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Abstract
Simulation has been the dominant research methodology in
wireless and sensor networking. When mobility is added, the
frequency of real-world experimentation becomes tiny. How-
ever, it is becoming clear that simulation models do not suf-
ficiently capture radio and sensor irregularity in a complex,
real-world environment, especially indoors. Unfortunately,
the high costs in labor, equipment, and tedium of truly mo-
bile experimental infrastructure in real-world environments
typically present an insurmountable barrier to such experi-
mentation.

We describe our experience in creating an initial testbed
to lower those barriers. Our system, called “TrueMobile,”
already deployed for public use, provides the first remotely-
accessible mobile wireless and sensor testbed. Robots carry
motes and single board computers running Linux through a
fixed field of sensor-equipped motes, all running the user’s
selected software. In real-time, interactively or driven by pre-
programmed events, remote users can position the robots,
control all the computers and network interfaces, and log
data. TrueMobile provides simple path planning, a vision-
based tracking system accurate to 1 cm, live maps, and we-
bcams. Precise positioning and automation allow quick and
painless evaluation of location and mobility effects on wire-
less protocols, location algorithms, and sensor-driven appli-
cations.

We present TrueMobile’s design and implementation, eval-
uate key aspects of its performance, and describe a few exper-
iments demonstrating its generality and power.

1 Introduction

Experiments involving mobile wireless devices are inherently
complex, and in general, time-consuming to set up and carry
out. Such experiments are also extremely difficult to re-
peat. People who might want to duplicate published results
in another laboratory, for example, must devote substantial
resources to setting up and running such a laboratory — and

even then, the environmental conditions are likely to be sub-
stantially different. Duplicating one’s own work is similarly
difficult, due to the need to position and move mobile devices
exactly as one did previously.

For these reasons, simulation has been a primary method-
ology for researchers in the wireless and sensor network do-
mains. Simulations are easier to set up than physical ex-
periments, are easy to repeat and modify, and are highly
portable. It is becoming clear, however, that current simu-
lators are unable to model many essential characteristics of
the “real world.” The shortcomings of modern simulation do
not merely lead to minor inaccuracies in experimental results.
Rather, the simplifying assumptions that are built into current
wireless simulators lead to profound differences between the
behavior of system in simulation and the behavior of the re-
alized system in the real world.

It is apparent that mobile wireless systems must be studied
and evaluated through experiments that utilize actual mobile
devices. For such experiments to be commonplace, however,
the capital costs and human effort required to perform such
experiments must be substantially reduced — by an order of
magnitude or more. We believe that widespread improve-
ments to the development and evaluation of mobile wire-
less and sensor networks will require the creation of many
testbeds to support this type of research. A testbed for mobile
wireless research must contain actual mobile devices, provide
means for programming the devices, ensure that motion is
performed accurately, and provide ways for collecting a vari-
ety of experimental data. To be economical, a single testbed
must be shareable: in fact, it should be available online, and
usable by researchers at sites far from the testbed itself. Fi-
nally, to provide diverse environments for research, several
such testbeds must eventually exist. It is therefore important
to reduce the cost of building and maintaining such a wireless
testbed.

TrueMobile’s important new features of automation and
accurate and precise positioning of RF devices enable the
construction and validation of simulation models at all radio
and network levels (see section 6). A real-world testbed such



as TrueMobile provides new opportunities for development
of wireless simulation models. Developers of such models
must first test their initial model in a clean-room environment
free from outside influences of any kind. Enviromental com-
plexity can then be added in gradually to improve the effec-
tiveness of the simulation model [30, 28] . For instance, one
could first add physical obstacles to RF propagation, and con-
tinue by expanding the effects of outside influences of many
types.

In this paper we describe our experience in creating an ini-
tial testbed for mobile wireless and sensor network research.
Our system, called TrueMobile, is a prototype designed to
show that such testbeds can be built: they can provide ac-
curate positioning and monitoring, can enable automated ex-
periments by both on-site and off-site users, and can be built
and maintained at relatively low cost using commercial off-
the-shelf (COTS) equipment. We believe that TrueMobile is
an efficient and cost-effective solution, and is therefore an at-
tractive (and often superior) alternative to simulation for ex-
periments that involve mobile wireless devices.

The contributions of this paper are as follows. First, we
present the TrueMobile system. To our knowledge, TrueMo-
bile is the first remotely accessible testbed for mobile wire-
less and sensor network research. Second, we show that
our testbed model is economical: TrueMobile demonstrates
that useful mobile testbeds can be built at modest cost, using
COTS hardware and open source software. Third, we de-
tail the novel algorithms that we developed as part of build-
ing our testbed from COTS parts. In particular, we describe
how TrueMobile ensures accurate robot positioning using
medium-cost video camera equipment. Finally, we present
results from initial experiments that were carried out in the
TrueMobile testbed. These results highlight the automation
capabilities of the testbed and the measured real-world effects
that are present in the TrueMobile environment.

The current system is deployed for public use, but it rep-
resents just the first phase of our deployment. This paper de-
scribes both the current state of the testbed and our plans for
future enhancements.

The rest of this paper is structured as follows. Following
a review of related work in Section 2, we present the True-
Mobile system architecture in Section 3. We then detail two
issues that are essential for reliable mobile experimentation:
accurate location of mobile devices (Section 4), and motion
control (Section 5), including validation and microbenchmark
results. In the last parts of the paper, we describe initial ex-
amples of experimentation on TrueMobile (Section 6), dis-
cuss open issues and future work (Section 7), and conclude in
Section 8.

2 Related Work

There are a number of related testbed projects, for both fixed
and mobile testbeds. Here, we give an overview of the work

done by others, and how our work advances the state-of-the-
art in mobile and sensor network testbeds.

