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Abstract

Discrete-event packet-level network simulation is
well-known and widely used. Network emulation is a hy-
brid approach that combines real elements of a deployed
networked application—such as end hosts and pro-
tocol implementations—with synthetic, simulated, or
abstracted elements—such as the network links, inter-
mediate nodes and background traffic. A key difference
between the two approaches is that in the former, the no-
tion of time is virtual and is independent of real time,
whereas the latter must execute in real time. Emula-
tion gains realism while naturally foregoing complete re-
peatability; historically, emulation was also tedious to
control and manage.

We define integrated network experimentation as spa-
tially combining real elements with simulated elements in
the same experimental run, each modeling different por-
tions of a network topology. Integrated experiments enable
new validation techniques and larger experiments than ob-
tainable using real elements alone. This paper highlights
the key issues in integrated network experimentation, and
presents some of the design techniques we use in design-
ing, building, and putting into public production use such
an integrated environment, running on a space-shared clus-
ter.

1. Introduction

There are three experimental techniques used in the de-
sign and validation of new and existing networking ideas:
simulation, emulation and live network testing. All three
techniques have unique benefits and drawbacks. However,
they need not be viewed as competing techniques—using
more than one technique can help validate ideas better than
using any one technique alone.

Network simulation provides a repeatable and controlled
environment for network experimentation. It is easy to con-
figure and allows a protocol to be constructed at some level
of abstraction, making simulation a rapid prototype-and-

evaluate environment. Ease of use also allows for explo-
ration of large parameter spaces.

Network emulation [18, 25, 22, 8] is a hybrid ap-
proach that combines real elements of a deployed net-
worked application—such as end hosts and protocol
implementations—with synthetic, simulated, or ab-
stracted elements—such as the network links, interme-
diate nodes and background traffic. Which elements are
real and which are partially or fully simulated will of-
ten differ, depending on the experimenter’s needs and
the available resources. A fundamental difference be-
tween simulation and emulation is that while the for-
mer runs in virtual simulated time, the latter must run in
real time. Another important difference is that it is impos-
sible to have an absolutely repeatable order of events in
an emulation. That is due to its realtime nature and, of-
ten, a physically-distributed computation infrastructure.

We define integrated network experimentation as spa-
tially combining real elements with simulated elements,
each modeling different portions of a network topology
in the same experimental run. Integrated experimentation
leverages the advantages of using real and simulated ele-
ments, providing valuable capabilities. It enables i) valida-
tion of experimental simulation models against real traffic
loads; ii) validation of real applications against repeatable,
congestion-reactive cross traffic derived from a rich vari-
ety of existing, validated simulation models; iii) by multi-
plexing simulated elements on physical resources, scaling
to larger topologies than would be possible with real ele-
ments only; and iv) direct interaction of real applications
with arbitrary simulated networks.

A related form of network experimentation is to integrate
experimental techniques temporally, as researchers experi-
ment iteratively on the same input, providing comparison
and validation. While the advantages of the latter are dis-
cussed elsewhere [25], this paper is confined to discussing
issues in spatial integration.

In this paper we outline the key issues in integrated net-
work experimentation and present some of our design tech-
niques. The latter include automatic partitioning of the net-
work topology specification, scalable resource-conserving
assignment of physical resources to the topology, and



feedback-directed auto-adaptation of the resource as-
signment, to ensure that simulators run in realtime. We
demonstrate integrated network experiments by seam-
lessly integrating simulated resources via nse [8] in the
Emulab testbed [25]. Our work in automatically par-
titioning topologies across physical PCs and switches
also benefits “pure” distributed network simulation, al-
though we have not yet implemented that.

The rest of the paper is organized as follows. In Sec-
tion 2, we briefly describe Emulab and nse. Section 3 de-
scribes how we automate integrated experiments. In Sec-
tion 4 we go into the details of scalable resource assign-
ment. In Section 5, we explain our algorithm for perform-
ing auto-adaptation, including two heuristics. Section 6 out-
lines a few results. We discuss related work in Section 7,
how our work is applicable to “pure” distributed simulation
in Section 8, and we then conclude.

