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ABSTRACT

Network link emulation constitutes an important part of network emulation,

wherein links in the topology are emulated to subject the network traffic to different

bandwidths, latencies, packet loss distributions, and queuing models. Increasingly,

experimenters are creating topologies with substantial emulation bandwidths; con-

tributed both by a large number of low-speed links and a small number of high-speed

links. It is a significant challenge for a link emulator to meet this requirement in real

time. Existing solutions for link emulation use general-purpose PC-class machines;

the well-understood hardware and software PC platform make it attractive for quick

implementation and easy deployment. A PC architecture is largely optimized for

compute bound applications with large amounts of exploitable instruction-level

parallelism (ILP) and good memory reference locality. Networking applications, on

the other hand, have little ILP and instead exhibit a coarser packet-level parallelism.

In this thesis, we propose using network processors for building high capacity

link emulators. Network processors are programmable processors that employ a

multithreaded, multiprocessor architecture to exploit packet-level parallelism, and

have instruction sets and hardware support geared towards efficient implementation

of common networking tasks. To evaluate our proposal, we have designed and

implemented a link emulator, LinkEM, on the IXP1200 network processor. We

present the design and a mapping of LinkEM’s tasks across the multiple micro-

engines and hardware threads of the IXP1200. We also give a detailed evaluation

of LinkEM, which includes validating its emulation accuracy, and measuring its

emulation throughput and link multiplexing capacity. Our evaluation shows that

LinkEM has a factor of between 1.6 and 4.6 higher throughput for small packets,

and link multiplexing capacity between 1.4 and 2.6 higher for low bandwidth links

than Dummynet, a popular PC based link emulator, on a comparable PC platform.
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CHAPTER 1

INTRODUCTION

Network emulation [1, 27, 9, 36, 34] provides an environment where real appli-

cations and protocols are subjected to an emulated network consisting of resources

such as links, routers and background traffic; each such network resource is either

real, emulated, or part real and part emulated. Like simulation [33], it is widely

used for experimentation in distributed systems and networks. Link emulation

constitutes an important part of network emulation, wherein links in the topology

are emulated to subject the network traffic to different bandwidths, latencies, packet

loss distributions, and queuing models.

Emulab [36], the Utah network testbed, is a large-scale emulation environment

used extensively for distributed systems research all over the world. Increasingly,

emulation experiments are involving topologies with substantial emulation band-

widths; contributed both by a large number of low-speed links and a small number

of high-speed links. There is a need for high capacity link emulators that can meet

this requirement in real time. This thesis proposes using network processors for

building these high capacity link emulators. To evaluate our proposal, we have

developed a link emulator, LinkEM, on the Intel IXP1200 network processor [15].

In this thesis, we present LinkEM’s design, implementation and evaluation.

1.1 PC-based Link Emulation

Existing solutions for link emulation use general-purpose PCs; the well-understood

hardware and software PC platform make it attractive for quick implementation

and easy deployment. Dummynet [30], Hitbox[1], NIST Net [25], and ONE [2]

are single-node PC-based link emulators that have been used extensively in the

research community. They are typically implemented as kernel modules that are
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transparently interposed between the kernel networking stack and network interface

drivers. Packets belonging to an emulated link are subjected to link characteristics

and then passed on to the stack or driver. Since these emulators are a part of

the kernel, they avoid expensive user-kernel boundary crossings and extra buffer

copying, and can thus be implemented very efficiently to squeeze out the maximum

performance from the underlying hardware.

A conventional PC architecture typically relies on two important traits in ap-

plications to extract high performance: 1) large amounts of instruction-level par-

allelism (ILP), which can be exploited by the super-scalar architecture and 2) a

high locality in memory access patterns so that increasing memory latencies can be

hidden by caches. Indeed, as Moore’s law allows higher levels of integration, the PC

architecture scales up by increasing clock rates, by adding more on-chip memory

and by more aggressive exploitation of ILP, thereby improving performance for

applications which demonstrate these traits.

Using a set of benchmarks drawn from networking applications, Crowley et

al.[7] show that networking applications typically have little ILP, and instead

demonstrate a coarser packet-level parallelism. Packets are largely independent

of each other and can be processed in parallel. This packet-level parallelism is not

exploited by a single-threaded, single-CPU, super-scalar processor that looks for

ILP in only one thread of execution. Many networking applications also do not

demonstrate a high cache locality [6]; this is especially true for applications that

handle a large number of flows, with packets belonging to the same flow spaced far

away in time. Thus, a cache miss is not a rare event, and coupled with low ILP,

can result in low processor utilization, as the processor spends idle cycles waiting

for memory accesses to complete.

1.2 Network Processors for Link Emulation

1.2.1 An optimized architecture for packet processing

Network processors are programmable processors that use a multithreaded,

multiprocessor architecture to exploit packet-level parallelism, have instruction sets
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geared towards efficient implementation of common networking tasks, and typically

use hardware acceleration units to offload processor intensive tasks. The Intel IXP

series of network processors [15, 17, 18] has between 6 to 16 independent RISC

CPUs called microengines. Each microengine has 4 to 8 threads and supports

hardware multithreading with low-overhead context swaps. Threads can start

asynchronous memory and IO operations and can continue processing while waiting

for the operation to complete. If there is no computation to be overlapped, the

thread can yield control and let another thread process a different packet. This

coarse-grained thread-level parallelism is more closely matched to the packet-level

parallelism shown by networking applications, and can help hide high memory

latencies. Figure 1.1 illustrates this parallelism by showing a snapshot of execution

on one of the microengines of the IXP1200 network processor. As seen in the figure,

in the ideal case, as long as there is at least one runnable thread, the latency of

memory operations can be completely hidden behind the compute cycles.

The IXP series of network processors also provides hardware support for many

of the common networking tasks like hashing, random number generation, buffer

allocation and queuing. This enables efficient implementation of these tasks which

helps to scale to large packet rates; especially since these tasks form the core of a

TIMELINE

T2

T3

T4

RUN

READY

BLOCKED FOR M/IO

RUN

BLOCKED FOR M/IO READY

READY RUN

BLOCKED FOR M/IO

READY

BLOCKED FOR M/IO

T1

RUN

THREAD 1

THREAD 2

THREAD 3

THREAD 4

T5

Figure 1.1. Thread-level parallelism on an IXP1200 microengine
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wide variety of networking applications. In particular, a link emulator can use hash-

ing for fast classification of packets into links, pseudo random number generators for

implementing packet loss models and RED [10] queuing, and hardware support for

buffer allocation and queuing for supporting large number of link queues and delay

buffers. These processors also support low-latency hardware primitives for synchro-

nization, which can help avoid expensive software synchronization, as packets and

data structures are handled by multiple threads across multiple microengines in

parallel.

1.3 Thesis Overview and Roadmap

This thesis proposes using network processors for building high capacity network

link emulators. To evaluate our proposal, we have designed and implemented a

link emulator, LinkEM, on the IXP1200 network processor. LinkEM’s emulation

model is based upon Dummynet’s two-queue model [30]. However, it is a complete

reimplementation in microengine assembly language on the parallel resources of

the IXP1200 network processor. We discuss design techniques that we employed

to map LinkEM tasks across the 6 microengines and 24 hardware threads of the

network processor. We present a detailed evaluation of LinkEM, which includes

validating its emulation accuracy, measuring its emulation throughput for a range

of packet sizes, and measuring its link multiplexing capacity, and compare it with

Dummynet on a comparable PC platform.1

The contributions of this thesis are:

• A description and demonstration of design techniques to map network appli-

cations to the IXP1200 network processor.

• A detailed description of the design and implementation of a link emulator

on the IXP1200.

1The IXP1200 was released around 2000. We used an 850MHz PC with a 32-bit/33 MHz PCI
bus which represented a reasonably high-end commodity PC platform around that time.
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• Evaluation and comparison of the link emulator to a PC-based implemen-

tation in terms of emulation accuracy, throughput, and link multiplexing

capacity.

The rest of this thesis is organized as follows. Chapter 2 lays out the background

for the rest of the document. We describe Emulab, some important aspects of

link emulation, and Dummynet’s two-queue link emulation model. A network

processor architecture, both hardware and software, is very different from a PC

architecture, and it is crucial to understand the key differences between the two

platforms. Therefore, in Chapter 3, we describe the architecture of the Intel

IXP1200 network processor which we have used as the implementation platform

in this thesis. Chapter 4 starts off by discussing the techniques used in designing

LinkEM on the IXP1200. We then describe the different tasks in LinkEM, and their

mapping across the multiple microengines and threads of the network processor. In

Chapter 5, we present a evaluation of LinkEM and a comparison with Dummynet.

Chapter 6 discusses related work, while Chapter 7 concludes this document.



CHAPTER 2

BACKGROUND

2.1 Emulab

Emulab is a time- and space-shared large-scale emulation environment used

for networking and distributed systems research. Users specify a virtual topology

graphically or via an ns script [33], and Emulab automatically maps it into physical

resources that emulate the topology. PCs serve many roles in the testbed: as

end-hosts in an emulated distributed system, as traffic generation and consumption

nodes, as routers in the emulated topology, and as link emulator nodes. They are

connected by Cisco switches which act as a programmable patch-panel, connecting

the PCs in arbitrary ways to emulate the user-specified topology.

Emulab implements link emulation by inserting PCs running Dummynet into

the topology. One of the important goals of Emulab is transparency; the end-user

application or protocol should not need extensive modification to run on Emulab

versus running directly on a real network.1 Thus network emulation is provided

with the minimum intrusion, and in case of link emulation, Emulab achieves it by

configuring the link emulation nodes as Ethernet bridges, which transparently relay

the packets between the end-hosts after emulation. Figure 2.1 shows a sample ns

file specifying an experiment, and Figure 2.2 shows the associated virtual topology

and its physical realisation in Emulab. In Figure 2.2, dn0 and dn1 are the link

emulation nodes which emulate the desired link characteristics.

Emulab also supports changing network characteristics during experiment run-

time through an event system based on the Elvin publisher-subscriber system

[31]. For example, link characteristics like bandwidth and delay, as well as traffic

1In fact, this is one of the important advantages of emulation over simulation. A protocol once
tested on a simulator typically involves substantial amount of porting to move it to the real world.
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set r0 [$ns node]

set ns [new simulator]  # Create the simulator

source tb_compat.tcl    # Add Emulab commands

$ns rtproto Static      # Static routing

set n0 [$ns node]

set n1 [$ns node]

set n2 [$ns node]

set n3 [$ns node]

#run on Emulab$ns run

$ns set duplex−link $n0 $r0 100Mb 10ms Droptail #create links 

# create new nodes

$ns set duplex−link $n1 $r0 10Mb 25ms Droptail

$ns set duplex−link $n2 $r1 100Mb 10ms Droptail

$ns set duplex−link $n3 $r1 10Mb 10ms Droptail

$ns set duplex−link $r0 $r1 1.5Mb 100ms RED

set r1 [$ns node]

Figure 2.1. Experimental script in Emulab

inter−switch link

n1

r0 r1

n2

10 Mb/25 ms

ni  − end nodes

ri    − routers

VIRTUAL TOPOLOGY

PHYSICAL TOPOLOGY

n0

n3

1.5 Mb/100 ms

100 Mb/10 ms

ni  −  end nodes

ri   −   routers

si   −   switches

dni   −  link emulation nodes

n0

n1

r0

dn0

s0

100 Mb

n3

r1

s1

n2

dn1

100 Mb/10 ms

10 Mb/ 25ms

100 Mb

Figure 2.2. Topology mapping in Emulab
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generator characteristics like packet size and packet rate can be changed during

experiment runtime. These features bring much of a simulator’s ease of use and

control to emulation, while retaining its realism. In addition, through automated

and quick experiment configuration, and support for automatic swap in and swap

out, Emulab encourages an interactive style of experimentation, heretofore only

attributed to simulation.

2.2 Link Emulation

Network links are of various types: wired or wireless, point-to-point or shared,

and LAN or WAN links. Each type of link has its own unique characteristics,

for instance, wireless links employ control packets for collision avoidance and have

a channel interference model associated with them. However, some of the com-

mon link properties that can be abstracted across different types of links are link

bandwidth, link delay, link loss, and a link queuing model.

Link bandwidth introduces queuing delays, when multiple flows compete for a

link’s capacity. For congestion reactive traffic like TCP, the end-node will reduce

its sending rate to match its share of the the link bandwidth. However for “fire-

hose” applications using UDP, packets are dropped in the link queue if the send

rate continues to be higher than the link bandwidth. Link delays consist of three

components: a queuing delay as packets wait to share a common link, a transmission

delay that represents the time taken to put the entire packet on the wire, and a

propagation delay or latency of the link. Link losses include queuing losses, as well

as random bit errors on the links. A link queuing discipline could be FIFO or RED

[10] for instance, and is typically used to absorb packet bursts, and for congestion

control.