One major way in which we differ with all of the related
projects below is our integration with Emulab [26]; by build-
ing on this software platform for running network testbeds,
we inherit many features useful to users and administrators.
For example, Emulab was designed from the ground up to be
a multi-user testbed environment, so that its resources can be
shared by a large number of projects, and it supports a hier-
archy of projects, groups, and users. Emulab also provides a
rich environment for controlling experiments, which includes
a scriptable “distributed event system,” which various parts
of the system can generate or react to—in Section 6, we run
an experiment which makes use of this feature. Emulab sup-
ports multiple device types, including generic PCs, emulated
widearea network links, and real 802.11 links. This feature is
useful for experimenting with systems involving such a mix-
ture, for example, hierarchical wireless sensor systems [6],
including those incorporating nodes across the Internet, such
as the “Hourglass” data collection architecture [12]. Emu-
lab is Web-based and script or GUI-driven, but also exports
an XML-RPC interface so that all interaction can be purely
programmatic. Finally, Emulab can reliably handle experi-
ments of very large scale, which they report was a major chal-
lenge [9].

The MiNT testbed [20] at SUNY Stony Brook is a minia-
turized 802.11 testbed. Their focus is on reducing the area
required to run a multihop 802.11 testbed, and on integrating
ns simulation with emulation. They achieve mobility through
the use of antennas mounted on Lego MindStorm robots, teth-
ered to a PC where the applications are run. To avoid an-
tenna tangle, each robot is limited to moving within its des-
ignated square. In contrast, in this paper our focus is on the
mobility of the robots, while our example hardware environ-
ment is a wireless sensor network, although our software can
also control 802.11 networks. We have untethered robots, so
that mobility is not hampered by wires, and provide accurate
movement and “ground-truth” location of the robots, whereas
MiNT does not address positioning accuracy.

The ORBIT testbed [13,16,17] at Rutgers uses a combina-
tion of 802.11 and cellular telephone (3G) equipment. Some
of this equipment is carried by campus buses on a fixed route,
providing a limited mobility environment in an outdoor set-
ting. Indoors, they use a large (currently 64; planned 400-
node) grid to emulate mobility—user code is run on PCs,
which are dynamically bound to radio nodes. Thus, by chang-
ing the binding of a PC to a new radio node, the PC appears to
move, though only discreet hops, not true mobility, are possi-
ble. In contrast, we focus on true mobility, and target sensor
networks as well as 802.11.

Harvard’s MoteLab [25] and UCLA’s EmStar [5, 7] both
support fixed sensor network testbeds. MoteLab is a Web-
accessible software system for general-purpose sensor net-
work experimentation, and has been installed at MIT and
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Berkeley as well as Harvard. Like many testbeds, includ-
ing TrueMobile, it assumes a separate “control network” over
which it provides a number of useful features. As do we,
these include mass programming of the motes, logging all
transmitted packets, and the ability to connect directly to the
motes. MoteLab uses a reservation-based scheduling system
with quotas, whereas we currently use Emulab’s dual model
of a batch queue and interactive first-come first-served use.

The EmStar “ceiling array” testbed is used primarily for
the development of the EmStar software, which concentrates
on the integration of “microserver” nodes, which have more
processing power than a typical sensor network node, into
sensor networks. A clever aspect of the EmStar software is
that applications emulating the sensor nodes can be run on a
single PC, yet optionally be coupled to real, distributed wire-
less devices for communication.

Intel’s Mirage testbed [2] is complementary to all of the
other testbeds in that it uses resource allocation in a sensor
net testbed as a target to explore new models of resource al-
location, e.g., market-based models.

The WHYNET [27] project eventually intends to integrate
a large number of types of wireless devices, but so far has not
addressed remote access. The ExScal project at Ohio State is
investigating static sensor networks up to thousands of nodes,
but remote access is also not a priority. The SCADDS project
at USC/ISI has a static testbed of 30 PCs with 418MHz radio
deployed in an office building.

3 System Overview and Design

TrueMobile is based on Emulab [26], a testbed management
framework from the University of Utah. Emulab is designed
to provide consistent and seamless access to a variety of
experimental environments. Emulab provides a Web-based
front end, through which users create and manage experi-
ments, a core which manages the physical resources within
a testbed, and numerous back ends which interface to vari-
ous hardware resources. The core consists of a database and
a wide variety of scripts that allocate, configure, and operate
testbed equipment. Back ends include interfaces to locally-
managed clusters of nodes, virtual and simulated “nodes,”
and a PlanetLab interface. Emulab users create “experi-
ments,” which are essentially collections of resources that are
allocated to a user by the testbed management software.

We extended the existing Emulab framework for our
testbed, which includes both robot-based mobile wireless de-
vices and new software for managing those devices within
the testbed. The software architecture of TrueMobile, and its
relationship to Emulab, is shown in Figure 1.

3.1 Software Architecture
Our testbed software provides experimenters the capability to
dynamically position robots and use them to conduct exper-
iments. To this end, we have extended core Emulab func-
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Figure 1: TrueMobile software architecture

tionality, providing new user control and data interfaces. We
have also written a backend which directly interfaces with
both Emulab and the new components of our robot control
system. This backend functions primarily as a data broker
and translator of user requests to the robot system. The
robot-specific components include a robot control compo-
nent, called robotd, which maneuvers robots to user-specified
positions, thus freeing the experimenter from the necessity
of specifying the details of each robot’s path to a final posi-
tion. A computer vision-based localization component, called
visiond, processes data from an overhead network of video-
cameras and provides robot position and orientation data to
both the backend and to robotd. This allows users to track
robot location changes in real-time and ensures robots reach
their destinations.

Component structure and dataflow is shown in Figure 1,
and is described below. When an experimenter requests
that a robot be moved to a new position, the request is
passed through Emulab to the backend. The backend per-
forms bounds-checking on the requested position, and passes
it down to robotd. robotd then queries the backend to en-
sure that it has the latest location data for the robot in ques-
tion. Finally, robotd transforms and issues the position re-
quest to the pilot daemon, which runs on each robot and actu-
ally moves the robot to the new position. Since internal robot
wheel odometry is a poor estimate of actual distance traveled,
robotd re-queries the backend after the initial move is com-
pleted to discover how much correction is necessary. This
process is repeated until the robot reaches a position within
a fixed distance from the requested position, or until a retry
threshold has been reached.

