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Abstract

The majority of work on protection in single-language
mobile code environments focuses on information secu-
rity issues and depends on the language environment for
solutions to the problems of resource management and
process isolation. We believe that what is needed in these
environments are not ad-hoc or incremental changes but
a coherent approach to security, failure isolation, and re-
source management. Protection, separation, and control
of the resources used by mutually untrusting components,
applets, applications, or agents are exactly the same prob-
lems faced by multi-user operating systems. We believe
that real solutions will come only if an OS model is uni-
formly applied to these environments. We present Alta,
our prototype Java-based system patterned on Fluke, a
highly structured, hardware-based OS, and report on its
features appropriate to mobile code.

1 Operating System Model Required

In the last European SIGOPS Workshop, our paper [17]
argued that the local operating system is an essential foun-
dation for global applications. We described the many de-
mands that a reasonably well functioning distributed sys-
tem places on the local OS, and particularly emphasized
end-system security in the widespread presence of mobile
code. The focus of that paper was on making the case for
the importance of the local OS, and outlining an appropri-
ate OS for that environment: the Fluke [10] operating sys-
tem, an OS based on a recursive virtual machine model,
analogous to the Cambridge CAP Computer [30], but im-
plemented by a microkernel instead of special hardware.

In this paper we assume that the importance of the local
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OS to distributed applications is evident. From that base,
we endeavor to make four points concerning platforms for
mixed trust components and mobile code:

(i) A coherent, structured approach is required, driven
by a full-blown OS model; language-level patches
are not enough.

(ii) Existing security-oriented approaches fall short in
resource management.

(iii) Applying an OS model is feasible, based upon our
initial experiences with Alta.

(iv) Alta provides features useful for mobile code, in-
cluding hierarchical resource management and flex-
ible object sharing.

1.1 Application Scenario

In 1997 MCI developed and distributed its Denial of
Service Tracker (DoSTracker) [19], after getting their
router vendor to add the required interfaces and code to
the routers. DoSTracker works as follows. Many denial
of service attacks involve generating packets that spoof
the IP address of the victim’s host. For example, fabri-
cating broadcast packets will generate a storm of replies
to the “sender.” When a customer reports an attack on a
particular host, their ISP runs DoSTracker on a machine
connected to the victim’s router, giving it the victim’s
IP address. DoSTracker hops from router to router, fol-
lowing spoofed broadcast packets “upstream” to the ac-
tual source. Problems arise when the path leads into an-
other Internet carrier’s hosts—a different administrative
and technical domain—whose routers may well not sup-
port the required interfaces.

Similar hard to predict problems arise constantly in net-
work management, and solutions are difficult to deploy
quickly, and almost impossible to standardize. A first
step to providing network administrators with a solution
to these problems might let them run mobile programs



on the routers. This, of course, is one example of an ac-
tive network [28]. One need not commit to the aggres-
sive vision of active networks—code in any packet—to
appreciate the value of supporting mobile code in routers.
Network management is an application domain that could
greatly profit from mobile code and dynamic composition
of mobile components.

However, along with the solutions proffered by mo-
bile code there must be strong security guarantees and
flexible, hierarchical resource management. Consider the
following realistic Internet-wide scenario of hierarchical
trust and proportional share resource management. MCI
reserves 80% of the resources in each of its routers for
“real work” (i.e., forwarding packets). The other 20%
is available on demand for management functions (such
as DoSTracker), mobile code, or agents. 50% of that
(i.e., 10% of the total) is reserved for MCI’s own man-
agement routines, with the rest available to its customers.
However, all customers are not equal, so MCI allocates
50% of that 10% to the 20-odd long-haul Internet carri-
ers, such as Digex

�
or AT&T, and the other 50% to other

customers (e.g., ISPs). The 5% allocated to the long-haul
Internet carriers could again be split up equally among the
carriers—effectively each internet carrier owns a modest�������

% of every other carrier’s available bandwidth. Di-
gex manages its portion (on any carrier), allocating half to
trusted (to Digex) requests from its own network manage-
ment, and the other half to Digex customers. See Figure 1.
Clearly, a hierarchical, extensible resource management
model would provide the ability to recursively refine sys-
tem allocation. Additionally, a stringent security infras-
tructure to authenticate and manage the mobile agents in
such a system is required.
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Figure 1: Hierarchical breakdown of the resource subdi-
visions of a hypothetical MCI router.