2.2.1 Aspects of link emulation

This section discusses some important aspects of link emulation that can be used

as qualitative and quantitative metrics to describe a link emulator implementation.
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• Forwarding capacity: This is the peak number of packets per second that

the emulator can forward. It is largely independent of the packet size, because,

other than the packet copying costs at the input and output of the emulator,

all other processing involves only the packet header. Smaller packet sizes

mean that more packets fit into the same bandwidth, increasing the amount

of emulation processing required per link. Thus minimum-sized packets are

the worst case load for link emulation, similar to routing.

• Link emulation capacity: This measures the maximum number of physical

and multiplexed links that can be emulated with the desired accuracy. Since

emulation runs in real time, the packet forwarding rate decides the number of

emulated physical links. For example, an emulator that can forward a gigabit

of traffic per second through emulation processing can essentially emulate a

maximum aggregate emulation traffic of a gigabit.

Many networking experiments use lower speed links than the available phys-

ical bandwidth; thus an ability to multiplex a number of such links on a

physical link is useful. For instance, a gigabit of link bandwidth can be used

to emulate six OC-32 links or a thousand 1 Mbps links or two thousand 512

Kbps DSL-like links.

• Accuracy: Like all timing related applications, the accuracy of an emulator

depends on its timer granularity. For instance, an emulator using a 1 ms

timer cannot accurately emulate links with bandwidth and delay that require

sub-millisecond granularity. Coarser timer granularities result in the emulator

adding burstiness to the emulated traffic; a 100 us timer for instance releases

up to 15 minimum-sized Ethernet packets in one burst while emulating a 100

Mbps link.3 In practice, this is generally not a problem, except for very fast

(high bandwidth) and/or very short (low latency) links.

2155 Mbps

3Inter-packet arrival time for minimum-sized Ethernet packets on a 100 Mbps link at line rate
is 6.75 us. Thus burst size = 100 us / 6.75 us = 15.
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Accuracy is also affected by the amount of traffic and the number of mul-

tiplexed links handled by the emulator. Under high loads, timer ticks can

be missed, and since emulation tracks real time, this can lead to inaccurate

emulation.

• Extensibility: This governs whether new models of link loss or new delay

models or queuing disciplines can be added into the emulator without a

significant redesigning effort. A component-based emulation environment for

instance can offer extensibility, which can support adding new code modules

into the emulator.

• Feature Set: This measures qualitatively the features that are provided by

the emulator. Some emulators provide delay and loss models, others provide

packet duplication, packet reordering and cross-traffic injection. Wireless link

emulators provide models for channel interference and collision avoidance,

while LAN emulators provide models for collision detection and exponential

back off.

2.3 Dummynet

Dummynet [30] is a FreeBSD-based link emulator and traffic shaper. It is an

in-kernel implementation that sits between the network drivers and the network-

ing stack and can intercept packets both entering and leaving the node. Below,

we discuss in brief, Dummynet’s emulation model and its implementation inside

FreeBSD.

2.3.1 Emulation model

A Dummynet abstraction for a link is called a pipe. A pipe has a configurable

bandwidth, delay, and a loss rate associated with it. It is modeled by two queues: a

bandwidth queue called an R queue through which packets are drained at the link

bandwidth rate, and a delay queue called a P queue where packets are buffered for

the link delay. The size of the R queue and its queuing discipline (FIFO or RED) can
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be set by the user. The size of the P queue affects the maximum delay-bandwidth

product that can be supported for a link (see [30] for details).

2.3.2 Implementation

Dummynet relies on the FreeBSD IP firewall to filter packets and divert them

to pipes. A user program called ipfw is used to create firewall rules that match

packets to Dummynet pipes and to configure pipe characteristics. Dummynet can

be hooked into the bridging or routing code in the networking stack of a FreeBSD

kernel. In Emulab, Dummynet is configured to run in bridging mode, so that link

emulation is transparent to end-nodes and applications. Figure 2.3 shows how the

Bridging and Dummynet modules interact on Emulab link emulation nodes.

In the incoming path, packets are copied from the network interface to an mbuf

chain, passed through the IP firewall, and diverted to Dummynet pipes. All this

code runs in interrupt context, and network interrupts are turned off during this

processing. A Dummynet callback function is triggered once every tick, which

emulates the configured links. It is called at softint interrupt priority, however it

turns off network interrupts during the entire processing to protect shared data

structures from corruption. Once a packet is subjected to the link characteristics,

it is sent to the bridging layer which looks up the destination interface, and the

TIMER

USER−SPACE

KERNEL

DUMMYNET

BRIDGING

ETH LAYER

PKT RCV/XMT

IP FW

IPFW/DUMMYNET FRONTEND

Figure 2.3. Dummynet in bridging mode
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packet is then enqueued in the interface queue, ready to be sent out of the link

emulator.



CHAPTER 3

IXP1200 ARCHITECTURE

In this chapter, we describe the hardware and software architecture of the

IXP1200 network processor [15]. Unlike a PC platform, achieving high performance

on a network processor requires intimate knowledge of the parallel processing en-

gines and other hardware assists provided by the network processor. We describe

the programmable processors, the on-chip resources like Scratchpad memory and

the hardware hash engine, as well as the on-chip interfaces to off-chip resources like

SRAM, SDRAM, and network interfaces. Since network processors tout flexibility

through programmability, the software architecture on these processors is the other

key part of this platform. We describe both, the software programming environment

or development platform, and the component based programming model [16] of the

IXP1200 network processor.

3.1 Hardware Architecture

Figure 3.1 shows the hardware architecture of the IXP1200 network processor,

including the chip internals and the external interfaces.

3.1.1 Programmable processors

The IXP1200 consists of seven programmable engines, one StrongArm core and

six microengines, all on the same die.

• StrongArm Core: The StrongArm is a 32-bit ARM general-purpose pro-

cessor with configurable endianness that is clocked to run at 232 MHz. It has

a built-in serial port, support for virtual memory, a 16 KB instruction cache,

an 8 KB data cache and supports a byte-addressable interface to SDRAM and
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Figure 3.1. Architecture of the IXP1200 network processor

SRAM memories. Like other RISC processors, it supports a small set of simple

instructions and a large register file. This processor is typically targeted to

handle control plane processing and management plane applications.

• Microengines: The microengines are RISC processors optimized for data-

plane packet processing; each microengine is clocked at 232 MHz. The key

components of the microengine architecture are described below.

– Multiple hardware threads: Each microengine supports four hard-

ware threads. A thread owns a portion of the microengine’s register set

and has its own program counter. Thus context switches are very fast

as they do not involve storing and loading state from memory. A non-

preemptive scheduler switches between the threads; threads voluntarily
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swap out on memory and IO operations to let other threads run, thereby

increasing microengine utilization. The microengine executes code from

an on-chip 8 KB program store; each microengine has one such program

store that is shared by all four threads.

– Instruction pipeline: A microengine has a five-stage pipeline divided

into fetch, decode, fetch operands, execute, and write stages. Each stage

takes one cycle to complete, thus the ideal clocks per instruction (CPI)

is 1. Conditional branches can cause a stall in the pipeline, and the

instruction set supports branch instructions that let the programmer

control the path to fetch instructions from at a branch. Thread switches

typically take about three cycles to flush the pipeline for the outgoing

thread and to load the pipeline for the new thread.

– Instruction set: The instruction set supports operations that operate

at bit, byte and long-word levels. The ALU supports arithmetic and

logical operations with shift and rotate operations in single instructions.

The microengines do not provide integer multiplication or division and

do not support floating point operations. Integer multiplication can be

accomplished through conditional iterative add operations based on sign

condition codes.

– Register set: Each microengine has 128 32-bit general-purpose reg-

isters (GPRs), 64 SRAM transfer registers, and 64 SDRAM transfer

registers. The GPRs can be accessed in a thread-local mode, in which

each thread can access 32 registers, or in a global mode, in which all

threads access the entire pool of registers. These modes are not exclusive,

i.e., the programmer can use some registers as thread-local registers and

designate others as global registers at the same time.

Transfer registers are used to stage data while the data are being trans-

ferred between the microengines and memory. The advantage of having

the GPR and the transfer register set different is that the GPRs can be
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used in computation, even as the transfer registers move data to or from

memory, thus supporting asynchronous memory operations.

3.1.2 Functional interfaces

Functional interfaces on the IXP1200 consist of the SRAM and SDRAM inter-

faces, the FIFO bus interface (FBI) and the PCI interface.

• SRAM interface: The SRAM interface is an on-chip interface to up to 8

MB of off-chip SRAM. The SRAM memory has an unloaded latency of about

16-20 cycles and supports peak bandwidth of about 3.7 Gbps (32 bit/116 MHz

bus). It occupies a middle ground between the on-chip Scratchpad memory

and the off-chip SDRAM memory in terms of memory latency and size.

SRAM is typically used for storing flow tables, routing tables, packet descrip-

tor queues, and other data structures that need to be accessed frequently and

with low latencies. It supports atomic bit-test-set and atomic bit-set-clear

instructions that are useful for synchronization between microengines. It also

supports CAM locks that can be used to lock regions of memory while up-

dating shared data structures. The SRAM interface supports eight hardware

push-pop queues that offer a fast atomic way to allocate and deallocate buffers

across multiple microengines.

• SDRAM interface: The SDRAM interface supports up to 256 MB of off-

chip SDRAM with a peak bandwidth of approximately 7.5 Gbps (64-bit/116

MHz bus) and an unloaded latency of 33-40 microengine cycles. SDRAM

is typically used for storing packets; there is a direct data path from the

SDRAM to the IX bus interface (network port interface) which supports fast

data transfer between memory and the ports.

• FIFO bus interface: The FBI interface contains the following components:

an IX bus interface, a hash unit which computes 48- and 64-bit hashes, a

cycle count register which increments at the core frequency (232 MHz), and

a 4 KB on-chip Scratchpad memory. The IX bus interface and microengine
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software together co-ordinate the transfer of packets between memory and

the ports. The hash unit supports up to three independent hashes in a

single instruction, and can be used to offload hash computation from the

microengines. The cycle-count register provides a timer for implementing

timing based tasks. The Scratchpad memory is the smallest latency memory

with unloaded latency of about 12-14 cycles. It offers primitives like atomic

increment which can be used to maintain statistics, and atomic bit-test-set

and bit-test-clear instructions which can be used for fast inter microengine

synchronization.

• PCI interface: The PCI interface allows the IXP1200 to connect to external

devices like general-purpose CPUs.

3.2 Software Architecture

The software architecture on network processors is a key ingredient for the suc-

cess of this technology. It is a challenge to present a development and programming

environment that lets the developer peek into the hardware architecture to optimize

for performance and at the same time provides an abstraction of the hardware

to make software development easy. The software architecture of the IXP1200

provides a developer with familiar Linux-based compilation and debugging tools for

the StrongArm, and Windows-based microengine compiler, assembler and debugger

for the microengines. It also provides a programming framework, called the Active

Computing Element (ACE) [16], for development of reusable software components

that can be used across applications, and even across different generations of a

network processor.

3.2.1 Development platform

The development platform on the IXP1200 consists of two main parts:

• Linux-based cross-platform tool-chain for the StrongArm: A Linux

machine is used to host the cross-platform compilation and debugging tool-

chain for the StrongArm processor on the IXP1200, which is the familiar gcc
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tool-chain with C and C++ cross compilers, linkers, and debuggers. The

StrongArm boots up in embedded Linux, thus this platform is familiar to

Unix developers.

• Windows-based development environment for the microengines: The

Windows part of the development environment includes a microcode assem-

bler, a C compiler, a debugger, and a cycle-accurate simulator for the IXP1200

microengines. The simulator is typically used by a software development team

in the initial stages to develop and test the software parallel to the hardware

board development. In the later stages, it can be used to optimize specific

parts of the microcode for higher performance.

Software for the microengines can be written in microcode, which is a struc-

tured assembly language, or can be written in a subset of ANSI C called

MicroC. The C compiler for the microengines exports a familiar environment

to programmers. It also exports some hardware features, which can be used

by programmers to optimize their code. For example, the compiler supports

primitives to control whether a variable should be stored in a microengine

register, on-chip Scratchpad memory, or off-chip SRAM memory. The de-

bugger is used to debug code running on the microengines on the IXP1200

hardware, or code running on the simulator.

3.2.2 Programming model

Networking applications typically operate in three planes: data, control and a

management plane. The fast-path in the data plane handles most packets, e.g.

normal IP packets. The slow-path handles exception packets like broadcasts or

IP packets with options. The control plane handles control messages and creates,

maintains, and updates the data and forwarding tables used by the data plane.

Routing protocols like RIP and OSPF run in this plane. The management plane

is responsible for configuration of the system, for gathering statistics, and for

providing end-user interaction.
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The software programming architecture on the IXP1200 provides a framework

called Active Computing Element (ACE) [16] for creating applications in the data

and control planes. Users can create reusable software components on both the

StrongArm and the microengines, which can then be stitched together to create

applications. At the highest level, the architecture is composed of two types of

ACEs:

• Core ACE or Conventional ACE: These ACEs run on the StrongArm core

of the IXP1200 processor. They are connected in a packet processing pipeline,

with packets moving between the ACEs. These consist of two conceptual

parts:

– Classification: During this phase, the ACE applies a sequence of rules

to the packet and places associated actions on a queue.

