
1

Static and Dynamic Structure Static and Dynamic Structure
in Design Patternsin Design Patterns

Eric EideEric Eide Alastair ReidAlastair Reid
John RegehrJohn Regehr Jay LepreauJay Lepreau

University of Utah, School of Computing

May 22, 2002

2

OSKit ComponentsOSKit Components

!! Systems software componentsSystems software components
!! Many taken from Linux, FreeBSD, …Many taken from Linux, FreeBSD, …
!! Largely written in C; 1M+ LOCLargely written in C; 1M+ LOC

Boot
loader

OSEnv

Linux
ext2fs

FreeBSD
net

Memory
Mgr.

VM

Block
device

IDE
driver

SCSI
driver

Mini
libc

Threads

Sched.

Console

Remote
debug

SNMP
Registry

FreeBSD
libc

Locks

Lock
wrapper

3

OSKit ComponentsOSKit Components

!! Want reuse, with minimal modificationWant reuse, with minimal modification
!! Want to combine in myriad waysWant to combine in myriad ways
!! Want to understand the resulting systemsWant to understand the resulting systems

Boot
loader

OSEnv

Linux
ext2fs

FreeBSD
net

Memory
Mgr.

VM

Block
device

IDE
driver

SCSI
driver

Mini
libc

Threads

Sched.

Console

Remote
debug

SNMP
Registry

FreeBSD
libc

Locks

Lock
wrapper

4

Idea: Design PatternsIdea: Design Patterns

!! Capture systems design expertiseCapture systems design expertise
!! Leverage shared knowledge baseLeverage shared knowledge base
!! Useful throughout software lifecycleUseful throughout software lifecycle

Client AbstractFactory

ConcreteFactory1 ConcreteFactory2

AbstractProductA

ProductA1 ProductA2

AbstractProductB

ProductB1 ProductB2

BlockDevice

IDE Device

IDE BlkIO IDE Info

5

Idea: Design Patterns?Idea: Design Patterns?

!! “Legacy” C code“Legacy” C code
!! No languageNo language--supported classes, objectssupported classes, objects
!! Conventional OO approach: too dynamicConventional OO approach: too dynamic

Client AbstractFactory

ConcreteFactory1 ConcreteFactory2

AbstractProductA

ProductA1 ProductA2

AbstractProductB

ProductB1 ProductB2

BlockDevice

IDE Device

IDE BlkIO IDE Info
?
?

6

MotivationMotivation

!! Apply design patterns in context of CBDApply design patterns in context of CBD
!! Make patterns explicit/obvious at the level Make patterns explicit/obvious at the level

of componentsof components
!! Avoid changing the components’ codeAvoid changing the components’ code

7

Key IdeasKey Ideas

!! Separate the Separate the staticstatic and and dynamicdynamic parts of parts of
design patternsdesign patterns
!! “lift” static parts to level of components“lift” static parts to level of components
!! realize dynamic parts with objectsrealize dynamic parts with objects

!! Leverage Leverage unitunit component modelcomponent model
!! [Flatt and Felleisen, PLDI ’98][Flatt and Felleisen, PLDI ’98]
!! Implemented for C, Java, SchemeImplemented for C, Java, Scheme

8

ContributionsContributions
!! Describe our approach to realizing patternsDescribe our approach to realizing patterns
!! Define a method for realizing existing patterns Define a method for realizing existing patterns

via our approach, applicable to:via our approach, applicable to:
!! …imperative, functional, and OO languages…imperative, functional, and OO languages
!! …many existing (…many existing (GoFGoF) patterns) patterns

!! Demonstrate with examples from the OSKitDemonstrate with examples from the OSKit
!! Evaluate benefits and costs of our approachEvaluate benefits and costs of our approach

!! increased opportunities for reuseincreased opportunities for reuse
!! verification of architectural constraintsverification of architectural constraints
!! performance optimizationsperformance optimizations

9

UnitsUnits
I_Export1I_Export1 I_Export2I_Export2

I_Import1I_Import1 I_Import2I_Import2

WidgetWidget

I_Export1I_Export1

I_Import1I_Import1 **
GadgetGadget

* I_Export2* I_Export2

I_Import2I_Import2

!! ImportsImports
!! ExportsExports
!! InterfacesInterfaces
!! ConnectionsConnections
!! HierarchyHierarchy
!! Multiple instancesMultiple instances
!! Separate languageSeparate language
!! C, Java, SchemeC, Java, Scheme

10

UnitsUnits
!! Parts of a static Parts of a static

assembly, not runassembly, not run--time time
valuesvalues

!! Import/export types and Import/export types and
classesclasses

!! Constraints, buildConstraints, build--time time
constraint checkingconstraint checking

