The CPU
consumption is due to all the additional computation required for the IPC-based
communication. Not only is a larger fraction of the time spent busy, but the test
runs for significantly longer, as shown by the higher latencies in Figure 5.3. The
drop in the colocated busy time at 256 bytes is due to scheduling interactions with
the interrupt thread, which runs sooner with small packets. High-performance local

IPC is crucial to achieving good performance for user-level device drivers.
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5.2.3 Combination Test

Real applications and systems stress more than one device at a time. To measure
the performance with multiple device drivers, we combined the disk and network
benchmarks to create another synthetic benchmark, in which we sent the contents
of the disk out the network interface.

Using the same block interface that we used for the disk read test and the same
network code that we used for the echo test, a single thread read the first 10MB
of the disk, in 80OKB blocks, and sent out the data as 1322-byte packets, with a
1280-byte UDP datagram payload. This test amounted to 128 disk reads and 8192
packets per test run. These sizes were chosen to allow overlap of the network and
disk activity (64 packets per disk block, which is less than the number of packets
that can be buffered by the device drivers), and to provide an integral number of
equally-sized packets per disk transfer.

Fluke results were obtained for drivers in the same address space as the applica-
tion (“colocated”), for the Ethernet driver with the application but separate from
the SCSI driver (“etherapp”), for the SCSI driver with the Ethernet driver but
separate from the application (“scsiether”), and for each driver in an address space

separate from the application (“separate”).

5.2.3.1 Results

Figure 5.5 shows the bandwidth measured for each of the tested configurations,
and Figure 5.6 shows the corresponding CPU utilization. Depending on configu-
ration, Fluke achieves between 60-95% of the bandwidth of the best performing
systems, the OSKit and FreeBSD. For the three noncolocated Fluke configurations,
which must perform local IPCs, Figure 5.5 shows that the bandwidth drops more
significantly if the network device driver is accessed through IPC (“etherapp”
to “separate”), than if the disk driver is accessed through IPC (“colocated” to
“etherapp”). In general, any configuration that does not perform an IPC to the
network comes close to achieving the maximum bandwidth, although performing
an [PC impacts the achievable throughput.

It is likewise notable that in the colocated case, Fluke edges out Linux in
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Figure 5.5. Bandwidth reading the hard drive and sending the data out the
network in UDP packets. Higher is better. Only the two Fluke configurations
that access the network device driver through IPC (separate and scsiether) do not
achieve most of the possible bandwidth.

throughput, albeit at some cost in CPU utilization. Linux performed worse than
FreeBSD for unknown reasons, most likely due to problems with the Linux UDP
protocol layer. Additional speculation about the Linux performance is contained in
Section 5.2.4.1. The “separate” case also outperformed the “scsiether” case, which
is due to the increased contention between the device drivers when they are in the
same address space.

The CPU utilization graph, Figure 5.6, does not contain any surprising results.
FreeBSD leads the pack followed by Linux and then the colocated Fluke case.
As more IPCs are performed under Fluke, the amount of time spent processing
increases. The results follow from the previous tests: although the latency increased
dramatically for the separate UDP-echo test, as shown in Figure 5.3, the separate

disk read test was capable of maxing the drive at 16KB transfers, as shown in



64

Combination Test CPU Utilization

100.00%

100%

[0)
90% 82.56%  82.60%

80% 75.97%
0% 61.16%
60%
50% S 49.16%
40%
30%
20%
10%
0% ‘ ‘ ‘ ‘ : ‘

OSKit FreeBSD Linux Colocated Etherapp Separate Scsiether

Non-Idle Time (%)

Figure 5.6. Busy time while running the combination test. Lower is better. The
two Unix systems have the lowest processor utilization, followed by the colocated
Fluke case, with the three Fluke configurations using IPC bringing up the rear.

Figure 5.1. The IPC overhead can more easily be absorbed by the large transfer
sizes performed to the disk device driver, while the number of IPCs done to the
network device driver causes significant bandwidth degradation. This overhead
is partly due to the packet-oriented nature of the Ethernet IPC messages, where
each local IPC transfers exactly one Ethernet packet, which are much smaller than
the disk blocks. The network performance could be improved by sending multiple
packets per IPC, or by increasing the maximum packet size (which is not practical

for Ethernet).

5.2.4 Disk Trace Test
Even though the combination test evaluates both device drivers under load,
with serialized sequential reads, it does not reflect typical usage, where disk access

patterns are pseudo-random with multiple outstanding requests. With a disk seek
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between requests, the driver overheads become a much smaller part of the execution
time. To measure the performance under a more realistic load, we developed a test
that issued requests that are more reflective of a real workload.

Since Fluke does not have a fast multithreaded filesystem, using filesystem traces
or benchmarks like the Andrew benchmark [32] to determine the performance of
the device drivers on Fluke would produce results that unfairly penalize the Fluke
device drivers. Instead, the approach we took was to use disk traces, which recorded
the read and write activity to the disk after requests have been processed by a
filesystem. This approach gives a level playing field for the device drivers across the
multiple platforms, as variance due to the quality of the filesystem implementation
is eliminated.

The trace used [30, 55| was collected by HP Labs over the course of one week
in 1992 on a computer with a pair of 300MB HP335H hard drives with 256-byte
sectors. It consists of 44,519 I/O operations. Since our disks have 512-byte sectors,
we divided the sector numbers by two when replaying the trace. Changing the
sector numbers did not distort the trace, since all accesses were to multiples of
512-bytes starting on even sector numbers.

The trace contained the request enqueue time, the completion time, the start
sector number, and the length. We generated a list of request and completion
events ordered by time, thus preserving the dependency information from the
original trace. If the current event is a start event, we send the request. If the
current event is a completion event, we wait until that request has completed before
issuing the next request. This procedure allows the driver to process requests in
a different order from the original trace, while still preserving the ordering and
parallelism present in the original request stream. By removing the delays between
the requests we compress one week of disk activity (approximately 18.6 minutes
of I/O on the original machine) into about 4.5 minutes on a faster computer with
newer hard drives, while still retaining the parallelism from the original trace. The
trace contains as many as 102 outstanding I/O operations, although most of the

trace consists of serialized requests.
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We replayed the trace by sending requests embedded in UDP datagrams from a
FreeBSD machine to another machine that processed the requests and sent replies.
Replaying the trace on another machine allowed us to isolate the device driver
activity from the processing required to replay the disk trace and provided an easy
way to test the network and disk drivers being used together in a more realistic
manner. To avoid needing to retransmit requests, which would skew the results,
we increased the FreeBSD socket buffer size and removed the limit on the number
of packets that Fluke and the OSKit could buffer. We also found it necessary
to increase the number of hardware receive descriptors in the Fluke driver to a
reasonable number to prevent packet loss due to interrupt latency.