1.2 The Process
When addressing the control of mobile code and for-

eign components, the information security issues raised
by such code receive the lion’s share of attention from
researchers, developers, and the press. These issues are
indeed important, the efforts are valuable, and progress�

Digex is an example of a modest-sized Internet carrier that leases
capacity from the big long-lines carriers.

is being made. However, little attention has been paid
to a distinct but important aspect of controlling foreign
code: resource management. Although solely provid-
ing information security may be sufficient to incorporate
foreign components into an interactive browser running
on a desktop OS, more ambitious visions of distributed
components clearly require advances in controlling the re-
sources available to foreign code.

We argue that these mobile code systems need a coher-
ent, structured approach to both information security and
resource management. We need not look far: the “pro-
cess” abstraction has historically been the unit of protec-
tion and resource management in operating systems. Typ-
ically, the operating system has used a hardware mem-
ory management unit (MMU) to keep processes separate.
Many language-based systems, such as the kernel exten-
sions in SPIN [4] and Java applets in Web browsers, use
a type-safe implementation language to provide memory
protection in place of a hardware MMU, so that the re-
sulting protection abstraction will be more flexible and
lighter weight than a traditional process. But a pro-
cess is more than just a layer of separation, and most of
current language-based systems are lacking a compara-
ble abstraction. Indeed, a Java applet’s execution envi-
ronment is little more than “threads” with a few ad-hoc
constraints—a situation that provides almost no control
over resource use, and has led to numerous security prob-
lems. Although steps are being taken to improve the se-
curity situation in Java [13, 29], that is not enough. Ar-
chitects of multi-user, safe-language environments need
to confront the need for a first-class abstraction for pro-
tection and resource management—the “process.”

1.3 Existing Safe-language Systems
Using a type-safe language to provide similar services

as an MMU is not novel, but previous approaches have
either not been designed to handle malicious code, or do
not handle multi-user code, or address only one of secu-
rity and resource control.

Software-based Approaches
Java started with the “sandbox,” which was limited

to providing all-or-nothing access control, depending on
whether the source of the code was local or remote. Find-
ing this policy far too limiting, JavaSoft relaxed the sand-
box model in JDK 1.2 [13], which introduces access con-
trol lists (ACLs) and signed code. However, policies in
the JDK are expressed via ACLs (making it error prone at
large scale, just like ACLs in Unix) and there is no notion
of user authentication—principals are tied to code signa-
tures. Additionally, protection domains are only created
implicitly, through code loading.



Balfanz and Gong [2] describe a multi-processing JVM
developed to explore the security architecture ramifica-
tions of protecting applications from each other, as op-
posed to just protecting the system from applications.
They identify several areas of the JDK that assume a
single-application model, and propose extensions to the
JDK to allow multiple applications and to provide inter-
application security. The focus of their multi-processing
JVM is to explore the applicability of the JDK security
model to multi-processing, and they rely on the existing,
limited JDK infrastructure for resource control.

Numerous other approaches to Java security exist [29],
including more-or-less traditional capabilities, “stack in-
trospection” which intuits the current principal based on
the call stack, and name space management, which ma-
nipulates the class name space to control suspect code’s
access to “dangerous” functionality. Although the ven-
dors and developers who have produced systems based
on these approaches make claims otherwise, each of these
three approaches is only a mechanism for controlling
code. With one exception noted below, as currently ap-
plied they have not yielded comprehensive designs.

Recent work designed extensions to the type system of
a (non-Java) language to support controls on information
flow [20]. Refreshingly, the authors do not claim that this
approach provides a complete solution to security woes,
but contemplate using this approach to augment the secu-
rity of applications on both traditional and non-traditional
operating systems.

Sun’s original JavaOS [27] was a standalone OS writ-
ten almost entirely in Java. Although it billed itself as a
first-class OS for Java applications, from the scant litera-
ture available, it appeared to provide a single JVM with
no particular separation between applications running on
it. Recently, Sun has migrated their JavaOS to three prod-
ucts built on the ChorusOS (neé Chorus [23]). While lit-
tle public documentation is available on these new sys-
tems, we believe that they are targeted to the same envi-
ronments as the original JavaOS and will not be tailored
to management of multiple, mutually untrusting applica-
tions. Instead they focus on the controlled environments
of consumer appliances and centrally-managed network
computing.