!! Optimization via crossOptimization via cross--
component inlining

I_Export1I_Export1 I_Export2I_Export2

I_Import1I_Import1 I_Import2I_Import2

WidgetWidget

I_Export1I_Export1

I_Import1I_Import1 **
GadgetGadget

* I_Export2* I_Export2

I_Import2I_Import2

component inlining

11

Expressing Patterns with UnitsExpressing Patterns with Units
!! Example:Example: protect a nonprotect a non--

threadthread--safe component safe component
with a lockwith a lock

!! Solution:Solution: apply Decorator apply Decorator
patternpattern

!! OO approach:OO approach:
!! one or two abstract classesone or two abstract classes
!! two derived classestwo derived classes
!! runrun--time: create objects, time: create objects,

linkslinks
!! OO approach hides static OO approach hides static

properties of the system

ComponentComponent

DecoratorDecoratorNonNon--ThreadThread--SafeSafe
ComponentComponent

ThreadThread--SafeSafe
DecoratorDecorator

obj = new TSDecorator(
new NTSComponent(…))

res = obj->op(…)

properties of the system

12

Expressing Patterns with UnitsExpressing Patterns with Units
!! Our solution:Our solution: apply apply

Decorator at the level of Decorator at the level of
unitsunits
!! one interfaceone interface
!! three componentsthree components
!! buildbuild--time instantiation, time instantiation,

connection, and connection, and
encapsulationencapsulation

!! buildbuild--time constraint time constraint
checkingchecking

!! Architecture is clear, Architecture is clear,
enforced, and localized at enforced, and localized at
the component level

I_ComponentI_Component

DecoratorDecorator

I_ComponentI_Component

I_ComponentI_Component

ComponentComponent

I_ComponentI_Component

the component level res = op(…)

13

Method for Expressing PatternsMethod for Expressing Patterns

!! General task:General task:
!! identify parts of the pattern that correspond to identify parts of the pattern that correspond to

static knowledgestatic knowledge
!! “lift” that knowledge out of code“lift” that knowledge out of code
!! realize via unit definitions and connectionsrealize via unit definitions and connections

!! Necessarily specific to individual uses of a Necessarily specific to individual uses of a
patternpattern

!! But, general process can be described as But, general process can be described as
translation from OO description to unitstranslation from OO description to units

14

Method for Expressing PatternsMethod for Expressing Patterns

!! Example: OSKit block I/O device driversExample: OSKit block I/O device drivers

Client BlockDevice

IDE SCSI

BlkIO

IDE BlkIO

SCSI BlkIO

DriverInfo

IDE DriverInfo

SCSI DriverInfo

Floppy

Floppy BlkIO Floppy DriverInfo

15

Method for Expressing PatternsMethod for Expressing Patterns

1.1. Identify the abstract classes/interfaces.Identify the abstract classes/interfaces.

Client BlockDevice

IDE SCSI

BlkIO

IDE BlkIO

SCSI BlkIO

DriverInfo

IDE DriverInfo

SCSI DriverInfo

Floppy

Floppy BlkIO Floppy DriverInfo

16

Method for Expressing PatternsMethod for Expressing Patterns

2.2. Identify Identify staticstatic and and dynamicdynamic participants.participants.

Client BlockDevice

IDE SCSI

BlkIO

IDE BlkIO

SCSI BlkIO

DriverInfo

IDE DriverInfo

SCSI DriverInfo

Floppy

Floppy BlkIO Floppy DriverInfo

staticstatic

dynamicdynamic

17

Method for Expressing PatternsMethod for Expressing Patterns

3.3. Define interfaces for static participants.Define interfaces for static participants.

Client BlockDevice

IDE SCSI

BlkIO

IDE BlkIO

SCSI BlkIO

DriverInfo

IDE DriverInfo

SCSI DriverInfo

Floppy

Floppy BlkIO Floppy DriverInfo

I_BlockDevice

18

Method for Expressing PatternsMethod for Expressing Patterns

4.4. Define interfaces for dynamic participants.Define interfaces for dynamic participants.

Client BlockDevice

IDE SCSI

BlkIO

IDE BlkIO

SCSI BlkIO

DriverInfo

IDE DriverInfo

SCSI DriverInfo

Floppy

Floppy BlkIO Floppy DriverInfo

I_BlockDevice

I_BlkIO I_DriverInfo

19

Method for Expressing PatternsMethod for Expressing Patterns

5.5. Unit Unit defndefn. for each concrete participant.. for each concrete participant.

IDE BlkIO

I_BlkIO

IDE

I_BlkIO I_DriverInfo

I_BlockDevice

IDE DriverInfo

I_DriverInfo

Client BlockDevice

IDE SCSI

BlkIO

IDE BlkIO

SCSI BlkIO

DriverInfo

IDE DriverInfo

SCSI DriverInfo

Floppy

Floppy BlkIO Floppy DriverInfo

20

Method for Expressing PatternsMethod for Expressing Patterns

6.6. Instantiate and connect participant units.Instantiate and connect participant units.
I_BlockDevice

IDE BlkIO

I_BlkIO

IDE

I_BlkIO I_DriverInfo

I_BlockDevice

IDE DriverInfo

I_DriverInfo

Client BlockDevice

IDE SCSI

BlkIO

IDE BlkIO

SCSI BlkIO

DriverInfo

IDE DriverInfo

SCSI DriverInfo

Floppy

Floppy BlkIO Floppy DriverInfo

21

Method WrapMethod Wrap--UpUp
Client

I_BlockDevice

I_BlockDevice

IDE BlkIO

I_BlkIO

IDE

I_BlkIO I_DriverInfo

I_BlockDevice

IDE DriverInfo

I_DriverInfo

!! Modify as needed for Modify as needed for
other considerationsother considerations
!! match existing code, match existing code,