Linux does not have a raw disk interface, which makes it impossible to bypass
the buffer cache. With 128MB of memory available, most of the reads and writes
for the 300MB drives are absorbed by the buffer cache, which would obviously skew
the results. Since it is important to have a comparison with the same device drivers
used in Fluke, we modified the Linux kernel in two carefully controlled ways to allow
a comparison. First, to eliminate socket buffer overflows, we removed the check on
the socket buffer size, as the maximum buffer size is not configurable under Linux.
Second, we forced 1/0O requests to the block disk interface to behave as though
they were to a raw disk device. We accomplished this by marking the buffer cache
entry as invalid at the start of every read request, and by making writes be handled
synchronously. Even though accesses to the disk device still go through the buffer
cache, this was the only obvious solution that did not require enormous changes to
the Linux kernel.

For FreeBSD and Linux, we forked off 100 server processes that serviced requests,
while under Fluke we used 100 threads. Since the OSKit did not support multiple
threads, it serviced requests sequentially using a single thread. We enhanced the
simple UDP layer used for the previous tests to support IP fragmentation and
reassembly, which we used for the Fluke and OSKit tests. When the UDP layer
had reassembled a UDP datagram, it handed it off to a server thread, which handled
the disk I/O and sent the reply.
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Figure 5.7. Elapsed time to replay the disk trace. Lower is better. Fluke, Linux,
and the OSKit are within 5%, while FreeBSD is 11% faster than the slowest system.

5.2.4.1 Results

The results of this test are shown in Figure 5.7. Fluke is only 7 13% (depending
on configuration) slower than the fastest system, FreeBSD. Also, as shown in
Figure 5.8, Fluke’'s CPU utilization ranges from slightly less to twice as much as
FreeBSD, depending on the configuration. Although this overall result is pleasing,
the fact that FreeBSD is using a different base device driver confounds the analysis,
as the earlier synthetic benchmarks demonstrated that FreeBSD has faster device
drivers.

The CPU utilization for the TPC-based Fluke tests is much higher than for
FreeBSD and the colocated case. However, compared to Linux, a monolithic OS
using the same basic device driver, we find Fluke doing much better. Fluke, despite
the overheads imposed by user-mode device drivers and IPC, outperformed Linux
by 63-280%. Unfortunately, we suspect this result is due to other problems in

Linux, not its device driver framework. Although we have not yet determined the
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Figure 5.8. Busy time while replaying the disk trace. Lower is better. The
separate and scsiether Fluke configurations have significantly higher CPU utiliza-
tion than the FreeBSD, colocated, and etherapp configurations. Linux has an
inexplicably high CPU utilization.

exact cause, we suspect it has something to do with one or more of the following:
the “thundering herd” phenomenon (all blocked processes are awakened on every
incoming message), some unknown problem in the Linux UDP protocol stack,
an unknown problem with Linux disk writes (the microbenchmark only tested
reads), or some problem with the buffer cache code. Given that Linux does well
on the microbenchmarks, we believe it is most likely due to the thundering herd

phenomenon or a buffer cache interaction problem.

5.2.5 Clock Interrupt Test
Since delivering interrupts to user mode and synchronizing between process-level
and interrupt-level activity can be expensive, we quantified that overhead. Mea-
suring the processor overhead associated with contested and uncontested interrupts

gives us a basis for determining how well the implementation scales to high interrupt
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rates. We measured the processor overhead by measuring the idle cycles on an idle
machine processing clock interrupts in the device drivers.

Unlike the other tests, this test was only run on Fluke; the test involved running
multiple copies of a simple device driver, with one driver per address space. This
test allowed us to measure the overhead at higher interrupt rates and with multiple
device driver processes. For the duration of the test, each device driver did nothing
except increment a counter every 10ms in the clock interrupt handler. Fach run
lasted one second, covering 100 interrupts per device driver. The processor utiliza-
tion was measured with one to six different device drivers running, both with a
process-level thread needing to be stopped by the interrupt handler (“contested”),
and with no process-level thread running (“uncontested”). To measure just the
interrupt-handling overhead, the contested case was artificially created by having

a thread intentionally block while holding the process-level lock.

5.2.5.1 Results

Based on a linear extrapolation of the overhead in processing the clock interrupts,
shown in Figure 5.9, a 300MHz Pentium II would become saturated at around
20,000 interrupts per second with contention, or at 50,000 to 65,000 without con-
tention. Interrupt handling takes approximately 0.15% of the CPU per 100Hz for
the uncontested case (about 15us/interrupt), and about 0.5% per 100Hz for the
contested case (about 50us/interrupt). However, those numbers do not take into
consideration two counteracting issues. First, a real device driver will do some
processing in the interrupt handler, unlike the drivers used in this benchmark.
Second, the overhead for handling contested interrupts can be significantly reduced
by implementing the synchronization optimizations discussed in Section 4.3, which
would decrease the contested case overhead to be near that of the uncontested case.

It is further interesting to note that the maximum number of contested interrupts
that get processed is related to the scheduling frequency, f, and the number of
interrupt handlers in the system, p. This result follows from the observation that
a process-level thread will not get preempted more often than f times per second,

so a corresponding interrupt thread will not have to stop a process-level thread
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Clock interrupt overhead
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Figure 5.9. CPU time spent processing clock interrupts. Lower is better.
Processor utilization is three times as high for the contested case, and scales linearly
with interrupt handling frequency.

more often than the scheduling frequency. It is conceivable that every interrupt
handler would get to run on a clock interrupt, and each interrupt handler would
need to stop a process-level thread holding the lock, so the worst-case upper bounds
for contested interrupt processing would be approximately p * f times per second.
Interrupts can be handled more frequently, due to a high scheduling rate, but that
would only occur if there is idle time in the system, which would indicate that
the process-level threads are blocked and not holding locks, as they normally block
without holding the process-level lock.