Robot Localization. Tracking and identification of the
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robots is handled by a vision-based tracking system, using six
ceiling-mounted video cameras aimed straight down. As de-
scribed later in section 4, we improved an open source object
tracking software package to transform the overhead camera
video into X,Y coordinates and orientation for any detected
objects. Individual camera tracks are then aggregated by vi-
siond into a single set of canonical tracks that can be used by
the other components. These tracks are reported at 30 frames
per second to the backend as queries from robotd require high
precision. The backend in turn reports snapshots of the data
(one frame per second) to the Emulab database, for use by the
user interfaces. This reduction in data rate is an engineering
tradeoff to reduce the communication bandwidth with, and
resulting database load on, the Emulab core.

Robot Control. Plotting a path for the robots to reach their
user-specified positions is performed centrally by the robotd
and then individual commands are sent down to the pilot dae-
mon. The current pilot daemon uses the API provided for
Acroname Garcia [4] robots. It makes use of the built-in mo-
tion commands and data structures. The low-level robot con-
trol interface is well abstracted, allowing development to con-
centrate mainly on path planning and movement. The con-
trol aspects required to move specific distances and angles
are handled by the tools provided by Acroname. Additional
functions are also handled by the API, such as battery levels,
monitoring sensor values, adjusting sensor sensitivities and
thresholds, and adjusting robot parameters. Path planning is
described in section 5.

Emulab Integration. We have extended the Emulab inter-
face to allow experiments with mobile robot nodes. Exper-
imenters may select several robots, perhaps in tandem with
other node types to collect or process data, customize various
Emulab experimental settings, and direct Emulab to instan-
tiate an experiment. Experimenters may customize a set of
robot positions, software to load onto nodes (i.e., a custom
TinyOS kernel for motes, or data processing software for a
master wireless sensor network node). Dynamic robot posi-
tioning is achieved using the existing Emulab event system,
which has been extended with an event agent running on the
backend, translating requests from the user to motion com-
mands to robotd. For example, Figure 2 shows an an excerpt
of the NS code used in one of our experiments to walk a robot
around an area in half meter increments and log data received
on the mote. We have also developed several new user inter-
faces, including Java applets to dynamically position robots
and view telemetry data in real-time. Live images of the robot
testbed are provided via webcams. Figure 3 shows the posi-
tioning applet with a superimposed webcam image.

3.2 Hardware Resources
Space. As shown in Figure 3 the mobile testbed is currently
deployed in an L-shaped area of 60 m2, height about 2.5 me-
ters, with five robots that can be positioned anywhere in that
area. Overlooking this area are six cameras used by the robot

set ltor 1
for {set y 0} {$y <= $HEIGHT} {set y [expr $y + $YINCR]} {

set row($rowcount) [$ns event-sequence {}]
for {set x 0} {$x <= $WIDTH} {set x [expr $x + $XINCR]} {

if {$ltor} {
set newx [expr $XSTART + $x]
set newy [expr [$walker($lpc) set Y_] + $y]

} else {
set newx [expr $XSTART + $WIDTH - $x]
set newy [expr [$walker($lpc) set Y_] + $y]

}

if {[$topo checkdest $walker($lpc) $newx $newy]} {
$row($rowcount) append \

"$walker($lpc) setdest $newx $newy 0.2"
$row($rowcount) append \

"$logger($lpc) run -tag $newx-$newy"
}

}
$rowwalk($lpc) append "$row($rowcount) run"
incr rowcount
set ltor [expr !$ltor]

}

Figure 2: Extended NS code used to walk a robot around an
area and log output from the onboard mote.

Figure 3: The TrueMobile robot positioning interface allows specifying
robot movement with click and drag operations. Green dots are garcias; red
vectors indicate desired motion; red circles show desired destination; blue
dots are static mote locations; obstacles are in grey. A snapshot of the web-
cam view of the robot arena is superimposed onto the lower right corner of
the interface view.

4



tracking system and two webcams that give live feedback to
the users of the testbed.

The area in which we are currently operating is a mix of
“cube” and regular office space on the top floor of a four story
steel-structure building. The space is carpeted, flat, and clear
of obstructions, except for a single steel support beam in the
middle of the room. The area is “live,” with people mov-
ing near and across the area during the day. This aspect of
the space adds a certain amount of unpredictability and real-
ism to experiments. Removing this aspect of the space could
be done by running the robots during off-hours; however, we
currently lack the infrastructure for recharging the robot’s bat-
teries without human intervention.

Robots. We currently have five operational Acroname Gar-
cia robots, These robots were chosen as a platform for their
size, cost, ease of use, and performance characteristics. The
Garcia robot is a commercial robot platform, offering multi-
ple configurations for a reasonable cost ($1100). The use of a
commercial platform allows the wireless testbed to be devel-
oped without requiring the engineering considerations inher-
ent to robot design to be solved in-house. The use of differ-
entially steered two wheeled robots simplifies the kinematics
and control model requirement. Most importantly, because
our testbed is based on a readily available commercial robot
platform, other teams may replicate the testbed with modest
effort.

The robots operate completely wirelessly using 802.11b
and a battery that provides at least two to three hours of use
to drive the robot and power the onboard computer and mote.
Motion and steering come from two drive wheels that have a
rated maximum of two meters-per-second, although we found
the internal robot controller may stall above 0.4m/s, so we
currently use that as our maximum speed. Six infrared prox-
imity sensors on all sides of the robot automatically detect
obstructions in its path and cause it to stop. These sensors are
a key component in making it possible to run the robots in a
“live” space, since the readings provide a means to detect and
navigate around previously unknown obstacles.