The Oberon language/OS [32] shares many of Java’s
features, although it is a non-preemptive, single-threaded
system. Protection between tasks is enforced by the lan-
guage, but the exposure of global state to all top-level pro-
cedure calls (“commands”) and the uninterruptibility of
those commands means isolation is not enforceable, and
malicious code can take free reign of the system. The
Juice project [12] uses Oberon and Slim Binaries to pro-

vide a Java-like environment for downloaded code. Juice
addresses many of the performance and security problems
associated with large Java binaries and the necessity of
run-time security checks in the JVM. Juice does not, as
far as we know, provide resource controls.

Cornell’s J-Kernel [15] and the OpenGroup’s Conver-
sant [3] are other efforts, besides ours, that fully recognize
the need for a first-class notion of protection domain in
safe-language-based systems. The J-Kernel’s capability-
based system concentrates on clean domain termination
and provides this by enforcing complete separation of
processes (i.e., no sharing)—even between domains that
have some degree of trust between them. Conversant goes
a step further and modifies the Virtual Machine to put each
application in wholly separate address ranges and pro-
vides per-process garbage collection threads. But, deny-
ing the ability to easily share objects between processes
defeats the greatest advantage of safe-language based sys-
tems: flexible sharing.

Hardware-supported Approaches
Two groups have independently developed a Java ap-

plet execution model that requires the applets to run on
dedicated, specially protected and isolated hosts: AT&T’s
“Java Playground” [18] and Digitivity’s “Cage” Applet
Management System [8]. However, this model is severely
flawed: it imposes inherent limits on the functionality
achievable from mobile code, essentially limiting execu-
tion to the restrictive Java applet model (a model useful
for little more than “dancing pigs”), disallowing the richer
semantics that could be made available if the local sys-
tem provided the requisite security and resource controls.
Secondly, these systems can only guarantee to “your” sys-
tem that it will be protected from “their” code, and cannot
provide any guarantees (security-wise or resource-wise)
to the code running on them. Finally, this approach can
create subtle security policy interactions between the fire-
wall and the Java server/proxy. This is is a source of
complexity, and therefore, a potential vulnerability. The
Kimera [24] system has similarities, in that the verifier
and compiler must be run on specially isolated hosts, but
the resulting native code is allowed to run in the browser
on the desktop.

A number of microkernel style OS’s have been built
that provide either relatively high security or resource
management for mobile code, but not both. For exam-
ple, the Lava system [16], apparently informed by L4,
provides tight security between different JVMs at accept-
able cost, but apparently no particular resource manage-
ment. Nemesis [22] was one of the earlier systems to con-
centrate on QoS issues, achieving good performance and
good control. Eclipse [6] similarly concentrates on QoS,



but for multiple resources. Joust [14], a JVM integrated
into the Scout operating system, provides CPU schedul-
ing but no memory resource control, and as of yet, no ex-
plicit security mechanisms, though the associated Escort
effort [26] is working on it.

Finally, in contrast with influential systems such as
Eden [1] and Emerald [5], the current tendency in
language-oriented operating systems is to relegate OS de-
sign to an afterthought, relying on the features of “ad-
vanced languages” for security and structure. Eden and
Emerald indeed relied on special languages, but devoted
primary effort to OS structure.

2 An OS Structure for Mobile Components

2.1 The Archetype

We chose our own system, Fluke, as a model, not sim-
ply because we believe in its design, but because we un-
derstand its details. Any coherently structured OS which
provides both security and resource controls might serve
well as a model. For supporting mobile components, we
believe Fluke offers advantages over existing systems be-
cause it lends support to highly structured systems, pro-
vides extensible resource management, and optionally
provides policy-flexible mandatory security mechanisms.

The key aspect of Fluke is that it supports hierarchi-
cally structured processes: the “nested process model.”
Fluke is designed to make it straightforward for arbitrary
user-level processes to completely encapsulate child en-
vironments and provide useful services to those environ-
ments. This design optionally exposes all of the resources
required by a process to the creator of that process. For
example, in Fluke a user-level server that completely con-
trols the memory resources of child environments is able
to provide virtual memory services. The model’s CPU in-
heritance scheduling framework [11] allows normal, un-
privileged threads to schedule child threads—permitting
widely different scheduling policies to coexist in a single
system. CPU use, memory use, and file system and net-
work access can be mediated by any ancestor. In the inter-
ests of performance, the kernel enables process hierarchy,
but does not require it. For example, a process can create
multiple children and closely manage their file system ac-
cesses, while leaving memory and CPU management to
its ancestor. Figure 2 demonstrates such variant hierar-
chies for different resources in the same process tree. The
interfaces for memory management and CPU scheduling
are provided directly by kernel operations, while “higher
level” operations, such as file system and network access,
are managed entirely through traditional capabilities with
IPC to user-level servers.

