
1

Knit 1

Knit: Component Composition for
Systems Software

Alastair Reid, Matthew Flatt, Leigh
Stoller, Jay Lepreau, Eric Eide

University of Utah

Knit is a new component definition and linking language targeted at low-level
systems code.

Components == pieces of code that I can plug together in various ways.

Be sure to say what component kits are not:

“Components are unlike libraries in that I can plug them together in various
ways instead of just one fixed way.”

2

Knit 2

Why Components?

n Everyone is writing too much code

uNot enough code reuse
uHard to reconfigure

uHard to understand

uHard to test/verify

n Exceptions: Click, Scout, Ensemble, Fox,
MMLite, OSKit, …

3

Knit 3

Why Not Components?

n Overhead

uRuntime
uProgrammer time

n Advanced systems don’t work with C

n Complex component interdependencies
uLocking restrictions

uTop/bottom-half

uBootstrap sequence

Suggest that most people in audience don’t use components and guess that
these are some of their reasons.

Point out that some of these problems seem to be more acute for systems code.

“But there’s something different about systems code”

Simple approaches (COM one example) have problems

Advanced solutions solve this but..

And even they don’t solve the problems we have with systems code

4

Knit 4

Goal of Knit Project

To make components practical
for systems programming

… by breaking down these barriers to using components

5

Knit 5

Key to Achieving Goal

Static configuration language

uEnables error detection
uEnables optimization

Static – so we can analyze the code which makes it possible to detect cycles,
detect configuration errors and optimize code.

Contrast with OO approaches (and Inferno’s modules?) where system
configuration is established at runtime – which restricts what you can do.

Weaker contrast with standard Unix build tools where most configuration
decisions are, effectively, made when you write the code.

Be sure to say that dynamic reconfiguration and OO techniques are appropriate
in some places – but you don’t want to use it for everything because being that
dynamic has such problems.

6

Knit 6

Target#1: The Utah OSKit [SOSP’97]

n Approximately 500 components:

Device drivers, bootstrap code, TCP/IP
stacks, filesystems, SNMP, etc.

n Doesn’t impose architecture

n 106 lines of code from Linux, FreeBSD,
NetBSD, Mach, Fluke, etc.

We’ve applied Knit to two component kits so far. The first and most
important is our own OSKit. We’ve also applied Knit to ‘Clack’ which is
a re-implementation of MIT’s Click modular router.

Knit is intended to be a general purpose tool. But we considered it essential
that it should work well for one particular application: The Flux OSKit
(which we presented 3 years ago at SOSP).

A kit of parts for building OS kernels

Two important things to notice are:

1) The OSKit doesn’t try to impose any particular view of the world on you.
You can use it to build microkernels or monolithic kernels. You can build
multi-threaded and single-threaded kernels. You can run interrupt
handlers in their own thread or as plain ordinary interrupts. This is, of
course, good but it’s also a problem because it’s hard to state hard and fast
laws about how systems should be built.

2) We’re dealing with a lot of code from a variety of sources so th ey’re going to make a variety of assumptions
about the environment they’re used in and no-one is actually going to be an expert in using all the components.
This is also a good thing (having lots of code) but, again, it’s a problem (because you can’t keep it all in your
head at once).

These two properties make it hard to use the OSKit.

We could make it easier to build OSKit systems if we imposed a more
restrictive framework.

Alternatively, we could handle the complexity better if the OSKit were

7

Knit 7

Outline

n Introduction

n The Knit component model
uAtomic units

uCompound units

uAutomatic Initialization
uDetecting Configuration Errors

n Implementation and Performance

n Open issues

8

Knit 8

Atomic Units [PLDI’98]

serve_cgi

serve_web

int serve_web(…) {
if (…)
serve_cgi(…);

else
serve_file(…);

}

serve_file

-Ioskit
-DKERNEL
-DHAVE_CONFIG

Knit is an application of Flatt and Felleisen’s Unit Model which was first
applied to Scheme and Java.

