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Abstract

This paper introduces and shows how to schedule two
novel scheduling abstractions that overcome limitations of
existing work on preemption threshold scheduling. The ab-
stractions are task clusters, groups of tasks that are mutu-
ally non-preemptible by design, and task barriers, which
partition the task set into subsets that must be mapped to
different threads. Barriers prevent the preemption threshold
logic that runs multiple design-time tasks in the same run-
time thread from violating architectural constraints, e.g. by
merging an interrupt handler and a user-level thread.

We show that the preemption threshold logic for mapping
tasks to as few threads as possible can rule out the schedules
with the highest critical scaling factors — these schedules
are the least likely to miss deadlines under timing faults.
We have developed a framework for robust CPU schedul-
ing and three novel algorithms: an optimal algorithm for
maximizing the critical scaling factor of a task set under
restricted conditions, a more generally applicable heuris-
tic that finds schedules with approximately maximal criti-
cal scaling factors, and a heuristic search that jointly maxi-
mizes the critical scaling factor of computed schedules and
minimizes the number of threads required to run a task set.
We demonstrate that our techniques for robust scheduling
are applicable in a wide variety of situations where static
priority scheduling is used.

1. Introduction

To rapidly create reliable, reusable embedded and real-time
systems software, it is important to begin with the right
abstractions. This paper describes two novel abstractions
that overcome limitations of existing work on preemption
threshold scheduling [20,26].

Saksena and Wang showed that task sets scheduled with
preemption thresholds can have significant schedulability
improvements over task sets using fixed priorities. They
also showed that it is possible to transform adesign model
consisting of a feasible set of real-time tasks into a feasi-

ble implementation modelcontaining (often significantly)
fewer threads than the task set contains tasks. These imple-
mentation models use less memory and cause fewer context
switches than the standard implementation model that maps
each task to its own thread.

Although the introduction of non-preemptive schedul-
ing is a useful performance optimization, the developers of
real-time systems are still presented with a problem that is
known to be very difficult: creating correct and predictable
software in the presence of concurrent, synchronizing tasks.
This paper introduces thetask cluster, a collection of real-
time tasks that are designed to be mutually non-preemptible.
A task cluster could be used, for example, to embed a
Click [15] graph in a real-time system. Click is an architec-
ture for creating flexible routing software; in a distributed
real-time system its components would have real-time re-
quirements. Click gains significant ease of use through its
restricted programming model, including the restriction that
its components cannot preempt each other. Task clusters
provide a natural way to express this requirement without
forcing a system to be globally non-preemptive, which can
result in a serious loss of effective processor utilization.

The preemption threshold model provides no way to ex-
press architectural constraints that rule out some implemen-
tation models. For example, it cannot ensure that a task
representing an interrupt handler is not be mapped to the
same implementation thread as a task representing user-
level code. Our second new abstraction, thetask barrier,
provides first-class support for this type of constraint. Ab-
stractly speaking, it might be useful to transparently mi-
grate code into interrupt handlers when this does not impact
schedulability, but in practice this is probably undesirable:
the migrated code might attempt to access a blocking re-
source, crashing the system.

We describe task clusters and barriers in Section 2; in
Section 3 we show how to find feasible schedules for task
sets containing them, both for operating systems with sup-
port for preemption threshold scheduling and for systems
that have purely static priorities at run time.

The potential to create implementation models with



many fewer threads than tasks begs the question: Is a sched-
ule with fewer threads always better than a schedule with
more threads? We found that if there is uncertainty about
task worst-case execution times (WCETs),the answer is no.
This is because the additional constraints on schedules with
fewer threads can rule out the schedules with the highest
critical scaling factors[16]. The critical scaling factor is
the largest constant by which the execution time of each
task can be multiplied without rendering a schedule infea-
sible. Intuitively, a schedule with critical scaling factor not
much larger than one is “barely feasible” in the sense that a
minor perturbation could cause it to miss deadlines — this
may not be acceptable for important real-time systems.

We have developed a framework for reasoning about the
robustness of task sets that are subject to timing faults, and
we have developed new algorithms for finding highly ro-
bust schedules including a search algorithm for jointly min-
imizing the number of threads in an implementation model
and maximizing the critical scaling factor among schedules
mapping to a particular number of threads. This algorithm
can permit system developers to make an informed trade-
off between memory use and robustness when picking an
implementation model; it is described in Section 4. Fur-
thermore, our algorithms for increasing the critical scaling
factor have broader applicability than just to systems using
preemption thresholds. For example, for randomly gener-
ated fully preemptible task sets with five members and an
average utilization of 0.78, Audsley’s optimal scheduling
algorithm [2] creates schedules that, on average, permit a
10% increase in task execution time before deadlines start
to be missed. One of our algorithms finds schedules that,
on average, tolerate an 18% increase without missing any
deadlines. Section 5 contains an evaluation of the new al-
gorithms presented in this paper.

In Appendix A we correct an error in the existing re-
sponse time analysis for task sets with preemption thresh-
olds. We also extend the analysis to support tasks with re-
lease jitter.

2. Two New Scheduling Abstractions

This section formally definestask clustersand task barri-
ers, but first provides an overview of the scheduling model
and its notation, as well as some background on preemption
threshold scheduling.

Our work begins with a standard task model: tasks are
scheduled on a uniprocessor and have deadlines, periods,
worst-case execution times, and jitter. Throughout this pa-
per we assume that tasks are scheduled using fixed priorities
(or almost-fixed priorities, since we make use of preemption
thresholds). Furthermore, we always make a distinction be-
tweentasks, which are design-time entities with real-time
requirements, andthreads, which are run-time control flows
scheduled by the RTOS (real-time operating system).