2. Testbed Context

The Emulab software is the management system for
a network-rich PC cluster that provides a space- and
time-shared public facility for studying networked and dis-
tributed systems.

An “experiment” is Emulab’s central operational entity.
An experimenter first submits a network topology speci-
fied in an extended ns syntax. This virtual topology can in-
clude links and LANs, with associated characteristics such
as bandwidth, latency, and packet loss. Limiting and shap-
ing the traffic on a link, if requested, is done by interpos-
ing “delay nodes” between the endpoints of the link, or by
performing traffic shaping on the nodes themselves. Spec-
ifications for hardware and software resources can also be
included for nodes in the virtual topology.

Once the testbed software parses the specification and
stores it in the database, it starts the process of “swapin”
to physical resources. Resource allocation is the first step,
in which Emulab attempts to map the virtual topology onto
the PCs and switches with the three-way goal of meeting
all resource requirements, minimizing use of physical re-
sources, and running quickly. In our case the physical re-
sources have a complex physical topology: multiple types
of PCs, with each PC connected via four 100 Mbps Eth-
ernet interfaces to switches that are themselves connected
with multi-gigabit links. The testbed software then instanti-
ates the experiment on the selected machines and switches.
This can mean configuring nodes and their operating sys-
tems, setting up VLANs to emulate links, and creating vir-
tual resources on top of physical ones. Emulab includes a
synchronization service as well as a distributed event sys-
tem through which both the testbed software and users can
control and monitor experiments.
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Figure 1. The basic operation of the ns emu-
lation facility (nse)

The simulation back-end in Emulab that is described in
the rest of the paper takes advantage of the ns emulation fa-
cility (called nse) [8] that permits simulated packets to leave
the simulator for the “real” network, and vice versa.

We define here some of the terms we use in the rest of
the paper. A pnode is a physical PC node in Emulab. A vir-
tual topology is one that an experimenter specifies and is in-
dependent of its physical realization in the experimental en-
vironment. A vnode is a node in the virtual topology which
could be of different types, such a PC vnode, simulated vn-
ode or “virtual machine” vnode. Similarly, vlinks and plinks
are virtual links in the virtual topology and physical links re-
spectively.

3. Automation

Automation of the complete experiment life-cycle can
be a big factor in the overall experimentation time. For
example, comparisons between manual experimental setup
against an automated one of a 6-node “dumbbell” topology
in Emulab show an improvement of a factor of 70 in the au-
tomated case [25]. The user of Emulab specifies a integrated
experiment in ns-like OTcl code that is agnostic to how the
experiment is physically realized. A user encloses ns code in
a make-simulated block to indicate which portions of the
specification are to be simulated. There can be several such
blocks in a single specification which are eventually con-
catenated. One of the aspects of automating the mapping
of the simulated portion of an integrated experiment is that
the specification of the simulated topology must be used to
generate multiple specifications for each sub-portion of the
topology that gets mapped to different physical nodes. The
structure of the specification language and the relationship



between virtualized resources can have an impact on the
ease of doing this. The use of OTcl, a general purpose pro-
gramming language with loops and conditionals, for specifi-
cation in ns and Emulab makes the above task difficult com-
pared to a domain specific language that enforces relation-
ships between resources at the syntactic level. For example,
the domain specific language (DML) used by the scalable
simulation framework (SSF [6]) simulator has a hierarchi-
cal attribute tree notation [5] that would make it easier to
generate specifications of sub-portions of the full topology.
DML is a static, tree-structured notation similar to XML.
Because of the tree-structured nature of DML, a node and
its attributes as well as any resources belonging to the node
are syntactically nested. Thus, a simple parser can partition
such a node and everything associated with it easily. On the
other hand, ns OTcl can have simulated resources with log-
ically nested relationships scattered anywhere in the code
without explicit syntactic hints, making such partitioning
more complex.

