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ABSTRACT

In this thesis we argue that content distribution in the face of censorship is

an appropriate and feasible application of active networking. In the face of a

determined and powerful adversary, every fixed protocol can become known and

subsequently monitored, blocked, or its member nodes identified and attacked.

Rapid and diverse protocol change is key to allowing information to continue to flow.

Typically, decentralized protocol evolution is also an important aspect in providing

censor-resistance for publishing networks. These goals can be achieved with the

help of active networking techniques, by allowing new protocol implementations, in

the form of mobile code, to spread throughout the network.

A programmable overlay network can provide protocol change and decentralized

protocol evolution. Such a system, however, will need to take steps to ensure

that programmability does not present excessive security threats to the network.

Runtime isolation, protocol confidence ratings, encryption, and resource control are

vital in this respect.

We have prototyped such a system as an extension to Freenet, a storage and

retrieval system whose goals include censor resistance and anonymity for informa-

tion publishers and consumers. Our prototype implements many of the mechanisms

discussed in this thesis, indicating that our proposed ideas are feasible to imple-

ment.
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CHAPTER 1

INTRODUCTION

In this thesis, we propose agile protocols, an application of active networking

techniques to censor-resistant publishing networks. Our thesis is that diversity

of hop-by-hop protocols can increase the robustness and resistance to blocking

of such networks, and can be accomplished by using mobile code to replace host

implementations of network protocols. We outline a model for such a system,

explore the issues that must be considered when designing a network that uses

agile protocols, and, finally, present the results of building our own prototype

agile protocol system. We begin in this chapter by introducing the three existing

technologies that are the basis for our work.

1.1 Active Networking

Active networking [33] has been the subject of much recent research [38, 35].

Its aim is to provide the infrastructure for deployment of new protocols on existing

networks. In the current Internet, large scale protocol deployments at or below

the transport layer1 do not often occur in practice. This is not due to a lack

of motivation for new protocols: modern applications such as streaming audio and

video could obtain substantial quality and performance enhancements with updated

protocols [24]. The barrier is the difficulty inherent in convincing large numbers of

network providers to change installed systems, at large cost and effort to themselves.

Such protocols are not generally useful until they achieve wide deployment, making

it difficult to start small and grow gradually. As an example, the replacement for

1In the traditional OSI network model, the transport layer is responsible for making sure that
network packets make it correctly from their source to their destination. The only transport-layer
protocol widely used in today’s Internet is TCP.
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the Internet Protocol (IP), IPv6 [8] has been in the works for over five years now,

and is not yet seeing significant use.

Active networking research focuses on allowing network routers to run code

given to them by the endpoints of a connection. In the current Internet, endpoints

have very little control of how their data is handled by routers while in transit.

Allowing custom code to be installed on routers affords endpoints the ability to

make non-standard changes to the way their data is handled out on the Internet.

Typically, this flexibility is used to improve the performance of network protocols

with special needs, such as Quality of Service constraints. The primary foci of active

networking research are performance, resource management and security. Both of

these topics are important at a local (router) and global (entire network) level—as

Wetherall has shown [38], it is possible to enforce them locally, but global security

is a much more difficult problem.

1.2 Overlay Networks

An overlay network creates a virtual topology on top of an underlying network—

in current practice, usually the Internet. Nodes in the overlay network act as

routers, forwarding messages they receive to appropriate peers. Overlay networks

are commonly used for testing of new network protocols over existing networks [34].

The richness of the programming environment on an overlay network node,

in comparison with that available on a traditional router, makes overlay networks

attractive platforms for active networking research. The programming environment

on a router is impoverished, since the software needs to run as close to the hardware

as possible because of efficiency and latency concerns. Indeed, for these reasons,

most packet forwarding is performed by ASICs, specialized hardware that is not

software-programmable. In an overlay network, however, software is run with the

full power of an operating system under it, with the libraries, process separation,

and user authentication that are part of a modern operating system. This gives

developers a larger set of tools to use, and allows them to write code that is

independent of network hardware, since support for this hardware is handled by
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the operating system.

Overlay networks are also a good platform for active networking research be-

cause they typically have relaxed constraints regarding efficiency and latency. Since

the services that an operating system provides have inherent performance costs,

there are overheads for overlay networks that do not exist on routers. Compared

with these overheads, the processing performed by active network code can be

minimal, instead of dominating packet processing times, as it would when running

on bare hardware. Because processing overheads are no longer the dominant factor

in forwarding performance, more computation can be done per packet without

seriously degrading performance. Internet routers are expected to be able to

forward packets at line speed (the full bandwidth of each of their links,) and with

a minimum of latency. However, introducing operating system overheads makes it

nearly impossible to meet these constraints. Thus, overlay networks inherently have

far less bandwidth and far higher latencies, and their use reflects this. Furthermore,

since overlay network nodes have far fewer flows going through them than do

Internet routers, they can afford to devote more resources to each one. On top of

this, overlay network nodes, which are typically desktop PCs or dedicated servers,

have far more processing power and storage space available to them than dedicated

routers, making efficiency a matter of far less concern. Using active networking

techniques on overlay networks, therefore, allows us to avoid the difficult problem

of efficiency and concentrate on other areas.

Finally, overlay networks are deployed much faster than the core Internet infras-

tructure is replaced. Thus, it will likely be many years before active routers become

common, if they are, in fact, deployed at all. There are many overlay networks,

such as those discussed in the next section, that are growing rapidly. We can

thus begin to learn about active networks in real-world situations without waiting

for the slow-moving Internet infrastructure, providing insight that will be useful to

lower-level networks in the future. Hopefully, deploying this technology in a limited

capacity will provide a compelling example of its usefulness, and encourage further

development and deployment of active networks.
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1.3 Censor-Resistant Publishing Networks

Some of the most important potential benefits of the Internet for society are the

possibilities it offers for free expression and uninhibited communication. For exam-

ple, in January 2001, according to a New York Times article [21], a corrupt head of

state was toppled from power, “due in no small part” to 100,000 people responding

to a “blizzard” of wireless text messages summoning them to demonstrations.

However, the current trends point to a lessening of this freedom, as more

and more network providers filter the content that passes through them. China,

for example, has begun filtering Internet access to suppress, among other things,

material that is considered to be seditious [18]. In the United States, Reuters

reports [25] that ISPs are coming under pressure to disconnect customers who

participate in censor-resistant networks. Clearly, if the freedom of unhindered

communication is to be preserved, active steps must be taken in order to preserve

it. Systems for communication that are robust in the face of hostile network

environments must be developed and deployed.

