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Abstract ble implementation modetontaining (often significantly)
i , fewer threads than the task set contains tasks. These imple-
This paper introduces and shows how to schedule tWo yenation models use less memory and cause fewer context

no_ve_l scheduling abstrac?ions that overcome Ii_mitations of switches than the standard implementation model that maps
existing work on preemption threshold scheduling. The ab- each task to its own thread.

stractions are task clusters, groups of tasks that are mutu- Although the introduction of non-preemptive schedul-
ally non-preemptible by design, and task barriers, which ;g is 5 useful performance optimization, the developers of
partition the task set into subsets that must be mapped g5 {ime systems are still presented with a problem that is
different threads. Barriers prevent the preemption threshold o\ to be very difficult: creating correct and predictable
logic that runs multiple design-time tasks in the same run- gy are in the presence of concurrent, synchronizing tasks.
time thread from violating architectural constraints, e.g. by Tp;g paper introduces thask cluster a collection of real-

merging an interrupt handler and a user-level thread.  img tasks that are designed to be mutually non-preemptible.
We show that the preemption threshold logic for mapping p task cluster could be used, for example, to embed a
tasks to as few threads as possible can rule out the scheduleg ;i [15] graph in a real-time system. Click is an architec-
with the highest critical scaling factors — these schedules ¢ for creating flexible routing software; in a distributed
are the least likely to miss deadlines under timing faults. .o time system its components would have real-time re-
We have developed a fra_mewqu for robust CPU schedul-girements. Click gains significant ease of use through its
ing and three novel algorithms: an optimal algorithm for - eqyricted programming model, including the restriction that
maximizing the critical scaling factor of a task set under s components cannot preempt each other. Task clusters
restricted conditions, a more generally applicable heuris- provide a natural way to express this requirement without

tic that _finds schedules with gpproximately m_a>_<ima| crit_i— forcing a system to be globally non-preemptive, which can
cal scaling factors, and a heuristic search thatjointly maxi- o5t in a serious loss of effective processor utilization.

mizes the critical scaling factor of computed schedules and 1, preemption threshold model provides no way to ex-

minimizes the number of threads required to run a task set. yeqg architectural constraints that rule out some implemen-
We demonstrate that our techniques for robust scheduling;ation models. For example, it cannot ensure that a task

are applicable in a wide variety of situations where static representing an interrupt handler is not be mapped to the

priority scheduling is used. same implementation thread as a task representing user-
level code. Our second new abstraction, thsk barrier,
1. Introduction provides first-class support for this type of constraint. Ab-

stractly speaking, it might be useful to transparently mi-

To rapidly create reliable, reusable embedded and real-timeyrate code into interrupt handlers when this does not impact
systems software, it is important to begin with the right schedulability, but in practice this is probably undesirable:
abstractions. This paper describes two novel abstractionghe migrated code might attempt to access a blocking re-
that overcome limitations of existing work on preemption source, crashing the system.
threshold scheduling [20, 26]. We describe task clusters and barriers in Section 2; in

Saksena and Wang showed that task sets scheduled witlsection 3 we show how to find feasible schedules for task
preemption thresholds can have significant schedulability sets containing them, both for operating systems with sup-
improvements over task sets using fixed priorities. They port for preemption threshold scheduling and for systems
also showed that it is possible to transforrdesign model  that have purely static priorities at run time.
consisting of a feasible set of real-time tasks into a feasi- The potential to create implementation models with



many fewer threads than tasks begs the question: Is a sched- A real-time task seti§ = {r,..., 7»—1} Wherer; =

ule with fewer threads always better than a schedule with (7;, C;, D;, J;). The elements of a task tuple respectively
more threads? We found that if there is uncertainty aboutrepresent the period, worst-case execution time, deadline,
task worst-case execution times (WCEThE answerisno  and maximum release jitter. Jitter, as defined by Tindell [24,
This is because the additional constraints on schedules witht4], “occurs when the worst-case time between successive
fewer threads can rule out the schedules with the highestreleases of a task is shorter than the worst-case time be-
critical scaling factors[16]. The critical scaling factor is  tween arrivals of a task.” When there is no danger of am-
the largest constant by which the execution time of eachbiguity we writeVr; rather tharvr; € 7. A schedulefor

task can be multiplied without rendering a schedule infea- 7 is a set of priority and preemption threshold assignments
sible. Intuitively, a schedule with critical scaling factor not P = {(Py, Py), ..., (Pn—1, Pn_1)}. Zerois the highest pri-
much larger than one is “barely feasible” in the sense that aority, and throughout this paper we reverse the sense of the
minor perturbation could cause it to miss deadlines — this ordering relations for priorities so they have the intuitive
may not be acceptable for important real-time systems. meaning (e.gx > y meansc has higher priority than)

We have developed a framework for reasoning about therather than the numerical meaning. Priorities are assumed
robustness of task sets that are subject to timing faults, ando be assigned uniquely, and so the following predicate must
we have developed new algorithms for finding highly ro- hold for a schedule to be valid:
bust schedules including a search algorithm for jointly min- e _
imizing the number of threads in an implementation model U = V7 i#j = P#PF

and maximizing the critical scaling factor among schedules i _ .
mapping to a particular number of threads. This algorithm ~ Préemption thresholds are not assigned uniquely, but the

can permit system developers to make an informed tradePreemption threshold of each task must be at least as high

off between memory use and robustness when picking an®S its priority. Therefore, the following predicate is also true
implementation model: it is described in Section 4. Fur- ©f valid schedules:

thermore, our algorithms for increasing the critical scaling P ¥ v . p <P

factor have broader applicability than just to systems using o vootr=0

preemption thresholds. For example, for randomly gener- Finally, for a given schedule, each task in a set has a

ated fully preemptible task sets with five members and an,,;st-case response tinfz. Valid schedules must not per-
average utilization of 0.78, Audsley’s optimal scheduling it 5 task to complete after its deadline:

algorithm [2] creates schedules that, on average, permit a

10% increase in task execution time before deadlines start S ® v . R, <D,

to be missed. One of our algorithms finds schedules that,

on average, tolerate an 18% increase without missing any2.1. Background: Preemption Thresholds
deadlines. Section 5 contains an evaluation of the new al-

gorithms presented in this paper. commercial RTOS, and were first studied academically by