Flask [25] is a security-enhanced version of Fluke,
whose development is led by our collaborators at the
U.S. Department of Defense. Flask provides a manda-
tory security framework for the Fluke kernel and associ-
ated security-aware servers. The Flask architecture also
provides a mechanism-independent authentication sub-
system, used by the kernel to establish and verify a prin-
cipal’s identity, and a separable cryptographic subsystem.
A key feature of Flask is the separation of security en-
forcement from security policy decisions. In Flask, the
kernel and servers within the TCB (Trusted Computing
Base) contain permission checks which inquire of a “se-
curity policy server” whether a given (subject, operation,
object) triple is permitted. The policy server’s decision is
based on the security contexts of the involved objects, and
is enforced by the kernel or the object’s server. This com-
plete separation of policy and mechanism makes the Flask
model relevant to diverse communities with widely vary-
ing security policies.

2.2 Alta: Nested Processes in Java
Based on the Fluke model, we are developing Alta, a

Java-based system which uses software protection mech-
anisms to maintain the safety and separation of processes.
One of our goals is to determine the extent to which a
Java-based system can provide the same environment as
a traditional microkernel+servers system. While the de-
sign of Fluke assumed a traditional hardware protection
based microkernel, its abstractions turn out to be indepen-
dent of that environment, with a few minor exceptions. 	
A second and important goal is to bring the nested pro-
cess model to Java. A system with such properties is well
matched to the needs of mobile code and distributed appli-
cations. Considering that mobile code systems will tend
to use platform-independent safe languages for other rea-
sons, moving OS functionality into the safe language en-
vironment will avoid the overhead and indirection associ-
ated with starting and maintaining multiple environments.
For example, the Lava system provides IPC performance
that is remarkable for a hardware protection based system,
but to effectively support mobile Java code it must instan-
tiate a Java Virtual Machine in each process and processes
must communicate with the JDK’s RMI.

In our Java-based implementation of the Fluke model
we can leverage the flexibility afforded by a type-safe
environment to improve and expand the nested process
model. For example, in Fluke, objects passed into the ker-
nel have user-level and system-level portions. When a
process passes in its user-level portion, the kernel must


The abstraction for sharing memory between processes explicitly
used virtual addresses, which are only meaningful in a hardware protec-
tion environment.
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Figure 2: An example process hierarchy and the associated memory, CPU and Network access hierarchies. In all cases,
the root of the system is the “kernel.” The lines represent the relationship between a process and the ancestor process
to which resource requests are directed, demonstrating that the hierarchies can be different for different resources.

look up the system portion. Java’s ‘private’ modifier on
object fields provides the same service much more ele-
gantly. As another example, type safety means that a pro-
cess can provide an object handle to another process with
the full confidence that the receiving process will only be
able to access visible portions of the object. This con-
trasts with hardware based environments, where sharing
is an all-or-nothing affair since it (generally) relies on raw
memory page sharing.

This contrasts with hardware based environments,
where sharing is an all-or-nothing affair since it (gener-
ally) relies on raw memory page sharing.

We have extended the Fluke model to include direct ob-
ject sharing via IPC, that is, IPC messages can contain raw
byte data and capabilities (as in Fluke), but IPC messages
can also contain Java object references. In Fluke, pro-
cesses can directly share state via shared memory pages.
In Java, sharing memory is accomplished by sharing ob-
ject references. Sharing object references between do-
mains can lead to problems with domain termination and
memory usage accounting, as described in [15], but when
inter-process trust allows, such flexibility is useful. Addi-
tionally, we feel these problems are the domain of appli-
cations and can be adequately handled at the application
level. If a process needs to restrict the sharing of object
references then it must interpose on the communication
channels where the reference can be sent. This sort of in-
terposition and monitoring is already required in capabil-
ity based systems to prevent unwanted capability propa-
gation.