5.2.5.2 Interrupt Latency
The interrupt latency is related to the scheduling algorithm and the preemption
frequency. Although it would be possible to always preempt the process-level thread

on a hardware interrupt, the extra synchronization required to stop the process-level
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thread could be prohibitive. With the current implementation, it is possible for an
interrupt thread to be delayed for up to M preemption cycles, where M is the
number of CPU-bound processes in front of the thread in the run queue. Under
heavy load, interrupts will not be handled as promptly. Fortunately, the ability
to defer interrupt processing allows high-priority threads to run before low-priority
interrupt handlers.

Under moderately light load, as with the colocated echo test program (Fig-
ure 5.3), interrupt latency is very good. The extra cost of scheduling a user-mode
thread and the associated synchronization cause the colocated case to run more
slowly than in the OSKit, but it still outperforms FreeBSD and Linux, due to lower

overhead in the networking stack and the lack of a kernel /user copy.

5.3 Summary

The results have demonstrated that the performance of the prototype device
driver framework is acceptable. User-mode device drivers on Fluke, when they are
colocated with the application, offer the performance of in-kernel device drivers
on Unix. The colocated benchmarks show the Fluke driver framework performing
at least as well as Linux, the source of the device drivers. Compared to Linux,
colocated Fluke gets a 5% higher transaction rate on the disk trace test, 4% greater
bandwidth on the combination test, and 1.5-7% lower latency on the UDP-based
echo test.

However, the high cost of IPC in Fluke reduces the device driver performance
and increases the processor utilization when the drivers are accessed through IPC.
IPC is necessary when one must isolate the device driver from an application, but
IPC does add significant latency. When accessing the driver through IPC, the echo
test has 40-120% higher latency than Linux and the combination test has 29%
lower bandwidth. The disk trace achieves the same throughput as Linux because
the disk seeks dominate the execution time. Reducing the number of IPCs, such as
by transferring more data per IPC, would reduce the cost of the IPC to the device

driver.



CHAPTER 6

RELATED WORK

In this chapter we discuss some related efforts to build user-level device drivers,
as well as a few even more closely related efforts that use legacy drivers with research
kernels. Naturally, almost all of the efforts were based on microkernels, where it is

more natural to locate components outside the kernel, and we begin with those.

6.1 Mach

In Mach [1], device drivers are normally placed in the kernel. However, there have
been a few efforts to move the device drivers out of the kernel and into user-mode
servers. Some of the earliest work on user-mode device drivers was done by Forin
and others using the Mach microkernel [24]. Their major focus was not on the
user-mode aspect but rather on dividing the functionality of the device drivers
into device-specific routines (bottom layer) and more general routines that can
be used by several device drivers. A small amount of device-dependent code was
used for each different device, while all devices of the same type (e.g., SCSI or
terminal) used the same higher-level code. They were able to reuse the kernel-mode
drivers in user mode by providing “scaffolding” and utilizing one thread per device
driver. This approach is similar to the approach we took, although we used multiple
threads because of runtime constraints. Even though the focus appears to have been
on sharing code between drivers, they did claim to have doubled the networking
throughput of 10Mb Ethernet (from 120KB/sec to 230KB/sec) and increased the
disk throughput (from 700KB/sec to 850KB/sec). They did not discuss the impact
their drivers had on CPU utilization.

Golub and IBM extended this work by adding a so-called Hardware Resource
Manager (HRM) that arbitrated access to devices [27]. Multiple user-mode device
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drivers used the same hardware by attaching and unattaching the drivers as neces-
sary to share the resource, such as the (floppy controller based) tape backup driver
sharing the controller with the floppy disk driver. The HRM is similar in function to
the Fluke device server, although the Fluke device server does not handle revocation
or sharing of resources between drivers.

With the HRM design, it would have been possible to link the device drivers
in with the programs that wanted to access the device, and to use the HRM to
arbitrate access. However, because Golub et al. wanted the device drivers to be
in separate protection domains from the applications, and because the arbitration
cost was relatively high, they never utilized the arbitration capability to colocate
device drivers with applications.

The Golub/IBM paper reported no performance results, at least partly because
the system was not yet fully implemented. However, anecdotal reports [38] indicate

that performance was dismal; perhaps half the speed of in-kernel device drivers.

6.2 The Raven Kernel

The Raven kernel [53] ran user-mode device drivers in a multiprocessor kernel.
Its solution to the preemption problem was (at least partly) solved by not arbitrarily
scheduling user-mode tasks. When the clock interrupt occurred, a task that held
a mutex was not scheduled; rather, the Raven kernel deferred scheduling a mutex-
holding task until its mutex lock count was zero. Preemption was deferred to
prevent a thread from being blocked on a mutex owned by a nonrunning thread.

In Fluke, the problem of a thread blocking on a lock owned by another thread will
be solved in a general way when Fluke’s CPU inheritance scheduling framework [23]
is completely implemented (by others). With CPU-inheritance scheduling, when a
thread requests a mutex being held by another thread, the thread that owns the
mutex is scheduled instead of the current process. CPU inheritance allows good
performance without arbitrarily blocking other processes. Unlike the Raven kernel,

Fluke does not provide a way for a thread to avoid being preempted.
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6.3 QNX

The QNX [31] microkernel-based operating system allows a privileged user pro-
cess to register for a hardware interrupt vector. Drivers, as user-mode processes,
can be dynamically added and removed. The interrupt handler can directly access
anything it desires in the application that contains it.

Since the drivers are designed for QNX’s message passing mechanism, data can
be directly written to the device using the IPC with the scatter-gather mechanisms.
The drivers combine the IPC copy with the single copy to the device. In Fluke, we
cannot do that due to the use of encapsulated device drivers and limitations in the
runtime support code.