A real-time task set isT = {τ0, ..., τn−1} whereτi =
(Ti, Ci, Di, Ji). The elements of a task tuple respectively
represent the period, worst-case execution time, deadline,
and maximum release jitter. Jitter, as defined by Tindell [24,
§4], “occurs when the worst-case time between successive
releases of a task is shorter than the worst-case time be-
tween arrivals of a task.” When there is no danger of am-
biguity we write∀τi rather than∀τi ∈ T . A schedulefor
T is a set of priority and preemption threshold assignments
P = {(P0, P 0), ..., (Pn−1, Pn−1)}. Zero is the highest pri-
ority, and throughout this paper we reverse the sense of the
ordering relations for priorities so they have the intuitive
meaning (e.g.x > y meansx has higher priority thany)
rather than the numerical meaning. Priorities are assumed
to be assigned uniquely, and so the following predicate must
hold for a schedule to be valid:

Û
def= ∀τi, τj : i 6= j ⇒ Pi 6= Pj

Preemption thresholds are not assigned uniquely, but the
preemption threshold of each task must be at least as high
as its priority. Therefore, the following predicate is also true
of valid schedules:

P̂
def= ∀τi : Pi ≤ P i

Finally, for a given schedule, each task in a set has a
worst-case response timeRi. Valid schedules must not per-
mit a task to complete after its deadline:

Ŝ
def= ∀τi : Ri ≤ Di

2.1. Background: Preemption Thresholds

Preemption thresholdswere introduced in ThreadX [9], a
commercial RTOS, and were first studied academically by
Saksena and Wang [20, 26] who developed a response time
analysis and a number of useful associated algorithms.

The idea behind preemption thresholds is simple. Task
instances compete for processor time based on their priori-
ties, but a task instance that has started running may only be
preempted by tasks with priorities higher than the running
task’s preemption threshold. Preemption threshold schedul-
ing subsumes both preemptive and non-preemptive fixed
priority scheduling: purely preemptive scheduling behav-
ior is obtained when each task’s preemption threshold is
equal to its priority, and purely non-preemptive behavior
is obtained when all preemption thresholds are set to the
maximum priority. The dominance of preemption thresh-
old scheduling is not merely theoretical; it has been shown
to improve schedulability in practice [20]. Intuitively, the
source of the improvement is the addition of a limited
form of dynamic priorities: if rate-monotonic scheduling
is viewed as a first-order approximation to optimal dynamic
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priority scheduling, then preemption threshold scheduling
can be viewed as a second-order approximation.

There is no known optimal algorithm for finding a feasi-
ble assignment of priorities and preemption thresholds that
takes less than exponential time. However, efficient approx-
imate algorithms exist. Once a feasible assignment of pri-
orities and thresholds for a given task set is found, Saksena
and Wang provide efficient algorithms for assigningmaxi-
mal preemption thresholds(the largest threshold assignment
for each task such that all tasks remain schedulable), and
also for optimally dividing a task set into non-preemptible
groups. Two tasks are mutually non-preemptible if the pri-
ority of the first is not higher than the preemption threshold
of the second, and vice versa. A non-preemptible group
is a collection of tasks within which each pair is non-
preemptible; a non-preemptible group of tasks can be run
in a single run-time thread.

An implementation model is a set of threads, each of
which is responsible for running some non-empty set of
tasks fromT . Let M = {M0, ..., Mm−1} be the sets of
design-time tasks that map to each of them implementation
threads. Given a feasible schedule Saksena and Wang [20,
Fig. 3] provide an algorithm that can be used to find a cor-
responding implementation model that is schedulable and
satisfies the following predicate:

M̂
def= ∀Mi ∈ M : ∀τj , τk ∈ Mi : Pj ≤ P k

Saksena and Wang showed that for task sets with random
attributes, the number of maximal non-preemptible groups
increases much more slowly than the number of tasks: this
has important implications for memory-limited embedded
systems since each thread has significant memory overhead.

2.2. Task Clusters

A task clusteris a subset of a task set within which each pair
of tasks must be mutually non-preemptible. Task clusters
are different than Saksena and Wang’s non-preemptible task
groups: the latter are used as a performance optimization
while the former are a first-class part of the programming
model. In other words, task clusters are visible to, and can
be specified by, real-time system developers.

Task sets containing clusters have the important benefit
of often permitting the high resource utilizations associated
with preemptive scheduling while also permitting the ease
of programming that comes from non-preemptive schedul-
ing. Furthermore, task clusters facilitatesynchronization
elimination: the removal of locks that have become su-
perfluous because the resources they protect are only ac-
cessed by tasks within a single cluster. When synchroniza-
tion elimination is applied retroactively, it is an optimization
that does not provide software engineering benefits. Rather,
it merely eliminates the CPU overhead of acquiring and re-

leasing locks, and the memory overhead of functions sup-
porting, e.g., the priority ceiling protocol. On the other
hand, if synchronization elimination is applied at design
time it potentially has enormous software engineering ben-
efits: developers, who are often domain experts rather than
skilled concurrent system programmers, can completely ig-
nore the dangers of race conditions and deadlocks with re-
spect to resources that are accessed within a single task clus-
ter.

A task set is augmented with a setG of task clusters,
whereGi ⊆ T . Valid schedules forT must satisfy:

Ĝ
def= ∀Gi ∈ G : ∃Mj ∈ M : Gi ⊆ Mj

Task clusters can have overlapping membership, and
not every task need belong to a cluster. If a task cluster
Gi = T exists, the only valid schedules will be fully non-
preemptive.

2.3. Task Barriers

Priority and preemption relations are often hardwired into
the design of a system. To support these relations we re-
quire an additional abstraction, thetask barrier, which is
the dual of the task cluster — it isolates groups of tasks that
inherently run at different priorities, preventing the thread
minimization logic from creating an impossible schedule.

