
Lock Inference for
Systems Software

John Regehr Alastair Reid
University of Utah

March 17, 2003



Embedded Systems
� Properties:

� Important
� Resource constrained
� Evolve significantly
� Contain multiple

execution environments



Execution Environments
� Sets of

� Idioms and abstractions for
structuring software

� Rules for sequencing actions
� Rules for sharing information

� Examples
� Low-level: Cyclic executive, interrupts,

threads, event loop
� High-level: Dataflow graph, time

triggered system, hierarchical state
machines



Diversity in Execution
Environments is…

� Good:
� Diversity can be exploited
� To create efficient systems
� To match design problems

� Bad:
� Environments have rules
� Interacting environments have rules



Concurrency

� Embedded software is
fundamentally concurrent
� Interrupt driven
� Response time requirements

� Critical sections are a functional
aspect
� But choice of lock implementation

can be a non-functional aspect



Task Scheduler Logic (TSL)

� Formalizes locking concerns
across execution environments
� Currently unchecked

� Finds races and other errors
� Generates mapping from each

critical section in a system to an
appropriate lock
� Lock inference



Why Infer Locks?

� Locking rules are hard to learn,
hard to get right

� Sometimes no lock is needed
� Components can be agnostic

with respect to execution
environments

� Global side effects can be
managed



TSL Concepts
� Tasks – units of computation
� Asymmetric preemption

� A « B means “B may preempt A”

� Schedulers
� S ◄ B means “S schedules B”

� Locks
� S ↵↵↵↵ L means “S provides L”
� A «L B means “B may preempt A

while A holds L”



Resources and Races

� Resources
� A →L R means “A holds L while

accessing R”

� Race (A, B, R) = A →L1 R
∧∧∧∧ B →L2 R
∧∧∧∧ A ≠≠≠≠ B
∧∧∧∧ A «L1∩∩∩∩L2 B



INT

IRQ Event

Timer

Network

E1 E2 E3

H L



INT

IRQ

Timer

Network Event1

E1 E2
E3

Event2

THREAD

H

H

L

L



Applying TSL

� Applied to embedded monitoring
system with web interface
� 116 components
� 1059 functions
� 5 tasks
� 2 kinds of locks + null lock



Summary

� Contributions
� Reasoning about concurrency

across execution environments
� Automated lock inference

� Future work: Optimal lock
inference
� Minimize run-time overhead
� Maximize chances of meeting real-

time deadlines



More info and papers here:
http://www.cs.utah.edu/~regehr/