QNX has a significant speed advantage over Dell’s SVR4 [31]. However, much
of that advantage may have been due to the smaller size of QNX, which made it
easier to optimize. It is unclear how much advantage QNX would have over a more

well-tuned monolithic kernel, such as FreeBSD.

6.4 V

The V distributed system [7] is very similar to most other microkernels in that
device drivers are still in the kernel, but filesystems and protocol stacks are not.
V runs with a single kernel stack per processor, very much like the nonblocking
Fluke kernel. It also placed much of the operating system in user-mode servers,
including filesystems and the networking protocols. However, since it could not
guarantee that a user-mode device driver would not corrupt the kernel with an
incorrect DMA transfer, V kept the device drivers in the kernel, accessed through
IPC. The rationale seemed to be that since the device driver had to be trusted, it

was better to keep it in the kernel where trust is explicit.

6.5 U-Net
In U-Net [63] on SunOS, user-mode network device drivers were linked directly
into the TCP/IP stack when possible. Using ATM interfaces with an 1960 co-
processor, they were able to export the device interface directly to the application.

However, with Ethernet devices, they added special system calls and packet filters
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to demultiplex packets to the applications, as demultiplexing could not be done
safely in user mode. Fluke allows the device driver and networking stack to be
linked with a single application, since hardware constraints prevent the Fthernet

devices from being shared.

6.6 Exokernel

Other research microkernels besides Fluke are using some OSKit device drivers.
One such kernel, the MIT Exokernel [15], resembles Fluke in that it presents a kernel
execution environment that is a mismatch for the OSKit drivers. The Exokernel
uses the nonblocking driver/kernel model, while the OSKit drivers derive from a
process-model kernel and may block. Unlike our development of the Fluke device
driver framework, the Exokernel developers did not develop general support for
such legacy drivers. Consequently, the Exokernel can use only the network drivers,
which do not block, and not the disk drivers, which do.

In Fluke’s nonblocking kernel configuration, kernel threads can still block and be
forced to restart. However, the Exokernel is carefully written so that the network
drivers do not block, which is possible because routines such as memory allocation
are nonblocking. Fluke does not have this feature and can block on kernel memory

allocation.

6.7 IL'Linux

['Linux [29] is the Linux kernel, including device drivers, running in user-mode
on top of the L4 microkernel. Synchronization is achieved by single-threading
the Linux server and disabling processor interrupts. A dedicated thread handles
hardware interrupts, blocking until L4 indicates to it that an interrupt has occurred.
Another dedicated thread processes software interrupts. This implementation is
much different from Fluke’s, which does all software interrupt processing in the
interrupt handler thread, as the OSKit abstraction does not export software inter-
rupts to the OS. However, in Fluke, the software interrupt handlers do not have
much to do, as protocol processing and other work is done in separate threads or

outside the device driver.
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In I*Linux, interrupt threads run at a higher priority than kernel threads to
avoid concurrent execution on a uniprocessor. I*Linux actually uses four different
priorities to schedule the two interrupt priorities, the kernel, and Linux user-mode
threads. In Fluke it is not practical to rely on scheduler priorities, because it is
possible for an interrupt handler to block. A general problem with scheduler priority
schemes is that such schemes alone will not support multiprocessors, as additional
synchronization must be added to prevent multiple threads from being executed in

parallel.

6.8 Windows NT Driver Proxies

Writing device drivers for Windows NT is difficult because of both the execution
environment and the programming environment [33, 62]. To simplify the task of
writing a device driver, Hunt developed a kernel proxy [33] that forwarded requests
to a user-mode device driver. Only the kernel proxy needs to be fully reentrant
and interface with the kernel environment. The device drivers themselves may be
written using any available tools or libraries. By moving the device driver to user
mode, Hunt was able to avoid the restrictive kernel programming environment. His
work focused on filesystem device drivers, and did not support hardware device
drivers. He was able to rapidly develop new filesystems, including a network
filesystem based on FTP.

Along similar lines, KRF Tech provides driver stubs that enable device drivers
for Windows 95/98/NT and Linux to execute in user mode [36]. User-mode drivers
are accomplished by providing a proxy inside the kernel that relays messages to
and from each driver. This is conceptually quite similar to Hunt’s work with kernel
proxies, but unlike Hunt’s N'T proxy for filesystems, KRF Tech has added features

to support hardware device drivers in addition to filesystem drivers.

6.9 Nemesis
Nemesis [6] is a microkernel-based operating system designed to support multi-
media applications. It is a vertically-structured operating system: the applications

do as much processing as possible in their own address spaces, which allows Nemesis
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to more accurately track resource usage by processes. Accurate accounting in turn
allows Nemesis to provide consistent Quality of Service (QoS).

Nemesis uses a combination of Linux device drivers ported to Nemesis and new
device drivers. Even though the device drivers normally reside in the kernel, the
Nemesis developers would like to run the device drivers in the applications safely. To
that end, they have come up with the idea of user-safe devices [51]. User-safe devices
are ones that can safely multiplex their resources among multiple applications.
Since user-safe devices do not generally exist, they are emulated by the kernel device
driver providing a user-safe interface to applications. This approach is similar to

U-Net’s “emulated” user-mode network driver.



CHAPTER 7

CONCLUSIONS AND LESSONS LEARNED

As a result of our work, we have learned much about the design and implementa-
tion of device driver frameworks. This chapter summarizes our major conclusions,
lists advantages and disadvantages of user-mode device drivers in general, lists some
lessons learned about the good and bad aspects of the base Fluke system, and
outlines some problems with encapsulated legacy device drivers. It then gives a set
of simple guidelines for writing flexible device drivers, and concludes by suggesting

some future work.

7.1 Conclusions
1. Four issues dominate the design space when providing legacy device drivers to
foreign execution environments such as the Fluke kernel. They are synchro-
nization, interrupt delivery, memory allocation, and access to shared resources.
Each of these issues presents subtle design and implementation choices as well
as performance challenges. We found that the choices and performance chal-

lenges can be largely resolved through careful experimentation and analysis.

2. Executing legacy device drivers in user mode is an important technique for
isolating them from the idiosyncrasies of the kernel execution environment.
Decoupling the notions of “kernel /user address space” from “supervisor/user
privilege” adds flexibility in supporting legacy device drivers, but is not essen-

tial.