A task setT is augmented with a setX ⊆ {0, ..., (n−1)}
of task barriers where valid schedules must satisfy:

X̂
def= ∀x ∈ X : ∀τi :

i > x ⇒ (Pi < x ∧ P i < x) ∧
i ≤ x ⇒ (Pi ≥ x ∧ P i ≥ x)

For example, a task barrier aty forces tasksτ0..τy to have
both priority and threshold at least as high asy, while tasks
τy+1..τn must have priority and threshold lower thany.
Clearly there can be no feasible schedule if there exists a
task barrier that “splits” a task cluster.

We use task barriers to model the inherent relation-
ships between implementation artifacts such as interrupts,
bottom-half kernel routines, and ordinary threads. For ex-
ample, consider a task set where tasksτ0..τ3 represent hard-
ware interrupt handlers andτ4..τ9 represent standard tasks.
In this case barriersX = {0, 1, 2, 3} must exist to preserve
the separate identities of the interrupt handlers.

2.4. Summary of the New Scheduling Model

We have introduced two new scheduling abstractions: the
task cluster, which guarantees that a collection of tasks will
be mutually non-preemptible in the implementation model,
and thetask barrier, which partitions the set of tasks into
subsets that cannot be mapped to the same implementation
thread.
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PT-ANL (Porig) {
Pmax = enforcepreds (Porig)
Bmax = badness (Pmax)
while (max iterations not exceeded){

Pnew = enforcepreds (permute (Pmax))
Bnew = badness (Pnew)
if (Bnew == 0) return Pnew

if (Bnew≤ Bmax) {
Pmax = Pnew

Bmax = Bnew

}
}
return FAILURE

}

Figure 1. PT-ANL schedules task sets contain-
ing task clusters and barriers

We define an overall schedulability function:

S(G, X, T , P, M) def= Û ∧ P̂ ∧ Ŝ ∧ M̂ ∧ Ĝ ∧ X̂

In general,G, X , andT can be considered to be fixed for
a given task set. On the other hand,P andM are derived
terms and there may be many valid choices for them.

3. Scheduling with Task Clusters and Barriers

The previous section defined two new abstractions; in
this section we present two complementary techniques for
scheduling task sets containing them. Although both tech-
niques make essential use of the response time analysis for
preemption threshold scheduling [26], only one of them re-
quires run-time support for preemption thresholds — the
other permits threads to have strictly static priorities at run-
time. In Section 5 we quantitatively compare the two ap-
proaches.

3.1. Targeting Systems with Run-Time Support for Pre-
emption Thresholds

Task clusters and barriers can be scheduled on operating
systems that support preemption thresholds using a tech-
nique similar to the one proposed by Saksena and Wang for
the assignment of priorities and preemption thresholds [20].
Our algorithm, shown in Figure 1, greedily attempts to
minimize the “badness” of a schedule using a randomized
search through the space of possible priority and preemp-
tion threshold assignments. Our badness function is the
same as Saksena and Wang’s energy function [20,§4.3]:
it is the sum of the lateness of each task where lateness is
max(Ri−Di, 0). The algorithm is finished when a schedule
with badness zero is found, since this means that no task’s
response time is later than its deadline.

The permutefunction randomly either swaps the prior-
ities of two tasks, or either increments or decrements the
preemption threshold of a task. Theenforcepredsfunction
ensures that a schedule does not violate any of the predicates
(other thanŜ) defined in the previous section. It does this,
for example, first by noticing that̂M is violated, and second
by appropriately adjusting the priority and/or preemption
threshold assignments of the offending tasks. These adjust-
ments are repeated until all predicates are satisfied; this is
possible because we test for a conflict between predicates,
e.g. a task cluster that is split by a barrier, before starting the
randomized search.

For simplicity, the algorithms presented in this paper are
randomized greedy algorithms. In practice, better results
can often be obtained using simulated annealing. Convert-
ing a greedy search to one that uses simulated annealing is
a straightforward matter of adding logic to probabilistically
accept inferior solutions [18,§10.9].

3.2. Targeting Systems without Run-Time Support for
Preemption Thresholds

A straightforward implementation of task clusters on a stan-
dard RTOS is to have each instance of a task belonging to a
cluster acquire a lock associated with the cluster before per-
forming any computation, and to release the lock just before
terminating. If the lock implements the stack resource pol-
icy [3] or the priority ceiling protocol [21], then the lock
protocols themselves introduce a form of dynamic priori-
ties not unlike preemption thresholds — the difference be-
ing that the purpose of the priority change is to bound prior-
ity inversion and prevent deadlock, rather than to improve
schedulability. As Gai et al. [10] have observed, there is
considerable synergy between these synchronization proto-
cols and preemption threshold scheduling. A lock-based
implementation of task clusters, however, seems inelegant.
It adds the time and space overhead of a lock, does not help
minimize threads, and does not help support task barriers.
Rather, we develop two solutions that fit into our existing
framework; both perform better than the lock-based imple-
mentation, as we demonstrate in Section 5.

Let maxp(Mi) denote the maximum of the highest pri-
ority or preemption threshold of any task inMi. Similarly,
let minp(Mi) denote the minimum of the lowest priority or
preemption threshold of any task inMi. DefineF̂ as fol-
lows:

F̂
def= ∀Mi, Mj ∈ M :

maxp(Mi) < minp(Mj) ∨
minp(Mi) > maxp(Mj)

This predicate ensures that the priorities and preemption
thresholds of tasks mapped to each thread do not overlap
the priorities and preemption thresholds of tasks mapped to
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any other thread. Since there is no overlap any priority and
preemption threshold in the range minp(Mi)..maxp(Mi)
can be chosen for threadi. By choosing the priority and
threshold to be the same value we create a run-time sched-
ule that is equivalent to purely preemptive thread scheduling
— no preemption threshold support is required and a stan-
dard RTOS can be used. Furthermore, since only a single
priority level is required for each thread, as opposed to the
technique from the previous section that requires up to two
priority levels per task, this technique is ideal for targeting
a small RTOS that supports a limited number of priorities.

