Lock Inference for
Systems Software

John Regehr Alastair Reid
University of Utah

March 17, 2003

Embedded Systems

¢ Properties:
> Important
» Resource constrained
» Evolve significantly

» Contain multiple
execution environments

Execution Environments

¢ Sets of

> ldioms and abstractions for
structuring software

» Rules for sequencing actions
» Rules for sharing information

¢ Examples

» Low-level: Cyclic executive, interrupts,
threads, event loop

» High-level. Dataflow graph, time
triggered system, hierarchical state
machines

Diversity in Execution
Environments Is...

¢ Good:
» Diversity can be exploited
» To create efficient systems
» To match design problems

¢ Bad.:

» Environments have rules
» Interacting environments have rules

Concurrency

¢ Embedded software Is
fundamentally concurrent

» Interrupt driven
» Response time requirements

¢ Critical sections are a functional
aspect

» But choice of lock implementation
can be a non-functional aspect

Task Scheduler Logic (TSL)

¢ Formalizes locking concerns
across execution environments

» Currently unchecked
Finds races and other errors

Generates mapping from each
critical section in a system to an
appropriate lock

> Lock inference

¢ o

¢ o

Why Infer Locks?

Locking rules are hard to learn,
hard to get right

Sometimes no lock Is needed

Components can be agnostic
with respect to execution
environments

Global side effects can be
managed

TSL Concepts

¢ Tasks — units of computation

¢ Asymmetric preemption

> A « B means "B may preempt A"
¢ Schedulers

» S 4 B means “S schedules B”

¢ Locks

» S L means “S provides L”

> A «,. B means "B may preempt A
while A holds L”

Resources and Races

¢ Resources
> A — R means “A holds L while

accessing R”
¢ Race (A,B,R)=A —- ;| R
B—,R
AZB

A« 1,2 B

Applying TSL

¢ Applied to embedded monitoring
system with web interface

» 116 components

» 1059 functions

» 5 tasks

» 2 kinds of locks + null lock

Summary

¢ Contributions

» Reasoning about concurrency
across execution environments

> Automated lock inference

¢ Future work: Optimal lock
Inference

> Minimize run-time overhead

» Maximize chances of meeting real-
time deadlines

More Info and papers here:
http://www.cs.utah.edu/~regehr/