In Append|x A we correct an error in the eX|§t|ng e Saksenaand Wang [20, 26] who developed a response time
sponse time analysis for task sets with preemption thresh-

lds. We al tend th Vsis t  tasks with analysis and a number of useful associated algorithms.
I?eazéjitteera S0 extend the analysis to Supporttasks With ré- 6 idea behind preemption thresholds is simple. Task

instances compete for processor time based on their priori-
. . ties, but a task instance that has started running may only be
2. Two New Scheduling Abstractions preempted by tasks with priorities higher than the running
This section formally definetask clustersandtask barri-  task’s preemption threshold. Preemption threshold schedul-
ers, but first provides an overview of the scheduling model ing subsumes both preemptive and non-preemptive fixed
and its notation, as well as some background on preemptiorPriority scheduling: purely preemptive scheduling behav-
threshold scheduling. ior is obtained when each task’s preemption threshold is

Our work begins with a standard task model: tasks areequal to its priority, and purely non-preemptive behavior
scheduled on a uniprocessor and have deadlines, perioddS obtained when all preemption thresholds are set to the
worst-case execution times, and jitter. Throughout this pa-maximum priority. The dominance of preemption thresh-
per we assume that tasks are scheduled using fixed prioritie®!d scheduling is not merely theoretical; it has been shown
(or almost-fixed priorities, since we make use of preemption t0 improve schedulability in practice [20]. Intuitively, the
thresholds). Furthermore, we always make a distinction be-source of the improvement is the addition of a limited
tweentasks which are design-time entities with real-time form of dynamic priorities: if rate-monotonic scheduling
requirements, anthreads which are run-time control flows  is viewed as a first-order approximation to optimal dynamic
scheduled by the RTOS (real-time operating system).

Preemption thresholdeere introduced in ThreadX [9], a



priority scheduling, then preemption threshold scheduling leasing locks, and the memory overhead of functions sup-

can be viewed as a second-order approximation. porting, e.g., the priority ceiling protocol. On the other
There is no known optimal algorithm for finding a feasi- hand, if synchronization elimination is applied at design

ble assignment of priorities and preemption thresholds thattime it potentially has enormous software engineering ben-

takes less than exponential time. However, efficient approx-efits: developers, who are often domain experts rather than

imate algorithms exist. Once a feasible assignment of pri- skilled concurrent system programmers, can completely ig-

orities and thresholds for a given task set is found, Saksenanore the dangers of race conditions and deadlocks with re-

and Wang provide efficient algorithms for assignimgxi- spect to resources that are accessed within a single task clus-

mal preemption thresholdthe largest threshold assignment ter.

for each task such that all tasks remain schedulable), and A task set is augmented with a s@tof task clusters,

also for optimally dividing a task set into non-preemptible whereG,; C 7. Valid schedules fof” must satisfy:

groups. Two tasks are mutually non-preemptible if the pri- .

ority of the first is not higher than the preemption threshold G £ VG ed : dM; e M : G; C M;

of the second, and vice versa. A non-preemptible group

is a collection of tasks within which each pair is non-  Task clusters can have overlapping membership, and

preemptib|e; a non_preemptib'e group of tasks can be runnot eVery task need belong to a cluster. If a task cluster

in a single run-time thread. G; = T exists, the only valid schedules will be fully non-
An implementation model is a set of threads, each of Preemptive.

which is responsible for running some non-empty set of .

tasks from7. Let M = {M,,..., M,,—1} be the sets of 2.3. Task Barriers

design-time tasks that map to each of thénplementation Priority and preemption relations are often hardwired into

threads. Given a feasible schedule Saksena and Wang [2Ghe design of a system. To support these relations we re-

Fig. 3] provide an algorithm that can be used to find a cor- quire an additional abstraction, ti@sk barrier, which is

responding implementation model that is schedulable andthe dual of the task cluster — it isolates groups of tasks that

satisfies the following predicate: inherently run at different priorities, preventing the thread
X . minimization logic from creating an impossible schedule.
M £ VYM;eM : Vrj,7 € M; : P; <Py Atask set7 isaugmented withaséf C {0,...,(n—1)}

of task barriers where valid schedules must satisfy:
Saksena and Wang showed that for task sets with random

attributes, the number of maximal non-preemptible groups X & veeX :vrn
increases much more slowly than the number of tasks: this
has important implications for memory-limited embedded
systems since each thread has significant memory overhead.

i>z = (PE<zAP;<z) A
i<z = (P>xAP; >

2.2 Task Clusters For example, a task barrierg@forces tasksy..7, to have

_ o _ ~ both priority and threshold at least as highjasvhile tasks
A task clusters a subset of a task set within which each pair Ty4+1..T» Must have priority and threshold lower than

of tasks must be mutually non-preemptible. Task clusters cjearly there can be no feasible schedule if there exists a

are different than Saksena and Wang's non-preemptible taskask parrier that “splits” a task cluster.

groups: the latter are used as a performance optimization \we yse task barriers to model the inherent relation-

while the former are a first-class part of the programming ships between implementation artifacts such as interrupts,

model. In other words, task clusters are visible to, and canpgttom-half kernel routines, and ordinary threads. For ex-

be specified by, real-time system developers. _ample, consider a task set where tasksrs represent hard-
Task sets containing clusters have the important benefityare interrupt handlers and..r, represent standard tasks.