The basic idea is simple enough: encapsulate a piece of code in a “unit” which
explicitly lists the symbols imported into the unit (at the top) and exported
from the unit (at the bottom).

Atomic units:

Explicit imports/exports

Refers to C, assembly and object files

Contain compilation information

Be clear that units are extensions to scheme and Java – not part of standards

9

Knit 9

Compound Units [PLDI’98]

files

serve_web

processes

serve_file

select_server

serve_cgi

Compound units describe how we glue units together.

You can build hierarchies of components.

10

Knit 10

Initialization
x86

main

pthreads

VM init_x86();
init_IDE();
init_VM();
init_threads();
init_filesys();
init_main();filesys

IDE

So why did we have to do something about initialization?

Here’s a vastly simplified picture of a kernel

Order depends on interconnections so every time you insert, remove or
rearrange units, you have to change the initialization sequence.

In practice, this was a tedious, error-prone bottleneck.

So Knit generates this code for you using the component interconnections to
determine order.

In practice, OSKit programmers find this makes it much easier to reconfigure
the system – encouraging experimentation.

Example is supposed to be complex enough that audience appreciates that
automation is a good thing.

11

Knit 11

Initialization
x86

main

pthreads

VM init_x86();
init_IDE();
init_VM();
init_threads();
init_filesys();
init_main();filesys

IDE

X
The problem is what to do about cycles.

12

Knit 12

When Can We Break Cycles?

1. Component ‘contains’ subcomponents

2. No dependency between initializers

VM threads locks

f_init f g g_init

13

Knit 13

Automatic Initialization

n Knit generates initialization sequence

n Cycles are resolved by refining
initialization dependencies in units

n Experience
u5% of units need dependencies refined

uProgrammers find initialization a big win

14

Knit 14

Detecting Composition Errors

ethernet

panic

console

filesys

threads

Here’s a small part of a kernel I built.

In this kernel, panic messages from our IDE device driver get logged to the
filesystem.

I can see the experienced hackers all shaking their heads thinking “What an
idiot! The interrupt handlers will log panics to the file too. Which means
they’ll have to take locks and, of course, interrupt handlers should not
manipulate locks”

But I was young and foolish then and didn’t know what I was doing.

And, besides, there were 100 other components in the system so I wasn’t even
thinking about device drivers.

15

Knit 15

Detecting Composition Errors

ethernet

panic

console

filesys

threads

interrupts

locks

Use colors to indicate whether code is top half or bottom half (maybe not use
those words)

Be sure to say that each connection is fine – it’s the combination that is broken

Next few slides show how top-halfedness contaminates units which import it

Final slide shows a conflict: a unit which is both yellow and red.

Optional extra slide shows what we actually write

Summary slide provides opportunity to abstract lessons out of this example

16

Knit 16

Detecting Composition Errors

ethernet

panic

console

filesys

threads

interrupts

locks

17

Knit 17

Detecting Composition Errors

ethernet

panic

console

filesys

threads

interrupts

locks

18

Knit 18

Detecting Composition Errors

ethernet

panic

console

filesys

threads

interrupts

locks

19

Knit 19

Detecting Composition Errors

ethernet

panic

console

filesys

threads

interrupts

locks

20

Knit 20

Detecting Composition Errors

ethernet

panic

console

filesys

threads

interrupts

locks

21

Knit 21

Detecting Composition Errors

ethernet

panic

console

filesys

threads context(threads) <= ProcessContext

context(filesys) <= context(threads)

context(console) <= context(filesys)

context(panic) <= context(console)

NoContext <= context(ethernet)

ProcessContext < NoContext

22

Knit 22

Extensible Constraint System

n Constraint system propagates properties
through component interconnections
uKnit can detect global errors

n Constraint system is extensible

u In context X, don’t do Y
uType system for Modular IP Routers

(e.g., Click)

u…

Could characterize as:

In context X, don’t do Y:

1)top-half/bottom-half checks

2)restrictions on interrupt handlers

3)locking restrictions

Also used to encode a simple type system.