The factory configures the Garcia robots to carry an
XScale-based Stargate [21] small computer system, to which
we attach a 900MHz Mica2 mote. The Stargate serves as a
platform for control of the robot by the testbed and interac-
tion with the mote by the experimenter. To this we attach an
802.11b wifi card that acts as a separate “control network”,
connecting the robot to the main testbed and the Internet.

Static Motes. The fixed motes are arranged on the ceiling
in a roughly 2-meter grid and near the floor on the walls. All
of the fixed motes are attached to serial programming boards
(model MIB500CA [29]) to allow for programming and com-
munication. The near-floor motes also feature a full multi-
sensor board (model MTS310) with magnetometers that can
be used to detect the robot as it approaches. These motes are
completely integrated with the Emulab software, making it
trivial to load new kernels onto motes, remotely interact with

running mote kernels via their serial interfaces, or access se-
rial logs from experiments.

Finally, since the TrueMobile software is derived from the
Emulab software, other sites who install TrueMobile to man-
age their own mobile testbeds could choose to add cluster
PC nodes. Experimenters could then leverage those PCs as
processing stations for WSN experiments, or use them to-
gether with fixed or mobile wireless and sensor nodes to cre-
ate highly-diverse computer networks.

4 Robot Localization: visiond

For accurate and repeatable experiments, TrueMobile must
guarantee that all mobile antennae and RF devices are at their
specified positions and orientations, within a small tolerance.
Accurate localization is also important for robot motion, de-
scribed in Section 5. Robot localization must scale to cover
an area sufficiently large to enable interesting multi-hop wire-
less experiments. Finally, a localization solution must be of
reasonable cost in terms of setup, maintenance, and hardware.

When we started to develop TrueMobile, it became appar-
ent almost immediately that our robots’ on-board odometry
was insufficient to localize the robots with sufficient accuracy.
We therefore developed a computer vision-based robot local-
ization system to track devices throughout our experimental
area. Our vision algorithms process image data from video
cameras mounted above the plane of robot motion. These al-
gorithms recognize markers with specific patterns of colors
and shapes, called fiducials, on each robot, and then extract
position and orientation data. Our system tracks robots with
an accuracy of 1 cm worst-case absolute error, and 0.34 cm
RMS absolute error.

To obtain high-precision data while limiting hardware
costs, we made a number of engineering trade-offs. First,
we mount video cameras above the plane of robot movement
looking down, instead of installing one on each robot. This
solution is economical: not only does it remove requirements
from the robots (power, CPU time, etc.), but overhead cam-
eras can track many robots at once. Second, our video cam-
eras are pointed straight down, perpendicular to the plane
of robot movement. As described below, this simplifies the
models of camera geometry we employed, and increased pre-
cision. Third, all robots are marked with the same, simple
fiducial. This simplifies the object recognition algorithms and
lowers processing time per image.

These simplifications also introduce several complications.
First, mounting the video cameras perpendicular to the plane
of robot motion increases the total number of cameras neces-
sary to cover our area, relative to a trinocular videocamera-
based localization system [15]. Second, use of the same
fiducial on each robot prevents unique identification of each
robot; thus, we must maintain robot identity at a different
layer. Third, since our current vision software requires color
fiducials, light conditions must be carefully controlled and the
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vision software must be calibrated to handle light variability.
Fourth, cost minimization requires the largest possible per-
camera viewspace. Ceiling height limits distance from the
ground plane in which we can place the video cameras, so we
have installed very wide-angle zoom lenses on each camera
with an over 90 degree field of view.

Our image processing algorithms compensate for the re-
sulting image distortion.

4.1 Hardware
We use video cameras and lenses that combine to produce
high-precision localization, yet are not prohibitively expen-
sive. The most important camera features were (1) resolution
and (2) control modes for light and color. However, digital
cameras with resolutions higher than 640×480 pixels all ex-
ceeded our cost constraints. We evaluated standard analog
security cameras, and found that the analog resolution pro-
duced is too low to extract sharp fiducial outlines. Standard
security cameras also lack manual controls for light and color
settings, which are needed in our environment to combat the
effects of lighting variability. After extensive evaluation, we
chose to use the Hitachi KP-D20A analog CCD camera [10],
which provides sufficient analog resolution and good, manual
control of light and color settings. The camera cost was $460.

To cover the testbed arena with as few cameras as posisble,
we needed to use wide-angle lenses on our cameras. Wide-
angle lenses produce barrel distortion, which can be partially
accounted for in software, but which decreases our system’s
precision. Low-distortion wide-angle lenses can cost many
thousands of dollars, so we chose to use inexpensive lenses
and correct for distortion in software using better camera ge-
ometry models and interpolative error correction. We are us-
ing Computar 2.8–6.0 mm varifocal lenses set at focal lengths
of 2.8 mm, each costing approximately $60.

The total per-camera cost of our current system is approx-
imately $750. We expect to reduce that to $600–$700 in
a large-scale implementation by covering more space with
fewer cameras and improving our distortion correction.

4.2 Localization Software
To keep our costs low, we chose to use Mezzanine [14], an
open-source system that recognizes colored fiducials on ob-
jects and extracts position and orientation data for each rec-
ognized fiducial. Each fiducial consists of two 2.7 inch circles
that are widely separated in color space, placed next to each
other on top of a robot. Mezzanine’s key functionality in-
cludes a video image processing phase, a “dewarping” phase,
and an object identification phase. For space reasons, we fo-
cus on the first two of these steps below.

During the image processing phase, Mezzanine reads an
image from the frame grabber, and classifies each matching
pixel into user-specified color classes. To operate in an en-
vironment with non-uniform and/or variable lighting condi-
tions, the user must specify a wider range of colors to match

a single circle on a fiducial. This obviously limits the total
number of colors that can be recognized, and consequently,
we cannot uniquely identify each robot by placing a differ-
ent fiducial on it. We instead obtain unique identification by
commanding and detecting movement patterns for each robot,
and thereafter maintain an association between a robot’s ini-
tial identification and its current location as observed by the
camera network. Mezzanine then combines adjacent pixels,
all of which are in the same color class, into color blobs. Fi-
nally, each blob’s centroid is computed in image coordinates
for later processing (i.e., object identification).