3. Acceptable performance of such drivers is achievable. “Acceptable” means be-
tween 88-93% of the best-performing Unix system in a realistic disk workload

and between 60-95% of the best-performing Unix systems in synthetic scenar-
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ios typical of real use. The lower range in performance occurs when using local
IPC to communicate between the driver(s) and applications. When drivers are
colocated with applications, they typically match Unix performance. Processor
utilization by user-level drivers is as much as twice as high when drivers are

not colocated, but the drivers are still usable.

4. Local IPC' costs, both kernel and runtime, are the main culprits in limiting
performance and increasing processor utilization. Kernel IPC on Fluke is faster
than IPC on most traditional operating systems like Unix and faster than IPC
on “first generation” microkernels such as Mach [21]. However, Fluke was
written in C to be portable, so does not contain the IPC optimizations of
recent “second generation” microkernels such as L4 [29]. When the kernel
costs are added to the large slowdowns incurred by the current runtime layers,

IPC adds considerable overhead for high-performance device drivers.

7.2 Benefits and Downsides of User-Mode
Device Drivers

The only way a single device driver framework can support all of the internal
Fluke kernel configurations is by running the device drivers in user mode. Running
device drivers in user mode offers numerous advantages and some disadvantages,

which we list here.

7.2.1 Benefits

Kernel implementation: As we have seen, the kernel can be implemented using
unusual programming models, without requiring all the OS components to be
written for that model.

Simplified kernel: Placing functionality in servers allows the microkernel to be
smaller and potentially more optimized and more predictable in execution time
than a monolithic kernel. Components are also simpler and have well-defined entry
points. Modular, smaller pieces are easier to understand and debug.

Debugging: “Normal” user-mode applications are certainly easier to debug than

the OS kernel. User-mode debuggers and tools can be used, rather than the
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usually limited kernel debugging tools. However, device drivers are not “normal”
applications and others’ experience has shown that debugging OS servers running
on a microkernel can be more difficult than debugging a monolithic kernel, because
control and state are spread over many protection domains. Our limited experience
with Fluke leaves us neutral on this issue. However, it is certainly true that the
amount of damage a programming error can inflict is reduced, since the kernel and
other servers are in different protection domains.

Scheduler control: Server threads are scheduled along with those of other ap-
plications. As a result, the scheduler has control over more of the processor time.
which increases scheduling determinism and flexibility.

Parallelism: Even if each component is single-threaded, multiple components
can execute in parallel, unlike in a monolithic single-threaded system. Increas-
ing parallelism is particularly advantageous when migrating to a multiprocessor.
User-mode device drivers can take advantage of increased parallelism without the
complexity and implementation burden of a fully multithreaded monolithic kernel.

Trust/Security: User-mode servers are subject to the same security policies and
mechanisms used to control other applications, since the servers are not part of
the kernel. Trust domains may be smaller than with monolithic kernels, and may
be reinforced through the use of hardware protection domains. Assurability of the
system is increased since the smaller components can be independently analyzed
and verified. However, since hardware transfers data using physical addresses,
device drivers that perform DMA (direct memory access) must still be trusted not
to corrupt the system.

Memory use: Normally the kernel’s code and data are stored in “wired” memory.
Since user-mode components are not in the kernel, unused regions can be paged

out the same as normal applications.

7.2.2 Downsides
Performance: Performance has historically been the biggest problem with user-
mode device drivers. Although previous user-mode device driver work has been

weak on the performance analysis, there are anecdotal reports of a 2X slowdown
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caused by user-mode device drivers [38]. Performance problems have been caused by
cross-domain copies (IPC), indirect access to the hardware, and interrupt delivery
to user mode. One of our contributions is a user-mode device driver framework that
alleviates many of the performance problems normally associated with user-mode
device drivers.

Complezity: Although we find the problem hinted at only once in print [4], a
disadvantage of component-based systems rarely recognized or acknowledged is the
additional complexity involved in a large microkernel-based operating system. We
base this observation on our experience with Fluke and that of many members
of our research group with Mach, the Hurd, and Fluke. Even though individual
components may be simpler, the aggregate complexity when all the components of
a large OS are assembled is typically significantly greater than the equivalent mono-
lithic system. This complexity leads to increased implementation and debugging

difficulty.

7.3 Advantages and Disadvantages
of the Fluke Model

With the exception of the performance implications, Fluke supports device
drivers quite well. Among the positive, though not novel, features of Fluke is the
ability for processes to easily mount devices into the filesystem transparently. We
use the same interface for network devices as for block devices, which also makes it
easy to get a handle on a device driver in another process. Having network devices
in the filesystem contrasts with Unix, where there is no /dev/eth0 device, although
there is a /dev/sd0 device for direct access to the disk drive.

Placing device drivers in user mode makes them independent of the Fluke kernel
implementation, except for a small amount of support code necessary to dispatch
interrupts. Fluke is defined by the exported kernel API, not the programming
model. Therefore, a completely new implementation of the kernel could use the
device driver framework immediately.

Our heavy use of Fluke primitives and our high number of context switches

make us highly dependent on the performance of those items, although we do
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not characterize this impact. This dependency is especially true for the colocated
case, where we do not have IPC overhead dominating the performance of the other
primitives.

Despite this dependence on Fluke primitives, the performance-related problems
are mainly related to IPC. The kernel’s IPC is simply too slow. Even a null kernel
IPC takes far too long, due to all the code executed for control flow. While at larger
transfer sizes the copy time dominates the CPU overhead, eliminating data copies
(such as through the use of a shared buffer) would not be much of an improvement
for small transfers, as the vast majority of small-message time is spent in control
code and context switching, not in data copies.

The Fluke IPC runtime, comprised of Flick and MOM, also adds considerable
overhead, both in control logic and in unnecessary copies. Although MOM and Flick
provide a nice runtime abstraction, it is not at the appropriate level for copy-free
transfers. The upshot is that for small transfers (such as 60-byte Ethernet packets),
around 60% of the IPC transfer time is spent in the runtime, rather than in the
kernel.