of often permitting the high resource utilizations associated |, this case barrier§ — {0,1,2, 3} must exist to preserve

with preemptive scheduling while also permitting the ease e separate identities of the interrupt handlers.

of programming that comes from non-preemptive schedul-

ing. Furthermore, task clusters facilitasgnchronization 2.4. Summary of the New Scheduling Model

eliminatiort the removal of locks that have become su- We have introduced two new scheduling abstractions: the
perfluous because the resources they protect are only ac:

d by tasks withi ingle cluster. Wh hroni task clusterwhich guarantees that a collection of tasks will
cessed by tasks within a singie ciuster. ¥vhen synchronizas, mutually non-preemptible in the implementation model,
tion elimination is applied retroactively, it is an optimization

that d i i o : ina benefits. Rath and thetask barrier, which partitions the set of tasks into
that does not provide software engineering benetits. Rathery, ;a5 that cannot be mapped to the same implementation
it merely eliminates the CPU overhead of acquiring and re-

thread.



PT-ANL (Porig) { The permutefunction randomly either swaps the prior-

Pmax = enforcepreds (Big) ities of two tasks, or either increments or decrements the
Bmax = badness (Rax) preemption threshold of a task. Thaforcepredsfunction
while (max iterations not exceedefd) ensures that a schedule does not violate any of the predicates
Prew = enforcepreds (permute (fx)) (other thanS) defined in the previous section. It does this,
Bhew = badness (Ru) for example, first by noticing thal/ is violated, and second
if (B new == 0) return Rey by appropriately adjusting the priority and/or preemption
if (Bnew < Bmax) { threshold assignments of the offending tasks. These adjust-
Pmax = Pnew ments are repeated until all predicates are satisfied; this is
Bmax = Brew possible because we test for a conflict between predicates,
} e.g. atask cluster that is split by a barrier, before starting the
randomized search.
return FAILURE For simplicity, the algorithms presented in this paper are
} randomized greedy algorithms. In practice, better results

can often be obtained using simulated annealing. Convert-
ing a greedy search to one that uses simulated annealing is
a straightforward matter of adding logic to probabilistically
accept inferior solutions [1810.9].

Figure 1. PT-ANL schedules task sets contain-
ing task clusters and barriers

We define an overall schedulability function: 3.2. Targeting Systems without Run-Time Support for
Preemption Thresholds
def N al A ~ A g
S(G, X, T,P,M) = UANPANSAMANGAX A straightforward implementation of task clusters on a stan-

dard RTOS is to have each instance of a task belonging to a
cluster acquire a lock associated with the cluster before per-
forming any computation, and to release the lock just before
terminating. If the lock implements the stack resource pol-

) ) . icy [3] or the priority ceiling protocol [21], then the lock
3. Scheduling with Task Clusters and Barriers  protocols themselves introduce a form of dynamic priori-

The previous section defined two new abstractions; in li€S not unlike preemption thresholds — the difference be-
this section we present two complementary techniques forind that the purpose of the priority change is to bound prior-
scheduling task sets containing them. Although both tech-itY inversion and prevent deadlock, rather than to improve
niques make essential use of the response time analysis forchedulability. As Gai et al. [10] have observed, there is
preemption threshold scheduling [26], only one of them re- considerable synergy between these syljchromzatmn proto-
quires run-time support for preemption thresholds — the €IS and preemption threshold scheduling. A lock-based
other permits threads to have strictly static priorities at run- Implementation of task clusters, however, seems inelegant.

time. In Section 5 we quantitatively compare the two ap- 't @dds the time and space overhead of a lock, does not help
proaches. minimize threads, and does not help support task barriers.

Rather, we develop two solutions that fit into our existing

3.1. Targeting Systems with Run-Time Support for Pre-  framework; both perform better than the lock-based imple-
emption Thresholds mentation, as we demonstrate in Section 5.

Task clusters and barriers can be scheduled on operatin% 'Let maxr(Mq;). denhote Lhelzdm?xmum iﬁeg.'gqeﬁt pri-
systems that support preemption thresholds using a tech- rity or preemption thres oldotany task d;. Imrarty,
nigue similar to the one proposed by Saksena and Wang fmJet mlnp(_Mq;) denote the minimum of the onvesgpnonty or
the assignment of priorities and preemption thresholds [20].gvi§mpt'on threshold of any task ;. Define " as fol-
Our algorithm, shown in Figure 1, greedily attempts to '

minimize the “badness” of a schedule using a randomized E VM M eM -

search through the space of possible priority and preemp- v ;
tion threshold assignments. Our badness function is the maxp(M;) < minp(M;) v
same as Saksena and Wang'’s energy function {2@]: minp(M;) > maxp(M;)

it is the sum of the lateness of each task where lateness is . . o _
max(R;—D;, 0). The algorithm is finished when a schedule This predicate ensures that the priorities and preemption

with badness zero is found, since this means that no task'shresholds of tasks mapped to each thread do not overlap
response time is later than its deadline. the priorities and preemption thresholds of tasks mapped to

In general(, X, and7 can be considered to be fixed for
a given task set. On the other harféland M are derived
terms and there may be many valid choices for them.



any other thread. Since there is no overlap any priority andtified in Section 5. sp-ANL is identical toPT-ANL (Fig-
preemption threshold in the range m{ap;)..maxpM;) ure 1) except that theermutefunction operates at a higher
can be chosen for thread By choosing the priority and  level. Instead of randomly permuting a priority or preemp-
threshold to be the same value we create a run-time schedtion threshold, it randomly either swaps the priorities of two
ule that is equivalent to purely preemptive thread schedulingtasks within a cluster, swaps the priority ordering of two
— no preemption threshold support is required and a stan-entire clusters, or attempts to run two clusters in the same
dard RTOS can be used. Furthermore, since only a singlemplementation thread. It is this final permutation that pro-
priority level is required for each thread, as opposed to thevides additional non-preemption beyond what is specified
technique from the previous section that requires up to twoby task clusters, permittingP-ANL to schedule more task
priority levels per task, this technique is ideal for targeting sets tharsp-3.
a small RTOS that supports a limited number of priorities.