To satisfyF̂ as well as the other predicates comprising
the previously defined schedulability functionS, we have
developed a modified version of Audsley’s optimal prior-
ity assignment algorithm for pure preemptive [2] and non-
preemptive [12] scheduling. Audsley’s algorithm reduces
the space of priority assignments that must be searched from
n! to n2 by exploiting the property that although the re-
sponse time of a task depends on the set of tasks that has
higher priority, it does not depend on the particular priority
ordering among those tasks. The natural algorithm, then,
is to find a task that is schedulable at the lowest priority,
then the second-lowest priority, etc. Once a task is found to
meet its deadline at a given priority, this property will not
be broken by priority assignments made to tasks with higher
priority.

To support task clusters and barriers within this frame-
work we have designed a three-level hierarchical version of
Audsley’s algorithm, calledSP-3, that operates as follows.
At the outermost level the partitions created by task barriers
are processed in order from lowest to highest priority. For
example, a task set with 6 tasks and a barrier at 2 would be
treated in two parts: first, tasks 3–5, and second, tasks 0–
2. Within each partition task clusters are treated separately.
For purposes of this algorithm we assume that each task be-
longs to a unique cluster: this can be easily accomplished
by merging clusters that have tasks in common and by cre-
ating singleton clusters for tasks not initially belonging to
a cluster. Task clusters within a partition are scheduled in
a manner analogous to Audsley’s algorithm for tasks. We
try to schedule each cluster at the lowest priority in the par-
tition; as priority assignments are found that meet the re-
sponse time requirements of all tasks within the cluster, we
progress to higher priorities. Finally, within a cluster, indi-
vidual tasks are scheduled using the version of Audsley’s al-
gorithm that is optimal for non-preemptive scheduling.SP-
3 will find a feasible schedule if one exists that does not
introduce any extra non-preemption beyond what is speci-
fied by the task clusters.

We have developed a second algorithm,SP-ANL , for
scheduling task sets with clusters and barriers that, given
enough time, outperformsSP-3 in the sense that it finds
feasible schedules more often. This performance is quan-

tified in Section 5. SP-ANL is identical toPT-ANL (Fig-
ure 1) except that thepermutefunction operates at a higher
level. Instead of randomly permuting a priority or preemp-
tion threshold, it randomly either swaps the priorities of two
tasks within a cluster, swaps the priority ordering of two
entire clusters, or attempts to run two clusters in the same
implementation thread. It is this final permutation that pro-
vides additional non-preemption beyond what is specified
by task clusters, permittingSP-ANL to schedule more task
sets thanSP-3.

4. Robust Scheduling

A timing faultoccurs when a task instance runs for too long,
but eventually produces the correct result. Real-time sys-
tems that are robust with respect to timing faults are desir-
able for several reasons. First, analytic worst-case execution
time (WCET) tools are not in widespread use, and it is not
clear that tight bounds on WCET can be found for complex
software running on aggressively designed processors. Sec-
ond, even if accurate WCETs are available with respect to
the CPU, it may difficult to ensure the absence of interfer-
ence from bus contention, unexpected or too-frequent inter-
rupts, or a processor that is forced to run in a low-power
mode due to energy constraints. Finally, it is just sound
engineering to avoid building systems that are sensitive to
minor perturbations.

The rate monotonic algorithm, the deadline monotonic
algorithm, and Audsley’s priority assignment algorithm be-
long to the class of algorithms that we callFEAS-OPTIMAL:
they are guaranteed to find, for different classes of task sets,
a feasible schedule if any exist. In this section we define
theROBUST-OPTIMAL class of scheduling algorithms: they
are guaranteed to produce a schedule that maximizes some
robustness metric of interest.

4.1. A Framework for Robust Scheduling

A transformationZ is an arbitrary function from task sets to
task sets. Transformations of interest will model a class of
changes that should be “tolerated” by a task set. For exam-
ple,ZJ(T , ∆) def= {(Ti, Ci, Di, ∆·Ji)} is the transformation
that models an increase in release jitter.∆ is ascaling fac-
tor. Thecritical valueof ∆ for a given priority assignment
and transformation, denoted∆∗(G, X, T , Z, P, M), is the
largest value of∆ such that the transformed task set remains
schedulable:

∀∆ ∈ R : S(G, X, Z(T , ∆), P, M) ⇒ ∆ ≤ ∆∗

Let P be the set of all possible priority and preemption
threshold assignments for a task set. Note that the size of
P can be large even for modestly sized task sets since it
containsn!n! elements. Themaximal critical valueof the
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scaling factor,∆∗∗, has the following property:

∀P ∈ P : ∆∗(G, X, T , Z, P, M) ≤ ∆∗∗(G, X, T , Z)

The set of priority assignments of maximal robustness is
Pmax where:

Pmax ⊆ P : P ∈ Pmax ⇒
∆∗(G, X, T , Z, P, M) = ∆∗∗(G, X, T , Z)

A ROBUST-OPTIMAL scheduling algorithm is one that can
find a member ofPmax.

We usually abbreviate∆∗(G, X, T , Z, P, M) as∆∗; it is
to be understood that∆∗ is a function of a task set, a trans-
formation, and a schedule. Similarly,∆∗∗(G, X, T , Z) is
a function of a transformation and a task set, including its
associated clusters and barriers; we usually abbreviate it
as∆∗∗.

4.2. The Critical Scaling Factor

Throughout the rest of this paper we use a transformation
ZC that multiplies the WCET of each task in a set by the
scaling factor:ZC(T , ∆) def= {(Ti, ∆ · Ci, Di, Ji)}. This
is the transformation defined by Lehoczky et al. [16], but
generalized slightly to support tasks with release jitter and
arbitrary deadlines.ZC models generic uncertainty about
WCET and also uniform expansion of task run-times due
to interference from memory cycle stealing or brief, unan-
ticipated interrupts. A useful property of this transforma-
tion is thatS(G, X, ZC(T , ∆), P, M) is monotonic in∆
and therefore∆∗ can be efficiently computed using a bi-
nary search.