Emulab uses an OTcl interpreter to parse a user’s OTcl
specification into an intermediate representation and stores
this in a database [25]. The parser statically evaluates the
OTcl script and therefore takes loops and conditionals into
account. Using a similar approach, we have developed a
custom parser to parse the simulated portion of the in-
tegrated experiment specification and generate new OTcl
specifications for each sub-portion of the topology mapped
to a physical node 1. We have extended the Emulab parser to
store the simulated part of the experiment specification (en-
closed in one or more make-simulated blocks) into the
database “as is” for further parsing later. This is necessary
since OTcl sub-specifications can be generated only after
the mapping phase. We will call this second parse as nse
parse. Our approach for the nse parse is similar to Emu-
lab’s initial parsing. The output of the nse parse is a set of
OTcl sub-specifications that are targeted to different simu-
lator instances. Once generated, these sub-specifications are
stored in Emulab’s database to be used during the experi-
mental run. We describe our approach for this parse below.

Written in OTcl, the parser operates by overriding and in-
terposing on standard ns procedures. Some key ns methods
are overloaded. These methods use the mapping informa-
tion from Emulab’s database to partition the user-specified
OTcl code into OTcl sub-specifications for each simulator
instance. Due to the structure of classes in ns, we are able to
support a large portion of ns syntax in the make-simulated
block. ns classes that are important for this parsing phase are
Simulator, Node, Agent and Application. Links in ns
are typically instantiated using the duplex-link method

1 The implementation described in this section can be re-targeted to gen-
erating OTcl sub-specifications to map pure distributed simulation us-
ing pdns, albeit with modest changes to our implementation. We hope
to complete that separate project in the medium future.

of the Simulator class. Traffic in ns has a simple two layer
model: transport and application. Subclasses of the Agent

class normally implement the transport layer functionality
of any protocol. These agents are all attached to a Node ob-
ject. Similarly, subclasses of the Application class imple-
ment the application layer functionality of a protocol. The
application objects are all attached to some agent. Agent
and Application are thus directly or indirectly associated
with a Node object, allowing the OTcl code for them all to
be generated for a particular simulator instance. All simula-
tion objects support the specification of per-object attributes
via instance variables.

Classes in ns have structured names with the hierarchy
delineated by the slash (/) character. For example, all sub-
classes of the Agent class have a Agent/ prefix. Tcl/OTcl
also supports info procedures that can help extract the state
of the OTcl interpreter Similarly, an unknown method per-
mits us to capture arbitrary method calls without any knowl-
edge about them. Using the above features, we are able to
reconstruct the OTcl code to be given to different instances
of nse. Note that most of the constructs are re-generated as
they were specified by the experimenter while others such
as links are transformed into rlinks, a type of link we have
created, if the incident nodes are mapped to different simu-
lator instances. These rlinks perform encapsulate simula-
tor packets in IP packets and inject them into the network.
At the other end, we perform packet capture, de-encapsulate
the IP packet into a simulator packet and introduce it into
the simulation. IP addresses are used for the global routing
of packets. Emulab automatically assigns IP addresses and
generates global shortest path routes which we then use dur-
ing the simulation. For user-specified events specified with
the at method of the Simulator class, our overridden at

method makes an attempt to map the event to a simulation
object which is further mapped to the simulator instance to
which it needs to be delivered. The events thus mapped are
thus stored in the database. OTcl code is not generated for
user-specified events since they will be delivered via Em-
ulab’s central event scheduler as described in the technical
report [10]. The following points outline a list of steps per-
formed by the nse parser:

1. Concatenate all make-simulated blocks and store it
in the database during first parse along with topology
info.

2. Perform mapping using topology information from the
database.

3. Initialize mapping info from the database in the nse
parser (OTcl based).

4. Source the code in make-simulated block into the
parser creating objects based on overridden classes
such as Simulator, Node, Agent etc. that we have de-
fined. The base class object is created for any class



name with a prefix of one of the above special classes.
The actual name of the subclass is stored and will be
used later to re-generate Tcl code. Objects of unrecog-
nized classes are ignored.

5. Unrecognized global Tcl procedures are ignored. Note
that unrecognized methods for the special classes
mentioned above are all captured using the unknown

method for the respective classes.

6. The last step is to generate OTcl code in this order of
simulation objects: Simulator, Node, duplex-link,
rlink, Agent, Application. The code generated
will have method invocations as well as initialization
of instance variables.

