
1

Implementing the Emulab-PlanetLab Portal:
Experiences and Lessons Learned

Kirk Webb Mike Hibler Robert Ricci
Austin Clements Jay Lepreau

University of Utah

December 5, 2004

1st WORLDS

2

What is Emulab?
l Software to control network testbeds

– Instantiates user-requested topologies on available
resources

– Most popular UI is fancy Web interface; XML-RPC
l Emulab “Classic”

– ~200 PCs in a densely connected cluster
– Dozens of experiments “swap” in and out each day

l Extended to wide area in late 2002
– RON testbed and Emulab’s own wide-area nodes

l Now: a testbed with diverse resources
– Physical, virtual and simulated nodes and links

3

Why Create "The Portal"?

l Diversify Emulab with new resources

l Explore challenges of integrating with
other testbed environments

l Provide PlanetLab users with a powerful
but easy-to-use interface

4

K.I.S.S.

5

Decisions, Decisions

6

Emulab-PlanetLab Portal Features

l Emulab provides all elements of the PlanetLab
infrastructure service taxonomy, plus more

7

Portal Features (cont'd)

l Monitors sensors to ascertain node
characteristics

l Three selection methods: manual, link-, and
node-centric

8

Portal Features (cont'd)

l Watchdog process per virtual node
l Software upgrades and account updates

9

Portal Features (cont'd)

l “Reboot” a single virtual node, or all of them
l Soon: wide-area event system for control

10

Challenges and Lessons

l Different use models

l State management

l Interface evolution

l Failure

11

Different Use Models

l Emulab: rapid cycle experiments (mostly)
PlanetLab: long-running services (mostly)

l Average Emulab experiment duration: five hours
l Building fast/synchronous on delayed/async?

l Delayed, asynchronous interfaces force fast
synchronous clients to waste resources
l Exposing lower-level API primitives allows a
wider range of service models

12

State Management

l Locations of data are spread out
l Data coupling issues

– Identity crisis!
– Balance between coherency and overhead

(age-old problem)

l Persistent & reliable node identifiers are a must
l Should not assume long-term state

synchronization

13

Interface Evolution

l Research infrastructures evolve rapidly
l Tension between PlanetLab goals:

"Evolving Architecture“ à change
vs.

"Unbundled Management“ à many services,
many players

l Internally, use the same API that you export
l Embrace the inevitable: changing APIs.

Make that code modular

14

Failure

l All node “liveness” metrics are unreliable
– Trumpet, Ganglia, Emulab Watchdog …

l Anything can fail
– Disk space, fds, PLC, …

l Only execution of the application itself
indicates node “liveness”!

15

Conclusions

l Hard to keep it working

l Will people build large systems on other
parties’ constantly-changing research
systems?