To satisfy F' as well as the other predicates comprising 4. Robust Scheduling
the previously defined schedulability functioh we have o )
developed a modified version of Audsley’s optimal prior- A timing faultoccurs when a task instance runsfortqo long,
ity assignment algorithm for pure preemptive [2] and non- but eventually produce; the correct r.esfult. Real-time sys-
preemptive [12] scheduling. Audsley’s algorithm reduces tems that are robust with respect to timing faults are desir-

the space of priority assignments that must be searched fron"i‘ble for several reasons. First, a_malytic worst-case e_xe_:cution
n! to n? by exploiting the property that although the re- time (WCET) tools are not in widespread use, and it is not

sponse time of a task depends on the set of tasks that haS'€ar that tight bounds on WCET can be found for complex

higher priority, it does not depend on the particular priority SCftware running on aggressively designed processors. Sec-
ordering among those tasks. The natural algorithm, then,0Nd: €ven if accurate WCETSs are available with respect to
is to find a task that is schedulable at the lowest priority, the CPU, it may difficult to ensure the absence of interfer-
then the second-lowest priority, etc. Once a task is found to€NC€ from bus contention, unexpected or too-frequent inter-

meet its deadline at a given priority, this property will not 'UPtS, Or & processor that is forced to run in a low-power
be broken by priority assignments made to tasks with higherMode due to energy constraints. Finally, it is just sound
priority. engineering to avoid building systems that are sensitive to
To support task clusters and barriers within this frame- Minor perturbations. , _ _
work we have designed a three-level hierarchical version of 1he rate monotomc,algqut_hm, the deadline monotonic
Audsley’s algorithm, calledp-3, that operates as follows. algorithm, and Audsley’s priority assignment algorithm be-

At the outermost level the partitions created by task barriers!0nd t0 the class of algorithms that we ca#lAS-OPTIMAL:
are processed in order from lowest to highest priority. For they are guaranteed to find, for different classes of task sets,

example, a task set with 6 tasks and a barrier at 2 would be? féasible schedule if any exist. In this section we define
treated in two parts: first, tasks 3-5, and second, tasks o-theROBUSTOPTIMAL class of scheduling algorithms: they

2. Within each partition task clusters are treated separately@'€ guaranteed to produce a schedule that maximizes some

For purposes of this algorithm we assume that each task bef0PUStness metric of interest.
longs to a unique cluster: this can be easily accomplished
by merging clusters that have tasks in common and by cre-
ating singleton clusters for tasks not initially belonging to A transformation” is an arbitrary function from task sets to
a cluster. Task clusters within a partition are scheduled intask sets. Transformations of interest will model a class of
a manner analogous to Audsley’s algorithm for tasks. We changes that should be “tolerated” by a task set. For exam-
try to schedule each cluster at the lowest priority in the par- ple, Z; (T, A) £ {(T;, C;, Di, A-J;)} is the transformation
tition; as priority assignments are found that meet the re-that models an increase in release jitt&ris ascaling fac-
sponse time requirements of all tasks within the cluster, wetor. Thecritical valueof A for a given priority assignment
progress to higher priorities. Finally, within a cluster, indi- and transformation, denoteN*(G, X, 7, Z, P, M), is the
vidual tasks are scheduled using the version of Audsley’s al-largest value of\ such that the transformed task set remains
gorithm that is optimal for non-preemptive schedulisg- schedulable:
3 will find a feasible schedule if one exists that does not
introduce any extra non-preemption beyond what is speci- VA €R : S(G, X, Z(T,A),P,M) = A< A"
fied by the task clusters.

We have developed a second algorithe®-ANL, for

4.1. A Framework for Robust Scheduling

Let P be the set of all possible priority and preemption

scheduling task sets with clusters and barriers that, given'"éShold assignments for a task set. Note that the size of
P can be large even for modestly sized task sets since it

enough time, outperformsp-3 in the sense that it finds insnin! ol Th imal critical valueof th
feasible schedules more often. This performance is quan-CONtainsnin: elements. Thenaximal critical valueof the



scaling factorA**, has the following property:
VPeP : AYG,X,T,Z,P,M) <A (G,X,T,Z)

The set of priority assignments of maximal robustness is
P, where:

Poroe CP:P€ Ppow =
AYG, X, T,Z,PM)=A""(G,X,T,2)

A ROBUSTOPTIMAL scheduling algorithm is one that can
find a member of>,,,,..

We usually abbreviatA*(G, X, T, Z, P, M) asA*; itis
to be understood that* is a function of a task set, a trans-
formation, and a schedule. Similarly**(G, X, 7, Z2) is
a function of a transformation and a task set, including its

25 .
rate monotonic ~ + iﬁ'*
20 robust X e
+ T
L
15+ i

percent deadlines missed

0 70 80 90 100
maximum percent overrun

Figure 2. Comparing the behavior of two
schedules in the presence of timing faults

associated clusters and barriers; we usually abbreviate it

asA**.

4.2. The Critical Scaling Factor

Throughout the rest of this paper we use a transformation
Z¢ that multiplies the WCET of each task in a set by the
scaling factor: Zo(T,A) £ {(Ti, A - Cy, Dy, J;)}. This

is the transformation defined by Lehoczky et al. [16], but
generalized slightly to support tasks with release jitter and
arbitrary deadlinesZc models generic uncertainty about
WCET and also uniform expansion of task run-times due
to interference from memory cycle stealing or brief, unan-
ticipated interrupts. A useful property of this transforma-
tion is thatS(G, X, Zo (T, A), P, M) is monotonic inA
and thereforeA* can be efficiently computed using a bi-
nary search.