– Action: During this phase, each action on the queue is executed. The

actions typically involve processing the packet and then delivering it to

the downstream ACE.

Core ACEs are developed in C or C++ and a special language called Network

Classification Language (NCL), which is used for writing the classification

rules. ACEs also export an interface which can be used for configuring certain

properties of the ACE, for example, an ingress ACE exports an interface to

set the IP addresses of the interfaces and the interface MTU size. ACEs can

be bound to each other to create a packet processing pipeline. The ACE

runtime system provides this binding mechanism and also allows changing it

dynamically to alter the packet flow.

• MicroACE or Accelerated ACE: MicroACEs consist of two types of

components: slow-path or core components, which are regular ACEs that run

on the StrongArm, and fast-path components, which run on the microengines.

The microengine components handle the common packets in the fast-path,



20

while exception packets are handed over to the core component for slow-path

processing. A MicroACE has the following main architectural elements:

– Microblock: A microblock is a component running on the microengine.

Examples of microblocks are an IP forwarding microblock or a bridg-

ing microblock. Microblocks can be written in microengine assembly

language or in MicroC.

– Microblock Group: Multiple microblocks can be combined and down-

loaded as a single image on a microengine, these form a microblock

group. For example, an ingress microblock, a bridging microblock and a

queuing microblock can form a microblock group and can be downloaded

on a microengine. Microblocks in a microblock group are statically

bound at compile time.

– Dispatch Loop: A dispatch loop implements the packet flow between the

microblocks in a microblock group. It caches commonly used variables in

registers and provides macros for microblocks to access packet headers.

Typically application functionality is encoded in the dispatch loop, thus

insulating the microblocks from the application details, so that they can

be reused across different applications.

– Resource Manager: This module runs on the StrongArm and provides

an interface to the core component of an MicroACE to manage its

microblock. Using the Resource Manager, the core component and

microengines can share memory for data structures, and pass packets

back and forth.

– Core Component: The core component of a MicroACE runs on the

StrongArm, and appears as a conventional ACE to other ACEs in the

system. It is responsible for allocating memory, setting up shared data

structures, and patching the load time variables in its microblock. Dur-

ing runtime, it handles slow-path exception packets from its microblock.
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MicroACEs can be combined along with Core ACEs to form a processing pipeline

to implement networking applications. Figure 3.2 shows an example of an IP

forwarding application using MicroACEs and conventional ACEs. The Ingress,

IP forwarding and Enqueue microblocks are combined in a microblock group with

a dispatch loop that implements the packet flow between them, and downloaded on

one microengine. The Dequeue and Egress microblocks are combined into another

microblock group and downloaded on a second microengine. The core components

of the microblocks run as independent processes on the StrongArm and form a

processing pipeline for slow-path processing. The Stack ACE is an example of a

conventional ACE which acts as an interface between the microACEs and the Linux

network stack running on the StrongArm.
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Figure 3.2. An example MicroACE IP forwarding application



CHAPTER 4

DESIGN AND IMPLEMENTATION

As described in Chapter 3, the IXP1200 network processor provides a large

pool of parallel resources tuned to fast packet processing: 1400 MIPS across 6

parallel microengines, four hardware contexts on each microengine, instructions

optimized for network tasks, a hardware hash unit, and hardware synchronization

primitives. However, it is a significant challenge to map the application to these

parallel resources on the IXP1200 to maximize performance, without running into

communication and synchronization bottlenecks.

In this chapter, we first discuss some software design techniques that can be used

to layer an application on the multiple threads and microengines of the IXP1200

network processor. We then describe the design of LinkEM: its emulation model,

the tasks from which it is composed, and a mapping of these tasks across the six

microengines and twenty-four hardware threads.

4.1 Software Design on the IXP1200

The MicroACE [16] architecture provides a way to build reusable software

components on the StrongArm as well as on the microengines, and stitch them

together to implement packet forwarding applications. However, the architecture

does not provide any hints to the programmer about how to split an application

into tasks and how to map tasks to use the available resources. This splitting and

mapping is typically done manually by the programmer. In the following subsec-

tions, we discuss techniques for partitioning a group of tasks across microengines

and threads that we employed while designing LinkEM on the IXP1200 network

processor. These techniques are not the only way or even necessarily the best way
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of splitting tasks across microengines and threads. However, they worked well for

us for designing LinkEM on the IXP1200.

4.1.1 Assigning threads on a single microengine to tasks

Each microengine on the IXP1200 processor has four hardware contexts that

support coarse-grained multithreading under software control. One of the ways of

using the multiple threads on a microengine is to perform the same task on all

four threads; each thread acts on a different packet, and yields to other threads on

memory and IO operations to maximize microengine utilization.

Assume that a task is executed by a single thread and takes Tt cycles to

complete: Tt = Tc +Tm, where Tc is the compute cycles and Tm is the memory and

IO access cycles. This task can handle an inter packet arrival time Ta, if Ta > Tt

or Ta > Tc + Tm. As inter packet arrival times approach memory latencies, it

is difficult to meet line rate because the processor spends large number of cycles

waiting for memory operations to complete. To increase microengine utilization,

we can execute the same task on all four threads, with each thread operating on

a different packet. Let u be the fraction of memory and IO access cycles hidden

by active thread computation when running multiple threads on a microengine.

Figure 4.1 shows four packets being processed in parallel by four threads on a

microengine.
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Figure 4.1. Exploiting multithreading on a microengine
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Thus, each thread holds a packet for up to a wall-clock time of Tt = 4 ∗ Tc +

(1 − u) ∗ Tm, out of which about Tc cycles are spent processing a packet, while

(1−u)∗Tm cycles are spent idle waiting for memory operations to complete. Since

each thread now handles every fourth packet instead of every packet, the inter

packet arrival time that can be handled by the combination of four threads is given

by Ta > Tc + (1 − u) ∗ Tm, which is lower than Tc + Tm, thus enabling a higher

packet rate. In the ideal case, when the latencies of all memory and IO operations

can be hidden by active thread execution, i.e., u = 1, the inter packet arrival time

Ta is bound by only the compute cycles, and is given by Ta > Tc.

4.1.2 Assigning microengines to tasks

Each microengine of an IXP1200 network processor offers about 232 MIPS; thus

a single microengine often does not have enough compute power for a group of tasks

which make up a packet processing application. In such cases, the group of tasks

can be run on additional microengines to increase the available processing power.

• Microengine pipelining: A microprocessor pipeline uses multiple pipeline

stages to process an instruction. Each stage handles a different instruction

at a given time, and thus multiple instructions are overlapped in execution

inside the pipeline. Similarly, a microengine pipeline can be used to partition

a group of tasks, such that each task is executed on a separate microengine,

handling multiple packets simultaneously in the pipeline.

Assume that the compute cycles for a group of tasks is three times the inter

packet arrival time. Let Tc be the compute cycles to be applied to every

packet. Then we can break down the group of tasks into a pipeline of three

microengines, with each packet processed by three threads (one thread on

each one of the three microengines). Since a microengine has four threads,

there are a total of 12 packets simultaneously handled in the pipeline. Let

task ti running on microengine i1 have a fraction ui of its memory references

1slowest microengine pipeline stage
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hidden behind active computation. Thus a thread on microengine i holds a

packet for a wall-clock time of Tti = 4 ∗ Tci
+ (1 − ui) ∗ Tmi

cycles, of which

Tci
is the compute cycles spent on that packet and (1 − ui) ∗ Tmi

is spent

in waiting for memory accesses (see Section 4.1.1 above). Since a packet is

handled by three threads, it gets a total microengine cycle time of 3 ∗ Tci
or

Tc. This configuration meets a inter packet arrival time of Tci
+(1−ui)∗Tmi

.

In the ideal case, if memory latencies are completely hidden and ui = 1, then

the inter packet arrival time supported has a lower bound of Tci
. Figure 4.2

depicts a pipeline of three microengines implementing an Ethernet bridging

application.

Apart from the compute cycles dictating the use of a microengine pipeline,

code storage space and synchronization primitives also affect the splitting of

tasks into microengine pipelines. For tasks that have a big code footprint,

a separate microengine might have to be allocated, since the code space on

each microengine is limited (about 2K instructions on the IXP1200). For

example, in Figure 4.2, microengine 1 is dedicated to run the ingress task,

microengine 2 runs the Ethernet bridging task and microengine 3 is dedicated

for the egress task.

Running each task on a separate microengine also has the advantage that task

specific state (or state independent of packets) can be cached in microengine
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registers since it is only accessed by one microengine. For example, the

Ethernet bridging task can cache frequently used entries of its bridging table

in microengine registers to be accessed quickly. The flip side, however, is

that packet headers or packet annotations like classification results have to

be passed between microengines through expensive off-chip packet queues.

• Microengine parallelism: In this approach, a group of tasks run on a

single microengine; this configuration is then executed in parallel on multiple

microengines to get extra compute cycles. Figure 4.3 illustrates the Ethernet

bridging application using microengine parallelism.

Thus in our example, the collection of tasks with a compute cycle requirement

of Tc cycles is instantiated on three microengines, with each microengine

running four threads. A packet is handled completely inside one microengine

by one thread. Therefore, a single thread spends a wall-clock time of Tti =
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3 ∗ 4 ∗Tci
+ 3 ∗ (1−ui) ∗Tmi

cycles, out of which 3 ∗Tci
or Tc are the compute

cycles spent per packet, and 3 ∗ (1 − ui) ∗ Tmi
is the time spent waiting for

memory operations. However, since each thread handles every 12th packet,

this configuration can meet inter packet arrival time of Ta > Tci
+(1−ui)∗Tmi

.

In the ideal case, if memory latencies are completely hidden and ui = 1, then

the inter packet arrival time supported has a lower bound of Tci
.

Each microengine now runs the entire group of tasks, and this configuration

is replicated on three microengines. Every packet is handled completely by

one thread on any one microengine. This means that packet headers once

loaded from memory can be cached in registers, and passed on to the different

tasks very cheaply. Similarly, packet annotations like classification results

can also be cached in registers. However, since all tasks run on more than

one microengine, any updates to shared state across microengines has to go

through inter-microengine synchronization which can be prohibitive.

In Section 4.2.2, we describe how these techniques are used to map LinkEM to

the microengines and threads of the IXP1200 network processor.

4.2 LinkEM Design

LinkEM’s emulation model is based on the Dummynet two-queue model (de-

scribed in Chapter 2); however it is a complete reimplementation in microengine

assembly language on the microengines of the IXP1200 network processor. It

supports a per-link configurable bandwidth, latency, loss and a queuing model.

It also supports multiplexing lower speed links onto physical links; for example,

multiple 512 Kbps links can be multiplexed on a 100 Mbps physical link. This

feature is useful for modeling networking experiments which use a large number

of low or moderate speed links to emulate WAN links. Incoming packets are

classified early on into different links using source and destination IP addresses as

the key. Once attached to a link, a packet is subjected to queuing, transmission and

propagation delays configured for that link. It might also be dropped or forwarded,

based on the link loss rate, or can be dropped if the link queue is full.
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The emulation task in LinkEM is timer-triggered. Emulation time is maintained

as a counter that is incremented once every tick.2 The emulation time and the link

characteristics are used to calculate the number of ticks packets have to wait, to

model the different kinds of link delays. Since LinkEM can be used to potentially

handle hundreds of links every tick, an efficient way is needed to handle the schedul-

ing of all links. The obvious way of maintaining a linear list of all emulated links

and traversing it every tick does not scale well as the number of emulated links

increase.

Like Dummynet, LinkEM instead uses a priority queue for maintaining schedul-

ing information of all active link queues in the system. The key for the priority

queue is the expiration time for the first packet of a link queue. LinkEM uses

a heap data structure to implement the priority queue. There are two types of

heaps: a heap which contains all nonempty link bandwidth queues, and a heap

containing all nonempty link delay queues. At every tick, LinkEM processes all link

bandwidth and link delay queues whose expiration time is in the past as compared

to the current emulation time. Packets from the bandwidth queue are moved to the

delay queue for link latency emulation once subjected to queuing and transmission

delays, while packets from the delay queue are moved to the output port queue for

transmission out of the link emulator.

4.2.1 LinkEM tasks

At the highest level, LinkEM is split into 10 tasks: Ingress, Bridging, Clas-

sification, Queuing, Link Queue Scheduling, Timing, Link Loss emulation, Link

Bandwidth emulation, Link Delay emulation, and Egress. Each of these tasks is

implemented as a MicroACE. The StrongArm components handle initialization of

data structures shared with the microblocks. In the case of Bridging, Classification

and Egress, they also handle packets in the slow-path. The microblocks handle

the fast-path on the microengines. We reuse the Ingress, Bridging and Egress

microACEs from the Intel reference design code [16], while all other microACEs

2LinkEM is configured to run at 8192Hz, thus one tick is about 120 us.
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are implemented from scratch. This section describes each of the microblocks and

the data structures that it uses.