Although the runtime negatively impacts performance, the ability to add IDL
interfaces, such as multiple-packet reads and writes, with only minor modifications
and the addition of a new IDL interface definition, is quite advantageous. This
flexibility will allow the expensive IPC path to be amortized by sending multiple
packets per transfer.

Besides being slow, we also have a problem with the nature of Fluke IPC, which
transfers words instead of bytes. Word-based IPC requires extra copies to deal with
such things as adding a 14-byte Ethernet header. Even if Flick and MOM did not
have to do any copies, the runtime would still need to copy data so that the buffers
would all be a multiple of the word length. For example, data fragments are copied
on the client side to ensure they are contiguous during the IPC transfer, mainly
because of the word-based IPC requirements of Fluke. However, the support for
persistent connections, while not currently used, would reduce the kernel overhead

by allowing multiple transfers to occur per connection.
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In summary, improving the performance of the IPC path would be a tremendous
performance boost, provided both the kernel and the runtime were improved. For
small transfer sizes, most of the slowdown versus Unix is mainly due to the slow
IPC execution path compared to the copyin routine in a Unix kernel, and not to
extra copies performed along the Fluke IPC path. This slowdown is exacerbated
because the runtime establishes and destroys a “connection” on every data transfer,
even though the Fluke kernel supports persistent connections. For larger transfer
sizes, the control overhead is amortized, and the dominating factor becomes the

data copies.

7.4 Encapsulation

Encapsulating legacy device drivers certainly allowed us to provide more device
drivers in Fluke more quickly than would have been possible otherwise. However,
there were also a few downsides to using encapsulated drivers.

The lack of an asynchronous interface for OSKit block devices requires that
servers be multithreaded. FEach outstanding request requires a separate device
driver thread to provide a context for blocking. The right way to solve this problem
is to add an asynchronous device interface to the OSKit by writing more glue code
and exporting an interface to the low-level disk “strategy” routine.

Atomic processing of interrupts is required by most drivers, and so we must
provide that guarantee for all of them. Providing this guarantee introduced addi-
tional complexity and overhead into the design that would not have been necessary
without that constraint.

The OSKit block device glue code, written when the device drivers were en-
capsulated, performs copies and breaks requests into small chunks for sequential
processing. This design was due to the fact that buffers passed to the glue code
are not guaranteed to be in wired physical memory. This problem can be fixed
through modifications to the glue code and changes in how buffers are passed into
the device drivers.

Throughly encapsulating the drivers for the OSKit was difficult. In a few cases

we had to modify the device drivers, while in other cases (such as ISA DMA),
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we simply ignored the required abstractions due to the pervasive changes that
would have otherwise been required. Such a cavalier approach often does little
practical harm; in the ISA DMA case, the only effect of ignoring that particular
encapsulation constraint is that all drivers that use ISA DMA must be linked into
the same program. However, for the typical interfaces that did not require pervasive
changes, the advantages of providing a single simple interface, osenv, outweighed

the work required to encapsulate them.

7.5 Device Driver Guidelines

If all device drivers followed a common set of rules, it would be much simpler
to support not only user-mode device drivers in Fluke, but the osenv device driver
framework in other operating systems as well. Below are some of the observations
that we have made in creating the osenv framework and in adapting that framework
to Fluke. We make no attempt to provide a complete device driver specification,
such as UDI [56], but rather merely provide guidelines for writing flexible device
drivers. We focus on single-threaded device drivers, as those are the ones that we
have adapted so far. Multithreaded device drivers would more closely match the
Fluke environment, and it is expected that many of these issues are already dealt
with by multithreaded device drivers.

The rules we propose are the following:

1. Do not directly manipulate the interrupt enable bit—use a macro defined in
a single header file. Over time, the base Linux device drivers have improved
considerably in this regard. Efforts to port the drivers to different architectures
eliminated most of the embedded assembly used to manipulate the interrupt
flags that plagued earlier versions of Linux. It would not have been feasible to
run the device drivers in Fluke without using external synchronization routines,

which requires replacing the interrupt management routines.

2. Do not assume that the driver’s virtual memory address maps directly to the

device’s physical memory address. The bus may be able to do translations, as
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on the Alpha’s PCI/ISA busses. Since the drivers assumed there was no con-
version process, and that malloced memory was nonpageable, our framework

had to meet that requirement, which limited flexibility.

. If there are any timing-critical sections of code, indicate the constraint, prefer-
ably with a function call, instead of just disabling interrupts. Disabling inter-
rupts actually works fairly well for synchronization as long as there is only
one active process thread. However, it is inadequate for timing problems,
since disabling interrupts may not normally disable all of the interrupts; e.g.,
the clock may be left running. Also, disabling interrupts does not disable
any of them in our user-mode driver framework, nor does it prevent preemp-
tion. Although this driver framework does not currently support drivers with
timing-critical sections, supporting such drivers is tractable only if it is clear

which code sections have this requirement.

. Use a standard macro or function call for all accesses to shared resources, such
as the timer or a DMA controller. Do not assume that all other activity in the
system is suspended while the driver is executing, even if it is single-threaded.
This requirement is essential to running device drivers in separate address
spaces. Although most shared resources were sufficiently abstracted, ISA DMA

was not.

. Use a function to enter a critical section, instead of assuming that interrupts
are atomic. If fine-grained locking is too slow, then the driver should put the
whole interrupt handler inside a critical section, but should not assume that
interrupts are necessarily handled atomically. If the driver is more explicit
about the synchronization, additional optimizations (and simplifications) can

significantly reduce the synchronization overhead.

. Use a different memory allocator for memory that needs to be physically
addressed than for memory only accessed through virtual addresses. The use

of separate allocators (or allocation flags) would increase the amount of the
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driver memory that is pageable by the system. The current drivers do not
make the distinction clear, which requires that more nonpageable memory be

allocated than is necessary.

These guidelines not only help run device drivers in different execution environ-
ments, but they also simplify the task of incrementally multithreading a monolithic

kernel.

7.6 Future Work

The best way to quickly improve Fluke so that it better supports legacy device
drivers is to change the IPC granularity from words to bytes. If a data transfer
must do a copy, scatter-gather should be done there at a byte granularity. This
is true even though word-aligned, word-based transfers provide greater efficiency
when byte-based scatter-gather is not required.