For the remainder of this paper when we say that a task
set is robust, we mean “robust with respect to uniform
expansion in WCET.” Also, we restrict the meaning of
a ROBUST-OPTIMAL scheduling algorithm to be one that
finds a schedule maximizing the scaling factor ofZC .

Although our focus is on uniform expansion of task
WCETs, the algorithms that we present are general and
could easily support other transformations such as those
that: scale only a single task or a subset of the tasks (this
family of transformations is examined by Vestal [25]); re-
duce the period of a task representing a hardware interrupt
whose minimum interarrival time is not precisely known;
scale task execution times by a weighted factor reflecting
the degree of uncertainty in WCET estimates; or, scale tasks
with smaller run-times by a larger factor to model interfer-
ence from a long-running, unanticipated interrupt handler.

4.3. A Simple Example

Consider the following task set:
τ0 : C = 400; T, D = 1999; J = 0
τ1 : C = 400; T, D = 2000; J = 1200
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Figure 2. Comparing the behavior of two
schedules in the presence of timing faults

There are only two possible fully preemptive schedules,
and both of them are feasible. When scheduled using
the rate-monotonic priority assignment, the worst-case re-
sponse time of Task 1 is 400 and Task 2 is 2000. A little
experimentation will show that if the WCET of either task
is increased, the task set ceases to be schedulable. When the
non-rate-monotonic priority assignment is used, the worst-
case response times are 800 and 1600, respectively, and the
WCET of both tasks can be scaled by 1.67 before the task
set becomes infeasible. In other words, by avoiding the
rate-monotonic priority assignment, we increase the criti-
cal scaling factor of the task set from approximately 1.0 to
1.67. Clearly the non-rate-monotonic priority assignment
is preferable: a mispredicted worst-case execution time is
far less likely to make it miss a deadline. This is demon-
strated in Figure 2, which compares the propensity of the
two schedules to miss deadlines under overload. Each data
point was generated by simulating 50 million time units.
A “maximum percent overload” of 25 means that the ex-
ecution time of each task instance is uniformly distributed
between the nominal WCET and 1.25 times the WCET.

4.4. Properties of SomeFEAS-OPTIMAL Algorithms

Theorem 1. For the class of task sets where the dead-
line monotonic (DM) algorithm isFEAS-OPTIMAL (i.e.
fully preemptive scheduling, no release jitter, deadline not
greater than period), it is alsoROBUST-OPTIMAL.

Proof. LetT be a member of the class of task sets for which
DM is an optimal scheduling algorithm. Based onT , de-
fine a set of scaled task setsZC

def= {∀∆ ∈ R : ZC(T , ∆)}
that differ only in their WCETs. LetPDM be the deadline
monotonic schedule forT . Since the deadline monotonic
schedule for a task set is independent of the WCET of tasks
in the set it follows that for each member ofZC , PDM is
a feasible schedule if any exist. Therefore, it is impossi-
ble that there exists a schedulePmax 6= PDM such that
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∆∗(Pmax) > ∆∗(PDM ), since this would imply that there
is a member ofZC for which PDM is infeasible, but a dif-
ferent schedule is feasible.

Theorem 2. Audsley’sFEAS-OPTIMAL algorithm for prior-
ity assignment is notROBUST-OPTIMAL for preemptive [2]
or for non-preemptive [12] scheduling.

Proof. In both versions of the algorithm, if all tests of task
response time versus deadline succeed, then the first task
in the set is assigned the lowest priority, the second task
the second-lowest priority, etc. Therefore, we can feed
tasks to the algorithm in such a way that a non-robust-
optimal schedule is produced. For example, ifτ1 and then
τ0 from Section 4.3 were given to Audsley’s algorithm, it
would generate the rate-monotonic priority assignment that
we know to not beROBUST-OPTIMAL. It is straightfor-
ward to construct an analogous example for non-preemptive
scheduling.

4.5. Finding Robust Schedules

For classes of task sets that have an efficientFEAS-
OPTIMAL scheduling algorithm and for transformations
where the schedulability function is monotonic in the scal-
ing factor, an efficientROBUST-OPTIMAL algorithm can be
created by invoking theFEAS-OPTIMAL algorithm in a bi-
nary search. This strategy can be used to maximize the criti-
cal scaling factor, for example, of a task set scheduled by ei-
ther the preemptive or non-preemptive version of Audsley’s
algorithm for priority assignment. We call these algorithms
ROB-OPT.

For classes of task sets that lack an efficientFEAS-
OPTIMAL algorithm (e.g. task sets with preemption thresh-
olds) or for transformations where schedulability is not
monotonic in the scaling factor, we require an alternative
to ROB-OPT. We have developedROB-ANL , shown in Fig-
ure 3. It is a randomized heuristic search that can efficiently
compute an approximate member ofPmax. ROB-ANL is
similar to PT-ANL (shown in Figure 1) except that (1) in-
stead of minimizing the degree to which task response times
exceed their deadlines, we maximize the critical scaling fac-
tor, and (2) in the version of the algorithm that uses simu-
lated annealing we never accept an infeasible schedule, al-
though we must sometimes accept a solution that has an
inferior critical scaling factor.

An advantage of using a heuristic search is that the de-
tails of the parameter being optimized do not matter. For
example, if the cost of acquiring and releasing locks were
modeled in the schedulability function, then the heuristic
would naturally attempt to merge synchronizing tasks since
these schedules would have lower CPU overhead and con-
sequently are good candidates for being highly robust. In
the same vein, we would like to extend the response time
analysis for preemption threshold scheduling to accurately

ROB-ANL (Porig) {
Pmax = Porig

∆max = critical scalingfactor (Pmax)
while (max iterations not exceeded){

Pnew = permute (Pmax)
∆new = critical scalingfactor (Pnew)
if (∆new≥ ∆max) {

Pmax = Pnew

∆max = ∆new

}
}
return Pmax

}

Figure 3. ROB-ANL approximately maximizes
the critical scaling factor of a task set

model the costs of preemptive and non-preemptive context
switches. This would cause the search heuristic to find
schedules with low numbers of context switches, again be-
cause the reduced overhead would leave more room for tim-
ing faults. In summary, searching for robust schedules per-
mits many schedule optimizations to be treated uniformly;
we believe this is a significant advantage.