• Ingress: Figure 4.4 presents pseudo-code for the ingress microblock.

The ingress microblock is responsible for receiving packets from the network

ports and assembling them into memory. To implement this functionality,

the microblock uses an on-chip hardware unit called the IX bus interface

start#:

load input port state

enter critical section

check for port readiness

leave critical section

if (data){

enter critical section

issue a request to transfer data from port to rcv buffer

wait for transfer to complete

leave critical section

} else br[start#:]

if(start of packet){

allocate packet buffer

Move 64-byte chunk from rcv buffer to microengine registers

}

Move 64-byte chunk from rcv buffer to SDRAM packet buffer

Update packet reassembly state

if(end of packet){

Pass buffer handle to processing task

} else

Pass NULL buffer handle to processing task

br [start#]

Figure 4.4. Ingress microblock
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(see Figure 3.1), which connects to the external MAC ports over the IX

bus. The IX bus interface contains sixteen 64-byte receive buffers, a small

programmable engine called a ready-bus sequencer, and control and status

registers (CSRs). The ready-bus sequencer polls the ports for incoming

packets at the programmed interval, and updates the status registers about

data availability. The ingress microblock in turn polls the status registers, and

instructs the IX bus interface to transfer data from the port to the receive

buffers. The IX bus splits the packet in 64-byte chunks, and each chunk is

transferred separately to receive buffers and then to memory.

The ingress microblock is also responsible for allocating a buffer descriptor

and the corresponding buffer to hold the packet. It assembles the 64-byte

chunks into an entire packet in the buffer, and updates the buffer descriptor

with meta information like the incoming port, the timestamp of the received

packet, and the ingress queue number corresponding to the incoming port.

The IXP1200 SRAM unit supports a hardware stack of buffer descriptors in

SRAM which can be used to atomically allocate and deallocate buffers. Each

SRAM buffer descriptor corresponds to a packet buffer in SDRAM where the

actual packet is stored.

• Bridging: The bridging microblock is used to determine the output interface

to which the packet should be forwarded after it is subjected to link emulation.

The bridging table is implemented as an open hash table in SRAM, with

the destination MAC address in the packet header as the hash key. The

microblock loads the packet header into registers, extracts the 48-bit MAC

address, and uses the hardware hash unit to produce a 48-bit hash. This hash

value is then folded to index the hash table to access the bucket. The bucket

contains a pointer to a linked list that is traversed to search for a matching

MAC address. The search returns with the output interface to which the

packet should be forwarded, which is updated in the packet meta data. The

packet is then forwarded to the next processing block.
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Packets with source and destination addresses that match in the bridging

table are processed in the fast-path. If the destination address is not found

in the table, then the packet is forwarded to the core component for flooding

to all interfaces. A packet whose source address is not found in the table is

also sent to the core so that its address can be added to the table. Similarly,

broadcast, multicast, and ARP packets are diverted to the core for slow-path

processing. Figure 4.5 shows pseudo-code for the bridging microblock.

• Classification: The classifier microblock is used to classify or demultiplex

packets on the same physical link into constituent emulated links, so that

packets can be subjected to the configured link characteristics. It implements

exact match classification on a key consisting of source and destination IP

addresses in the packet. Classification returns the ID of the link to which the

packet belongs or returns failure if the packet is not mapped to any link. The

start#:

Use buffer handle to locate the packet buffer in SDRAM

Load packet header and extract the src and dst MAC addresses

Do RFC bridge checks to see if the src/dst addresses are valid

Hash the src/dst MAC addresses

Search the Bridging table for src/dst MAC entries

If (entry not found or learning needed){

generate exception to bridging core component

br [start#:]

}

Update the output port in the packet meta data

br[start#:]

Figure 4.5. Bridging microblock
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link ID and packet descriptor are then forwarded to the next microblock if

there is a match in the classification table.

The classification table is implemented as an open hash table in SRAM; the

hardware hash unit is used to generate a 64-bit hash value from the 64-bit

source and destination address key, which is subsequently folded to the table

index size. The bucket at the index contains a pointer to a linked list that is

searched for a match. Packets that do not match any link are forwarded to the

core component for slow path processing. Figure 4.6 shows the pseudo-code

for the classifier microblock.

• Queuing: The queuing microblock implements a separate queuing discipline

per link. Queues are implemented as circular buffers in SDRAM, while

queue descriptors are maintained in SRAM. This microblock uses the link

ID passed in by the classifier microblock to locate the queue for the link. If

the queuing discipline is FIFO, the packet is enqueued if there is space in

the queue, otherwise it is dropped. If the link queue supports RED, then the

start#:

Use buffer handle to locate the packet buffer in SDRAM

Load packet header and extract src/dst IP addresses

Hash the 64-bit key

Fold it into an index of the required size

Search in the classifier table for a matching link

If(not found){

generate exception to the core component

br [start#:]

}

Pass on the link ID to the next component

br [start#:]

Figure 4.6. Classifier microblock
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RED algorithm is used to determine if the packet is enqueued or dropped

[10]. Currently, LinkEM does not implement the RED queuing algorithm.

Figure 4.7 shows pseudo-code for this microblock.

• Link Queue Scheduling: As described in Chapter 2, a packet experiences

two kinds of delay in a link bandwidth queue: a queuing delay sitting in the

queue behind other packets and a transmission delay that models the time it

takes for the packet to be put on the wire. If the queue is empty before the

packet is inserted, then the packet does not experience any queuing delays. In

this case, the link scheduling microblock computes the number of ticks that

the packet should spend in the queue depending on the link bandwidth. With

this as the key, the microblock then schedules the link in the bandwidth heap

to be processed in the future by the bandwidth emulation task. It then stores

the current emulation time in the queue meta information.

If the bandwidth queue was nonempty before this packet was enqueued, then

the queue is not scheduled. Note that in this case, the queue will already be

in the bandwidth heap with its key as the expiration time of the first packet

in the queue. The link bandwidth heap is shared between this microblock

and the bandwidth emulation microblock. While this microblock is packet

stimulated, the bandwidth emulation microblock runs at the configured timer

granularity. Since both microblocks update the heap, a critical section is used

start#:

Use link ID to load the link descriptor and access the queue number

Enqueue the packet in the link bw queue by running FIFO/RED algorithm

br [start#:]

Figure 4.7. Queuing microblock
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to protect insertions and deletions in the heap. Figure 4.8 shows pseudo-code

for this microblock.

• Bandwidth Emulation: Figure 4.9 shows the pseudo-code for the band-

width emulation task. At every timer tick, this microblock processes the

bandwidth heap. It does a DelMin operation on the heap to get the link

bandwidth queue with the minimum key. If the queue’s expiration time is in

the past as compared to the current emulation time, the queue is processed.

Using the link descriptor handle from the queue’s meta info, this microblock

loads the descriptor and gets access to the link parameters.

start#:

If (link bw queue was not empty before this enqueue){

/* The packet will also experience a queuing delay*/

/* The queue is already present inside the heap */

jump[start#:]

}

/* link queue was empty before this packet was enqueued*/

/* schedule this queue based on the transmission delay

for this packet*/

Use packet size and link bandwidth to determine number of

ticks to wait.

Insert the queue in the bw heap with the computed key

Store the current emulation time in the queue meta info,

so that the emulation task will know when this queue was

scheduled

br [start#]

Figure 4.8. Link queue scheduling microblock
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wait_timer_tick#:

wait_inter_thread_signal()

process_bw_heap#:

Get MinKey from the bandwidth heap

Get current emulation time

if (Minkey > current_em_time || heap is empty){

/* no queues to process this tick */

br [wait_timer_tick#]

}

DelMin and get Min queue handle and key

Load queue meta info and get the link descriptor handle

Load link descriptor and get the bw and other link params

Update accumulated credit based on current time and

the time when the queue was scheduled

While (packets in the bw queue){

QPeek(nextpktsize)

If (packet size < credit){

move packet to delay queue

decrement credit by packet size

} else

break;

}

if (queueisempty){

/* done processing this queue, see if any other

queue needs processing */

br [process_bw_heap#]

}

/* This queue needs to be scheduled again */

Compute new key for the queue

Insert queue in bw heap

br [process_bw_heap#]

Figure 4.9. Bandwidth emulation microblock
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Based on the current emulation time, the emulation time when the link was

scheduled, and the link bandwidth, it calculates the accumulated credit.

Packets are then moved from the link bandwidth queue to the link delay

queue based on the accumulated credit. For each packet, its expiration time

from the delay queue, based on link latency, is calculated, and updated in the

packet meta-data.

If the link queue still has packets that cannot be processed in this tick, the

new expiration time for the queue is calculated based on the size of the first

packet in the queue, the remaining credit, and the link bandwidth. The queue

is then scheduled back into the bandwidth heap to be processed at a future

timer tick.

• Delay Emulation: At every timer tick, this microblock processes the delay

heap. It does a DelMin operation on the heap to get the link delay queue

with the minimum key. If this key is in the past compared to the current

emulation time, the queue is processed. Packets from the delay queue with

expiration time in the past are moved to the output port queue. If the queue

is not yet empty, it is scheduled back in the delay heap for processing at a

future tick, with the output time of the first packet in the queue as the key.

Figure 4.10 shows the pseudo-code for this task.

• Loss Rate Emulation: This microblock implements uniform packet loss

rate for a link. Using the link descriptor handle, the microblock loads the

link loss rate.3 For every packet a random value is generated; if the value

is less than the loss rate value, the packet is dropped, else the packet is

forwarded.

The IXP1200 does not provide a pseudo random number generator, nor does

it provide instructions to make this job easy on the microengines. So to

implement loss rate, the core component of this task generates the random

3The user configured loss rate value between 0 and 1 is scaled to an unsigned integer and stored
in the link descriptor.
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wait_timer_tick#:

wait_inter_thread_signal()

process_delay_heap#:

Get MinKey from the delay heap

Get current emulation time

if (Minkey > current_em_time || heap is empty){

/* no queues to process this tick */

br [wait_timer_tick#]

}

DelMin and get Min queue handle and key

While (packets in the delay queue){

QPeek(nextpktexpirationtime)

if(expiration time in the past){

Find the output port queue for this packet

enqueue the packet in the output port queue

} else

break;

}

if (queueisempty){

/* done processing this queue, see if any other

queue needs processing */

br [process_delay_heap#]

}

/* This queue needs to be scheduled again */

Compute new key for the queue

Insert queue in delay heap

br [process_delay_heap#]

Figure 4.10. Delay emulation microblock
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values and fills up a table in memory. This table is shared with the microblock;

the microblock simply does a lookup in this table to get the random value and

uses it to implement link loss. This technique works reasonably well, although

not as well as generating random numbers since the table size is limited

and random values start repeating depending on the table size. Figure 4.11

presents pseudo-code for this task.

The alternative, which is generating random values on the microengine, is very

expensive in microengine cycles to do in the fast-path. The second generation

of IXP processors includes an on-chip pseudo random number generator that

can be used for this task.

start#:

Load the link loss rate

if (loss rate == 0){

/* pass the packet */

pass the buffer handle to next processing task

br [start#:]

}

/* non-zero loss rate */

load the next random value from the random number table

if (random_value < loss_rate){

/* drop the packet */

release packet buffer

pass NULL handle to next task

br [start#:]

}

/* pass the packet */

pass the buffer handle to next processing task

br [start#]

Figure 4.11. Loss rate emulation microblock
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• Timing: The IXP1200 has a 64-bit cycle-count register located in the FBI

interface (see Section 3.1), which increments at the core frequency of 232

MHz. The timing microblock can be implemented to read this register in a

loop, and generate signals to the emulation threads at the configured tick rate.

However, the cycle-counter is co-located with the Scratchpad Memory and the

IX bus interface that controls the movement of packets between memory and

ports, so frequent reading of the cycle-counter adversely affects the access

latencies of these hardware units. As a result, we decided not to use the cycle

counter for implementing the emulation timer.

Figure 4.12 shows the pseudo-code code for the timer microblock. As de-

scribed in Section 4.2.2, all other microblocks use up only four of the six micro-

engines. So we decided to dedicate one microengine to the timer microblock,

and generate accurate timing without causing any load on the rest of the

system. We run the timing microblock in one thread on the fifth microengine;

this thread runs a simple loop with a preconfigured loop count based upon

the tick value. Since this thread uses the microengine completely, we can

calculate the loop count based on the microengine frequency to implement

start_timer_loop#:

load num_cycles to loop

Account for a constant number of cycles to implement the loop

while (num_cycles > 0){

decrement num_cycles

}

;signal the emulation threads

inter_thread_signal(emulation threads);

br[start_timer_loop#]

Figure 4.12. Timer microblock
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the configured timer tick value. When the thread exits the loop, it sends an

inter-thread signal to the emulation threads and goes back into the loop.