Improving the performance of Fluke IPC and the associated runtime support
code would also provide a large performance boost. Improving Flick and MOM to
use Fluke IPC scatter-gather when possible, instead of copying, is an important
part of that. Implementing a multiple-packet IPC interface would improve network
performance, and implementing packet filters would increase the functionality of the
system. Optimizing the synchronization code is another obvious source of potential
performance enhancements.

Fluke and its supporting runtime should also improve their handling of memory
and buffers, perhaps through the implementation of a zero-copy framework similar
to I/O-Lite [49] or fbufs [13]. It is currently very difficult to know what type of
memory to allocate in one component (such as the networking stack), since that
depends on whether it is colocated with a device that uses DMA or whether it is
communicating with the device over IPC. The same problem arises in MOM /Flick,
where the MOM runtime receives data into a buffer and Flick unmarshals the data
into an allocated buffer. The device driver glue code then has to copy the data
into a wired buffer, just in case the driver needs to perform DMA or hold on to the

buffer. Passing around immutable fixed buffers would eliminate the copies and the
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need to marshal the data for an IPC.

Relatively straightforward improvements include supporting mapping of high
physical addresses for memory-mapped 1/O and providing more robust support
for shared level-triggered interrupts. Implementing more checks and utilizing ad-
ditional information in those checks (such as using information from the PCI
configuration registers), would also be straightforward. Adding additional checks
and access controls for the highly-secure version of Fluke, called Flask [58], would
further increase the security of the device driver framework.

Nemesis’s postulated “user-safe devices” [51] would allow multiple processes
to share a device without the expensive communication costs that we currently
pay. Because our device driver framework already supports drivers colocated with
applications, we are prepared to support such user-safe devices.

Finally, desirable future work includes writing a customized multithreaded device
driver for Fluke that uses hand-rolled stubs and does no unnecessary copies. This
driver would allow us to take full advantage of the Fluke features without the
overhead of using encapsulated device drivers. Additionally, it will allow precise
measurement, of the performance impact of the runtime, which currently is con-

founded with the base Fluke IPC mechanism.



APPENDIX

OSENYV API

This Appendix gives an overview of the functional interfaces provided by the
operating system as part of osenv. The osenv device tree functionality is not
included, along with the other OS entrypoints into the device drivers. Instead, this
section focuses on the OS-provided interface layer used by the device drivers. For

more information on the osenv API, please consult the OSKit user’s manual [16].

A.1 Interrupts
Interrupts are used by hardware to inform the device driver that it needs servic-
ing. Osenv routines that process a single interrupt vector contain irq in the name,

while osenv routines that manipulate interrupts in general contain intr.

A.1.1 osenv_irq_alloc
int osenv_irq_alloc(int irg, void (*handler)(void *), void *data, int flags);
Allocate an interrupt vector. The specified handler is called with data as its
parameter when the hardware interrupt occurs. The flags parameter currently
only specifies if the device driver wishes to allow the interrupt to be shared with
another device (by passing 0SENV_IRQ_SHAREABLE). An error code is returned if the

interrupt cannot be allocated.

A.1.2 osenv_irq_free
void osenv_irq_free(int irg, void (*handler)(void *), void *data);
Free an interrupt vector. This function is used to unregister the interrupt handler

previously registered with osenv_irq_alloc.
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A.1.3 osenv_irqg_disable
void osenv_irq_disable(int irg);
Disable only the specified interrupt. It is acceptable to merely prevent this
interrupt from making it into the driver set. This routine corresponds to disabling

the interrupt source at the interrupt controller.

A.1.4 osenv_irq_enable
void osenv_irq_enable(int irg);
Enable the specified interrupt. This routine corresponds to enabling the inter-

rupt source at the interrupt controller.

A.1.5 osenv_irq_pending
int osenv_irq_pending(int irg);
Return the interrupt vector status. The result is only meaningful if the specified

interrupt is currently disabled.

A.1.6 osenv_intr_disable
void osenv_intr_disable(void);
Disable interrupts. Prevent all interrupt sources from making it into the driver

set. This routine corresponds to disabling processor interrupts.

A.1.7 osenv_intr_enable
void osenv_intr_enable(void);
Enable interrupts. Allow any pending or incoming interrupts, not individually
disabled, to enter the driver set. This routine corresponds to enabling processor

interrupts.

A.1.8 osenv_intr_enabled
int osenv_intr_enabled(void);
Return an indication of the interrupt-enabled status. Zero indicates that inter-

rupts are currently disabled.
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A.2 Sleep/Wakeup
Sleep and wakeup events are based on sleep records. The contents of these are
system-dependent, but the osenv API requires two words of storage for each sleep
record. Since there is no destroy method, every sleep record created should be slept

on so that the operating system may garbage collect the sleep records.

A.2.1 osenv_sleep_init
void osenv_sleep_init(osenv_sleeprec_t *sr);
Create and initialize a sleep record. This routine is called by the device driver

in preparation for blocking on an event.

A.2.2 osenv_sleep
void osenv_sleep(osenv_sleeprec_t *sr);
Block on a sleep record. If a wakeup has already occurred, return immediately.

Spurious wakeup are allowed.

A.2.3 osenv_wakeup
void osenv_wakeup(osenv_sleeprec_t *sr);

Signal a sleep record. Wake up the thread blocked on the sleep record indicated.

A.3 Memory
This sections provides routines to allocate and free virtual and physical memory,
and to convert between virtual and physical addresses. Several of the routines take
an osenv_memflags_t parameter, which is an unsigned int. Valid memflags are:
OSENV_AUTO_SIZE, OSENV_PHYS_WIRED, OSENV_VIRT_EQ_PHYS, OSENV_PHYS_CONTIG,
OSENV_NONBLOCKING, and OSENV_ISADMA_MEM.

A.3.1 osenv_mem_alloc
void *osenv_mem alloc(oskit_size_t size, osenv_memflags_t flags, unsigned

align);
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Allocate memory with the specified flags and alignment. This routine should
not return NULL unless OSENV_NONBLOCKING is set and no memory of the requested

type is currently available.