For the remainder of this paper when we say that a task
set isrobust we mean “robust with respect to uniform
expansion in WCET.” Also, we restrict the meaning of
a ROBUSTOPTIMAL scheduling algorithm to be one that
finds a schedule maximizing the scaling factotZf.

Although our focus is on uniform expansion of task
WCETSs, the algorithms that we present are general and

There are only two possible fully preemptive schedules,
and both of them are feasible. When scheduled using
the rate-monotonic priority assignment, the worst-case re-
sponse time of Task 1 is 400 and Task 2 is 2000. A little
experimentation will show that if the WCET of either task
is increased, the task set ceases to be schedulable. When the
non-rate-monotonic priority assignment is used, the worst-
case response times are 800 and 1600, respectively, and the
WCET of both tasks can be scaled by 1.67 before the task
set becomes infeasible. In other words, by avoiding the
rate-monotonic priority assignment, we increase the criti-
cal scaling factor of the task set from approximately 1.0 to
1.67. Clearly the non-rate-monotonic priority assignment
is preferable: a mispredicted worst-case execution time is
far less likely to make it miss a deadline. This is demon-
strated in Figure 2, which compares the propensity of the
two schedules to miss deadlines under overload. Each data
point was generated by simulating 50 million time units.
A “maximum percent overload” of 25 means that the ex-
ecution time of each task instance is uniformly distributed
between the nominal WCET and 1.25 times the WCET.

could easily support other transformations such as those4.4. Properties of SomeEAS-OPTIMAL Algorithms
that: scale only a single task or a subset of the tasks (thisTheorem 1. For the class of task sets where the dead-

family of transformations is examined by Vestal [25]); re-
duce the period of a task representing a hardware interrup
whose minimum interarrival time is not precisely known;
scale task execution times by a weighted factor reflecting

{(ine monotonic (DM) algorithm isFEAS-OPTIMAL (i.e.

ully preemptive scheduling, no release jitter, deadline not
greater than period), it is alseOBUSTOPTIMAL.

the degree of uncertainty in WCET estimates; or, scale tasksProof. Let 7 be a member of the class of task sets for which

with smaller run-times by a larger factor to model interfer-
ence from a long-running, unanticipated interrupt handler.

4.3. A Simple Example
Consider the following task set:
To:C =400;T,D =1999; J =0
71 :C =400; T, D = 2000; J = 1200

DM is an optimal scheduling algorithm. Based @n de-

fine a set of scaled task sefe: = {VA € R : Z¢(T,A)}

that differ only in their WCETs. LePp,, be the deadline
monotonic schedule fof. Since the deadline monotonic
schedule for a task set is independent of the WCET of tasks
in the set it follows that for each member 8%, Pp), is

a feasible schedule if any exist. Therefore, it is impossi-
ble that there exists a scheduk,,, # Ppjs such that



A*(Praz) > A*(Ppu), since this would imply that there  ROB-ANL (Porig) {

is a member ofZ- for which Pp ), is infeasible, but a dif- Pmax = Porig

ferent schedule is feasible. O Amax = critical scalingfactor (Rnax)
while (max iterations not exceedefl)

Theorem 2. Audsley'ssEAs-OPTIMAL algorithm for prior- Phew = permute (Ria)

ity assignment is NGROBUSTOPTIMAL for preemptive [2] Anew = critical_scalingfactor (Rew)

or for non-preemptive [12] scheduling. if (Anew > Ama) {

Proof. In both versions of the algorithm, if all tests of task Prmax = Phew

response time versus deadline succeed, then the first task Amax = Anew
in the set is assigned the lowest priority, the second task }

the second-lowest priority, etc. Therefore, we can feed }

tasks to the algorithm in such a way that a non-robust- return Fhax

optimal schedule is produced. For examplesifand then }

79 from Section 4.3 were given to Audsley’s algorithm, it

would generate the rate-monotonic priority assignmentthat  Figure 3. ROB-ANL approximately maximizes

we know to not beROBUSTOPTIMAL. It is straightfor- the critical scaling factor of a task set
ward to construct an analogous example for non-preemptive
scheduling.

model the costs of preemptive and non-preemptive context
4.5. Finding Robust Schedules switches. This would cause the search heuristic to find
schedules with low numbers of context switches, again be-
cause the reduced overhead would leave more room for tim-
ing faults. In summary, searching for robust schedules per-
mits many schedule optimizations to be treated uniformly;
we believe this is a significant advantage.

For classes of task sets that have an efficieBAS-

OPTIMAL scheduling algorithm and for transformations

where the schedulability function is monotonic in the scal-

ing factor, an efficienROBUSTFOPTIMAL algorithm can be

created by invoking theEAs-OPTIMAL algorithm in a bi-

nary search. This strategy can be used to maximize the criti—4_6_ Maximizing the Critical Scaling Factor and Mini-

cal scaling factor, for example, of a task set scheduled by ei- mizing Implementation Threads

ther the preemptive or non-preemptive version of Audsley’s == . )

algorithm for priority assignment. We call these algorithms Minimizing the number of threads required to run a task set
can conflict with maximizing robustness. To see this, no-

ROB-OPT. . . . ;
tice that the fewer implementation threads required to run a

For classes of task sets that lack an efficieaas- ! Y
OPTIMAL algorithm (e.g. task sets with preemption thresh- schedule, the more constraints there are on the priority and

olds) or for transformations where schedulability is not Preémption threshold assignments. Sometimes these con-
monotonic in the scaling factor, we require an alternative Straints hurt schedulability because they rule out the most
to ROB-OPT. We have developeRoB-ANL , shown in Fig- robust schedules. Instead of optimizing a composite value
ure 3. Itis a randomized heuristic search that can efficiently fUnction, i.e. one based on some weighting of maximizing

compute an approximate member Bf,... ROB-ANL is robustness and minimizing implementation threads, we be-

similar to PT-ANL (shown in Figure 1) except that (1) in- lieve that developers should be permitted to make an in-

stead of minimizing the degree to which task response timesformed decision using a table that presents the largest criti-

exceed their deadlines, we maximize the critical scaling fac- €&l Scaling factor that could be achieved for each number of
tor, and (2) in the version of the algorithm that uses simu- threads. L _
lated annealing we never accept an infeasible schedule, al- 1 he algorithm for the joint minimization of implemen-

though we must sometimes accept a solution that has arfation threads and maximization of critical scaling factor
inferior critical scaling factor. iS MIN -THR; it appears in Figure 4. This algorithm uses