4.6. Maximizing the Critical Scaling Factor and Mini-
mizing Implementation Threads

Minimizing the number of threads required to run a task set
can conflict with maximizing robustness. To see this, no-
tice that the fewer implementation threads required to run a
schedule, the more constraints there are on the priority and
preemption threshold assignments. Sometimes these con-
straints hurt schedulability because they rule out the most
robust schedules. Instead of optimizing a composite value
function, i.e. one based on some weighting of maximizing
robustness and minimizing implementation threads, we be-
lieve that developers should be permitted to make an in-
formed decision using a table that presents the largest criti-
cal scaling factor that could be achieved for each number of
threads.

The algorithm for the joint minimization of implemen-
tation threads and maximization of critical scaling factor
is MIN -THR ; it appears in Figure 4. This algorithm uses
a heuristic search to find a schedule mapping to as few
implementation threads as possible. Whenever a sched-
ule is found that maps to a number of threads that has not
yet been seen, it forks off an optimization to attempt to
find the schedule that maximizes the critical scaling fac-
tor over schedules mapping to that number of threads. In
other words, it calls a slightly modified version ofROB-
ANL (from Figure 3) that only accepts schedules that map
to a particular number of threads.
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MIN -THR (Porig) {
Pmin = Porig

Tmin = impl threads (Porig)
while (max iterations not exceeded){

Pnew = permute (Pmin)
Tnew = find impl threads (Tnew)
if (not yet seen (Tnew)) ROB-ANL -T (Pnew, Tnew)
if (Tnew≤ Tmin) {

Pmin = Pnew

Tmin = Tnew

}
}

}

Figure 4. MIN -THR approximately minimizes
threads and maximizes robustness

5. Experimental Evaluation

This section provides a brief survey of the performance of
the new techniques presented in this paper. Our procedure
for generating random task sets is as follows, where all ran-
dom numbers are taken from a uniform distribution. The
period of each task is a random value between 1 and 1000
time units. The utilization is chosen by generating a ran-
dom number in range 0.1–2.0 and dividing that number by
the number of tasks in the set. (Scaling utilization by the
inverse of the number of tasks is merely a heuristic to avoid
generating too many infeasible task sets.) The deadline for
each task is either set to be the same as the period or is an
independently chosen random value between 1 and 1000,
depending on the experiment. Tasks were assigned release
jitter in some experiments; see below. Finally, any task set
with utilization greater than one is immediately discarded.

5.1. Task Clusters and Barriers

In this section we compare the different algorithms that we
have developed for finding feasible schedules for task sets
containing task clusters and barriers.

We compare five algorithms for scheduling task clusters.
The first is NP-OPT, the optimal algorithm for assigning
priorities for fully non-preemptible scheduling [12]. Recall
that in the presence of non-trivial task clusters a fully pre-
emptive schedule is never valid (because members of a clus-
ter must be mutually non-preemptible) while a fully non-
preemptive schedule is always valid. The second algorithm
is SP-LOCK , the strawman algorithm that we proposed in
Section 3.2 for implementing task clusters by forcing tasks
in the each cluster to always have a lock associated with
the cluster. The third algorithm isSP-3, the hierarchical
version of Audsley’s algorithm for priority assignment, and
the fourth isSP-ANL , the heuristic search for priority and
preemption threshold assignments for task sets that are to

n NP-OPT SP-LOCK SP-3 SP-ANL PT-ANL

5 34 65 73 88 100
10 35 49 61 77 100
15 25 48 53 63 100
20 29 41 49 58 100
25 41 39 43 47 100

Figure 5. Relative performance of algorithms
for scheduling task clusters

n SP-3 SP-ANL PT-ANL

5 98 99 100
10 77 89 100
15 75 79 100
20 71 70 100
25 59 57 100

Figure 6. Relative performance of algorithms
for scheduling task barriers

have purely static priorities at run time (Section 3.2). Fi-
nally, the fifth algorithm isPT-ANL , the heuristic search for
priority and preemption threshold assignments for task sets
containing clusters and when preemption threshold support
is available on the target RTOS.

Figure 5 shows the results of an experiment where ran-
dom task sets were passed to each of the five algorithms
listed above. The experiment terminated when any algo-
rithm successfully scheduled 100 task sets, and therefore
the results are automatically normalized with respect to the
best algorithm, which always has score 100. The experi-
ment was repeated for task sets containing 5, 10, 15, 20,
and 25 tasks. For every task set: there was a single task clus-
ter containing between 2 andn/2 randomly selected tasks;
each task’s deadline was equal to its period; and, each task
had a 50% chance of being assigned release jitter up to half
its period.

Figure 6 shows the results of an experiment similar to
the previous one, except that instead of containing a task
cluster, each task set was assigned a single randomly placed
task barrier. The algorithms tested were the same as in the
previous experiment except thatNP-OPT andSP-LOCK had
to be dropped since they may produce invalid schedules for
task sets containing task barriers.