4.3 Dewarping Problems
The original Mezzanine detected blobs quickly and effec-
tively, but the supplied dewarping transform did not provide
nearly enough precision to position robots as exactly as we
needed. The supplied dewarping algorithm is a global func-
tion approximation. Specifically, it is a single global bi-
quadratic polynomial with two bicubic terms and eight co-
effients:

c1 + c2x + c3y + c4x
2 + c5xy + c6y

2 + c7x
2y + c8y

2x

This function requires a set of known (image,world) coordi-
nates, corresponding to visible features such as tape marks in
the image identifying grid lines. While developing TrueMo-
bile, we deployed visible marks on the floor and established
the needed mappings using tools that came with Mezzanine.

We observed two important problems. First, the function
was a poor fit for lens distortion, so it was necessary to add
more control points to improve the fit. Second, the grid shape
would tilt and bend globally when any control point was
moved, so it never got really close anywhere, and was ex-
tremely sensitive to small movements of the control points.
This produced high variability in position data returned by
Mezzanine. We observed that moving a fiducial 1–2 cm in
the motion plane resulted in a 10–20 cm jump in the fiducial’s
reported position.

4.4 An Improved Dewarping Algorithm
To avoid these problems, we replaced the dewarping algo-
rithm with a geometric transformation that accounts for ob-
served mathematical properties of wide-angle lens distortion,
and included interpolative error correction to further reduce
our error. We have obtained an accuracy of 1 cm worst-case
absolute error, and 0.34 cm RMS absolute error. This section
summarizes the new algortithm; details about camera setup
and calibaration are omitted for space.

In development of our new algorithm, we wanted to use a
simple geometric model that accurately describes barrel dis-
tortion. One suggested method of handling barrel distortion
radiating symmetrically from the camera’s optical center is to
use a 6th-degree polynomial, with coefficients obtained from
a least-squares fit on measured data points [11].

κ1 + κ2r
2 + κ3r

4 + κ4r
6
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Figure 4: Cosine dewarping

This resembles the Taylor’s polynomial expansion of cosine,
truncated to four terms:

cosx = 1 −

x2

2!
+

x4

4!
−

x6

6!

A true cosine is transcendental, with an infinite number of
terms as a polynomial.

Computer vision experts we consulted suggested that the
most significant term of radial lens distortion might be accu-
rately modeled by a cosine function [23]. We were prepared
to continue modeling and correcting assymmetries radiatiat-
ing from the optical axis, or moving circularly around it. Con-
trary to our expectations, these $60 lenses conform closely to
the simple cosine model, for our accuracy requirement.

Our new dewarping algorithm is based on correcting co-
sine radial lens distortion. Figure 4 describes the algorithm.
A single parameter (the warp factor) adjusts the period of the
cosine, and two parameters adjust the linear scale factors in
X and Y to calibrate the image to world coordinate transfor-
mation. Other parameters include the height of the camera’s
focal point above the plane of robot motion (corrected for the
height of the fiducial location on the robot), and the position
of the optical axis.

An interesting problem is that, when dewarping, we are
converting from dimage to dworld, but to get the angle a ex-
actly we need to already know the dewarped world coordi-
nates. In our algorithm we iterate, using each dworld approx-
imation to calculate a new angle α and hence a new dworld,
converging in fewer than eight iterations.

Cosine dewarping is still a global model, using model pa-
rameters which are a compromise across the whole image.
We know the surveyed center, edge and corner point locations
to 1-2 mm accuracy, acquire their pixel coordinates with Mez-
zanine, and use them as calibration points. We remove pixel
jitter by averaging 30 frames of pixel positions.

Cosine dewarping linearizes the geometric field (straight-
ening out the barrel distortion into a flat grid.) We zero out
the residual error left after cosine dewarping at these calibra-
tion points, and interpolate the error correction over blending
triangles which span the space between the measured points
by way of barycentric coordinates [3, 24]

Only 9 calibration points are used in this scheme, which
is small enough to be handled automatically from multiple
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Figure 5: Dewarped grid points, error vectors magnified by a
factor of 50, and interpolation triangles.

fiducials by Mezzcal. It also leaves the remainder of the mea-
sured grid points (25 to 44 per camera in our irregular space)
to measure the performance of this approach. We evaluated
several triangle patterns and chose this one for its accuracy
and simplicity of algorithm.

Figure 5 shows a measurement of the dewarped grid points
and remaining error from one camera, with interpolation tri-
angles. The circles are the grid points, and the error vec-
tor magnified by a factor of 50 is shown as “tails”. Notice
the lack of tails at the triangle vertices, where the error was
zero’ed out. The gap in the upper middle is the pillar, with
the door area at the upper right. Table 1 gives overall error
statistics.

4.5 Validation
To obtain as much precision as possible, before modifying
Mezzanine’s dewarping algorithm, we measured out a half-
meter grid in our experimental area. This allowed us to cali-
brate our new algorithm and measure its effectiveness with
high precision. Using hardware-store measuring tools and
surveying techniques, we set up a grid that is accurate to
2mm.