While our approach works well within the bounds of
careful specification, numerous counter-examples of exper-
iment specification can be constructed where our approach
for parsing when using either Emulab frontend parser or nse
parser will fail or is not adequate. For example, if speci-
fied code had dependencies on variable values of a running
simulator, our approach fails. Another example is if an ex-
perimenter specified an OTcl loop to create a large num-
ber of simulation objects, our code generation will unroll
all the loops, potentially causing code bloat that may be be-
yond the limits of our system. Some of these limitations
can be overcome with more work while others are difficult
to do so without writing a complete interpreter that under-
stands all of ns. Despite these limitations, we have run auto-
mated integrated experiments with a simulated topology of
400+ nodes and 400 simulated FTP/TCP traffic flows.

4. Scalable Resource Assignment and Map-
ping

Network experimentation on real hardware requires a
mapping from the virtual resources an experimenter re-
quests to available physical resources. This problem arises
in a wide range of experimental environments, from net-
work emulation to distributed simulation. This mapping,
however, is difficult, as it must take a number of varying
virtual resource constraints into account to “fit” into phys-
ical resources that have bandwidth bottlenecks and finite
physical node memory and compute power. Poor mapping
can reduce efficiency and worse, introduce inaccuracies—
such as when simulation events cannot keep up with real-
time—into an experiment. We call this problem the “net-
work testbed mapping problem” [16]. In general graph the-
ory terms, this is equivalent to the graph embedding or map-
ping problem with additional constraints specific to this do-
main. This problem is NP-hard [16].

The mapping could be many-to-one, such as multiple vn-
odes and vlinks on a physical node, one-to-one, such as a

router node on a physical PC, or one-to-many, such as a
vlink of 400Mbps that uses four physical 100Mbps links 2

When simulated traffic interacts with real traffic, it must
keep up with real time. For large simulations, this makes it
necessary to distribute the simulation across many nodes.
In order to do this effectively, the mapping must avoid
“overloading” any pnode in the system, and must minimize
the links in the simulated topology that cross real plinks.
By “overload,” we mean that there are more simulated re-
sources mapped to a pnode than the instance of a simulator
can simulate in real-time.

“Pure” distributed simulation also requires similar map-
ping. In this case, rather than keeping up with real time,
the primary goal is to speed up long-running simulations by
distributing the computation across multiple machines [4].
However, communication between the machines can be-
come a bottleneck, so a “good” mapping of simulated nodes
onto pnodes is important to overall performance. While this
is achieved by minimizing the number of vlinks that cross
pnodes, another factor that affects performance is the looka-
head that can be achieved. Lookahead refers to the ability to
determine the amount of simulated time that could be safely
processed in one simulator process without causality errors
due to events from a different simulation process. Looka-
head is affected by the distance between simulation pro-
cesses [9]. Distance provides a lower bound in the amount
of simulated time that must elapse for an unprocessed event
on one process to propagate to (and possibly affect) another
process. Therefore, it is not just important that a good map-
ping has fewer links crossing simulation processes, but also
for them to be low bandwidth and/or high latency links be-
cause they increase distance and thus lookahead, leading to
improvement of efficiency of a distributed simulation.

A good mapping has the following properties:

• Sparse cuts: The number of vlinks whose incident vn-
odes are mapped to different pnodes should be mini-
mized. At the same time, the number of vnodes and
vlinks mapped to the same pnode should not exceed
its emulation capacity.

• Low congestion: The number of vlinks that share
plinks should be minimized without over-subscribing
the plinks. While some plinks such as node-to-switch
plinks are dedicated to an experiment, others such as
inter-switch plinks are shared between experiments.
By minimizing vlinks mapped to shared plinks, space-
sharing efficiency is increased.

• Low dilation: The physical length (i.e., hops) that
correspond to mapped vlinks, also known as dilation,
should be kept to a minimum. For example, a vlink

2 Emulab currently does not support bonding physical links to form
vlinks of higher capacity than that of a single plink.



that is mapped to a plink that traverses multiple cas-
caded switches, is less desirable than one that traverses
only one switch.