A.3.2 osenv_mem free
void osenv_mem_free(void *block, osenv_memflags_t flags, oskit_size_t size);
Release a previously-allocated block of memory. The flags parameter must
be the same as it was during the allocation, and size must be valid unless the

OSENV_AUTO_SIZE flag is set.

A.3.3 osenv_mem_map_phys
int osenv_mem_map_phys(oskit_addr_t pa, oskit_size_t size, void **addr,
int flags);
Map the specified physical memory and returns the virtual address where it
is located. Return non-zero to indicate failure. The driver may request that the

memory be treated as write-through or uncacheable by the processor.

A.3.4 osenv_mem_get_phys
oskit_addr_t osenv_mem_get_phys(oskit_addr_t va);
Return the physical address for a valid virtual address. The returned address is
only guaranteed to be valid for memory requested with 0SENV_PHYS_WIRED specified,

although the operating system may honor requests for other virtual addresses.

A.3.5 osenv_mem_get_virt
oskit_addr_t osenv_mem get virt(oskit_addr_t pa);

Return the virtual address corresponding to the given physical address.

A.3.6 osenv_mem_phys_max
oskit_addr_t osenv_mem_phys_max(void);
Return the amount of physical memory. This routine may be used by device
drivers to determine whether bounce-buffers are required for devices that cannot

address the entire address range of the processor.
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A.4 1/0 Space
Routines to allocate and free 1/O space. The drivers may directly access 1/0
space that they have allocated. On systems with memory-mapped 1/0, osenv_-

mem map_phys is used to gain access to the device instead of these routines.

A.4.1 osenv_io_avail
oskit_bool_t osenv_io_avail(oskit_addr_t port, oskit_size_t size);
Check I/0 space usage. Return TRUE if the specified I/O range is not in use and

may be allocated by the device driver.

A.4.2 osenv_io_alloc
oskit_error_t osenv_io_alloc(oskit_addr_t port, oskit_size_t size);
Allocate the 1/O-space range. If any part of it is already in use, or permission

is denied, an error is returned.

A.4.3 osenv_io_free
void osenv_io_free(oskit_addr_t port, oskit_size t size);
Free the 1/O range specified, marking it as available for use. A driver may only

free 1/0 space it has allocated.

A.5 Clock

Functions to read and write the realtime clock

struct oskit_timespec;

A.5.1 oskit_rtc_get
oskit_error_t oskit_rtc_get(struct oskit_timespec *time);

Read the real-time clock. This routine returns the current time.

A.5.2 oskit_rtc_set
void oskit_rtc_set(struct oskit_timespec *time);
Set the current time in the RTC. The operating system is not required to honor

these requests from the device driver.
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A.6 Timers
Device drivers use timers to receive periodic notification, to implement timeouts,
or to delay for a period of time. The osenv API provides low-level timer function-
ality, upon which the drivers may implement the desired behavior. For example,
one-shot timers are not provided, as they are expected to be implemented on top

of the periodic timer support provided by osenv.

A.6.1 osenv_timer_init
void osenv_timer_init(void);
Initialize the osenv timer support routines. This routine must be called before

the device driver attempts to use any of the other timer routines.

A.6.2 osenv_timer_spin
void osenv_timer_spin(long nanosec);
Spin without blocking. Wait for the specified amount of time to elapse, without
blocking or reenabling interrupts. This should only be used infrequently for small

periods of time.

A.6.3 osenv_timer_register
void osenv_timer_register(void (*func)(void), int freq);

Register a specified function to be called at freq hertz.

A.6.4 osenv_timer_unregister
void osenv_timer_unregister(void (*func)(void), int freq);
Remove the timer callback function from the call-back list. The frequency is

specified in case the same function has been registered more than once.

A.7 Bus-specific Interfaces
The osenv API contains additional bus-specific interfaces to support features
present on various expansion busses. The osenv API currently contains bus-specific

interfaces for the PCI and ISA expansion busses.
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A.7.1 PCI Bus
The PCI bus-specific routines provide an interface to read and write PCI con-

figuration space.

A.7.1.1 osenv_pci_config_init
int osenv_pci_config_init(void);
Initialize the PCI support code. Return non-zero if there is no PCI bus present

or another problem occurs.

A.7.1.2 osenv_pci_config_read
int osenv_pci_config read(char bus, char device, char function, char port,
unsigned *data);

Read a word from PCI configuration space.

A.7.1.3 osenv_pci_config_write
int osenv_pci_config_write(char bus, char device, char function, char port,
unsigned data);

Write a word to PCI configuration space.

A.7.2 1ISA Bus
The ISA bus-specific routines are used to allocate and free ISA DMA channels.

A.7.2.1 osenv_isadma_alloc

oskit_error_t osenv_isadma alloc(int channel);

Allocate the specified ISA DMA channel. The driver may program the ISA
DMA controller once it has allocated a DMA channel.

A.7.2.2 osenv_isadma_free
void osenv_isadma_free(int channel);

Release the previously allocated ISA DMA channel specified.
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A.8 Logging
Osenv components may generate informative messages. The OS may redirect
these messages to wherever is appropriate. The default priority is 0SENV_LOG_INFO.
The log priorities, in descending order, are: OSENV_LOG_EMERG, OSENV_LOG_ALERT,
OSENV_LOG_CRIT, OSENV_LOG_ERR, OSENV_LOG_WARNING, OSENV_LOG_NOTICE, OSENV_-
LOG_INFO, and OSENV_LOG_DEBUG. OSENV_LOG_DEBUG messages are not normally out-
put by default.

A.8.1 osenv_vlog
void osenv_vlog(int priority, const char *fmt, void *uvl);

Log driver output. Sends a message from the driver, usually to the console.

A.8.2 osenv_log
void osenv_log(int priority, const char *fmt, ...);

Log driver output. Calls osenv_vlog.

A.9 Panic
A.9.1 osenv_vpanic
void osenv_vpanic(const char *fmt, void *uvl);
The driver calls this function if there is an error in the driver that prevents
further execution. The driver set that called this function should be terminated

immediately.

A.9.2 osenv_panic
void osenv_panic(const char *fmt, ...);

Calls osenv_vpanic.
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