Much research has been done recently on this topic. Two high-profile examples

are Gnutella [15] and Freenet [5], but there are many others as well, including

Publius [36], FreeHaven [10], Hordes [30], Crowds [23], and Mixmaster [7]. Though

the exact goals and properties of each of these systems varies, the overall theme

is the same: to create networks that are resistant to censorship or that provide

anonymity. Many of these solutions take the form of overlay networks, which makes

them, as discussed above, attractive targets for active networking research.

One of the most high-profile censor-resistant publishing networks is Freenet,

which has been the basis for our work on agile protocols so far. Central to Freenet’s

strategy for creating a censorship-free, anonymous environment is the distribution

of data across a large number of independently-administered nodes. Freenet is

decentralized; requests are propagated through a series of peer-to-peer links. When

a file is transferred, the file is cached by all nodes on the route between the

requesting node and the node where a copy of the file is found, which may not

be the original publisher. Frequently requested files are thus replicated at many
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points on the network, making removal or censorship of files infeasible. A node

forwarding a Freenet message from one of its peers is indistinguishable from a node

originating the message, providing a degree of anonymity for the suppliers and

requesters of data.

The usefulness of a censor-resistant network is directly related to the number of

nodes participating in it. For networks that also seek to provide anonymity, it is im-

portant that each user be a member of a large class of users who could have been the

source of a given transmission, to prevent an attacker from pinpointing the source.

The Hordes paper [30] provides metrics for quantitatively analyzing the effects of

network size on anonymity. In addition, in order for a censor-resistant network to

be useful, it must have both publishers and readers of information. As the number

of users in the network increases, the number of possible (publisher, consumer)

pairs increases at a quadratic rate. The amount of content on the network will

generally increase with the number of publishers, leading to a greater chance that

a particular document will be present. Thus, a user requesting a document has a

better chance of it being available, and a document inserted into the network has

a greater chance of being read, due to the fact that there are a greater number of

users who may request it. In some censor-resistant networks, such as Freenet, all

nodes in the network act as publishers, because they provide some of their local

storage space for keeping copies of documents that have been inserted by other

users.

As overlay networks, censor-resistant networks have one major weakness in

addition to the ones commonly discussed and analyzed (the FreeHaven paper [10]

contains a good overview of these weaknesses.) They are only as robust as the

point-to-point links between their members. This weakness falls into two cate-

gories: accidental link failure, and administrative blocking. Clearly, software cannot

solve the former—it can only be solved by improved network-layer reliability and

redundancy. Software can however, attempt to combat the latter, which is form

of censorship of the censor-resistant network itself. This will be the focus of the

remainder of this paper.
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In the next chapter, an application of active networking principles to these

censor-resistant networks is outlined. Systems that used the outlined methods are

said to be using “agile protocols.” The following chapter addresses security concerns

and other potential consequences of our system, and suggests the use of runtime

isolation, protocol confidence ratings, encryption, and resource control to combat

them. Chapter 4 discusses the prototype we have built, and Chapter 5 proposes

future work that could further our knowledge of agile networking.



CHAPTER 2

AGILE PROTOCOLS

In this chapter, we begin by discussing the weaknesses of censor-resistant pub-

lishing networks that we wish to address. We then introduce agile protocols, our

proposed system for dealing with these weaknesses. After giving an overview of

agile protocols, we move on to a discussion of details that must be considered when

designing a network that uses agile protocols.

2.1 Weaknesses to Address

There are three basic issues that must be addressed in order to improve the

robustness and privacy of a censor-resistant network in the face of attempted

censorship. These issues are due to fundamental characteristics of the Internet

over which these overlay networks must travel, that cannot themselves be changed.

Data traveling over hostile networks is at the mercy of the network operators, who

may have the ability to monitor it, block it, or eavesdrop on it.

First, when traveling over a hostile network, packets may be classified as be-

longing to a censor-resistant network. This means that the network addresses of the

communicating peers can be identified, and information about the time, frequency

and volume of their commination can be discovered. This can be accomplished by

looking at the contents of packets or by long-term traffic analysis. An attacker could

thus gain information about network membership, compromising the privacy of its

users and potentially leading to action taken against them. Classification today

is typically done based on the network port number used by a given application.

However, it is possible to classify traffic based on more sophisticated methods,

such as looking for patterns contained in the data being transmitted, or even the

sequences of exchanges used to control the flow of a connection. Such classification
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requires more processing power than is currently common in Internet routers, but

emerging technologies such as network processors [31] and extensible routers [32]

have the potential to make this type of attack practical at a moderate cost.

Second, once traffic has been classified, with reasonable certainty, as belonging

to a particular overlay network, this traffic can be blocked, meaning that packets

passing between the peers are simply discarded, never reaching their destination.

A censor-resistant network cannot fulfill its goals if the network itself is censored

in this manner. For automated blocking to occur, the traffic must be machine-

identifiable; some traffic patterns may be recognizable to humans, but not fit easily

into automated packet classifiers. Furthermore, the entity doing the blocking will

almost certainly require a high degree of confidence in their classification strategies,

since overly restrictive blocking techniques will lead to degraded service to other

users.

Third, an attacker can eavesdrop on the contents of packets traveling between

nodes, to discover what type of information is being requested and transferred,

breaching the privacy of the censor-resistant network’s users. This differs from

classification in that not only are the addresses of network members discovered,

but the contents of their transmissions as well. This type of attack can already be

thwarted by existing techniques such as encryption, but agile protocols can com-

plement this protection by hampering classification. An attacker cannot eavesdrop

on a censor-resistant network link whose existence they cannot even discover.

Due to the nature of the Internet, a peer-to-peer link commonly has to travel

across several independently-administered networks. This greatly increases the

probability that a given node-to-node link will have to cross a hostile administrative

domain. Due to the trends toward censorship mentioned in the previous chapter,

these problems will be increasingly important to deal with if we wish to maintain

unrestricted communications on the Internet.



10

2.2 Properties of a Solution

The common thread in the issues outlined above is classification—traffic cannot

be blocked or eavesdropped upon unless it can first be identified as belonging to the

censor-resistant network. Our approach, then, is to make it exceedingly difficult

for an attacker to recognize the traffic of a censor-resistant network. This can be

done by expanding the set of protocols used in the network, so that the attacker

cannot reasonably recognize them all. In order to make classification difficult, we

can design protocols whose packet formats and behaviors are intentionally hard

to recognize. We can also make protocols whose traffic closely resembles that of

well-known innocuous protocols, such as HTTP or FTP.