In contrast to the argument that a capability-based
system in Java would require restructuring all of the
Java system classes [29], we contend that the Java
system classes do an excellent job of containing and
reusing the methods that need to be modified to sup-
port a capability system. For example, to control I/O
operations only the basic classes java.io. � File,

FileInputStream, FileOutputStream,
RandomAccessFile � need to be changed. All of the
other interfaces and classes in the java.io package
rely on these classes to do file-based input and output.

Finally, Java defines some services and abstractions
that have no analogue in Fluke. The two major differences
are the garbage collector and dynamic class loading.

2.3 Class Loading

We have extended Alta to handle class loading as an
external service in the same fashion as page faults in
Fluke are handled. Outside of a core set of critical sys-
tem classes which are pre-loaded into every process, the
majority of classes are loaded on demand by the class
fault handler for the process. Additionally, we have di-
vorced the name of a class from its implementation, which
allows processes to substitute classes. For example, a
process could substituteedu.utah.cs.npm.io.No-
AccessInputStream when a request for java.-
io.InputStream comes in, or it could substitute a
version of the class that uses IPC to perform file access
operations. The class fault mechanism relies on the link-
time integrity checks performed by the virtual machine to
guarantee that the class object provided in response to a
class fault is appropriate.

2.4 Garbage Collection and Process Separation

Garbage collection poses a number of problems for any
system attempting to precisely manage resources. All of
these problems stem from fine-grained object sharing be-
tween domains. Our current design for the nested pro-
cess model in Java provides processes with mechanisms
to restrict inter-domain object sharing. (Note that inter-
domain IPC-endpoint references do not cause these prob-
lems because of the way they are implemented by the sys-
tem.) In this way, processes can allow mutually-trusting
child processes to communicate freely, with the caveat



that domain termination and GC costs are also tightly cou-
pled. We outline these problems as open issues for which
more elegant system-level solutions are needed.

First, domain termination is difficult in a garbage col-
lected system with shared objects. In a traditional sys-
tem the kernel can simply unmap all of the memory a pro-
cess is using, but in a single-address space GC system,
the memory originally associated with a process may be
reachable by other processes. Second, in order to provide
comprehensive resource management and accounting, the
system must be able to charge domains for the garbage
collection that they incur. The standard accounting pol-
icy is to treat garbage collection as a system service that is
performed for the benefit of the system as a whole. Unfor-
tunately, such a simple-minded policy makes the system
vulnerable to poorly-behaved or malicious processes, and
weakens the system’s ability to provide strong QoS guar-
antees. For example, under an incremental GC scheme,
allocations in a process A will reduce the number of al-
locations that a subsequent process B can perform with-
out triggering a minor GC. Even if GC is “free” and not
charged to B, the shared heap weakens the guarantees of
timely execution that the system can provide to process
B or any other process. Third, in a system that allows
fine-grained sharing, simply charging the process that al-
locates an object for the memory and not the processes
that use the object is too inflexible. Charging processes
that use objects for the memory required would be more
representative of the actual memory costs involved, but
could lead to asynchronous memory exceptions. For ex-
ample, consider a large object to which many domains
hold a reference and where each domain is charged a por-
tion of the total memory cost; if many of the domains re-
lease their reference to the object the memory cost for the
remaining domains will asynchronously increase.

2.5 Status
We have built Alta as a modification to Kaffe [31],

a freely available, Java bytecode-compatible virtual ma-
chine that supports both interpretive and translator (JIT)
modes. We have enhanced java.lang.Thread and
other core classes to support our semantics, by modifying
the Java core libraries provided by the Kore project [7], a
clean-room implementation of the basic java classes com-
patible with JDK version 1.0.2.

Alta currently supports multiple applications on a sin-
gle virtual machine and correctly handles unknown class
“faults:” an IPC message is generated to the parent pro-
cess which can resolve the name to any class to which
it has access. IPC, ports, capabilities (“References” in
Fluke terminology), spaces and threads are all working
objects. Alta enforces per-process memory limits, and

supports direct reclamation of system objects in termi-
nated domains. Extensions to the virtual machine and the
Java objects to support CPU inheritance scheduling are
under active development.

Alta runs atop normal OSs in user-mode, and will
also run in kernel-mode when linked with our OSKit [9].
The latter system should provide a true Java-based OS
appropriate for supporting distributed Java components.
Finally, we will learn to what extent a particular OS
structure can be built atop drastically different protection
mechanisms. The initial results are promising.
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