• Efficient use of resources across experiments: The
unused capacity of physical resources that are not
shared across experiments must be kept to a minimum.
In other words, minimize usage of shared resources
such as inter-switch links and maximize usage of ex-
periment private resources such as pnodes and switch
links from/to these nodes.

• Fast Runtimes: A sub-optimal solution arrived at
quickly is much more valuable than a near opti-
mal solution that has very long runtimes (e.g., min-
utes vs. hours). This aspect becomes important when
we map iteratively using runtime information to per-
form auto-adaptation of simulated resources. Due
to the NP-hard nature of the problem, the run-
times are easily exacerbated by larger topologies made
possible by “soft” resources such as simulated or “vir-
tual machine” resources.

assign [16] is the name of the resource assignment pro-
gram we have developed in Emulab. It supports a node type
system. Each node in the virtual topology is given a type by
the experimenter, and each node in the physical topology
has a set of types that it is able to satisfy. Each type on a pn-
ode is associated with a “packing factor” (also known as
“co-locate factor”), indicating how many nodes of that type
it can accommodate. This enables multiple vnodes to share
a pnode, as required by integrated experimentation as well
as “pure” distributed simulation. For example, if sim is the
type associated with simulated nodes, a pnode will support
a co-locate factor for nodes of type sim. However, if all vir-
tual or simulated nodes are considered to be equal, this can
lead to sub-optimal mapping since typically the pnode re-
sources consumed by vnodes are all different. To achieve
better mapping, arbitrary resource descriptions for vnodes
and pnodes need to be supported. However, this adds a bin-
packing problem to an already complicated solution space.
In order to flexibly support soft resources such as simulated
or “virtual machine” resources, several new features were
added recently to assign [11]. We describe these features
below3.

Limited Intra-node bandwidth: When multiple vnodes
are mapped to a pnode, vlinks are also mapped to the same
pnode. Originally, there was no cost for such vlinks which
makes it possible to potentially map an arbitrarily large
number of vlinks. In reality however, there is a limit on the
number and total capacity of vlinks that can be supported.
An idle vlink has no cost other than memory used up in the

3 We discuss how they are used to iteratively map simulated resources
in section 5.

simulator. However, there is a computational cost of pro-
cessing packets when traffic passes through vlinks. assign
now supports an upper limit on the intra-node bandwidth
and uses it when mapping vlinks whose capacities are al-
lowed to add up to the bandwidth. When mapping simu-
lated resources, we set this capacity to 100Mbps on Emulab
hardware, based on measurements reported elsewhere [10].

Resource Descriptions: Pnodes support arbitrary re-
source capacity descriptions such as CPU speed, mem-
ory, measured network emulation capacity, and real-time
simulation event rate. Essentially this could be any value
that represents an arbitrary resource capacity. Capacities
for multiple resources are possible per pnode. Thus, vn-
odes with resource usage values for multiple resources are
counted against the above capacities. It is possible to use re-
source descriptions even if only relative resource usage be-
tween vnodes is known. For example, if vnode A consumes
thrice as many resources as vnode B, vnode A when mapped
to an empty pnode would become 75% full.

Dynamic Physical Equivalence Classes: assign re-
duces its search space by finding groups of homoge-
neous pnodes and combining them into physical equiva-
lence classes. When multiplexing vnodes on pnodes, a pn-
ode that is partially filled is not equal to an empty node. This
is not just in pnode capacity but also in its physical con-
nectivity to other pnodes since the plinks between them
are also partially filled. assign now computes the physi-
cal equivalence classes dynamically while mapping. While
this helps a little, this feature is close to not having physi-
cal equivalence classes at all. This factor is the dominant
contributor to longer runtimes when mapping multiple vn-
odes on pnodes, compared to an equal-sized topology
with one-to-one mapping. For large topologies, the run-
times can be very long, into the tens of minutes and even
hours.

Choice of pnode while mapping: As we noted before,
a good mapping is likely to map two vnodes that are adja-
cent in the virtual topology, to the same pnode. Instead of
selecting a random pnode to map a vnode, assign, now,
with some probability, selects a pnode to which one of the
vnode’s neighbors has already been assigned. This dramat-
ically improves the quality of solutions, although not the
runtimes on large topologies.