We can attempt to the address the classification problem statically—that is,

by distributing censor-resistant network code that comes with a fixed number of

protocols intended to be difficult to recognize. While it may be effective in the

short term, this tactic is not effective in the long run. Attackers may find previously

undiscovered ways to classify traffic, or the characteristics of typical Internet traffic

in which peer-to-peer links wish to hide may change. The basic problem is that,

with a static system, attackers have a fixed target. Given enough time, it is likely

that they will devise ways to classify any static protocol, and increases in computing

power will be in their favor. Since the protocol set will be publically available, in

the form of the software distribution, an attacker can easily know the entire set.

Since the nodes of a censor-resistant network are not under unified adminis-

trative control, even if newer releases of the software contain new, more effective

protocols, not all nodes will necessarily be upgraded. Upgraded nodes must still

speak the old protocols when talking to nodes that have not been upgraded or

incompatibilities will hurt the effectiveness and membership of the network. This

effect will greatly slow the rate of protocol change in the network. Additionally,

the rate of protocol change is limited by software release rate, and since software is

usually centrally maintained, this will create a bottleneck and single point of failure

for the introduction of new protocols.
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2.3 Overview of Agile Protocols

Instead of using a static solution, we would rather address the classification

problem dynamically, by allowing the network’s protocol set to grow after the

network has been deployed. Typically, the method of passing messages between

two peer nodes in an overlay network is implemented with code compiled into the

released executables. If we replace this with code that can be dynamically loaded

while the program is running, then nodes can change the protocol they are using

by loading a new protocol implementation. We can take this one step further, and

allow peer nodes to be the source of new protocol implementations, thus permitting

the spread of new protocols throughout the entire network. We call the passed code

implementing a new protocol a protocol object, and a network which uses protocol

objects is said to be using an agile protocol.

New releases of the software can include new protocols, and nodes running

the old software release will be able to “learn” these new protocols when they

first contact an updated node. Of course, the writing of new protocols is not

limited to the core software developers. Since any node can pass a new protocol

to any of its peers, a new protocol can originate from any user’s node. Any user

of the censor-resistant network can write their own protocol and release it into

the network. There is no central bottleneck or point of failure for the deployment

of new protocols, in keeping with the decentralized philosophy adopted by most

censor-resistant networks. The group of potential protocol authors, and thus the

potential rate of new protocol introduction, will scale with the size of the user base.

In a large network, the rate of protocol change could be very high. By making

the protocols upgradable in place, we give users of the censor-resistant network

the means to stay one step ahead of attackers. With a protocol set that is not

under central administrative control, attackers must constantly develop new ways

to recognize newly released protocols, and cannot even know how much of the

protocol set they have discovered. The keys to allowing information to flow in

the face of attempted censorship are frequent, diverse, decentralized, and locally

adaptable protocol change, to ensure a dynamic protocol set that is not known by
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attackers.

Agile networks are similar to active networks, but differ in that new protocols do

not need to be deployed along the entire path of a communication session—for our

purposes, they need only be used on a hop-by-hop basis. In fact, for the purpose of

defying classification, the more protocols used along a single route, the better. It is

local operation of protocol objects that we concern ourselves with, rather than the

global security of the network as a whole, whose semantics we have not changed.

Rather than using the replaceable protocols for performance reasons, we instead

use them to make classification difficult.

2.4 Details of an Agile Protocol System

Now that we have given an overview of the problems that agile protocols are

meant to address, and the methods by which we plan to address them, the remainder

of this chapter will be dedicated to discussing some of the details involved in making

a system based on agile protocols work.

2.4.1 Mobile Code

Since it is desirable to have many network members (See Section 1.3) we allow

nodes that differ in platform and operating system to use agile protocols. Thus,

we will need to implement protocol objects with mobile code. For our purposes,

mobile code is defined as code that can be sent from one host to another, and

executed on the second host, regardless of the operating system and platform of

the receiving host. Traditional pre-compiled object files or executables will clearly

not suffice, as they are highly dependent on the environment in which they were

compiled. Another possibility is to send the source code for the protocol, to be

compiled by the receiving host. This is somewhat more flexible, but requires all

users to have a compiler, introduces significant resource and time overheads, and is

still somewhat dependent on host environment. It is possible to use an interpreted

scripting language such as Perl [37], Python [20], or TCL [22] for this purpose, but

such languages generally do not support sufficient security provisions to address

the problems discussed in the next chapter.
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The Java [16] language is ideally suited to our purposes. Java source code

is compiled to bytecode1, which is executed by a virtual machine. The Java

Virtual Machine can be run on many different platforms, and is widely available–for

example, most modern web browsers contain a JVM. Thus, we can compile code

once, have strong control over its execution, and distribute protocol objects to users

with a wide variety of systems.

2.4.2 Bootstrapping

When two hosts have already established communications they can easily agree

on new protocols to speak, and swap code for these protocols. However, initiating

communication may be difficult. The initiating node must now know not only

the network address of its prospective peer, but also which protocol it is speak-

ing. However, since the initiating node must already obtain its peer’s network

address through some method, we are not introducing a new problem. The existing

mechanisms can be extended to encompass the additional information required

for agile networking. A larger quantity of data will now be required for peer

discovery, so that it will no longer be feasible to communicate this information

verbally. Node discovery with our additional information is still feasible, however,

using floppy disks, Java applets, email attachments, or similar electronic exchange.

Note that there are two important considerations here. The first is that the

peer may be using a protocol not already known to the initiating node. Thus,

peer discovery mechanisms should include the appropriate protocol object when

possible. Secondly, once a node has advertised itself as speaking a given protocol, it

should continue accepting connections with that protocol for a reasonable amount of

time, though those connections could immediately be switched to a new protocol if

desired. To address this issue, it is useful to include a timestamp in advertisements,

indicating that a node guarantees that it will accept connections with the given

protocol for a given amount of time.

1Java bytecode resembles the instructions that are usually executed on physical processors,
but is executed by software rather than hardware
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2.4.3 Identification

Attaching a name to a protocol object can be problematic. When inquiring

whether or not a peer has a given protocol object, there must be some way to

uniquely identify it. Clearly, there is no guarantee that independent developers will

uniquely name their protocols, and it might be advantageous for an attacker to

misrepresent a protocol object, masquerading it as another. This can be solved by

identifying protocol objects by a hash function of their bytecode. With a sufficiently

large result, the chance of name collisions will be negligible. Furthermore, if we use

a cryptographic hash2, we can be sure that an attacker is not masquerading one

protocol object as another.

2.4.4 Planning Ahead

In the event that communications using a certain protocol are blocked, nodes

should attempt to re-establish their connection. In order to do so, they should

agree upon the next protocol to use. If an attacker discovers their communication,

and begins blocking traffic that matches the protocol objects they are using, then

it is likely, though not certain that another protocol object will still be able to

make it through. If a node loses communication with a peer, it can attempt to

restore communication with its fallback protocol. To increase robustness, this idea

can be extended to an arbitrary number of protocols to fall back on, decreasing the

likelihood that the attacker will be blocking them all.