These experiments show thatPT-ANL consistently out-
performs the other algorithms, and that the gap between
it and the others increases for larger task sets. This can
be taken as a corroboration of Saksena and Wang’s re-
sults [20] about the practical dominance of preemption
threshold scheduling over static priority scheduling. Of the
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Preemptive Non-Preemptive
P- ROB- NP- ROB-

n OPT OPT % inc. OPT OPT % inc.
5 1.11 1.18 63% 1.09 1.16 84%

10 1.06 1.13 109% 1.05 1.12 131%
15 1.05 1.10 110% 1.04 1.10 138%
20 1.05 1.09 97% 1.04 1.09 136%
25 1.04 1.08 92% 1.04 1.08 108%

Figure 7. Improving the critical scaling factor

no jitter 1 task w/J 50% tasks w/J
n T=D T 6=D T=D T 6=D T=D T 6=D
5 0% 62% 29% 61% 30% 63%

10 0% 101% 51% 93% 50% 109%
15 0% 100% 50% 87% 59% 110%
20 0% 100% 50% 100% 61% 97%
25 0% 81% 54% 77% 54% 92%

Figure 8. Headroom increases due to ROB-OPT

three algorithms that generate static-priority schedules,SP-
ANL , the heuristic search, outperformsSP-3, although the
gap narrows with increasing numbers of tasks. We believe
that this is because the extra non-preemptibility available to
SP-ANL becomes less valuable for larger task sets. Also,
notice that in Figure 6SP-3 slightly outperformsSP-ANL

for task sets with 20 and 25 members. We speculate that this
happens because the size of the priority assignment space
for large task sets overwhelms the search heuristic.

5.2. Improving the Robustness of Schedules

Figure 7 shows the increase in critical scaling factor
that ROB-OPT can achieve relative to Audsley’sFEAS-
OPTIMAL algorithms for fully preemptive (P-OPT) and
fully non-preemptive scheduling (NP-OPT). As before, task
sets are randomly generated and have 5–25 members. Each
task’s deadline and period are unrelated and each task has
a 50% chance of being assigned random release jitter up
to half its period. Values in the table represent the median
critical scaling factor over 500 feasible task sets, andinc
indicates the percent increase in the distance of the critical
scaling factor from 1.0 under optimization byROB-OPT.
For example, if theFEAS-OPTIMAL scheduling algorithm
produces a schedule where∆∗ = 1.10 andROB-OPT pro-
duces a schedule that has∆∗ = 1.13, then we say that we
have increased the amount of “headroom” that the task has
before missing deadlines by 30%.

Figure 8 shows another way to evaluateROB-OPT’s abil-
ity to increase∆∗. For task sets containing different num-
bers of tasks it shows the increase in headroom for task sets

where (1) the deadline of each task is equal to its period,
and (2) where period and deadline are unrelated. The other
parameter that is adjusted is the amount of jitter: task sets
either have no release jitter, a single task with jitter ran-
domly distributed between zero and half its period, or each
task has a 50% chance of being assigned jitter up to half its
period. The failure to increase∆∗ for task sets without jitter
and where T=D is a direct consequence of Theorem 1.

6. Related Work

Hybrid preemptive/non-preemptive schedulers are an old
idea, and in fact they can be found in the kernel of al-
most every general-purpose operating system: interrupts
are scheduled preemptively, bottom-half kernel routines are
scheduled non-preemptively, and threads are scheduled pre-
emptively. The real-time analysis of non-preemptive sec-
tions caused by critical regions [3, 21] is more recent. The
real-time analysis of mixed preemption for its own sake was
pioneered by Saksena and Wang [20, 26] and by Davis et
al. [7]. Our work builds directly on Saksena and Wang’s,
adding several new capabilities.

Synchronization elimination has been addressed both by
the real-time and programming language communities. For
example, the Spring system [22] used static scheduling and
was capable of recognizing situations where contention for
a shared resource was impossible, in which case a lock
was not used at run time. Aldrich et al. [1] show how to
remove unnecessary synchronization operations from Java
programs. The difference between previous work and the
work presented in this paper is that synchronization elim-
ination has until now been treated as a compile-time or
run-time performance optimization. We believe that using
task clusters to give the programmer explicit control over
the elimination of synchronization between (logically) con-
current tasks can result in significant software engineering
benefits in addition to the previously realized performance
benefits.

Starting with Lehoczky et al. [16] a number of re-
searchers have used the critical scaling factor as a metric
for schedulability, including Katcher et al. [14], Vestal [25],
Yerraballi et al. [27], and Punnekkat et al. [19]. However, as
far as we know it has not been previously recognized that it
is possible to search for schedules with higher critical scal-
ing factors, and that these schedules are inherently prefer-
able when there is generic uncertainty about task WCET.

Existing techniques for tolerating timing faults — task
instances that run for too long but eventually produce a
correct result — can be divided into those that change the
task model from the developer’s point of view and those
that do not. A number of scheduling techniques for dealing
with timing faults have been proposed that change the task
model, including robust earliest deadline [4], time redun-
dancy [6], rate adaptation [5], user-defined timing failure
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handlers [23], and(m, k)-firm deadlines [13]. Our method
for increasing robustness does not change the task model. It
is complementary to, and can be used independently of or
in combination with, essentially all of the other known tech-
niques for dealing with timing faults in systems using static
priority scheduling. Another technique that is transparent
to developers isisolation- or enforcement-based schedul-
ing [11, 17] where tasks are preempted when they exceed
their execution time budgets. Although this technique can-
not prevent missed deadlines it can isolate deadline misses
to tasks that overrun.

Edgar and Burns [8] have developed a method for sta-
tistically estimating task WCET based on measurements.
They also show how to statistically estimate the feasibil-
ity of a task set, but do not address the problem of finding
highly or maximally robust schedules. Our work, on the
other hand, directly addresses the problem of finding ro-
bust schedules, but permits the statistical nature of unreli-
able WCET estimates to remain implicit. It may be useful
to integrate the two models.

7. Software

All numerical results in this paper were generated using
SPAK, a static priority analysis kit that we have developed.
SPAK is a collection of portable, efficient functions for cre-
ating and manipulating task sets, for analyzing their re-
sponse times, and for simulating their execution. A variety
of existing analyses with different tradeoffs between speed
and generality are available, as is the corrected and extended
preemption threshold analysis presented in Appendix A.
SPAK is open source software and can be downloaded from
http://www.cs.utah.edu/˜regehr/spak .