Coarsening the virtual graph: Using a multi-
level graph partitioner, METIS [12], which runs much
faster than assign primarily because it has no knowl-
edge of the intricacies of the problem, the virtual topology
is “coarsened”. By “coarsening,” we mean that sets of vn-
odes are combined to form a “conglomerate” to form a
new virtual graph which is then fed to assign. This fea-
ture dramatically improves runtimes, again due to the
reduction in search space, making it practical to per-
form auto-adaptation.



5. Feedback-directed Auto-adaptation of Sim-
ulated Resources

A mapping of simulated resources to physical resources
should avoid “overloading” any pnode in the system, which
was discussed in detail in section 4. The workload to which
an instance of nse is subjected is not easily determined
statically in an integrated experiment, partly because an
experimenter can generate arbitrary traffic without speci-
fying its nature apriori. An overloaded pnode will result
in simulation inaccuracies. In the case of simulated re-
sources, these inaccuracies occur because the simulator is
not able to dispatch all events in real-time. A similar is-
sue also arises when multiplexing “virtual machine” type
vnodes on pnodes. In order to solve this issue, we perform
auto-adaptation of simulated resources when overload is de-
tected. Successive mappings use feedback data from run-
ning the experiment with prior mappings, until no overload
is detected or we run out of physical resources. Such a so-
lution for “virtual machine” type vnodes is discussed else-
where [11]. In this section, we focus on performing auto-
adaptation of simulated resources.

The factors that make it feasible for us to perform auto-
adaptation are:

Fast mapping: This was discussed in section 4. A map-
ping that takes hours is clearly too slow. Iterative mapping
reduces the search space by re-mapping only the portions of
the topology that were mapped to pnodes reporting an over-
load.

Fast pnode reconfiguration: Iterative mapping is af-
fected by the speed of reconfiguring pnodes for the new
mapping, both pnodes currently reserved to the experiment
and new ones that may be allocated as more resources are
needed. Current PC hardware can take long enough to boot
that this starts to affect re-mapping time. Emulab in a recent
optimization, now avoids doing full reboots by having un-
used pnodes wait in a “warm” state in the boot loader. This
boot loader has the ability to boot into different disk parti-
tions, and to boot different kernels within those partitions.
Pnodes that were already part of the experiment are recon-
figured without rebooting. This involves pushing all the Em-
ulab client configuration data to the pnode, reconfiguring in-
terfaces, routing tables, and a new simulation.

Initial mapping is guided by optimistic vnode co-locate
factors per pnode type in Emulab. A more powerful PC sup-
ports a higher co-locate factor than a less powerful one.
The co-locate factor is intended as a coarse grained met-
ric for CPU and memory load on a pnode. In simulations
with lots of traffic, the CPU bottleneck is typically reached
much earlier than memory limits are reached. Also, if dif-
ferent amounts of traffic are passing through different vn-
odes, their resource consumptions will be different. Con-
sidering these problems, the co-locate factor we choose is

only based on a pnode’s physical memory. Based on feed-
back data obtained from running the simulations, we hope
to quickly converge to a successful experiment if the ini-
tial mapping is too optimistic. A simulated vnode in nse
consumes only moderate amounts of memory, allowing us
to support a large co-locate factor. According to a study
that compared several network simulators [7], ns allocated
roughly 100KB per connection, where each connection con-
sists of two nodes with two duplex-links that each add new
branches to a “dumbbell” topology. Each connection con-
sisted of a TCP source and sink on the leaves of the dumb-
bell. On an Emulab PC with 256–512MB of memory, a
fairly large co-locate factor can be supported.

When an overload is detected by a simulator instance, it
reports all necessary information to Emulab masterhost via
the event system. On receiving the first such event, a pro-
gram on the masterhost is run that waits for several sec-
onds, giving sufficient time for other pnodes to report over-
load if present. This program stores the feedback data into
the database and begins re-mapping the experiment.