2.5 Types of Protocol Objects

The range of functions performed by new protocol objects can be very wide, and

while there need not be a strict distinction of protocol types in the censor-resistant

network, it is useful to distinguish between these types for the purpose of discussing

them. New protocols can, and likely will, implement a combination of the features

described here.

2The primary property of a cryptographic hash is that it is prohibitively difficult to construct
a message with a given hash code.
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2.5.1 Network Port Number

The simplest way to change the appearance of a protocol is to change the TCP

or UDP port number that it operates on. A protocol object could choose to operate

on a well-known port used by another protocol, such as HTTP or FTP, in order to

get through firewalls that permit the use of these ports. It could also change ports

frequently, to prevent firewalls that block traffic based on port number, as most

current firewalls do, from having a static target to block. This type of change is

quite superficial, however, because network port numbers are simply a logical way

of distinguishing traffic, and the contents of the protocol’s packets may still contain

patters that can be used to classify it.

2.5.2 Data Formatting

Another simple method for creating a new protocol object is to simply change

the way that data is formatted when sent to a peer. This should be sufficient

to thwart most current detection schemes, but may not be sufficient against more

sophisticated attacks. Disguising the censor-resistant network’s protocol as another,

such as HTTP, FTP, or NNTP falls under this category. Data formatting changes

are straightforward to implement and do not require any special information or

network access. This type of agile protocol must simply act as a transformation

function. On the sending side, it should translate the data given to it into a form

that can be translated back into the original data on the receiving side.

2.5.3 Data Hiding

In addition to disguising the protocol, a protocol object may wish to disguise the

data that passes through it. Steganography [19], for example, is the art of hiding

data within other data. This technique is commonly used with images, where slight

bit manipulations can be used to embed information without significantly changing

the visual quality of the image. Thus, an observer sees only the cover image, and not

the actual data being transferred. Another possibility would be to translate binary

data into something resembling written language. The possibilities are endless, and

because of the nature of agile protocols, new techniques can be deployed as soon
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as they are developed.

2.5.4 Spread Spectrum

A protocol object could use spread-spectrum techniques to make analysis and

eavesdropping difficult. This tactic involves dividing data to be transmitted into

small fragments, and sending these fragments separately. The receiving side then

reassembles the fragments to recreate the original data. Individual fragments can

be sent using disguising protocols or be hidden in other data. In TCP/IP, these

fragments can also be sent over different port numbers.

2.5.5 Control Flow

If classification and filtering techniques become powerful enough, simple data

formatting changes may not be sufficient to escape notice. A protocol could be

recognized by its handshake patterns, flow control behavior, and so forth. So,

the implementor of a protocol object should have the power to change or replace

these behaviors. This goal requires that the protocol object operate on a lower

level than a simple data formatting or hiding function. The API presented to

protocol objects, then, should allow the protocol object to be more than a filter

or transformation function—it should be allowed direct access to the underlying

transport (for example, a TCP socket.) Doing so opens some security concerns,

however, which will be discussed in the next chapter.

2.5.6 Alternate Transports

The most complicated type of protocol change is one that is able to use a

different type of underlying transport altogether. This would be particularly useful

in unusually restricted environments. For example, a protocol object capable of

tunneling communication through Web proxy servers would fall into this category,

and would allow nodes to operate behind many firewalls that would normally

prevent them from participating. Another form of tunneling would be to send email

back and forth between two nodes, resulting in a very slow connection, but one that

is able to get through almost any firewall, since most organizations with Internet
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access allow their users to use email. Protocol objects such as these, however,

would require lower-level network access than normal protocols, and may need to

contact a third party. As with control flow modifications, such access presents a

clear security threat.

2.6 Simplicity

The benefits from agile protocols come from users’ ability to write and deploy

protocols themselves—if the only protocols available are a small set written by the

authors of the core system, then we have gained very little by making them agile.

Thus, an important aspect of an agile protocol system is that it must be simple

enough that there is a large subset of users who can implement new protocols.

There should be a well-defined, simple API (ideally, consisting of a small number

of functions) that protocol objects must implement. Example source code for

Protocols objects will ease this task—the developer version of the core system

should include source code for the protocols it includes. In most cases, simple

variations, which can be obtained with minimal modification of existing source,

will be sufficient to make matching mechanisms for the old protocol ineffectual

against the new one. For example, a protocol that disguises itself as HTTP may be

recognizable by the URL it generates, or the order in which it sends headers. Simple

modifications to the URL generation schemes could make messages unmatchable

by old filters. The simpler the process of creating a new diverse protocol object,

the faster the rate of new protocol introduction by independent authors will be.



CHAPTER 3

SECURITY CONCERNS

Using agile protocols for censor-resistant networks offers some clear advantages.

However, the ability to run mobile code on other nodes has serious security impli-

cations. And, since protocol objects can be spread from peer to peer, a defective

or malicious protocol object could have devastating impacts on the whole network.

In this chapter, we outline an attack model for networks using agile protocols,

and propose methods for thwarting these attacks. Since agile protocols could be

applied to many different types of censor-resistant networks, we do not discuss

the weaknesses of the network itself, instead limiting ourselves to weaknesses of

point-to-point links. For discussions of attacks on the censor-resistant network

itself, such as flooding and data corruption, see [5, 10, 26].

3.1 Background on Attacks

In this section, we outline the model for attacks that may be directed against

a censor-resistant network, in order to have a framework for the discussion of our

defenses against these attacks. First, we outline the motivations that an attacker

may have for attacking the network, in order to understand what type of threat

they present. Then, we outline the differing levels of capability that the attacker

may have. Finally, we combine the two, describing a set of likely attacks against

the network.

3.1.1 Motivations of Attackers

First, the “attacker” may not be malicious at all. Given that a new protocol

object can be inserted by any user in the network, it is unreasonable to assume that

all protocol objects will be written well enough to function correctly. A usable agile
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protocol system must be able to cull non-functional protocol objects and continue

to operate.

The attacker’s goal may simply be the collection of statistics on the censor-

resistant network. They may wish to determine how many nodes belong to it, how

many files it contains, what types of files are stored on it, etc. While this behavior

in itself is benign, it may be used for undesirable purposes, and undermines the

fundamental principles of anonymity that most censor-resistant networks hope to

uphold. This motivation seems most likely among researchers or developers of the

software.