• Egress: Figure 4.13 show pseudo-code for the egress task. Once packets

are subjected to their link characteristics, the emulation microblocks enqueue

the packets in output port queues. The egress microblock is then responsible

for moving packets from the output port queues to the network ports for

transmission. Just like the ingress task, the egress task uses the on-chip IX

bus interface unit for this purpose. The IX bus interface contains a small

programmable unit called the ready-bus sequencer, sixteen 64-byte transmit

buffers, and control and status registers (CSRs). The ready-bus sequencer

and the egress microcode cooperate to use the transmit buffers as a circular

queue for staging packets temporarily, as they are moved from memory to

output port buffers.

start#:

Get a packet from the output port queue

handle_next_chunk#:

Compute the xmt buffer to which this 64-byte chunk should

be transferred

Wait for xmt buffer to become free

move 64-byte chunk from memory to xmt buffer

check if port is ready for data

Validate xmt buffer so that chunk will be transferred to port

If (end of packet){

release packet buffer

br [start#]

}

br [handle_next_chunk#]

Figure 4.13. Egress microblock
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The ready-bus sequencer polls the ports at regular intervals and updates the

status registers whenever there is space in the port buffers. These status

registers are in turn polled by the egress microblock. The egress microblock

transfers the packet in 64-byte chunks to the transmit buffers. It then writes

the output port and the offset of the chunk in the whole packet to the control

words associated with the buffer. Once it validates the buffer, the transmit

state machine moves it over the IX bus to the port for transmission.

4.2.2 Mapping LinkEM tasks to the IXP1200 microengines

In this section, we describe how LinkEM tasks (described in Section 4.2.1) are

combined into microblock groups and instantiated on the microengines. Our aim is

to produce a mapping of LinkEM tasks on the IXP1200 microengines, not necessar-

ily the most optimized mapping, that helps us to evaluate the network processor for

high-capacity link emulation. Figure 4.14 shows the high-level mapping of LinkEM

on the six microengines of the IXP1200.

Microengines 1, 2, 3, and 4 form a microengine pipeline in which packets are

processed as they pass through the link emulator. For tasks on microengines 1 and

DELAY EMU

TIMER

LINK SCHED.

QUEUING

LOSS EMU
CLASSIFY

EGRESS

IDLE ME

(CAN BE USED
TO SPEEDUP
EGRESS )

MICROENGINE PIPELINING

MICROENGINE

MULTITHREADING MULTIPLE
TASKS ON THE SAME ME

PARALLELISM

ME 1 ME 2 ME 3 ME 4

ME 6ME 5

INGRESS
BRIDGING

BW  EMU

Figure 4.14. High-level design of LinkEM on the IXP1200
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2, we estimate Tc and Tm, and use the design technique described in Section 4.1.1

to group them. Tc is estimated through a pseudo-code analysis of the code, while

Tm is obtained by multiplying the number of accesses by a task per packet by the

unloaded memory and IO access latencies. Tables 4.1 and 4.2 show the latencies

we measured for common transfer sizes and hash references typically done by the

tasks. For tasks on microengines 3, 4, and 5, we employ qualitative analysis like the

code footprint size, the task functionality, the amount of state shared with other

tasks, and whether tasks are packet stimulated or timer triggered, to combine them

into groups. The sixth microengine is idle in the current design. In Appendix A,

we describe a design in which the sixth microengine can be used to speed up egress.

The two-microengine design of egress is an example of microengine parallelism

design technique.

Note that actual memory and IO latencies vary during runtime, as they depend

on the load on the system, but we use unloaded latencies as a ballpark to create an

initial mapping of tasks. Subsequent implementation and cycle measurements could

be used to distribute tasks in a different way based on the measured bottlenecks in

the system. However, producing an optimal mapping of tasks to microengines is

not the focus of this thesis.

Table 4.1. Measured SRAM/SDRAM latencies for common transfer sizes (cycles)
Memory 4 8 12 16 24 32

Op. bytes bytes bytes bytes bytes bytes
SramRD 18 22 22 26 - -
SramWR 18 22 22 26 - -
SdramRD - 50 - 50 54 54
SdramWR - 38 - 38 42 42

Table 4.2. Hash unit latencies for computing 48- and 64-bit hashes

Hash Operation Num of cycles
Two 48-bit hashes 40
One 64-bit hash 35
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• Microblock Group 1: The ingress and bridging microblocks are combined

into a group and instantiated on one microengine of the IXP1200 processor.

Table 4.3 shows the compute and memory cycle requirements for both these

microblocks.

If we execute this group of tasks on four threads of one microengine with

each thread handling a different packet, then a thread can hold a packet

for up to four packet arrival times. The IXP1200 board that we use as our

implementation platform has four 100-Mbps interfaces, thus the inter packet

arrival time for each port is about 6.75 usecs for minimum-sized Ethernet

packets. Since each thread handles one port (this design avoids sharing and

synchronization of packet reassembly state between threads), it can hold the

current packet for about 6.75 usecs or 1550 cycles (at 232 MHz microengine

frequency) before the next packet arrives at its assigned port.

The wall-clock time needed by a thread to process one packet is about 4 ∗
Tc + (1 − u) ∗ Tm, or between 1200 and 1200 + (1 − u) ∗ 500 cycles. This

can just fit within the 1550 cycle budget or overshoot it, depending on how

many memory and IO cycles can be hidden behind compute cycles. Thus, a

single microengine with four threads seems to be a good match for running

the ingress and bridging microblock group.

Figure 4.15 shows the ingress and bridging microblock group with the main

data structures. Since the link emulation processing tasks run on other

microengines, packet buffer handles and packet state are passed to them

through memory. This is done by maintaining one packet queue per input

Table 4.3. Cycle counts for Microblock Group 1

Task Compute Memory-hash Total cycles
cycles cycles per packet

Ingress 80 195 275
Bridging 210 275 485

Total 290 470 760
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Figure 4.15. Microblock Group 1

port for holding the packet buffer handle and other packet annotations. Once

the packet is assembled by ingress in memory and its output port is looked up

by the bridging task, the packet handle and state is enqueued in this packet

queue.

• Microblock Group 2: The classification, link loss emulation, queuing, and

link queue scheduling microblocks are combined into a single microblock group

and instantiated on one microengine. Table 4.4 shows estimated compute and

memory/hash cycles based on a pseudo-code analysis of these tasks.

This microblock group receives packets from the ingress and bridging mi-

croblock group (Microblock Group 1) through packet queues in memory.

Small differences in execution speed between the two microblock groups can

Table 4.4. Cycle counts for Microblock Group 2

Task Compute Memory-hash Total
cycles cycles cycles

Classifier 40-50 200 240-250
Loss rate em 30-35 40 70-75

FIFO Enqueue 20-30 135 155-165
Link schedule 45-50 140 185-190

Total 135-165 515 650-680
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be absorbed by the packet queue, but in principle, this microblock group has

to run as fast as the ingress and bridging microblock group. Thus with four

threads executing this group of tasks on a microengine, each thread can hold

on a packet for up to one inter packet arrival time (on one port), or about

1550 cycles, before it has to handle the next packet.

From the table, we can see that the minimum wall-clock time needed to

process each packet by a thread is about 4 ∗Tc +(1−u) ∗Tm, or between 660

and 660 + (1− u) ∗ 515 cycles, which fits within the 1550 cycle budget. Note

that the actual memory latencies at runtime will vary depending on the load

on the system. Also, the running time of operations on the different data

structures might vary depending on the packet being currently processed.

For instance, certain buckets of the hash table might contain longer list of

elements. Figure 4.16 shows this microblock group and the associated data

structures.

QUEUING

INPUT PORT 
QUEUES

EXCEPTION PKTS
SENT TO CORE

classification hash table pkt loss random number table bandwidth queue handle
head of queue deadline

PRIORITY QUEUE OF BANDWIDTH
QUEUES 

QUEUES

MICROENGINE

LINK DESCRIPTOR
TABLE

bw/delay queue handles
credit
link delay
link bandwidth

LINK BANDWIDTH

VLINK
SCHED.CLASSIFIER PKT. LOSS

Figure 4.16. Microblock Group 2



46

Since these tasks run on the same microengine, packet headers and packet an-

notations like classification results are passed between tasks cheaply through

microengine registers. Once loaded by the loss rate task, the link descriptor is

passed through microengine registers to the link scheduling task, thus avoiding

extra external memory lookups.

• Microblock Group 3: While the microblocks discussed until now were all

packet-stimulated, the link bandwidth and link delay emulation microblocks

are timer-triggered. They are scheduled once every tick and process all links as

explained earlier (Figures 4.9 and 4.10). These microblocks have two kinds of

costs: a per packet cost and a per link processing cost; every packet enters and

exits the bandwidth, delay and transmit queues, and every link is scheduled

both in the bandwidth and the delay heaps. Thus these are highly compute

and memory-intensive microblocks. Figure 4.17 shows this group and its

associated data structures.

bw/delay queue handles

QUEUES

bandwidth queue handle
head of queue deadline

PRIORITY QUEUE OF BANDWIDTH
QUEUES 

delay queue handle
head of queue deadline

PRIORITY QUEUE OF DELAY
QUEUES

MICROENGINE

LINK DELAY
QUEUES

LINK DESCRIPTOR TABLE

link delay

LINK BANDWIDTH OUTPUT PORT
QUEUES

BANDWIDTH  +  DELAY 
EMULATION

link bandwidth
credit

Figure 4.17. Microblock Group 3
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The rationale for combining these two microblocks into one group is slightly

different from before; they are both timer-triggered, functionally similar,

and share a lot of state to which access can be synchronized cheaply using

intra-microengine synchronization primitives. The link scheduling microblock

from Microblock Group 2 schedules link queues in the link bandwidth heap.

Since this microblock group also needs to access these data structures, and

the two run on different microengines, we have to use inter microengine

synchronization primitives to protect access to the link queues and the link

bandwidth heap.

• Microblock Group 4: Packets once subjected to emulation, are enqueued

in output port queues. The egress task is responsible for dequeuing packets

from the output port queues, and moving them to the ports for transmission.

It is functionally independent from the rest of the emulation tasks, and is best

implemented as a separate microblock group on its own microengine. Since

this microblock is highly hardware dependent,4 its code changes significantly

between different versions of the network processor. Implementing it on a sep-

arate microengine insulates other microblocks that are hardware-independent

from changes in the hardware.

• Microblock Group 5: As described in Section 4.2, the timing microblock

uses a simple microengine instruction loop and a loop count based on the re-

quired timer value to implement timing. A single microengine thread executes

this loop, without ever giving control to any other thread on that microengine.

Hence, the timing microblock forms its own group, and has a dedicated

microengine in this design. This is an example where the functionality or

implementation details of the microblock force it into a group of its own on

a separate microengine.

• Microblock Group 6: The sixth microengine is idle in the current design.

4On the second generation IXP2400 processor, the hardware interface for transmission over
the ports is different from the interface on the IXP1200



CHAPTER 5

EVALUATION

In this chapter, we give a detailed evaluation of LinkEM that includes validating

its accuracy, measuring its packet throughput capacity for different packet sizes, and

measuring its link multiplexing capacity for a range of low and medium bandwidth

multiplexed links.

5.1 Accuracy Validation

5.1.1 Bandwidth emulation

To measure LinkEM’s bandwidth emulation accuracy, we configured it to em-

ulate different bandwidths and compared them with measured bandwidths using

end-node traffic generation and measurement tools. We used the iperf [26] traffic

generation tool to generate TCP traffic. Iperf was also used as a measurement tool;

iperf receivers were configured to measure the bandwidth that the connections

experience over the desired time interval.

We connected four end-nodes, one to each of the four ports of the emulator,

and configured two end-nodes to be iperf TCP senders and two end-nodes to

be iperf TCP receivers. In this configuration, LinkEM emulates four links with

the desired bandwidth. We used bandwidths corresponding to typical modem

connections, home DSL and cable modem connections, T1 lines, and 10 Mbps

Ethernet connections. All tests were run for 120 seconds, and the iperf receivers

measured the bandwidth every 5 seconds. Table 5.1 shows the results with the

observed mean and percentage emulation error for all tests. We find that LinkEM

accurately emulates link bandwidth within 2% of the configured bandwidth; for

most tests it is within 1% of the target.
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Table 5.1. Bandwidth emulation accuracy of LinkEM

Configured Observed Mean Percentage
bandwidth (Kbps) bandwidth (Kbps) Error

64 63.46 0.84
128 126.51 1.16
256 254.06 0.75
512 508.12 0.75
1544 1531.62 0.80
2000 1984.79 0.76
10000 9920.84 0.79

5.1.2 Delay emulation

LinkEM’s delay emulation accuracy was validated by sending ping packets of

different sizes across it, and then using the round-trip time (RTT) to estimate

the one-way emulated delays. We first measured the RTT between the end-nodes

through LinkEM, with link delay configured to zero to get a base RTT value for

different packet sizes. Table 5.2 shows the observed mean and standard deviation

for the base RTT’s. Then for each of those packet sizes, we again measured the

RTTs with LinkEM configured to subject the packets to the desired latency. The

difference gives an estimate of the accuracy of LinkEM’s link latency emulation.