An advantage of using a heuristic search is that the de-& heuristic search to find a schedule mapping to as few
tails of the parameter being optimized do not matter. For IMPlémentation threads as possible. Whenever a sched-
example, if the cost of acquiring and releasing locks were U!€ i found that maps to a number of threads that has not
modeled in the schedulability function, then the heuristic Y&t been seen, it forks off an optimization to attempt to
would naturally attempt to merge synchronizing tasks since find the schedule that maximizes the critical scaling fac-
these schedules would have lower CPU overhead and conlOf 0ver schedules mapping to that number of threads. In
sequently are good candidates for being highly robust. InOther words, it calls a slightly modified version abe-
the same vein, we would like to extend the response timeANL (from Figure 3) that only accepts schedules that map

analysis for preemption threshold scheduling to accurately!© & particular number of threads.



MIN -THR (Porig) { n | NP-OPT | SP-LOCK | SP-3 | SP-ANL | PT-ANL
Pmin = Porig 5 34 65 73 88 100
Tmin = impl_threads (Big) 10 35 49 61 77 10d
while (max iterations not exceedefl) 15 25 48 53 63 10d

Prew = permute (Rin) 20 29 41 49 58 100
Trew = find.impl_threads (few) 25 41 39 43 47 10d

if (not_yet.seen (Few)) ROB-ANL-T (Pnews Trew)
if (T new < Tmin) {

Prmin = Prew Figure 5. Relative performance of algorithms
Tmin = Thew for scheduling task clusters
}
} } n | SP-3 | SP-ANL | PT-ANL
5 98 99 100
10 77 89 100
Figure 4. MIN-THR approximately minimizes 15 75 79 100
threads and maximizes robustness 20 71 70 100
25 59 57 100

5. Experimental Evaluation

This section provides a brief survey of the performance of ~ Figure 6. Relative performance of algorithms

the new techniques presented in this paper. Our procedure for scheduling task barriers

for generating random task sets is as follows, where all ran-

dom numbers are taken from a uniform distribution. The nhaye purely static priorities at run time (Section 3.2). Fi-
period of each task is a random value between 1 and 100G, 5jy, the fifth algorithm isT-ANL, the heuristic search for

time units. The utilization is chosen by generating a ran- priority and preemption threshold assignments for task sets

dom number in range 0.1-2.0 and dividing that number by ¢ontaining clusters and when preemption threshold support
the number of tasks in the set. (Scaling utilization by the s ayajlable on the target RTOS.

inverse of the number of tasks is merely a heuristic to avoid  Figyre 5 shows the results of an experiment where ran-
generating too many infeasible task sets.) The deadline forgom task sets were passed to each of the five algorithms

each task is either set to be the same as the period or is afjsted above. The experiment terminated when any algo-

independently chosen random value between 1 and 1000yithm successfully scheduled 100 task sets, and therefore
depending on the experiment. Tasks were assigned releasge results are automatically normalized with respect to the

jitter in some experiments; see below. Finally, any task set gt algorithm, which always has score 100. The experi-

with utilization greater than one is immediately discarded. ment was repeated for task sets containing 5, 10, 15, 20,
and 25 tasks. For every task set: there was a single task clus-
ter containing between 2 and'2 randomly selected tasks;

In this section we compare the different algorithms that we each task’s deadline was equal to its period; and, each task
have developed for finding feasible schedules for task setshad a 50% chance of being assigned release jitter up to half
containing task clusters and barriers. its period.

We compare five algorithms for scheduling task clusters.  Figure 6 shows the results of an experiment similar to
The first isNP-OPT, the optimal algorithm for assigning the previous one, except that instead of containing a task
priorities for fully non-preemptible scheduling [12]. Recall cluster, each task set was assigned a single randomly placed
that in the presence of non-trivial task clusters a fully pre- task barrier. The algorithms tested were the same as in the
emptive schedule is never valid (because members of a clusprevious experiment except thap-oPT andsp-Lock had
ter must be mutually non-preemptible) while a fully non- to be dropped since they may produce invalid schedules for
preemptive schedule is always valid. The second algorithmtask sets containing task barriers.
is SP-LOCK, the strawman algorithm that we proposed in These experiments show theit-ANL consistently out-
Section 3.2 for implementing task clusters by forcing tasks performs the other algorithms, and that the gap between
in the each cluster to always have a lock associated withit and the others increases for larger task sets. This can
the cluster. The third algorithm isp-3, the hierarchical  be taken as a corroboration of Saksena and Wang's re-
version of Audsley’s algorithm for priority assignment, and sults [20] about the practical dominance of preemption

the fourth issp-ANL, the heuristic search for priority and  threshold scheduling over static priority scheduling. Of the
preemption threshold assignments for task sets that are to

5.1. Task Clusters and Barriers



Preemptive Non-Preemptive where (1) the deadline of each task is equal to its period,

P- | ROB- NP- | ROB- and (2) where period and deadline are unrelated. The other
n | OPT | OPT | %inc. | OPT | OPT | %inc. parameter that is adjusted is the amount of jitter: task sets
5| 111 1.8 63% 1.09 1.16 84% either have no release jitter, a single task with jitter ran-
10| 1.06| 1.13] 109% 1.05 1.1 131% domly distributed between zero and half its period, or each
15| 1.05| 1.10{ 110% 1.04 1.10 138% task has a 50% chance of being assigned jitter up to half its
20| 1.05| 1.09 97% 1.04 1.0 136% period. The failure to increag®* for task sets without jitter
25| 1.04| 1.08 92% 1.04 1.08 108% and where ED is a direct consequence of Theorem 1.