The aim of an attacker may be to collect information about specific nodes

or users of those nodes. This may include the personal information, network

address, a list of files that a node operator has requested, files stored on a node,

etc. This information could be used to take action against node operators, such as

disconnection from the network or litigation. It could also be gathered by marketers

wishing to target users for unwanted advertisements, such as the current “spam”

email that is common on the Internet.

An attacker may wish to censor certain documents. This may be attempted at

the underlying network layer (ISP or network backbone), or by inserting a malicious

protocol object that blocks searches or transfers of the documents to be censored.

Countries with repressive governments may try to censor documents they see as

seditious or revolutionary, as with the China example given in the Introduction.

In the U.S.A., under the provisions of the Digital Millennium Copyright Act[11],

Internet Service Providers may be pressured by third parties to remove certain

content from their networks, and may resort to these tactics to do so.

Some attackers may wish to block transmissions of the censor-resistant network

entirely. A network provider or government may resort to this tactic if targeted

blocking is ineffective, if the majority of data on the network is objectionable, or if

they feel that it is an inappropriate use of resources.

Finally, an attacker may wish to compromise the network nodes themselves.

They may wish to do this in order to use those nodes to launch other attacks, to



20

use the node’s resources, or merely for thrills.

3.1.2 Capabilities of Attackers

The attacker may have only the ability to passively monitor a network, but not

alter traffic passing over it. Two types of attackers are likely to have this type

of capability. The first are “third parties” such as governments or corporations

who can persuade or coerce network providers to install monitoring equipment.

This type of monitoring is already in use by the United States government, in

the form of the “Carnivore” system [4]. A worldwide message interception and

monitoring system known as “Echelon” has also sparked international controversy

and prompted an investigation by the European Parliament [12]. Second, the

network provider may not have the capacity to do realtime monitoring, but be able

to post-process logs to search for connections. This would allow them to discover

connections, but only after they have occurred.

The attacker may have the ability to force disconnection from the network,

either directly, as in an ISP, or indirectly, as in a government or corporation

persuading an ISP to take action. Here, mere network membership may be grounds

for disconnection, or the attacker may have to prove that a network member has

transferred and/or stored objectionable material.

The attacker may have the ability to put up filtering rules, without complete

disconnection, and to alter the data that passes through links. This capability

seems likely at an ISP level. Internet backbones, on the other hand, typically carry

enough traffic that this is not possible with current technology. However, advances

in router technology such as those mentioned in Section 2.1 may make this type of

attack feasible for backbones providers in the future.

Finally, the attacker may have the ability to inject malicious protocol objects

into the system. Since the censor-resistant publishing networks discussed in this

thesis are open networks—that is, anyone can join them—nearly any attacker can

have this capability. It does not require privileges on the Internet networks over

which the censor-resistant network’s traffic must pass, and it does not require legal

backing. Malicious protocol objects can also spread over the entire network, so
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attacks mounted in this manner are not local as the other capabilities are. Thus,

it is the most dangerous type of attack, and one that we must sufficiently address

lest the dangers to which we expose the censor-resistant network user outweigh the

advantages we offer.

3.2 Threat Model

Now, we combine the motivations of attackers, along with capabilities they may

have, to describe a model for attacks that are likely to threaten a censor-resistant

publishing network.

3.2.1 External Attacks

External attacks are those against the underlying transport mechanism of the

censor-resistant network. Attacks using monitoring, disconnection, and blocking

fall into this classification. The primary defense against these attacks is the dynamic

protocol set mentioned in the previous chapter. Since all of these attacks rely on

being able to classify the traffic of the overlay network, defenses against external

attacks will all rely on the ability to defy classification.

The defense afforded by having a dynamic protocol set can be divided into

two categories: the diversity of protocol objects1 and the activity of the set2. The

diversity of the protocol set is defined to be the number of different distinct patterns

used by the protocols in it. Writing classifiers for all protocols in use will require

manual work by the attacker in proportion to the number of protocol objects in use.

In addition, the processing power required for simultaneously checking against a

large set of protocols will require significant processing resources, and a sufficiently

large set will require more processing power than is readily available, especially for

high-traffic backbone providers. If an attacker cannot simultaneously watch for the

entire protocol set, then some protocols will certainly be able to get through. Rate

of protocol change over time is also important, because we assert that any protocol

1That is, the size of the protocol set.

2That is, the rate at which the set changes over time.
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can be classified given enough time and traffic. Thus, to be effective, new protocols

must be introduced at a rate such that protocols are being introduced faster than

attackers can come up with reliable methods for recognizing them.

3.2.2 Internal Attacks

The second type of attack is one launched against the system by inserting a

malicious protocol object into it.

Attackers who wish to discover network membership and topology may attempt

to create protocol objects to collect this information for them. There are two ways

of doing this: to contact a third party3 and divulge this information, or to tag

the data being sent through the protocol object. Thus, we must prevent protocol

objects from contacting third parties, and deny them knowledge of the address of

the node they are running on, so that this information cannot be leaked through

other means.

Given the large number of computer viruses and worms that have been seen

on the Internet recently, it seems quite likely that people will attempt to write

viruses for an agile network, using that network’s own protocol distribution system

to propagate it. Thus, we must ensure that nodes are protected against malicious

code that attempts to read, modify, or delete users’ files. We should also limit

protocol objects’ ability to use node resources, so that an attacker cannot gain

unauthorized access to them.

Since some attackers may wish to interfere with the operation of the network,

or may have bugs in their protocols that prevent them from functioning correctly,

our system must be able to detect nonfunctional protocol objects, and prevent their

spread.

Some attackers may wish to censor selectively, introducing protocol objects that

fail only when transferring files that match a certain pattern. As we shall see in the

next section, the strategies for dealing with targeted protocol failure are different

from those for combating large-scale failure.

3That is, a host that is not one of the two communicating peers.



23

A censor-resistant network such as Freenet is designed to find information even if

some nodes and point-to-point links go down. However, if a large number of links go

down simultaneously, this could cause serious problems with message routing. So,

our methods for thwarting attacks should deny protocols the ability to synchronize

failures.

3.3 Thwarting Attacks

3.3.1 Isolating Protocol Objects

In order to prevent protocol objects from compromising local information on a

node, or from using the host’s resources in an inappropriate manner, it is necessary

to keep the execution of protocol objects isolated from the core of the overlay

network. In particular, we need to keep protocol objects from accessing information

about peer nodes, locally stored files, and the node operator. We also need to

prevent them from accessing the network directly, so that they cannot contact a

third party to divulge information. This isolation also includes being prevented

from sharing information with other protocol objects, so that malicious protocol

objects cannot collaborate. Our approach to isolation is based upon the “principle

of least privilege,” that protocol objects should start with no privileges at all, and

then be given only carefully chosen privileges that are essential to their proper

operation.