The topology for this experiment was the same as that for bandwidth emulation:

four end-nodes connected through LinkEM, one node to each of its four ports.

Link latencies were chosen to reflect typical latencies observed in the Internet:

a few milliseconds to model latencies seen across local area networks on typical

campuses, a few tens of milliseconds to model cross-country links, and about a

Table 5.2. Base RTT’s for a range of packet sizes

Packet Observed Mean Standard
Size (bytes) RTT (ms) Deviation

64 0.330 0.004
128 0.424 0.036
256 0.452 0.003
512 0.696 0.004
1024 1.058 0.020
1518 1.427 0.003
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hundred milliseconds to model trans-atlantic links. Each test involved two nodes

pinging the other two nodes by sending 10000 packets of a particular packet size,

and then printing out the mean and standard deviation for the test. Tables 5.3, 5.4,

and 5.5 present the RTTs for all tests for varying packet sizes, for one-way latencies

of 5 ms, 30 ms and 101 ms respectively. The percentage errors across all tests show

that LinkEM accurately emulates link delays.

Table 5.3. Delay emulation accuracy of LinkEM for configured delay of 5 ms

Packet Observed Mean Standard After sub. Percentage
Size (bytes) RTT (ms) Deviation base RTT(ms) Error

64 10.317 0.028 9.987 0.13
128 10.407 0.044 9.983 0.17
256 10.459 0.007 10.007 0.07
512 10.703 0.007 10.007 0.07
1024 11.037 0.053 9.979 0.21
1518 11.434 0.012 10.007 0.07

Table 5.4. Delay emulation accuracy of LinkEM for configured delay of 30 ms

Packet Observed Mean Standard After sub. Percentage
Size (bytes) RTT (ms) Deviation base RTT (ms) Error

64 60.366 0.014 60.006 0.01
128 60.487 0.017 60.063 0.105
256 60.491 0.009 60.039 0.065
512 60.734 0.008 60.038 0.063
1024 61.093 0.026 60.035 0.0583
1518 61.465 0.007 60.038 0.063

Table 5.5. Delay emulation accuracy of LinkEM for configured delay of 101 ms

Packet Observed Mean Standard After sub. Percentage
Size (bytes) RTT (ms) Deviation base RTT (ms) Error

64 202.407 0.015 202.077 0.038
128 202.465 0.059 202.041 0.020
256 202.533 0.013 202.081 0.040
512 202.775 0.008 202.079 0.039
1024 203.107 0.053 202.049 0.024
1518 203.506 0.010 202.079 0.039
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5.1.3 Loss rate emulation

LinkEM implements a uniform packet loss distribution model in which each link

is configured with a fixed loss rate. Loss rate is measured as the ratio of packets

dropped to the total number of packets sent. To validate the link loss accuracy, we

used one-way traffic; the sender sends a fixed number of packets per link and the

receiver reports the number of packets actually received. The difference gives the

measured loss rate.

In this experiment, we used the OSKit [11] traffic generation and consumption

kernels on end-nodes. The send kernel was configured to generate 120,000 maxi-

mum sized Ethernet packets at the rate of 8000 packets per second. The consume

kernel simply received the packets, and printed out the statistics. Table 5.6 shows

the observed loss rate and the percentage error from the configured rate. As seen

from the table, LinkEM’s loss rate emulation is accurate within 1% of the configured

loss rate, except for one test in which the observed value is about 2.96% higher than

the configured rate.

5.1.4 Summary of accuracy experiments

These experiments show that LinkEM’s accuracy is comparable to that of

Dummynet [36]. The bandwidth accuracy of both is within 2% of the configured

bandwidth, the delay accuracy is within 1% of the target, while except for one

outlier of 2.96% in LinkEM, both have loss rate accuracy within 1%.

Table 5.6. Loss rate emulation accuracy of LinkEM

Configured Observed Mean Percentage
link loss.(%) loss rate (%) Error

1 1.0041 0.41
3 3.089 2.96
7 6.9983 0.02
10 10.0 0.0
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5.2 Emulation Throughput

As discussed in Chapter 2, the packet forwarding capacity or throughput of

a link emulator is largely independent of the packet size, much like that of a

router. In this section, we report the measurement and comparison of LinkEM’s and

Dummynet’s throughput for varying packet sizes. We used an 850 MHz PC with

a 32-bit/33 MHz PCI bus as the Dummynet platform; this represented reasonably

high-end PC hardware contemporary to when the IXP1200 was introduced. We

used a polling FreeBSD kernel on the Dummynet node to avoid livelocks due to

heavy interrupt load [24].

Figure 5.1 shows the topology for this experiment. Using Emulab’s support for

switched LANs, the link emulators (LinkEM or Dummynet) were connected in a

topology with 16 end-nodes; 4 end-nodes were connected to each of the 4 100-Mbps

ports of the emulator. Two of each set of four end-nodes ran the OSKit send kernels,

while two ran the consume kernels. We needed two senders per port to generate

line rate traffic for minimum-sized Ethernet packets. For all other packet sizes, a

single OSKit sender was able to generate 100 Mbps line rate. The emulator was

configured to emulate eight links in this configuration (corresponding to the eight

send-consume traffic flows).

s8

LINK EMULATOR

(LINKEM OR DUMMYNET)

c8

s5

c7

s6

s1
s2

c4

c3

c2

s3

c5
c6

s7

s4

si − end nodes running send kernel
ci − end nodes running consume kernel

c1

Figure 5.1. Throughput measurement experimental topology
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All emulated links were configured at infinite bandwidth, zero delay, and zero

packet loss rate to avoid any packet losses due to a link’s characteristics. All

measured packet losses in the consume kernels thus indicate an inability of the link

emulator to keep up with the offered load. Infinite link bandwidth, zero delay,

and zero loss rate for a link does not mean that the emulation task is bypassed

in this configuration. Every packet is acted upon by the emulation task before

being ejected out of the emulator. Thus this experiment measures the maximum

throughput of both link emulators for different packet sizes.

5.2.1 LinkEM throughput

Figure 5.2 illustrates LinkEM’s throughput for different packet sizes. The y-axis

represents throughput as a percentage of the line rate for a particular packet size on

the x-axis. The line rate in this experiment is 400 Mbps; the send kernels generate

100 Mbps traffic on each of the four ports. For minimum-sized packets (64 bytes)

which is the worst case offered load, LinkEM can forward at around 83% of line
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Figure 5.2. Throughput in percentage of line rate (400 Mbps)
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rate or 332 Mbps (about 496 Kpps out of the offered 592 Kpps load). As the packet

size increases, the throughput should approach 100% since the number of packets

to be processed per second decreases.

However, Figure 5.2 shows two dips in the graph at packet sizes of 128 and 1024

bytes. Using packet traces, we discovered that the ingress and emulation microcode

(Figure 4.14: Microblock Groups 1, 2, and 3) were able to forward at near line rate,

however packets were dropped in the egress microcode (Figure 4.14: Microblock

Group 4). Further code instrumentation revealed that the egress microcode was

unable to move packets from memory to the output ports fast enough, which

resulted in a number of packets being dropped at the output ports. As discussed

in Figure 4.13, the egress microcode moves packets from the memory to ports in

64-byte chunks. The ports on the IXP1200 do not have enough buffer space to hold

entire packets. Thus a port has to start transmitting a packet before the packet is

fully assembled in its buffer. If the port starts transmitting a packet on the wire,

and does not receive subsequent chunks fast enough, it simply appends an invalid

CRC to the packet and gives up on transmission of the packet. Note that this is

not a problem with 64-byte packets, since they have only one chunk. For packets

greater than 64 bytes, which involve moving more than one chunk from memory to

ports, the egress microcode is slow and results in underflow at the output ports.

To further verify that this was a problem in the egress microcode, and not in

the emulation microcode or a side-effect of adding the emulation microcode, we ran

only the Bridging reference code (without emulation tasks) provided by Intel, which

includes the ingress, bridging, and the egress microcode. As seen in Figure 5.2, the

graph for the Bridging reference code shows similar behavior.

Figure 5.3 shows the throughput of LinkEM and the Bridging reference code

measured just before packets enter the egress microcode (thus all egress drops are

ignored). As seen in the graph, LinkEM forwards at line rate for all packet sizes

other than 64 bytes. In Appendix A, we analyze the current one-microengine egress

design. We then sketch a design for the egress task that uses two microengines to

support higher transmission rate. The sixth idle microengine in our current design



55

0

10

20

30

40

50

60

70

80

90

100

64 128 256 512 1024 2048

T
hr

ou
gh

pu
t (

lin
e 

ra
te

 %
)

Packet Size (Bytes) (log scale)

Link emulation throughput with no xmt drops
Bridging throughput with no xmt drops

Figure 5.3. Throughput in percentage of line rate (400 Mbps), no drops in egress

can be assigned to speed up egress. We leave the implementation of the new egress

design as future work.

5.2.2 Dummynet throughput

Figure 5.4 shows Dummynet throughput across different packet sizes for a line

rate of 400 Mbps. For minimum-sized packets, Dummynet can forward at about

18% of line rate or 72 Mbps (106 Kpps out of the offered load of 595 Kpps). For

maximum-sized packets, the throughput is 81% of line rate or 324 Mbps (about

26.2 Kpps out of the offered load of 32 Kpps). As seen in the figure, LinkEM has a

higher throughput of between 4.6 and 1.2 times that of Dummynet over the range

of packet sizes.

The 32-bit/33 MHz PCI bus becomes a bottleneck when large packet traffic is

sent across all four ports of the Dummynet node. To measure Dummynet’s forward-

ing capacity in the absence of a PCI bottleneck, we used the same experimental

topology, but sent in traffic across only two ports. This corresponded to a line rate

of 200 Mbps.
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Figure 5.4. LinkEM and Dummynet throughput in percent line rate (400 Mbps)

Figure 5.5 shows the throughput seen for different packet sizes as a percentage

of line rate (200 Mbps). As seen in the figure, Dummynet can keep up with near

line rate for packet sizes at and above 256 bytes. For minimum-sized packets, the

throughput is about 42% of line rate or 84 Mbps (about 124 Kpps of the offered

load of 296 Kpps). For 128-byte packets, the throughput is 62% of line rate or 124

Mbps (about 104 Kpps out of the offered load of 168 Kpps). Thus LinkEM has

a higher throughput of 2 and 1.6 times that of Dummynet for these packet sizes

respectively. For packet sizes greater than 128 bytes, both can forward at line rate

in this configuration.

5.3 Link Multiplexing Capacity

As described earlier, link multiplexing is a useful feature of a link emulator. It

allows an emulator to emulate multiple lower-speed links over a single physical link.

For instance, one can emulate a number of slower network links like cable, DSL, T1
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Figure 5.5. LinkEM and Dummynet throughput in percent line rate (200 Mbps)

or 10 Mbps Ethernet on a single 100 Mbps physical link. LinkEM identifies links by

a 64-bit key consisting of the source and destination IP address in a packet. A packet

is classified early on to its link, and then subjected to the link’s characteristics. Like

Dummynet, LinkEM uses a heap to implement a priority queue data structure of

active link queues. The key or priority is the expiration emulation time for the

first packet in a queue. Each tick, all active link queues that expire are handled

by the emulation task. This section describes an evaluation and comparison of link

multiplexing capacity of LinkEM, and Dummynet on a 850 MHz PC.

5.3.1 Experiment setup

To measure the multiplexing capacity, we had to generate a large number of

traffic flows with different source and destination IP addresses. Each such flow

can be thought of as a link. We used TCP flows since they are responsive to the
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available link bandwidth and can be used as a measure of how well the bandwidth

of a link is constrained by a link emulator to a configured value.

We use a mechanism provided in FreeBSD, called jail [21], to generate a large

number of end-node TCP flows with different source-destination IP addresses. The

jail mechanism is used to partition the operating system into multiple virtual

machines, with a process and its descendents jailed into a particular virtual machine.

Multiple jails coexist on a single physical node, and can be configured with different

IP addresses, with restricted access to files within the jail. A pair of jails on two

end-nodes can be used as a source and destination node for a TCP flow, thus

giving us the ability to generate a large number of TCP flows with a relatively

small number of physical machines.

5.3.2 Link multiplexing

The same jail mechanism is used to generate traffic with either LinkEM or

Dummynet configured in between as the link emulator node. We configure the links

inside LinkEM or Dummynet to the desired bandwidth, and run TCP flows between

the end-nodes sending traffic through the link emulator. Each TCP flow is run for

120 seconds, and every TCP receiver measures the link bandwidth at 5-second

intervals. If the bandwidth perceived by the flow is within accuracy limits1 of the

configured bandwidth, then we know that the emulator can handle that many flows.