6. Related Work

Hybrid preemptive/non-preemptive schedulers are an old
no jitter 1 task w/J 50% tasks w/J idea, and in fact they can be found in the kernel of al-
n|T=D| T#D | T=D | T#D | T=D | T#D most every general-purpose operating system: interrupts

5 0% | 62%| 29%| 61% 309 639 are scheduled preemptively, bottom-half kernel routines are
10 0% | 101%| 51% 93¢ 509 1094 scheduled non-preemptively, and threads are scheduled pre-
15 0% | 100%| 50% 879 599 1104 emptively. The real-time analysis of non-preemptive sec-
20 0% | 100%| 50% 100% 61%  97¢ tions caused by critical regions [3, 21] is more recent. The
25 0% | 81%| 54% 77% 549 929 real-time analysis of mixed preemption for its own sake was
pioneered by Saksena and Wang [20, 26] and by Davis et
al. [7]. Our work builds directly on Saksena and Wang’s,
adding several new capabilities.

Synchronization elimination has been addressed both by
three algorithms that generate static-priority schedges,  the real-time and programming language communities. For
ANL, the heuristic search, outperformas-3, although the ~ example, the Spring system [22] used static scheduling and
gap narrows with increasing numbers of tasks. We believewas capable of recognizing situations where contention for
that this is because the extra non-preemptibility available toa shared resource was impossible, in which case a lock
SP-ANL becomes less valuable for larger task sets. Also, was not used at run time. Aldrich et al. [1] show how to
notice that in Figure &pP-3 slightly outperformssp-ANL remove unnecessary synchronization operations from Java
for task sets with 20 and 25 members. We speculate that thigorograms. The difference between previous work and the
happens because the size of the priority assignment spac@ork presented in this paper is that synchronization elim-

Figure 7. Improving the critical scaling factor

S S~ o~ o @

Figure 8. Headroom increases dueto ROB-OPT

for large task sets overwhelms the search heuristic. ination has until now been treated as a compile-time or
run-time performance optimization. We believe that using
5.2. Improving the Robustness of Schedules task clusters to give the programmer explicit control over
Figure 7 shows the increase in critical scaling factor the elimination of synchronization between (logically) con-
that ROB-OPT can achieve relative to AudsleysEAs- current tasks can result in significant software engineering

OPTIMAL algorithms for fully preemptive H-oPT) and benefits in addition to the previously realized performance
fully non-preemptive schedulingie-opT). As before, task ~ Penefits. _

sets are randomly generated and have 5-25 members. Each Starting with Lehoczky et al. [16] a number of re-
task’s deadline and period are unrelated and each task hagé@rchers have used the critical scaling factor as a metric
a 50% chance of being assigned random release jitter UFj‘orsched_ulablllty, including Katcher et al. [14], Vestal [25],
to half its period. Values in the table represent the median Yerraballi etal. [27], and Punnekkat et al. [19]. However, as
critical scaling factor over 500 feasible task sets, amd ~ far as we know it has not been previously recognized that it
indicates the percent increase in the distance of the criticallS POssible to search for schedules with higher critical scal-

scaling factor from 1.0 under optimization ROB-OPT. ing factors, and that these schedules are inherently prefer-
For example, if theFEAS-OPTIMAL scheduling algorithm ~ @ble when there is generic uncertainty about task WCET.
produces a schedule whef¢ = 1.10 andROB-OPT pro- Existing techniques for tolerating timing faults — task

duces a schedule that has = 1.13, then we say that we  instances that run for too long but eventually produce a

have increased the amount of “headroom” that the task hascorrect result — can be divided into those that change the
before missing deadlines by 30%. task model from the developer’s point of view and those
Figure 8 shows another way to evaluates-opPT’s abil- that do not. A number of scheduling techniques for dealing

ity to increaseA*. For task sets containing different num- With timing faults have been proposed that change the task
bers of tasks it shows the increase in headroom for task setén0del, including robust earliest deadline [4], time redun-
dancy [6], rate adaptation [5], user-defined timing failure



handlers [23], andm, k)-firm deadlines [13]. Our method 9. Conclusions

for increasing robustness does not change the task model. Iﬁ_h has d ibed ber of tical additi i
is complementary to, and can be used independently of or € paper has described a number ot practica’ additions to
in combination with, essentially all of the other known tech- existing work on fixed-priority real-time scheduling. _
niques for dealing with timing faults in systems using static First, we have introduced two novel abstractions: task

priority scheduling. Another technique that is transparent cIusters_and task _bar_rlers. . Task clusters make non-
to developers igsolation or enforcemenbased schedul- preemptive scheduling into a first-class part of the real-time

ing [11, 17] where tasks are preempted when they exceed'09ramming model. . we F:Iaum tha'; clusters provide S19-
their execution time budgets. Although this technique can- nificant software engineering benefits, such as the elimi-

not prevent missed deadlines it can isolate deadline missegitr'](?n of Ithet p035|b|I|t|)I/ of rac:: Condltlogs anft_it dgadlfcks
o tasks that overrun. within a cluster, as well as performance benefits due to re-

Edgar and Burns [8] have developed a method for Sta_duced preemptions, reduced memory overhead for threads,
tistically estimating task WCET based on measurements and reduced lock acquisitions. These benefits are achieved

They also show how to statistically estimate the feasibil- WithOUt. sacrificing the higher .utilizations 'that can usuaI.Iy
ity of a task set, but do not address the problem of finding be achieved through preemptive scheduling. Task barriers

highly or maximally robust schedules. Our work, on the restore an impo_rtant advantage of St?‘_“c priority_sche_duling
other hand, directly addresses the problem of finding ro-~ support for integrated schedulability analysis of inter-

bust schedules, but permits the statistical nature of unreli—rUptS‘ kernel tasks, and user-level threads — to preemption

able WCET estimates to remain implicit. It may be useful thresbholdf;cheldullngtvxf[hent';]he odbjectltve |?1jtohn;|n|m|z<ta thke
o integrate the two models. number of implementation threads onto which design tasks

are mapped.