We find that protocol objects actually need very little information to be able to

function. They need access to the message they are to send or receive. They also

need to be able to place data on the network to be sent, and to retrieve data off the

network to receive messages. However, for most protocol objects, the network access

need not be direct, and they do not even need to be able to find out information

such as network addresses, so long as connections are set up by the core system.

There is a tradeoff here, however, in that increased network access allows increased

flexibility, such as the alternate transport protocol objects mentioned in Section

2.5.6.

An interesting aspect of the isolation of protocol objects is isolation from time.

If protocol objects are allowed access to the system clock, then it is possible for
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an attacker to write a protocol object that will fail in a concerted manner on

machines throughout the network. However, if we prevent protocol objects from

having any sense of time whatsoever, this prevents them from performing many

actions that require knowledge of time, such as measuring amount of bandwidth

they are using, or using timeouts. These functions, however, require knowledge

of the passage of time, rather than knowledge of absolute time. Thus, protocol

objects should be given a function that returns the amount of time since it was last

called—this allows such actions without giving an attacker a way of implementing

massive simultaneous failure.

One very effective way of achieving this isolation (and the method we used in

our prototype implementation) is to use a typesafe language. In such a language, we

can control the types of objects to which a protocol object may resolve references.

Thus, objects of protected types are opaque to the protocol object; that is, it

may be able to determine their existence, but not their contents. In this way, we

can make sure that protocol objects do not access restricted sections of the core,

external resources, or each other. This model is already widely used in Java Virtual

Machines embedded in Web browsers [17], but the restrictions we require will be

more stringent than the Java applet security model, due to the anonymity that

many censor-resistant publishing networks seek to provide. There are other ways

of enforcing this isolation, such as running protocol objects in a separate operating

system processes, but such methods are likely to be less efficient.

3.3.2 Rating Protocol Objects

In order to prevent the spread of protocol objects that fail to correctly transfer

files, each node can maintain a rating, called a confidence level, of each protocol

it knows. The confidence level in a given protocol starts at some constant value,

and is assessed a penalty for each unsuccessful transfer through it. Confidence is

increased through subsequent successful transfers. Only protocol objects with high

confidence ratings, called acceptable protocols, will be passed on to peers, thus

limiting the spread of protocol objects that do not function correctly. Observably
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malicious behavior4 should incur higher penalties than failures which could result

from normal circumstances.

There are a few important characteristics of this rating system that should

be noted. First, it is important that it be maintained independently on a per-

node basis. If nodes were allowed to report their established confidence level to

peers, an attacker could use this mechanism to provide bogus rating information.

Additionally, confidence levels should be relative, not absolute. If a fixed cutoff

point for confidence is set, network conditions (such as the availability of certain

files or the percent of requests that are for non-existent files) can occur such that

all protocol objects have a rating below this threshold. Thus, the threshold for

acceptability should be dynamically changed to reflect observed success rates, or

confidence levels should be evaluated against each other—for example, considering

the protocols with the n highest confidence levels to be acceptable.

One attack strategy would be to write a protocol object that only succeeds

under a small set of circumstances, then pass that object to a peer. The attacker

could perform a large number of transfers through that protocol object, under the

circumstance in which it is successful. This would inflate the confidence rating, and

the new node would be likely to pass the protocol to its peers. However, at that

point, the attacker can no longer artificially inflate the rating of the protocol object,

and it will be rated by its actual performance. In order to promote the protocol

object in question, the attacker would need to be able to continue to contact every

node that the malicious protocol spreads to and perform similar transfers, which is

not a feasible proposition due to the fact that censor-resistant networks are designed

to prevent knowledge of the overall network topology.

Confidence levels can be determined in two separate, complementary ways.

The first is the method used in the previous example—calculating confidence by

observing normal network traffic. The problem here is that a node cannot always be

4In some systems, such as Freenet, data can be identified using a cryptographic hash of its
contents, allowing us to know with certainty whether the data returned is the data that was
searched for.
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certain of what response it was supposed to get back—a request could fail because

the protocol object has relayed it incorrectly, or simply because the data could not

be found. The second method of determination solves this problem, but incurs

additional overhead. A node can evaluate a protocol object by sending messages to

itself through a given protocol object. In this case, the node knows exactly what

message should be recieved, and can compare the correct behavior to that observed.

When a message is sent to a peer, a node can also send a copy of that message,

through loopback, to itself, to ensure that the protocol object handles it correctly.

However, this method is more expensive, in terms of processor and memory usage

than the other, because it requires additional action to be taken, instead of simply

adding low computational cost to activities that would occur anyway. Therefore,

we recommend using ratings based on normal traffic, supplemented with occasional

loopback tests. Failure in the should be weighted more heavily. In order to reduce

the impact of the additional resource consumption, a smart scheduler can be used

to only perform loopback tests when the system is idle.

While we believe that this will be an effective system for preventing the spread

of malicious or poorly-written protocol objects, it is still theoretical at this stage.

Its effectiveness will need to be analyzed, and perhaps improved, based on future

experiences with it.

3.3.3 Hiding the Nature of Requests From Protocol Objects

One problem that protocol object ratings do not solve is the problem of selective

failure by protocol objects. If a protocol object is programmed to fail only for certain

requests, which constitute a smaller percentage of requests than the percentage of

requests that would normally fail (for example, searches for files that do not exist,)

then this will not be noticeable to the above algorithm. So, we must not only prevent

the protocol objects from getting local node data (as described in Section 3.3.1),

but also from getting information about the data it is transmitting. A reasonable

way of doing this is to have communicating nodes perform a Diffie-Hellman [9] key

exchange, which allows them, over an insecure channel (in this case, the protocol
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object) to agree on a secret encryption key. This key can then be used to encrypt

data before it is sent to the protocol object. This way, a protocol object cannot alter

its behavior based on meaningful information about the data being sent through it.

Of course, it can still alter its behavior based on the encrypted data that it sees,

but this will be effectively random, and not useful to an attacker.

Though Diffie-Hellman key exchanges may seem ideal for this purpose, they have

one important weakness. They are subject to man-in-the middle attacks, in which

a party listening on the communications channel (in this case, the listening party

could be a protocol object) can impersonate one endpoint or both, compromising

the key. This problem is generally solved by using a public-key cryptography system

[27] to authenticate the communicators. In order for this to work in a censor-

resistant network, keys would need to be securely exchanged between peers. Due

to the complexity of this process, and the public-key infrastructure it requires,

this level of protection may be difficult to implement in deployed censor-resistant

networks. Another possible solution is to perform a key exchange using a protocol

object other than the one that the generated key will be used with. This solution

should be generally acceptable, though it does have a slight weakness in that co-

operating protocol objects may still be able to compromise the key.