We increase the number of flows until the emulator cannot keep up with the number

of multiplexed links or we reach the maximum number of multiplexed links that

can fit on to a physical link.2 Note that the number of multiplexed links is twice the

number of flows, since each pair of end-node IP addresses is treated as two separate

links so that asymmetric links can be supported. For instance, the forward link can

1We use 2%, since that is the bandwidth accuracy limit when the system is not loaded, see
Table 5.1

2For instance, if a single TCP flow can get a maximum of 94 Mbps through the link emulator,
then we can multiplex about 47 2-Mbps flows on that physical link.
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be configured to 128 Kbps while the reverse link can be independently configured

to 256 Kbps to model a DSL-type asymmetric link.

Figure 5.6 depicts the link multiplexing capacity of both LinkEM and Dum-

mynet. The x-axis represents the multiplexed link bandwidth which ranges from

128 Kbps to 10 Mbps and is plotted in logarithmic scale. The y-axis represents the

number of multiplexed links supported by the emulators at a particular bandwidth.

The third curve in the figure, the ideal link multiplexing capacity, shows the number

of multiplexed links that can fit into a physical link at a particular bandwidth. We

expect that both the emulators will follow the ideal curve at bandwidths close to

10 Mbps, since the number of links that need to be emulated at this bandwidth

is small, and will diverge from the ideal curve at lower bandwidths (closer to 128

Kbps), as they will be unable to keep up with the high number of multiplexed links

without losing accuracy.

In this experiment, the four ports of the emulator are divided into two port

pairs, and lower bandwidth links are multiplexed on each port pair. Thus a point

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000

64 128 256 512 1024 2048 4096 8192 16384

# 
of

 m
ul

tip
le

xe
d 

lin
ks

Link bandwidth (Kbps)(log scale)

 Ideal link multiplexing capacity
 LinkEM link multiplexing capacity

Dummynet link multiplexing capacity

Figure 5.6. Link multiplexing with traffic across all four ports



60

(x,y) in the graph implies that y multiplexed links, each of x Kbps bandwidth,

are supported by the emulator, with y/2 links multiplexed on each of the two port

pairs. Figure 5.7 illustrates the topology for this experiment.

Figure 5.6 shows that Dummynet can support about 36 10-Mbps links (18 TCP

flows, 9 flows across each pair of ports), and the number of links increases to

around 480 (240 TCP flows, 120 flows across each port pair) at a link bandwidth

of 128 Kbps. For every test, Dummynet can accurately emulate the configured

bandwidth up to the number of links shown in the graph, and as the number of

links is further increased, the accuracy starts dropping as it cannot keep up with

the offered emulation load. The Dummynet link multiplexing curve coincides with

the ideal curve between 10 Mbps and 2 Mbps bandwidths, and diverges from the

ideal curve to a lower number of multiplexed links at bandwidths of 1 Mbps and

below.

From the figure, we see that LinkEM can support about 36 10-Mbps links (18

TCP flows, 9 flows across each pair of ports), and the number of links increases to

about 840 (420 TCP flows, 210 flows across each port pair) at a link bandwidth

of 128 Kbps. The LinkEM link multiplexing curve is close to the ideal curve

between 10 Mbps and 2 Mbps bandwidths, and only diverges from the ideal curve

at bandwidths of 1 Mbps and below. Compared to Dummynet, LinkEM is able

receiverssenders

Jail TCP
senders

Jail TCP

Jail TCP
receivers

Jail TCP 

LinkEM or Dummynet link emulator

Y/2 multiplexed links

Y/2 multiplexed links

Figure 5.7. Link multiplexing topology with traffic across all four ports
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to multiplex almost the same number of links at high bandwidths (36 vs 36 at 10

Mbps, 172 vs 180 at 2 Mbps), and can emulate more links at low bandwidths (840

vs 480). However, LinkEM’s multiplexing capacity is plagued by the same egress

microcode drops which we described in Section 5.2. Port underflows cause some

TCP flows to back off, thus resulting in inaccurate bandwidth emulation for those

flows. This behavior is observed for the entire range of multiplexed link bandwidths

from 2 Mbps to 128 Kbps.

We then slightly modified the experiment to run traffic flows across only one pair

of ports, to avoid the drops in the egress microcode. The goal was to try to reach

the emulation bottleneck before reaching the egress microcode’s limit. Figure 5.8

depicts the multiplexing capacity of LinkEM and Dummynet in comparison with

the ideal multiplexing curve, with traffic across only two of the four ports of the

emulators. Thus a point (x,y) in the graph implies that y virtual links, each of x

Kbps bandwidth, are supported by the emulator, with all y virtual links multiplexed

on a single port pair. Figure 5.9 illustrates the topology for this experiment.

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

64 128 256 512 1024 2048 4096 8192 16384

# 
of

 m
ul

tip
le

xe
d 

lin
ks

Link bandwidth (Kbps)(log scale)

 Ideal link multiplexing capacity
LinkEM multiplexing capacity

Dummynet multiplexing capacity

Figure 5.8. LinkEM multiplexing with traffic across only two ports



62

receiverssenders
Jail TCPJail TCP 

LinkEM or Dummynet link emulator

Y multiplexed links

Figure 5.9. Link multiplexing topology with traffic across two ports

As seen in the figure, the Dummynet curve coincides with the ideal curve

between 10 Mbps and 512 Kbps bandwidths, and diverges from the ideal curve to

lower number of multiplexed links at 256 Kbps and 128 Kbps link bandwidth. At

these bandwidths, Dummynet can accurately emulate about 500 links (250 flows), or

about 66% (at 256 Kbps) and 34% (at 128 Kbps) of the ideal number of multiplexed

links. The LinkEM curve coincides with the ideal curve between 10 Mbps and

512 Kbps bandwidths, and diverges from the ideal curve to about 680 links (340

flows) and 1320 links (660 flows), or to 95% and 90% of the ideal number of links

at 256 Kbps and 128 Kbps respectively. This experiment shows that LinkEM’s

multiplexing capacity is higher than Dummynet on our experimental PC platform

by between a factor of 1.4 (95% vs 66%) and 2.6 (90% vs 34%) for multiplexed

links of low bandwidth. For multiplexed link bandwidths of 512 Kbps and higher,

both are able to match the ideal curve.



CHAPTER 6

RELATED WORK

Hitbox[1] is probably the earliest PC-based in-kernel link emulator. It was

primarily developed to study and compare TCP Vegas [4] with TCP Reno [19]

outside of simulation. Dummynet [30], NIST Net [25], and ONE [2] are single-node

PC-based link emulators which provide Hitbox-like in-kernel link emulation. The

emulation module sits in between the stack and the network interface. It intercepts

traffic and emulates link characteristics, completely transparent to the user-level

application. These emulators can run inside the end-node kernels, or can run on

interposed PCs. LinkEM’s emulation model is based on Dummynet; however, it is

implemented on a specialized network processor platform instead of a PC.

Modelnet [34] is a large-scale network emulation environment which uses a

Dummynet-like implementation to provide link emulation. A Modelnet core node

(link emulator node) is a complete reimplementation of Dummynet on a FreeBSD

PC, and in addition, supports hop-by-hop link emulation. The path between two

end-nodes in the topology is distilled to a set of links, which are then emulated

inside one or more core nodes. Similar to a Modelnet core node, LinkEM can also

be extended to support hop-by-hop emulation.

End-to-End Delay Emulator (ENDE) [37] measures the end-to-end characteris-

tics between two nodes on the Internet, and then emulates the link inside a Linux-

based link emulator. The path characteristics are measured using packet-pair probe

techniques [22] and using one-way latency measurement techniques [29, 28], and

are fed into the emulator. ENDE thus combines measurement of the characteristics

of a single link and its emulation into a single tool. LinkEM does not support
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measuring a link’s characteristics, but assumes that experimenters use other tools

for that purpose, and then feed the link characteristics into LinkEM.

Trace Modulation [27] is a technique for emulating mobile wireless networks on

a wired network. The wireless application is first run in a real wireless topology

and packet traces are collected. Parameters of the wireless link are derived based

on a model and the traces, and these characteristics are then emulated on a wired

network by using Hitbox-style in-kernel link emulation.

NS Emulation (NSE) [9] supports an environment in which packets from the real

world are injected into a simulation and vice versa. One of the main advantages

of NSE is that one can study the interaction of real traffic with the rich and well

tested background traffic models running as part of the simulation. However, since

NSE runs in a single process in user-space, its emulation capacity is not as high as

in-kernel link emulators.

Network Emulation Tool (NET) [3] is an emulator for distributed systems that

emulates a site of nodes connected by a network that loses, duplicates and delays

messages. A node at each site in the virtual topology is mapped to a different

unix process. Applications are bound to a library that implements the send and

receive system calls, and diverts all messages to a central process, which emulates

the underlying network. Delayline [13] uses a similar model wherein applications

bind to a library that emulates the network. Thus both these approaches are not

transparent to the application, and require a fair amount of work to provide the

same semantics to the applications as those provided by the real network library.

Network simulation has link simulation as one of its components. Link simula-

tion is essentially similar to link emulation, except that unlike emulation, it does

not have to meet real-time requirements. Thus a link simulator can potentially

simulate any number of links or links of any speed. The Harvard TCP/IP simulator

[35] uses the host kernel’s TCP/IP stack to simulate end-nodes and routers, and

special link objects in user-space to simulate the links. Tunnel interfaces are used

to move packets in between the kernel part of the simulator and the user-level

link simulator. The Entrapid Protocol Development Environment [12] virtualizes
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the BSD networking stack and moves it to user-space. Each such instance of a

stack forms a virtual node in the simulation. Virtual nodes are connected by link

simulation modules which can simulate point-to-point and Ethernet links.

The IXP network processors use parallelism, multithreading and hardware as-

sists to support packet processing at high line rates. However, it is a significant

challenge to map an application to take advantage of this parallelism while avoiding

communication and synchronization bottlenecks. The Network Systems group at

Princeton has evaluated the IXP1200 network processor for building a robust, high

capacity, and extensible router [32]. The design approach that they employ is

to split the application into two parts: a Router Infrastructure (RI) part that

handles vanilla IP packet forwarding and a Virtual Router Processor (VRP) part

that handles additional processing per packet. Based on the line rate that needs

to be handled, and the processing cost of the RI, the available budget for the VRP

is calculated. This budget is then used to add additional processing per packet in

the fast path.

The software programming model [20] on the IXP2400 and IXP2800 augments

the MicroACE programming framework with design techniques to map an ap-

plication on the 8 and 16 microengines, and 64 and 128 threads respectively on

these processors. This model includes Context pipeline stages, Functional pipeline

stages, a Pool of Threads model (POTS) to support out-of-order execution, and

strict sequencing of threads to support in-order execution. A pipeline of context

stages is similar to our Microengine pipelining design method, while the functional

pipeline stages are similar to the Microengine parallelism technique. The POTS

and in-order thread execution techniques are two types of functional pipeline stages

that support applications with different kinds of packet processing requirements.

See [20] for more details.

The IXA SDK-3.0 that Intel will supply with the next generation IXP network

processors has a new programming model called the auto-partitioning programming

model [14]. This model automates mapping of an application to the parallel

resources of the network processor using the design techniques of context and
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functional pipeline stages, and POTS and ordered thread execution. Programmers

specify their application as a sequence of packet processing stages (PPSes) that can

execute in parallel. Each stage is written in C and augmented with constructs, using

which the programmer can specify throughput requirements of each PPS and can

identify critical sections of code. The C compiler then automatically maps PPSes

to multiple microengines and threads to meet the throughput requirements. Thus,

this programming model maps straight-line C code to the parallel microengines

while automatically providing communication and synchronization primitives.

Netbind [5] is a binding tool for creating new datapaths in network processor

based routers. While the MicroACE architecture [16] statically binds microcode

components using a dispatch loop, Netbind supports binding of components during

runtime by modifying entry and exit points of components directly in the com-

ponent binary. The paper shows that this binding method has lower overhead

than the MicroACE binding method; however the programming model exposed is

more restrictive than the MicroACE programming model. The register space of a

microengine is statically divided, and components have to fit their data within the

allocated space, or have to spill data to memory.

The Active System Area Networks (ASAN) group at Georgia Tech. has eval-

uated the use of the IXP1200 as a smart network interface on a host PC [23].

The IXP1200 exports an ethernet interface to cluster computing applications on

the host. The paper reports bandwidth and latency measurements for transferring

messages of different packet sizes across the PCI bus in both directions, from the

host to the IXP and from the IXP to the host, and estimates the headroom available

for computation on the microengines, in addition to the cycles spent in the transfer.



CHAPTER 7

DISCUSSION AND CONCLUSIONS

Existing solutions for link emulation have used general-purpose PC-class ma-

chines. The well-understood hardware and software PC platform make it ideal

for quick implementation and deployment. Until now, PCs have faithfully tracked

Moore’s law, resulting in increasing performance at decreasing costs for most ap-

plications. As discussed in Chapter 1, the PC architecture is largely optimized to

exploit two traits in applications: large amounts of ILP and good memory reference

locality. However, this approach has begun to have diminishing returns, even for

applications that demonstrate these traits. The returns are likely to be even less for

networking applications, which in general have little ILP [7] and only moderately

good locality characteristics [6]. As networking applications scale to support larger

packet rates and higher bandwidths, this mismatch is likely to become more evident.