Second, we have developed three novel algorithms for
finding feasible schedules for task sets containing clusters
All numerical results in this paper were generated using and barriers. The first targets systems with run-time support
SPAK, a static priority analysis kit that we have developed. for preemption thresholds while the others permit thread
SPAK is a collection of portable, efficient functions for cre- priorities to be strictly static at run-time. By “compiling”
ating and manipulating task sets, for analyzing their re- task sets containing task clusters and barriers to target a
sponse times, and for simulating their execution. A variety static-priority environment, we have shown that while run-
of existing analyses with different tradeoffs between speedtime support for preemption thresholds is often not neces-
and generality are available, as is the corrected and extendegary, the response time analysis for preemption thresholds
preemption threshold analysis presented in Appendix A.is an important building block for real-time systems.

SPAK is open source software and can be downloaded from  Third, we have characterized a framework within which

7. Software

http://www.cs.utah.edu/regehr/spak . it is possible to analyze the robustness of task sets under
a given class of timing faults and we have developed two
8. Future Work algorithms that can often find a schedule for a given task

set that has a higher critical scaling factor than the schedule
Currently, a task barrier is defined to split the task set generated by the appropriaeas-oPTIMAL scheduling al-
into two parts based on task indices. This is useful when gorithm. This extra resilience to timing faults is essentially
there are inherent priority relations between tasks, e.g. Wherfree: it is cheap at design time and imposes no cost at run-
some tasks model interrupt handlers. However, a more gentjme.
eral abstraction is probably desirable — one that permits the  Eina|ly, we have corrected an error in the response time
specification of subsets of the task set that must be isolatechnalysis for task sets with preemption thresholds.
from each other, e.g. by a CPU reservation, but between
which there is no inherent priority ordering. Acknowledgments
Although we currently do not use CPU reservations or
any other kind of enforcement-based scheduling, in the The author would like to thank Luca Abeni, Eric Eide, Jay
future we plan to use them to create temporal partitions Lepreau, Rob Morelli, Alastair Reid, Manas Saksena, Jack
between task clusters. Partitions inside clusters probablyStankovic, and the reviewers for providing valuable feed-
do not make sense because clusters are internally nonback on drafts of this paper.
preemptible, and because tasks in clusters are assumed to This work was supported, in part, by the National Sci-
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A. Correcting the Response Time Analysis for Task| C; | Ti| D; | Ji| P | Py | rold | ppew
Preemption Threshold Scheduling 0 40| 70| 70 ol O] Of 60 60
- . : T 20| 90| 90| O| 2| oOf 80 12(
The original response time analysis for task sets scheduled . 20| 100! 100! © 1 0 80 a(

using preemption thresholds [26] contains an error — it

sometimes examines too few previous task invocations, re-

sulting in the potential for underestimated response times.  Figure 9. Response times computed using the
Figure 9 shows the difference between the previous pre-  original and fixed analyses

emption threshold analysis and the corrected version pre-

sented in this section. The old analysis predicts that the task

set is feasible, while the new analysis predicts thainay

not meet its deadline. Figure 10 is a trace of a simulated t1 Ijl J:I

execution of the task set. It proves the infeasibility of the

task set by counterexample: misses its second deadline.

The following response time analysis differs from the t2 Ij l Ij B

one presented by Wang and Saksena in two major ways.

First, it has a different termination condition for the loop {0 P P P

that takes previous invocations of a task into account when g R
computing its response time. Second, it adds support for 0 50 100 150 200 250
tasks with release jitter. We have also changed the notation Time

to match that used in this paper.
The worst-case blocking time for a task is:
Figure 10. Simulated execution trace of the
B; = max Cj task set from Figure 9. The second instance
v PizPi> by of task 1 misses its deadline.

In other words, the worst-case blocking fghappens when
the task with the longest WCET that has lower priority and The computation of) was adapted from George et al. [12],
higher preemption threshold is dispatched infinitesimally and is the core of the difference between our analysis and

earlier thanr; is able to run. the previously published one, which iterated only uqti#
S;, the worst-case start time of tagkis: m whereF;(m) < ¢q-T;. By working through the response
time calculation forr; in the example task set in Figure 9,
Si(q) = B; +qC; + Z (1 + {%D C; tﬂis termination condition can be seen to be the source of
J the error.

Vj: Pi>P;
Whenever a variable appears on both sides of the equa-
Our only change to this equation is the addition of a term tion (i.e.,S;, F;, andL;) its value can be found by iterating

accounting for release jitter. until the value converges. Zero is a safe initial valueSpr
F;, the worst-case finish time of tagkis: andF;, but L; needs to start at one.
Finally, we do not believe that the discrepancy between
Fi(q) = Si(q) + Ci+ the old and new response time analyses affects any of the

Z ([ﬁ;(q) + J]w B (1 N {Si(q) +J; J )) ¢ qualitative results reported by Saksena and Wang. For ran-

T; T 7 domly generated task sets with 10 members and no release
jitter the two analyses agree on the response times of all
tasks about 99% of the time.

J J

Vj: Pj>P;

Again, we have only added the jitter terms.
The response time of tagks:

;= i i —qT;
T vq}gggQ(F(q)wLJ qT;)

WhereQ is |L;/T;|. L; is the longest level-busy period
for preemption threshold scheduling, and is:

Li=Bi+ Y. [L“Lﬂcj

, T;
Vj: P;>P;
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