3.3.4 Resource Control

Most modern operating systems allow coarse resource control, allowing node

operators to limit the overall resource (CPU, memory, etc.) usage of the process in

which the censor-resistant network core runs. Finer grain controls, such as limiting

the CPU usage of an individual protocol object, will require support from the

language in which the system is written. As an example, Java has been the focus of

much recent resource-control research efforts, such as KaffeOS [1] and Janos [13].

Agile network code can be run in a JVM that supports these resource controls in

order to prevent malicious code from using more than its share of the CPU and

memory.
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PROTOTYPE IMPLEMENTATION

In order to explore the concepts outlined in this thesis, and as a proof-of-concept,

we have built a prototype agile protocol system. Our prototype is based on Freenet

0.3.5 [14], an implementation of Freenet led by the author of the original Freenet

paper [5]. It has the capability to completely replace protocol details via mobile

Java bytecode, and offers facilities for doing this replacement while the system is

running. It implements protocol object isolation, and provides restricted network

access for protocol object flexibility. It does not, however, implement encryption

of messages beyond that provided by the base Freenet system, or protocol object

ratings. We have written three sample protocol objects to illustrate and explore

the types discussed in section 2.5. On the whole, we are pleased with the results,

and believe that such a system could one day be used in production environments.

4.1 Results

4.1.1 Architectural Changes

In order to integrate our changes with the base Freenet system, had to make

some architectural changes to Freenet. We implemented our changes primarily

in two different layers. The first is the Transport layer—the only currently im-

plemented transport in Freenet is TCP. The second is what Freenet calls the

Presentation layer—its job is to take messages 1 the Freenet core, and pass them

over the network. In most network software, it would be considered to be part of the

Application layer, because it is responsible for passing user data to the underlying

1In Freenet, a message is the basic unit of communication. The most common messages types
are DataRequest, which requests a file, DataReply, which includes the contents of a requested
file, and RequestFailed, which indicates that the requested file was not found.
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Transport layer. The fact that Freenet makes the distinction between the handling

of the messages that make up the global operation of the network and the passing

these messages to the Transport layer proved very useful to us. It allowed us to

concentrate on modularizing exactly the portion of code that is most useful to agile

networking.

The Presentation layer is where we concentrated our work. It needs no

knowledge of the underlying transport, and thus fits our need for isolation well.

We replaced the Presentation layer provided with Freenet with a wrapper class,

capable of determining which protocol object needs to be invoked for each message.

When the core Freenet system calls functions in our wrapper class, the function

calls are passed down to the appropriate protocol object. These function calls

are of basically two types. The first takes a Freenet message object and an open

Transport-layer connection 2 and writes the message to the connection. The second

takes an open connection and reads a Freenet message from it.

In order to provide protocol objects with more flexibility than could have been

obtained operating solely at the Presentation layer, we provided a wrapped net-

work class for their use. This class gives protocol objects the ability to open up its

own TCP connections to a peer node, in addition to the Transport-layer connection

managed by the core. This allows for spread-spectrum or port-hopping schemes.

This class, called RestrictedNetwork, only allows the protocol object to open

connections to the peer to whom it is currently talking, to prevent disclosure to an

outside party. The sockets returned by opening these connection are also restricted,

so that the protocol object cannot discover the IP address of the node it is running

on or its peers, preventing protocol objects from discriminating against certain

hosts or inserting host addresses into the data for tracing.

2A connection is a logical transport-layer session over which messages can be sent. Connections
are managed by the core Freenet system. Since Freenet only currently implements a TCP transport
layer (though the system has been explicitly designed to allow other transports to be added)
connections correspond to TCP sockets.
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4.1.2 Node Addresses

One important aspect of our new system is the way in which node addresses

are represented. The core Freenet system represents addresses by a string in the

form transport/host:port—for example, tcp/eureka.cs.utah.edu:1234. This

scheme is fairly inflexible for agile protocols, because it assumes that the host

and the port are the only information needed by the Transport layer, and does

not provide a way for us to specify which protocol object is being used. Due

to the way that the specification for Freenet addresses is written, it is easy to

extend the address scheme by providing a new address parsing function based on

the “transport” field. So, in our prototype, addresses are represented in the form

agile/transport():protocol. The parentheses after transport are intended to

be used to pass arguments to further customize behavior. For example, the tcp

transport takes two arguments: the target host and port number. The equivalent

of the last example under our new scheme would be agile/tcp(eureka.cs.utah.

edu,1234):FreenetProtcocol 3

4.1.3 Changing Addresses

Protocols in our system can be used asymmetrically. That is, communication

between two nodes can use different protocols in different directions. Each node

informs it peers of the addresses it is listening on—the TCP port it is listening on,

and the protocol object in use on that port. At any time, the node can inform any

or all of its peers that they should begin using a different address to contact it.

Our prototype assists in the management of listening addresses by keeping track of

the number of peers using each address, opening new ports the first time they are

used, and closing them when no more peers are communicating on them.

To inform peers of a new address to use, we have introduced a new message

type to Freenet, called AddressUpdate. Along with the new address to use, in the

3FreenetProtocol is the name associated with the traditional Freenet protocol—see Section
4.1.6 for a discussion of our other protocol objects. For simplicity, we chose to use names, rather
than hashcodes, to identify protocol objects in our prototype. Changing to use hashcodes instead
would be a trivial matter
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form specified in section 4.1.2, this message includes all of the bytecode necessary

to speak the new protocol. This bytecode may implement several Java classes,

which together comprise a single protocol object. Upon receipt of such a message,

a node updates the table in which it stores addresses for all of its peers, and any

subsequent messages it sends will use the new address.

4.1.4 Loading Protocol Objects

In our prototype, AddressUpdate messages are accompanied by the bytecode

for the protocol object that the sender wishes to speak. This may constitute any

number of Java objects, so that custom utility classes can be included. The receiver

of such a message checks its store of protocol objects, and inserts the new protocol

object if it was previously unknown.

When the core Freenet system wishes to make a connection, it instantiates a

wrapper class called AgileProtocol. This class determines which protocol object

should be used for the communication, and acts as an intermediary for all subse-

quent function calls. In this manner, the core Freenet system need not concern

itself with the different protocol objects used at the Presentation layer.