8. Future Work

Currently, a task barrier is defined to split the task set
into two parts based on task indices. This is useful when
there are inherent priority relations between tasks, e.g. when
some tasks model interrupt handlers. However, a more gen-
eral abstraction is probably desirable — one that permits the
specification of subsets of the task set that must be isolated
from each other, e.g. by a CPU reservation, but between
which there is no inherent priority ordering.

Although we currently do not use CPU reservations or
any other kind of enforcement-based scheduling, in the
future we plan to use them to create temporal partitions
between task clusters. Partitions inside clusters probably
do not make sense because clusters are internally non-
preemptible, and because tasks in clusters are assumed to
be part of a subsystem and therefore semantically related,
reducing the utility of isolating them from each others’ tim-
ing faults.

9. Conclusions

The paper has described a number of practical additions to
existing work on fixed-priority real-time scheduling.

First, we have introduced two novel abstractions: task
clusters and task barriers. Task clusters make non-
preemptive scheduling into a first-class part of the real-time
programming model. We claim that clusters provide sig-
nificant software engineering benefits, such as the elimi-
nation of the possibility of race conditions and deadlocks
within a cluster, as well as performance benefits due to re-
duced preemptions, reduced memory overhead for threads,
and reduced lock acquisitions. These benefits are achieved
without sacrificing the higher utilizations that can usually
be achieved through preemptive scheduling. Task barriers
restore an important advantage of static priority scheduling
— support for integrated schedulability analysis of inter-
rupts, kernel tasks, and user-level threads — to preemption
threshold scheduling when the objective is to minimize the
number of implementation threads onto which design tasks
are mapped.

Second, we have developed three novel algorithms for
finding feasible schedules for task sets containing clusters
and barriers. The first targets systems with run-time support
for preemption thresholds while the others permit thread
priorities to be strictly static at run-time. By “compiling”
task sets containing task clusters and barriers to target a
static-priority environment, we have shown that while run-
time support for preemption thresholds is often not neces-
sary, the response time analysis for preemption thresholds
is an important building block for real-time systems.

Third, we have characterized a framework within which
it is possible to analyze the robustness of task sets under
a given class of timing faults and we have developed two
algorithms that can often find a schedule for a given task
set that has a higher critical scaling factor than the schedule
generated by the appropriateFEAS-OPTIMAL scheduling al-
gorithm. This extra resilience to timing faults is essentially
free: it is cheap at design time and imposes no cost at run-
time.

Finally, we have corrected an error in the response time
analysis for task sets with preemption thresholds.
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A. Correcting the Response Time Analysis for
Preemption Threshold Scheduling

The original response time analysis for task sets scheduled
using preemption thresholds [26] contains an error — it
sometimes examines too few previous task invocations, re-
sulting in the potential for underestimated response times.

Figure 9 shows the difference between the previous pre-
emption threshold analysis and the corrected version pre-
sented in this section. The old analysis predicts that the task
set is feasible, while the new analysis predicts thatτ1 may
not meet its deadline. Figure 10 is a trace of a simulated
execution of the task set. It proves the infeasibility of the
task set by counterexample:τ1 misses its second deadline.

The following response time analysis differs from the
one presented by Wang and Saksena in two major ways.
First, it has a different termination condition for the loop
that takes previous invocations of a task into account when
computing its response time. Second, it adds support for
tasks with release jitter. We have also changed the notation
to match that used in this paper.

The worst-case blocking time for a task is:

Bi = max
∀j : P j≥Pi>Pj

Cj

In other words, the worst-case blocking forτi happens when
the task with the longest WCET that has lower priority and
higher preemption threshold is dispatched infinitesimally
earlier thanτi is able to run.

Si, the worst-case start time of taski, is:

Si(q) = Bi + qCi +
∑

∀j : Pj>Pi

(
1 +

⌊
Si(q) + Jj

Tj

⌋)
Cj

Our only change to this equation is the addition of a term
accounting for release jitter.

Fi, the worst-case finish time of taski, is:

Fi(q) = Si(q) + Ci+∑
∀j : Pj>P i

(⌈
Fi(q) + Jj

Tj

⌉
−

(
1 +

⌊
Si(q) + Jj

Tj

⌋))
Cj

Again, we have only added the jitter terms.
The response time of taski is:

ri = max
∀q : 0≤q≤Q

(Fi(q) + Ji − qTi)

WhereQ is bLi/Tic. Li is the longest level-i busy period
for preemption threshold scheduling, and is:

Li = Bi +
∑

∀j : Pj≥Pi

⌈
Li + Jj

Tj

⌉
Cj

Task Ci Ti Di Ji Pi P i rold
i rnew

i

τ0 40 70 70 0 0 0 60 60
τ1 20 90 90 0 2 0 80 120
τ2 20 100 100 0 1 0 80 80

Figure 9. Response times computed using the
original and fixed analyses
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Time

t0

t2

t1

Figure 10. Simulated execution trace of the
task set from Figure 9. The second instance
of task 1 misses its deadline.

The computation ofQ was adapted from George et al. [12],
and is the core of the difference between our analysis and
the previously published one, which iterated only untilq =
m whereFi(m) ≤ q · Ti. By working through the response
time calculation forτ1 in the example task set in Figure 9,
this termination condition can be seen to be the source of
the error.

Whenever a variable appears on both sides of the equa-
tion (i.e.,Si, Fi, andLi) its value can be found by iterating
until the value converges. Zero is a safe initial value forSi

andFi, butLi needs to start at one.
Finally, we do not believe that the discrepancy between

the old and new response time analyses affects any of the
qualitative results reported by Saksena and Wang. For ran-
domly generated task sets with 10 members and no release
jitter the two analyses agree on the response times of all
tasks about 99% of the time.
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