In Table 1 are the results of applying these algorithms to
a fiducial located by a pin at each of the 211 measured grid
points and comparing to the surveyed world coordinates of
these points. (Points in the overlap between cameras are gath-
ered twice.) The original column contains statistics from the
original approximate dewarping function, gathered from only
one camera. Data for the cosine dewarping, and cosine de-
warping + error interpolation columns were gathered from
all six cameras.
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Algorithm
Metric original cosine dewarp + error interp

Max error 11.36 cm 2.40 cm 1.02 cm
RMS error 4.65 cm 1.03 cm 0.34 cm
Mean error 5.17 cm 0.93 cm 0.28 cm

Std dev 2.27 cm 0.44 cm 0.32 cm

Table 1: Location error measurements

5 Robot control: robotd

As mentioned in Section 3, TrueMobile currently only sup-
ports a motion model consisting of a series of user-specified
waypoints. Using TrueMobile’s event system, experimenters
can approximate continuous motion by linking a series of
straight line moves. However, since the robot currently de-
celerates at each waypoint (due to a limitation in the manu-
facturer’s open-source code, that we plan to fix), the motion
will be “jerky,” and cannot be tightly linked to absolute time.

Our next major improvement will be to evolve into a true
continuous motion model. Since our localization system is
so accurate and precise, and provides position information at
30Hz, this should not be hard once we have enhanced the
robot’s key primitives to avoid deceleration.

The Robot Control daemon is responsible for directing
robots to their user-specified locations. Users may position
robots at any attainable position within the workspace and
are not required to plan for every obstacle, waypoint, or path
intersection. Once new destinations are received via the Em-
ulab event system, the daemon plots a course and guides the
robots to their destinations using periodic feedback from the
vision system. For initial simplicity, the courses plotted by
the daemon are comprised of a series or waypoints, connected
by line segments. Approach to goal points is repeatedly re-
fined based on “ground truth” localization from the vision
system; i.e., when the robot’s initial (long) move is complete,
a maximum of two more (small) refining moves are made.

5.1 Robot Motion
Robot motion control is handled by a daemon running on the
Stargate called pilot. pilot listens for motion commands from
the central path planner and then breaks them up into a series
of behaviors to be executed by the builtin microcontroller on
each robot. Incoming commands are directions for a robot to
move to a new position relative to its current location. Robots
are ignorant of their own global location, instead relying on
wheel odometry to navigate during movements.

To achieve a new posture, a robot executes two motions in
succession: a pivot followed by a straight move forward or
backward. We make several simple optimizations to avoid
excessive rotation. Once at the goal point, another pivot is
executed to achieve the requested final orientation.

These maneuvers are handled by the Garcia’s builtin mo-
tion commands, called primitives. These primitives require

Waypoint

β
α

Obstacle

Goal Position

Robot

Figure 6: Example obstructed path and waypoint selection.

only a distance or angular displacement argument, and move
the robot until the robot has achieved its goal or detected an
unexpected obstacle with its on-board sensors. In either case
the robot stops all motion, and alerts the pilot application via
a callback.

The robots are only capable of navigating to waypoints via
pivots and line segments. This initial motion model was cho-
sen for its simplicity and low development time. Another ad-
vantage, however, is that even the simplest robotic platforms
can support this motion model.

5.2 Forward Path Planning
Since numerous obstacles such as a pillar and furniture ex-
ist within the robot workspace, we developed a simple path
planner. It only handles robots individually, without regard to
their potential interaction. However, TrueMobile will execute
robot moves simultaneously, should the user request it.

It first reviews all known obstacles to detect any obstacle
intersections with the initial path. The set of obstacles that
the path intersects are merged into a single rectangle and one
of the rectangle’s corner points is chosen as a waypoint. We
select the corner point by computing the angle at which the
path intersects the side of the obstacle and choosing the cor-
ner yielding the shallowest angle. For example, in figure 6 the
alpha angle is smaller than the beta, so the planner selects the
corner under that side of the path. If a goal is directly across
from an obstacle (e.g. an angle between 60 and 90 degrees),
we choose the corner closest to the robot, to avoid excessive
movement.

After the robot reaches the first corner point, if the path
to the goal is unobstructed by the current obstacle, the robot
will proceed to the goal. If the new path to the goal point is
still obstructed by the current obstacle, another intermediate
waypoint is generated coincident with the next corner point
closest to the goal point. A next corner point is defined as
either one of two corner points reachable by traveling around
the perimeter of the obstacle exclusion zone.

Robot goal positions are checked for conflicts with known
obstacles and workspace boundaries. Longer paths are split
into multiple segments of 1.5 m to reduce the possibility of
accumulated position errors. The path planner computes only
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Figure 7: Robot motion distance error

the next waypoint in the overall path, which avoids the need
for replanning if transient obstacles arise.

5.3 Reactive Path Planning
Our robots are capable of detecting obstructions in their path
using proximity sensors. In our testbed environment, this can
occur due to the temporary presence of a person, another
robot, or office debris, or an error in TrueMobile’s model
(map) of the environment. When a path is interrupted, the
affected robot calls robotd, which will supply a new path to
negotiate around the obstacle. If the detected obstacle is not
found within the list of known static obstacles, a temporary
rectangular obstacle similar in size to another robot is cre-
ated. The robot will then back up a short distance to ensure
enough clearance for rotation and then execute the above path
planning algorithm. In the case that the obstacle is larger than
the approximated size, the robot will continue to detect it and
expand its size until the obstacle has been successfully nego-
tiated.

The combination of the simple per-robot “optimistic” plan-
ner with the simple reactive planner has worked well in our
environment, so far. However, multi-robot planning will
clearly be needed to support a future continuous motion
model, when timing is more critical, and a more dense robot
deployment.

5.4 Microbenchmarks
As shown in Figure 7, the final waypoint distance error de-
creases as the number of refinements increases. The default
value of maximum tries for each waypoint is set at three. At
this setting, we consistently achieve robot positioning within
the allowable distance error threshold. With only two tries al-
lowed, robots can still attain final positions within acceptable
tolerances, especially considering movement lengths of less
than one meter.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
5

10

15

20

25

30

35

40

Movement Distance (meters)

E
la

ps
ed

 M
ov

em
en

t T
im

e 
(s

ec
on

ds
)

max tries: 1
max tries: 2
max tries: 3

Figure 8: Robot motion elapsed time for various length move-
ments

Figure 8 depicts the total elapsed time for movements of
varying lengths. With either one or two waypoint position re-
finements allowed, a robot can achieve a posture within the
allowable distance error, and requiring minimal extra time as
movement length increases. The elapsed movement time is
expected to increase linearly as distance increases, and the
bottom plot illustrates that this holds true. Furthermore, the
slope of the plots for greater numbers of retries is less, in-
dicating that relative overhead of position refinements de-
creases as movement length increases.