4.1.5 Protocol Object Isolation

Our prototype takes advantage of Java’s type safety to prevent protocol objects

from gaining access to sensitive APIs of the core system. Loaded protocol objects

are not allowed to resolve references to classes that are not strictly necessary to their

operation. This prevents them from compromising inappropriate local information,

as discussed in the previous chapter. It also denies them access to subsystems such

as networking, so that they cannot contact third parties, run commands on the

local node, etc.

4.1.6 Sample Protocol Objects

For our prototype, we have implemented three new protocols, in addition to

re-working the standard Freenet protocol to work on the new system. We feel that

the task of writing a new protocol object is sufficiently easy, as discussed in Section



32

2.6, that a large number of users will be able to implement their own. Writing a

protocol object that uses alternate data formatting is as simple as replacing four

functions in the code for an existing protocol.

The first protocol object we implemented is one that disguises Freenet traffic as

HTTP. The primary functionality of this protocol is the transformation it performs

when putting data onto the network, and reading it off again on the other side.

This transformation includes the insertion of misleading data in order to mimic real

HTTP headers. It also makes some control flow changes. The standard Freenet

protocol does some initial negotiation that is unlike anything used by HTTP, so

our protocol omits these steps so as maintain the appearance of being HTTP.

Our second protocol object implements a simple port hopping scheme. After

every message, a new port number is chosen for the next message. This protocol

shows that our infrastructure correctly handles listening on new ports, and ceasing

to listen on ports that are no longer in use. It also demonstrates the ease of address

changing in our system—the protocol object need only call a single function, which

handles updating references to the peer node, and takes care of informing the peer

of the new port number to use. Though the algorithm used is very simple (it simply

increases the port number by one for each message), it could easily be replaced by

an algorithm of arbitrary complexity.

Our third protocol object was created as an example of a spread spectrum

protocol, and to test our RestrictedNetwork class. It breaks up messages into

uniformly-sized chunks, and sends each of these chunks on a separate TCP port.

Depending on a value set at compile time, the message can be divided on any

arbitrary byte boundary, down to a single byte. There are tricky issues involved in

such a protocol, such as determining which ports are available on each host 4 and

signaling the end of a transmission 5 that we did not investigate in depth, but we

are confident that we have shown that such a protocol is possible to implement.

4Some ports may already be in use by other programs.

5The size of the message cannot be known to the protocol object until transmission is
completed. This is largely an artifact of the Freenet implementation we based our work on.
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4.2 Implementation Challenges

One of the biggest implementation challenges was fitting our changes into the

model used by the Freenet code. For example, the core Freenet system does not

need to be able to update information about its peers (for example, changing port

numbers,) so many copies are made of this information. In Agile Freenet, however,

peer addresses are updatable, so we had to come up with a mechanism for keeping

this information up-to-date when peers decide to speak a new protocol. Our solution

was to maintain a table of the current contact information for each peer, and when

an address was retrieved from one of the copies, to look up its “real” information

in this table. In turn, this introduced the problem of uniquely identifying nodes,

which we chose to do by host IP address.

Bootstrapping clients also proved to be a problem. Nodes discover the correct

addresses and protocols for their peers at initialization time, using a configuration

file. However, since clients cannot be known during initialization, their contact

information must be discovered after they connect. Our first method for doing this

involved implicitly guessing addresses for unknown hosts when they first connected,

but this proved to be problematic in the case of a second client connecting from

the same host, which is a very common occurrence, Instead, we updated the clients

to send an AddressUpdate message (see Section 4.1.3) when they first connect to

inform the node of their contact address.



CHAPTER 5

FUTURE WORK

In this chapter, we suggest some avenues for further research on agile protocols.

5.1 Wireless Networks

Some types of wireless networks involve using spread spectrum radio transmis-

sion1 or frequency hopping. Currently, this must be done by using algorithms that

are agreed upon in advance, since both endpoints of the communication must use

the same algorithm. As with static protocols, these algorithms can be discovered

and the frequencies they use eavesdropped on or interfered with by an adversary.

However, agile protocols may be used to replace these algorithms, allowing nodes

to change them in response to attacks.

Wireless networks are particularly interesting for this research, because there is

no threat of complete disconnection, as there is in wired networks. In fact, some

work has already been done [3] on using active networking in a wireless context.

On the wired Internet, a user is dependent upon their ISP for network service,

and thus has a single point at which they are vulnerable to disconnection from

the network. In a wireless network, however, users can communicate without the

use of an intermediary ISP. The layer at which agile protocols would function on

wireless connections, the data link layer, is an open resource, the airwaves, rather

than a physical network under the control of a network provider. Projects to create

cooperative city-scale wireless networks have sprung up in several major metropoli-

tan areas, including Consume.Net [6] in London, SFLan [29] in San Francisco, and

1In this context, spread spectrum refers to the practice of transmitting data across a wider
frequency range than necessary. This technique is used to resist interference and to share the
airwaves with narrow band communications.
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SeattleWireless [28]. Projects like this could benefit from agile technology to help

continue transmission even if attempts are made to censor them.

5.2 Applications to Other Areas

Agile protocols have unexplored potential in contexts other than censor-resistant

networks. These are contexts in which full active networking is not necessary, only

protocol replacement on a hop-by-hop basis. In most cases, this will involve protocol

replacement at the link layer, as it would with the wireless examples in the previous

section. Applications for specialized processing at the link layer [2] that could take

advantage of protocol replacement have already been discovered.

Agile protocols could also be used to update ciphers used to encrypt transmis-

sions. If a method for “cracking” the established cipher is discovered, agile devices

can be updated to use a new one. This is particularly appropriate for military

applications, but could be used anywhere that privacy is important.

5.3 Adversarial Experimentation

Though we believe that our base claim, that agile protocols can be used to

increase robustness in the face of censorship, is sound, it is difficult to demonstrate

without actual deployment. However, some valuable information could be gained

by performing adversarial experiments, in which an agile protocol-based network is

established, and experimenters attack it. Such an experiment could vary the num-

ber and type of protocols, as well as the capabilities of the attacker in order to learn

more about what types of protocol objects are effective at avoiding classification.

Such an experiment would also need to provide cover traffic simulating the usage

of the real Internet.

While such an experiment could provide useful information, it cannot prove the

effectiveness of our methods. Only the active use of a carefully implemented system

in opposition to a determined attacker can be a true test of agile protocols. The

effectiveness of agile protocols depends on a large protocol set, and a diverse set of

protocols developed by different users. An attacker’s effectiveness is dependent on

expertise and resources invested. Thus, an evaluation of an agile protocol system
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is really an evaluation of the people creating and blocking protocols. Only in

actual practice can we evaluate whether or not agile protocols have given users of

censor-resistant networks useful tools to avoid attackers.
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