We outline two heuristics that we separately experiment
with to guide auto-adaptation:

Doubling vnode weights: A coarse heuristic that we use
is to double the weight of all the simulated nodes hosted
on the pnode that reported an “overload” and re-map the
topology. These simulated nodes will then consume twice
as many slots from the pnode co-locate factor as before.
This process repeats until no overload is detected or a vn-
ode is being mapped one-to-one to an overloaded pnode. If
the overload is still present, it means that the experiment
could not be mapped on Emulab hardware.

Vnode packet-rate: Simulation event-rate is directly
proportional to the rate of packets that pass through a vnode
or are generated by that vnode. This is because every packet
typically causes roughly a constant number of events. For
packet forwarding, even though events in ns occur in links,
the cost of processing these events can be attributed to the
vnode to which such links are connected. Because the Emu-
lab mapper, assign, associates resource capacities with pn-
odes and resource use with vnodes, we use the rate of pack-
ets passing through a vnode as the cost. Based on packet-
rate measurements for Emulab hardware that we have re-
ported in a detailed technical report [10], we set the pn-
ode packet-rate capacities. This is a fine-grained heuristic
compared to the previous one. Starting from an optimistic
mapping, we can easily identify the vnodes that are “heavy-
weight,” allowing subsequent mappings to pack such vn-
odes less tightly.



6. Results

6.1. Validation of distributed nse

When simulated resources in an integrated experiment
are mapped to multiple PCs, some of the flow endpoints
also get mapped to different nse instances on different PCs.
In order to determine how similar are packet flows inside a
single instance of nse compared to the ones that cross phys-
ical (switched) links, we perform the following experiment:

The basic experimental setup consists of two simulated
nodes connected by a T1-like duplex-link of 1.544Mbps
bandwidth and 25ms latency. Traffic is generated using
Agent/TCP which is an abstract implementation of the BSD
Tahoe TCP protocol [2]. About 75MB of data are trans-
ferred over this connection in one direction. This gives us
a trace of approximately 50, 000 data packets and approxi-
mately the same number of ACK packets in the reverse di-
rection. The simple model described above is useful in es-
tablishing a lower bound on the difference between abso-
lute repeatable simulations and emulations using distributed
nse. (In the rest of this section, a “TCP-sink” is the end-
point which receives DATA packets, while a “TCP-source”
refers to the endpoint that sends DATA packets and receives
ACKs. )

The above setup is realized under the following scenar-
ios:

1. Both simulated nodes are in one instance of nse, i.e.,
pure real-time simulation. Whenever we use RTSIM
anywhere in this section, we mean this scenario. Un-
less nse falls behind real-time due to an intensive work-
load, these results are the same as that of pure simula-
tion. We have verified that all RTSIM results reported
in this section exactly match pure ns simulation (i.e.,
running in discrete virtual time) which runs faster than
real-time for this workload.

2. Each simulated node is in a different instance of nse on
two different PCs connected via a 100Mbps switched
Ethernet link. Each instance of nse simulates one node
and the outgoing link to the other node. The physi-
cal 100Mbps link is simply used as a transport for the
encapsulated simulator packets4. We will refer to this
scenario in this section by DIST-RTSIM.

3. The above scenario is replicated to have 60 simulated
T1 links mapped to the same 100Mbps switched Eth-
ernet link. Each instance of nse is handling approxi-
mately 7646 packets per second which is within the
stable capacity of nse on this hardware, as detailed in

4 The size of the encapsulated packets does not always depend on the
simulated packet size since packet data is not typically included. In
the experiments performed here, the encapsulated packet size includ-
ing the IP and Ethernet headers was about 100 bytes.

the technical report [10]. Note that these are encapsu-
lated packets roughly about 100 bytes in size result-
ing in 6–7% utilization of a 100Mbps Ethernet link.
The simulated nodes on each end for these links are
mapped to two different nse instances running on two
PCs. This setup is useful in identifying the effects of
multiplexing packets from independent virtual links
over the same physical link. We will refer to this sce-
nario in this section as DIST-RTSIM-60.

Our platform for all tests is an 850Mhz Pentium-III PC,
512 MB DRAM, running FreeBSD 4.9.