6 Experiments

In this section, we describe the results of two experiments
using TrueMobile. These are examples of the testbed’s use-
fulness and also serve as macrobenchmarks of some key met-
rics of TrueMobile’s performance. The first experiment also
demonstrates the network-level irregularity of real life physi-
cal environments.

6.1 Radio Irregularity Map
It is well known that the transmission characteristics of real
radios differ substantially from simulation models [31, 22, 8,
1]. Indeed, irregularity of real-world radio transmission is one
of the main motivators for our testbed. In this experiment, we
generated a map of the radio irregularity in our testbed space
as manifested at the network (packet) level. Such a map is
useful to our experimenters, and could be used to develop
and/or validate more realistic models for simulation.

In parallel, three robots traversed non-overlapping regions
of our space, stopping at points on a half-meter grid. At each
point, the robot stopped and oriented itself in a reference di-
rection. The attached mote listened for packets for ten sec-
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onds. One of the wall-mounted motes, with an antenna at the
same height as the robots’ antennas, transmitted ten packets
per second using a modified version of the standard TinyOS
CntToLedsAndRfm kernel. The receiver logged packets
using a modified version of TinyOS’s TransparentBase.
The radios were tuned to 916.4 MHz, and the receiver’s
power was turned down to approximately -18 dBm (corre-
sponding to a PA POW setting of 0x03 on the mote’s Chip-
Con CC1000 radio.) The entire mapping took 20 minutes to
complete.

Figure 9 shows a graphical representation of this data. As
can be seen in the data, there is much variation in packet re-
ception rate throughout the area. As expected, reception rate
does not decrease as a simple (i.e., linear or quadratic) func-
tion of distance. However, we also see that reception rate
is not a monotonic function of distance; there are areas in
the map in which if one travels in a straight line, on a radial
away from the sender, reception gets worse, then better, then
worse again. There are islands of connectivity in otherwise
dead areas, such as around X=8, Y=10, and the inverse, such
as around X=9.5, Y=5.5. Furthermore, in some areas (such
as between X=10 and X=12,) reception falls off gradually,
and in others (such as around Y=9), it reaches a steep cliff.
This surprising behavior is a fact of life for sensor network
deployments. We argue that while running algorithms and
protocols under simulation models, which makes them easy
to reason about, has its place, it is necessary to run them in
real environments to understand how they will perform in de-
ployment. Indeed, Zhou et al [31] show that a specific type
of radio asymmetry, radial asymmetry, can have a substantial
effect on routing algorithms. It is far beyond the state of the
art for a model to fully capture the effects of building con-
struction, furniture, interferers, etc., in a complicated indoor
environment.

We repeated this experiment immediately after the first run
had completed, in order to assess how repeatable our find-
ings were. As shown in Figure 10, while the results are not
identical, they are close—the contours of the areas of good
and poor reception are similar. The overall similarity sug-
gests our methodology is good, while the differences reflect
the fact that temporal effects matter. The second run took 18
minutes to complete.

Figure 11 show the received signal strength (RSSI) for
packets received in the first run. The RSSI is measured using
the CC1000’s RSSI line, and is sampled every time a packet
is successfully received. Thus, this figure gives us an idea of
the correlation between signal strength and packet reception
rate. Interestingly, we see little correlation. In the top left area
of the figure, we see good RSSI (indeed, some of the highest
in the figure), even though the packet reception rate is low. In
contrast, near the lower right corner, we overall lower RSSI
values, even though the overall packet reception rate is better.
This is a phenomenon that warrants further study.

Emulab’s programmability was key to our ability to per-
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Figure 11: Received signal strength in dBm for packets over
our testbed area, first run. Higher numbers (less negative)
indicate stronger signal.

form this experiment. Since its input language is based on
ns, which is in turn based on Tcl, it includes familiar pro-
gramming constructs. Thus, we were able to construct the set
of points for each robot’s data collection using loops. Emu-
lab’s event system coordinated the experiment for us—when
a robot reached a data collection point, an event was gener-
ated. We used this event to start the 10-second data collection
process; thus, we were able to ensure that the robot was sta-
tionary during data collection. This allows for synchroniza-
tion between robot movement, the vision system, and user
programs.

One of the advantages of taking these measurements with
a programmable robot is that it is easy to examine different
areas in different levels of detail. At a different time than the
figures made above, we mapped out a smaller portion of our
area, again using a half-meter grid. This is shown in Fig-
ure 12. Here, we see more temporal variation than we did
with the two back-to-back runs: this map does not match ex-
actly with the corresponding areas of the previous maps. We
then picked an interesting area of the small map, shown out-
lined with a dotted line, and ran a “zoomed in” experiment,
shown in Figure 13, over one square meter of it, taking mea-
surements every 10 centimeters over a period of 36 minutes.

We can see from this figure that even small differences in
location can make large differences in radio connectivity, and
that the topology is far from simple. From this, we can con-
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Figure 9: Packet reception rates over our testbed area,
first run.
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second run.
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clude that repeatability is not achievable without precise lo-
calization of the robots; in our environment, given its real-
world characteristics, clearly repeatability will suffer even
with precise localization. But, even if we were to construct
a space in which there were no external interferers or mov-
able objects, say, so that we could work on a highly-detailed
indoor radio propagation model, we would not be able to get
repeatable results, let alone accurate ones, without precise lo-
calization.