e.g., static/dynamic e.g., static/dynamic
decisiondecision

!! remove participantsremove participants
!! participants in multiple participants in multiple

patternspatterns
!! aggregate parts to aggregate parts to

simplifysimplify

22

Method WrapMethod Wrap--UpUp
!! More complicated FS More complicated FS

example in paperexample in paper
!! Applicable to many Applicable to many

((GoFGoF) pattern uses;) pattern uses;
see papersee paper

!! Commonly, much Commonly, much
pattern knowledge is pattern knowledge is
staticstatic

Singleton
Singleton

Singleton
Singleton

Decorator
Decorator

Decorator
Decorator

Adapter
Adapter

Adapter
Adapter

Adapter
Adapter

Abs. Factory

Abs. Factory

bs. Factory

bs. Factory

Command
Command

Strategy
Strategy

AA

23

AnalysisAnalysis

!! Static pattern information is located in a Static pattern information is located in a
single placesingle place
!! unitunit--based specification of the systembased specification of the system
!! “resolved” when the system is built“resolved” when the system is built

!! Unit language is designed specifically for Unit language is designed specifically for
describing components and their linkagesdescribing components and their linkages

!! Pattern realization can be moved out of Pattern realization can be moved out of
components’ implementationscomponents’ implementations

24

BenefitsBenefits
!! Increased opportunities for code reuseIncreased opportunities for code reuse

!! disentangled “pattern role” code; multiple patternsdisentangled “pattern role” code; multiple patterns
!! applicable when code cannot be changed (legacy)applicable when code cannot be changed (legacy)

!! Ability to check architectural constraintsAbility to check architectural constraints
!! global, highglobal, high--level, domainlevel, domain--specific checksspecific checks
!! checker need not understand the base languagechecker need not understand the base language

!! Enabled performance optimizationsEnabled performance optimizations
!! crosscross--component inlining…component inlining…
!! …enables more significant optimizations…enables more significant optimizations

25

CostsCosts

!! Only the static parts of a pattern are Only the static parts of a pattern are
specified by our approachspecified by our approach

!! Participants are committed to being static Participants are committed to being static
or dynamicor dynamic

!! Unit descriptions can obscure the Unit descriptions can obscure the
differences between patternsdifferences between patterns

!! To achieve full benefits, our approach To achieve full benefits, our approach
requires support for the unit modelrequires support for the unit model

26

Related WorkRelated Work

!! LanguageLanguage--based approachesbased approaches
!! LayOMLayOM [Bosch, JOOP ’98][Bosch, JOOP ’98]

!! MetaprogrammingMetaprogramming--, template, template--, and macro, and macro--
based approachesbased approaches
!! [Marcos et al., ’99][Marcos et al., ’99]
!! [[AlexandrescuAlexandrescu, ’01], ’01]
!! [Krishnamurthi et al., ESOP ’99][Krishnamurthi et al., ESOP ’99]

!! ADLs and MILsADLs and MILs

27

ConclusionsConclusions
!! Common pattern applications contain a great Common pattern applications contain a great

deal of exploitable static knowledgedeal of exploitable static knowledge
!! Separating the static and dynamic parts of Separating the static and dynamic parts of

design patterns can yield significant benefitsdesign patterns can yield significant benefits
!! improved opportunities for reuseimproved opportunities for reuse
!! ability to check architectural constraintsability to check architectural constraints
!! enabled performance optimizationsenabled performance optimizations

!! Paper presents a method for obtaining these Paper presents a method for obtaining these
benefits via the unit model, applicable to:benefits via the unit model, applicable to:
!! …many existing patterns…many existing patterns
!! …imperative, functional, and OO languages…imperative, functional, and OO languages

28

Thanks!Thanks!

!! http://www.http://www.cscs..utahutah..eduedu/flux//flux/

	Static and Dynamic Structure in Design Patterns
	OSKit Components
	OSKit Components
	Idea: Design Patterns
	Idea: Design Patterns?
	Motivation
	Key Ideas
	Contributions
	Units
	Units
	Expressing Patterns with Units
	Expressing Patterns with Units
	Method for Expressing Patterns
	Method for Expressing Patterns
	Method for Expressing Patterns
	Method for Expressing Patterns
	Method for Expressing Patterns
	Method for Expressing Patterns
	Method for Expressing Patterns
	Method for Expressing Patterns
	Method Wrap-Up
	Method Wrap-Up
	Analysis
	Benefits
	Costs
	Related Work
	Conclusions
	Thanks!