We now present comparisons between RTSIM, DIST-
RTSIM and DIST-RTSIM-60.

Aggregate throughput comparisons for all three cases
above had very small percentage errors from the expected
value (< 0.02%). We present the comparison of frequency
of packet inter-arrivals at the TCP-sink in figure 2. Sev-
eral more data points for such comparisons including time-
variance plots are available in the technical report [10].

7. Related Work

Modelnet [22] is an emulation system focused on scal-
ability. It uses a small gigabit cluster, running a much ex-
tended and optimized version of Dummynet which is able
to emulate an impressively large number of moderate speed
links. It has the added capability of optionally distilling the
topology to trade accuracy for scalability. It is complemen-
tary to our work. Our work leverages ns’s rich variety of
models and protocols.

Dynamic Network Emulation Backplane [1] is an ongo-
ing project that uses a dynamic library approach for cap-
turing, synchronizing and re-routing network data from un-
modified distributed applications over a simulated network.
They also define an API for heterogeneous simulators to
exchange messages, synchronize simulation time and keep
pace with real time in order to simulate a larger network,
thus leveraging the strengths of different network simu-
lators. Time-synchronization in the distributed simulation
case has a high overhead and it remains to be seen whether
it can be performed in real-time. Data is captured from un-
modified applications by intercepting system call functions
using a dynamic-library pre-loading approach. This how-
ever, is platform dependent as well as error prone due to du-
plication of code and specialized implementation of several
system calls.

nsclick [15] embeds the click modular router [14] in ns-2
which allows a single click based protocol implementation
to run over a simulated wired or wireless network as well as
on a real node on a real network.

NCTUns [24] is a TCP/IP simulator that has descended
from the Harvard network simulator [23]. This simulator
virtualizes the OS’s notion of time to be the simulation
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(c) DIST-RTSIM-60 (worst of 60 flows)

time. Using a combination of link simulation and tunnel de-
vices, a network topology is built on a simulation host ma-
chine. Applications and the protocol stack are unmodified
and therefore more realistic than traditional simulators.

umlsim [3, 21] extends user-mode Linux (UML) with an
event-driven simulation engine and other instrumentation
needed for deterministically controlling the flow of time as
seen by the UML kernel and applications running under it.
The current level of support allows network experimenta-
tion with a single link. The degree of multiplexing of vir-
tual nodes is limited due to the use of a complete kernel. The
current system also performs poorly and has much scope for
improvement.

The X-bone [19] is a software system that configures
overlay networks. It is an implementation of the Virtual In-
ternet Architecture [20] that defines “revisitation” allow-
ing a single network component to emulate multiple vir-
tual components, although in their context, a packet leaves
a physical node before returning on a different virtual link.
In our system, multiple routing tables as well as the con-
text of a virtual link are needed even when all the nodes and
links of a virtual topology are hosted on one physical host.
In the general sense, however, the issues they identify have
a broader scope than what they have restricted themselves
to, in their paper. Thus, virtual internets can be formed not
just in the wide-area but also using a cluster such as the
one employed in Emulab. Integrated network experimenta-
tion spans all three experimental techniques and we there-
fore believe that it is the most comprehensive form of vir-
tual internet that we know of.

8. Discussion

Users of a simulator such as pdns [17] have to manu-
ally partition a simulation model into its sub-models that
run on different processors and are required to specify
global addressing and routing to run the simulation. The
DaSSFNet [6, 13] simulator partitions a simulation model
using METIS [12]. However, the number of machines used
for simulation has to be specified by the user and is used to

determine the number of partitions. When performing only
static partitioning, it is difficult to load-balance the simula-
tion workload across all processors. A user typically has a
fixed set of machines available for simulation that are not
space-shared. Thus, there is no incentive to reduce the num-
ber of processors used even if the simulation can be per-
formed nearly as efficiently on a smaller number of proces-
sors. In a space-shared environment, this becomes impor-
tant.

The constraint for mapping a integrated experiment is
that simulations must execute in realtime. In the case of
“pure” distributed simulations, the goal is to reduce the run-
time of long running simulations.
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