Figure 14 shows the breakdown of the time it took to ex-
ecute the experiment. At the base is the time taken to sam-
ple the radio for ten seconds at each grid point. The “long
moves” are the half meter traversals from one point to the
next. The remaining times are those needed to refine the po-
sition to within 1.5cm of the intended destination and reorient
the robot. As you can see, from 50% to 60% of the motion-
related time is spent in refining the position, which mainly
consists of large rotations and small movements. However,
position refinement only accounts for 22% to 29% of the
overall time, and this additional cost is well-worth the in-
creased positioning precision. In the future, we hope to de-
crease this time by using a continuous motion model that con-
stantly refines the position, requiring fewer changes in orien-
tation.

6.2 Sensor-based Localization
A mobile wireless testbed such as TrueMobile invites study
of sensor-based ranging and localization. Since TrueMobile
provides ground truth of robot positions through visiond, and
also the locations of all static motes, an experimenter can eas-
ily verify performance of a localization protocol. Coupled
with Emulab’s automation facilities, and real-world RF ef-
fects, much more complete algorithmic evaluation is possi-
ble.

We evaluated a simple acoustic ranging and localization
sensor network application from Vanderbilt University [18]

Figure 15: Multihop network topology created by TinyDB.

(this software also is available in TinyOS). The main idea of
acoustic ranging is for one node to broadcast a radio packet,
and as soon as the transmission finishes, generate noise from
a “buzzer” sensor onboard. A listening mote can then com-
pute difference in travel time for the packet and the gener-
ated sound. Vanderbilt’s software is more advanced than this;
complex synchronization and audio frequency filtering are
employed in the to reduce range estimation error. Each mote
for which one wishes to learn relative range is loaded with
a TinyOS application. Listening motes receive radio packets
and hear a succession of chirps from the single sending mote,
and can then compute range. This application uses standard
Mica sensor boards, with a 4KHz buzzer and microphone ca-
pable of hearing frequencies up to 18KHz [19].

This application was meant specifically for outdoor use be-
cause of problematic audio echoes resulting from contained
indoor settings. After running on TrueMobile, we observed
that range was overestimated by approximately 30cm. This
figure is a factor of three higher than found by the Vanderbilt
researchers (-8.18cm) [18]. The difference may be explained
by indoor audio multipath effects and perhaps by the addi-
tioans of real-world, indoor radio propagation delay. Finally,
TrueMobile is clearly a valuable platform on which to test
ranging and localization applications in a real-world environ-
ment.

6.3 Multihop Sensor Networks
In order to confirm that we can run multihop interesting net-
works in our space, we ran a popular TinyOS application on
our testbed, TinyDB. TinyDB presents a database-like in-
terface to sensor readings, and thus can make use of the sen-
sor boards on our nodes. We turned the power output on the
transmitters down in order to force the network into more than
one hop. Figure 15 shows the topology created by TinyDB
for a 16-node network. The thick lines indicate current links
between nodes, and the thin dotted lines represent nodes that
have re-parented themselves in the topology.

12



TinyDB, Surge, and many other TinyOS applications re-
quire that each mote be programmed with a unique ID for
routing purposes, or so that data can be associated with the
mote that collected it. Emulab aids in this process, automati-
cally programming a unique ID into each mote. The user can
also supply a desired ID, so that certain nodes can be desig-
nated as base stations, etc.

7 Limitations, Open Issues, and Future Work

Software System and Algorithm Issues
As we discussed earlier in Section 5, the current waypoint-
based motion model should and will be replaced with a more
general continuous motion model, allowing more classes of
experiments. Our overall software architecture, localiza-
tion system’s precision and update rate, makes this a fairly
straightforward, though involved, task.

We plan to provide a way for an experimenter to trans-
parently inject simulated sensor data into the “environment.”
The user will specify or select a time-varying simulated sen-
sor data “flux field,” and TrueMobile will inject that into the
user’s application through TinyOS component “shims” we
will provide.

When physical testbeds are large enough, space sharing
among multiple experimenters becomes possible and valu-
able. Emulab already supports space sharing, but provides
little help to separate experimenters’ RF transmissions or mo-
bile robots. We expect to pursue an evolutionary path in
adding such support.

MoteLab has several useful features we do not, such as
a per-experiment MySQL database and a simple reservation
system. We hope to include MoteLab itself into TrueMobile,
as a separate subsystem, but we will at least adopt those fea-
tures. Similarly, EmStar and Mirage have strengths comple-
mentary to ours, and probably can be included without undue
disruption to either codebase.

Physical Infrastructure
Based on our experience, we plan or contemplate a number of
improvements and changes to our testbed physical infrastruc-
ture. We will raise the antennas on our robots, using dow-
els or wands, to waist-level, so that they more closely ap-
proximate human-carried nodes. We will put power meters
on all fixed nodes, and investigate options for putting them
onto robot nodes. We have low-cost ($35) circuit prototyped,
but have not fully evaluated it yet. Custom hardware (ca-
bles, mounting board, etc.) will be required to mount sensors
on the robot motes. We are in the process of spec’ing such
hardware. We are also planning to look into potential modi-
fications to our vision system to make it work in lower light,
so that the testbed can be used for light-sensor experiments.
We think the most promising options are to use black-and-
white fiducials, or to replace the fiducials with LEDs. We

will be adding a second 802.11 card on our nodes, so that
they can be used for WiFi experiments. In order to make this
work in our area, we will most likely use attenuators like the
MiNT testbed, but lower left. We expect to greatly expand the
area of our current testbed, either by procuring a larger, sep-
arate room, or by extending throughout our building’s hall-
ways. Should we do the latter, we will need to develop or
adopt a different localization system, for it is not practical to
install downward-looking video cameras throughout such a
large and sparse area.

8 Conclusions

We have described our experience in creating a mobile sensor
network testbed. Building this testbed required us to solve a
number of hard and interesting problems, particularly with
respect to robot localization and movement. Our experience
so far shows it to be a promising testbed, useful for a range
of sensor network experiments. By making it available to the
public, we provide the sensor networking community with a
more realistic alternative to simulation.
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