23

Knit 23

Knit

n Supports C, assembly and object files

n Separates interconnections from code
n Automatic initialization

n Extensible constraint system

n Allows cyclic component dependencies
n Allows multiple instances of components

n Text based

Last two are technical points that distinguish us from other approaches

Haven’t motivated cycles and multiple instantiation yet

Should I add initialization, constraints and performance to this slide so that
they see complete picture of what Knit does?

ToDo: quick comparison with advanced languages:

“Module systems in advanced languages give you almost all this but they
don’t address needs of systems software by supporting complex bootstrap
sequences, constraints and paying close attention to performance.”

24

Knit 24

Outline

n Introduction

n The Knit component model
n Implementation and Performance

n Open issues

25

Knit 25

Implementation (Unoptimized)

ld

a.out

symbol_rename

cc

Knit

.o

.o

.c

.unit

Knit read unit files.

Unit description directs compilation and linking process:

1) Uses standard C compiler to generate object files

2) Uses a tool we wrote to rename symbols in object files

3) Uses standard Unix linker to link program

Given this implementation, it’s obvious that the cost of crossing component
boundaries is just a function call.

So Knit achieves our goal of imposing a very low performance overhead.

26

Knit 26

Performance

§ Component cost should not distort system
structure
§ Reduce overhead by eliminating function

calls

The performance overhead of components affects the way they are used.

The more expensive it is to cross from one component to another, the larger
your components are going to be.

27

Knit 27

Click and Clack

n Click modular network router from MIT
[SOSP’99]

n Clack

uRe-implementation of Click using Knit

uSimilar performance to Click

n Many small components

Experiment to investigate performance overhead and show how inlining can
help

28

Knit 28

Performance of Clack

100%

79%

65%

0%

25%

50%

75%

100%

Unoptimized Monolithic Optimized

T
im

e
pe

r
P

ac
ke

t

Clack is an IP router in the style of MIT’s Click.

In fact, much of the design and code is lifted directly from the Click
distribution.

For the purposes of this talk, the only thing you need to know about Clack is
that it is made up of many small components. Some components are as trivial
as setting or testing a field in a packet.

We measured the time it took for a packet to get from an input device to an
output device.

(This path goes through about 13 or 14 components)

Discuss graph then…

Unoptimized == many small components, no cross-component inlining

Monolithic == manually combined the components into a small number of
large components. Not recommended programming practice but it does go
faster so performance is a problem and the temptation is there to let
performance issues affect design.

Optimized == same small components as unoptimized case but using
‘flattener’ to perform cross-module inlining.

Point out that monolithic probably underestimates overhead. But point out
that this is for small components and isn’t what we see in the OSKit.

29

Knit 29

Open Issues

n Is Knit general purpose?
uNeed more users
uNeed more applications

n Is the constraint system extensible enough?
n Implicit linking vs. explicit linking?

So is Knit finished?

No, this is only the beginning.

Does Knit work for _your_ code?

Can you encode _your_ problems in the constraint system?

Knit insists that you say things like exactly which network stack each
component is connected to – but since we only have one network stack in most
systems, this gets old pretty fast.

Constraints work well in static configurations – there’s various ways of
handling more dynamic configurations with what we have at the moment – the
interesting bit is how to make constraints more powerful _and_ handle
dynamic configurations.

30

Knit 30

Conclusions

n State of the art component system for C

n Targeted at systems code
uAutomatic initialization

uDetects local and global errors

uLow performance overhead

n Available ASAP: http://www.cs.utah.edu/flux/

Btw We don’t claim performance improvement because you could use same
approach with plain C code without needing to use units at all. (But this
wouldn’t work for function pointer-based programming, C++, etc.)