The demand for higher aggregate emulation bandwidths (multi-gigabit) and for

emulating faster network links,1 might require a different approach to link emulation

than just deploying faster PCs.

An alternative is to use specialized platforms optimized for network processing,

for link emulation. Network processors are programmable processors that use a

multithreaded, multiprocessor architecture to exploit packet-level parallelism and

have instruction sets and hardware assists optimized for common networking tasks.

In this thesis, we have evaluated the IXP1200 network processor for building a high

capacity link emulator, LinkEM, and have compared it with Dummynet running on

a PC hardware configuration contemporary with the IXP1200. On this platform,

LinkEM has between a factor of 1.6 and 4.6 higher throughput for small-sized

1for instance OC-12 links at 622 Mbps
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packets while both are able to forward at near line rate for large packets. LinkEM’s

link multiplexing capacity was between 1.4 and 2.6 times higher than Dummynet at

bandwidths below 256 Kbps while both were able to emulate the maximum number

of multiplexed links at bandwidths above 512 Kbps.

Moore’s law applied to network processors implies that in the future more and

more multithreaded packet processing engines can be packed into the chip, and at

the same time, network processing specific hardware support can also be integrated

closer to the packet processing engines, resulting in increasing performance at

decreasing costs. For instance, the first generation Intel IXP1200 network processor

has six microengines, an on-chip hardware hash unit, low latency on-chip hardware

synchronization primitives, and is targeted to data rates of 155 Mbps to 600 Mbps

with a per chip price of around $200 in low volumes. The second generation

processors, the IXP2400 [17] and IXP2800 [18], pack between 8 and 16 microengines

per chip, with a higher level of multithreading, have on-chip hardware support for

atomic queuing, a small amount of on-chip local memory per microengine, a small

content addressable memory (CAM), and are targeted at 2.5 Gbps to 5 Gbps data

rates with chip prices between $230 to $500 in low volume.

This trend will likely continue, as these chips are used increasingly often by OEM

manufacturers to build networking equipment. Unfortunately, generic development

boards built around these chips are still expensive, due to the low volume. The

ENP-2505 board [8] built using the IXP1200 we used, costs about $2000 in low

volume, up to 10 times the IXP1200 chip cost. Thus, while it is possible to build

high-capacity link emulators on network processors, at this point, they do not seem

to offer a better price-performance alternative to PCs for link emulation.

It is interesting to note that link emulation processing is very similar to traffic

shaping at edge routers. Link emulation involves demultiplexing an incoming packet

stream into its constituent emulated links, and subjecting packets to the configured

link bandwidth, delay and loss rate characteristics. Traffic shapers similarly classify

packets into different flows, and then restrict flows to the preset service level

agreements. They are deployed by ISPs at the edge of the network to police traffic
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entering the core and ensure that it is compliant with the user’s subscription level.

Service differentiation is a big financial incentive for ISPs and therefore also for edge

router OEM manufacturers. Both of them would like to build devices that can be

rapidly programmed and upgraded to support new service models without resorting

to expensive hardware redesign cycles. Since network processors tout flexibility

through programmability, traffic shaping is a promising good fit application for this

technology. An indirect effect of network processors being used in large volumes

for traffic shaping applications would be better price-performance returns for using

them for link emulation, as the cost for development boards for these applications

goes down.

In addition to hardware costs, there is a software development and mainte-

nance cost that should also be factored in. The one-time software development

cost of a link emulator on a network processor is higher than development of an

in-kernel implementation on a PC, mainly due to the challenge of programming in

a parallel environment. A PC platform is well-understood, has a large number of

familiar compilation, debugging and optimization tools, and permits a high degree

of software reuse across different generations of PC hardware, thereby reducing

the overall programming and maintenance costs. On the other hand, software

development platforms for network processors are still not as mature as their PC

counterparts. It is a significant challenge for a programmer to map the tasks of an

application (in this thesis a link emulator), across the multiple microengines and

threads of a network processor in order to extract maximum performance. Hence,

network processor vendors are putting efforts into development of design tools and

compilers which abstract the hardware without incurring heavy performance hits,

and on programming models which support reusability of code across different

generations of the same network processor [16]. As these tools mature, we believe

that the overall software development cost will reduce and will be tolerable.

The current generation high-end PCs are clocked at between 2 and 3 GHz, have

large amounts of on-chip cache, and have a high bandwidth PCI-X or 64-bit/66

MHz PCI bus. As a comparison point, the IXP2400 [17], one of the processors in
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the current generation of Intel network processors, has 8 microengines clocked at

600 MHz each, 8 hardware threads on each microengine, and other features like per

microengine local memory and CAM, and on-chip support for fast packet queuing.

While the IXP2400 is richer in resources, the basic multithreaded, multiprocessor

architecture remains the same as the IXP1200; the lessons which we learned while

implementing LinkEM on IXP1200, can be applied while porting LinkEM to the

new processor. It will be interesting to compare Dummynet on current PC hardware

against LinkEM on current network processor hardware.



APPENDIX

EGRESS TASK DESIGN

A.1 Transmit State Machine Basics

The Transmit State Machine (TSM) is located inside the on-chip IX bus inter-

face, and along with the transmit microengines is responsible for moving packets

out of the IXP1200. Figure A.1 shows the different hardware components involved

in packet transmission.

The IX bus interface consists of 16 64-byte buffers (TFIFO slots) which are

treated by the TSM and the microengines as a circular queue. Packets are trans-
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Figure A.1. Packet transmission on the IXP1200
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ferred from memory to output ports in 64-byte chunks, and the TFIFO slots are

used to stage these chunks during the transfer. Each TFIFO slot has an associated

valid bit and some control bytes which have information about the port the chunk is

supposed to be sent to, and the position of the chunk in the entire packet (whether

start of packet, end of packet, or some intermediate chunk). Once a chunk is

moved to a TFIFO slot, the transmit microengines set up the control bytes and

the valid bit associated with the chunk. Valid chunks are moved by the TSM from

TFIFOs to port buffers over the IX bus. The TSM maintains a hardware pointer

(H/W XMT PTR) to the current TFIFO slot that it is processing. Similarly, the

microengine maintains a pointer (S/W PTR) to the TFIFO slot which is being filled

up from memory. The IX bus interface has a status register called XMT RDY which

holds information about the amount of free buffer space in the port.1

The transmit microengines have four main responsibilities to ensure correct

packet transmission:

• Avoid garbage data from being sent to the ports: This is done by

making sure that the TSM’s hardware pointer never crosses the microengine

software pointer. The microengine sets the valid bit only for valid chunks,

and the TSM processes only valid chunks in order, invalidating them after

processing. If a chunk is not valid, the TSM stalls waiting for the chunk to

become valid before proceeding ahead.

• Avoid overwriting data before it is sent to the port: This is done by

making sure that the microengine software pointer does not cross the TSM’s

hardware pointer. The microengine can peek at the TSM’s hardware pointer

through a status register.

• Avoid port overflows by not filling and validating the TFIFOs faster

than the rate at which the port can transmit: Each port has a buffer

of 256 bytes, and thus cannot hold more than four 64-byte chunks. Moving

1Each port has 256 bytes of buffer space and can hold up to four 64-byte packet chunks.
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data from the TFIFO slots to the port faster than the port can transmit

it on the wire results in port overflows. The amount of available space in

a port’s buffer is reflected in the XMT RDY status register. The transmit

microengines check this status and validate the TFIFO slots only when there

is space in the port buffer. This essentially throttles the rate at which the

TSM moves packets to the ports and thus avoids port overflows.

• Avoid port underflows by filling the port as fast as it can trans-

mit: Each port has a buffer of 256 bytes; thus for large packets, the port

has to start transmitting the packet on the wire before the entire packet is

transferred from the TFIFOs to the ports. This means that the TSM and the

microengines have to move data from memory to the ports, through TFIFO

slots, at line rate, otherwise, the port buffers will underflow resulting in packet

transmission errors. This is the problem with the current one-microengine

Egress design (see section 5.2).

The 64-bit/66 MHz IX bus supports data transfers up to 4.2 Gbps. Thus

this capacity is enough to support moving packets from the TFIFO slots to

ports at line rate on our board (four 100-Mbps ports). Thus the bottleneck

is the rate at which the microengines can move packets from memory to the

TFIFO slots. In the new Egress design described in section A.3, we devote

two microengines to the Egress task to avoid this bottleneck. Shared resources

like TFIFO slots, transmit queues, and transmit ports are statically allocated

to the two microengines to avoid synchronization costs.

A.2 The Current One-microengine Egress Design

This section describes the current design of the egress task as implemented in

Intel’s reference design microcode which we have used in LinkEM. The egress task

dequeues buffer handles and other meta information from queues in memory and

transfers the packets to output ports for transmission using the IX Bus Interface.

Thus it consists of two logical subtasks: scheduling or selecting the next packet

from a set of queues (scheduler), and moving the packet from memory to TFIFO
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for transmission (fill). Since the scheduler subtask in egress executes simple round-

robin algorithm over all transmit queues, it does not require much processing. The

fill task however is highly memory and IO bound as it is responsible for the actual

packet transfer, and also slightly more involved, since it interacts with the TSM for

maintaining the four conditions described in section A.1.

One thread (scheduler thread) on the microengine is used to execute the sched-

uler subtask; it executes round-robin scheduling on all transmit queues and stores

the dequeued buffer state in per-port microengine registers. The other three threads

(fill threads) use this buffer state and move the packet from memory to TFIFO slots

for transmission. Since there are three fill threads, they are mapped to every third

TFIFO slot. The 16 slots are statically mapped to the four ports (four slots per

port). Each fill thread computes its next slot, computes the port corresponding to

that slot, and moves the next packet chunk destined for the port to the TFIFO slot.

It then validates the chunk while maintaining the conditions outlined in section A.1.

Figure A.2 shows the mapping of TFIFO slots to ports and fill threads.
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11 :  PORT 3
10 :  PORT 2
9 :  PORT 1
8 :  PORT 0
7 :  PORT 3

Figure A.2. TFIFO to port mapping
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A.2.1 Packet transmission on all four ports

Figure A.3 shows a snapshot of packet transmission in this design on all four

ports. Let’s assume that fill threads 0, 1 and 2 have moved the ith chunk of a

packet destined to port 0 to TFIFO 0, jth chunk of a packet destined to port 1 to

TFIFO 1, and kth chunk of a packet destined to port 2 to TFIFO 2 respectively.

Then, assuming that the ports have space for these chunks in their buffers, the

three threads validate the TFIFO slots so that the TSM can move them to the

ports. The threads then increment their TFIFOs by 3, and move the mth chunk of

a packet destined to port 3, i+1st chunk of a packet destined to port 0, and j +1st

chunk of a packet destined to port 1, from memory to the corresponding TFIFO

slots respectively. Thus the ith and i+1st chunks of a packet destined to port 0 are

transferred one by one from memory to TFIFO slots. If the fill threads are not fast

enough to do this transfer at line rate for port 0, then the TSM hardware pointer

will be stalled at TFIFO slot 4 waiting for the i + 1st chunk to be transferred from

memory and validated, thus resulting in an underflow on port 0.
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Figure A.3. TFIFO filling with transmission on all four ports
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A.2.2 Packet transmission on only two of the four ports

Let’s assume now that packets are being transmitted only on two of the four

ports (ports 0 and 2). If a fill thread is processing a TFIFO slot which corresponds

to a port that does not have a packet for transmission, it sets an error bit in

the control bytes associated with the slot and validates it. It then increments its

slot number by 3 and starts processing the new slot. The TSM on coming across a

TFIFO slot with the error and valid bit set, increments its hardware pointer beyond

the slot, but does not transmit the chunk in that slot to any port. Figure A.4 shows

a scenario where ports 0 and 2 have data for transmission, while ports 1 and 3 do

not have any data. An “X” next to a slot in the figure implies that the fill thread

has set the error bit for that TFIFO slot since the corresponding port does not have

any packet for transmission.

As seen in the first column of the figure, fill thread 0 is processing the ith chunk

of a packet destined for port 0, while fill thread 2 is processing jth chunk of a

packet destined for port 2. Since there is no packet for port 1, fill thread 1 skips

TFIFO element 1, jumps 3 slots ahead to TFIFO slot 4 and starts processing i+1st

chunk of the packet for port 0. Thus two consecutive chunks of a packet are being

transferred from memory to TFIFO slots simultaneously.
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Once the threads move the current packet chunks and validate them, they each

increment their TFIFO slots by 3. Fill thread 0 skips TFIFO slot 3 (since port 3

does not have any data), and then starts transferring the j+1st chunk of the packet

destined for port 2 to slot 6. Similarly, fill thread 2 skips TFIFO slot 5 (since port 1

does not have any data), and starts transferring i+2nd chunk of the packet destined

for port 0 to slot 8. Fill thread 1 skips TFIFO 7 and starts transferring j+2nd chunk

of the packet destined for port 2 to slot 10. Two consecutive chunks of a packet

destined for port 2 are being moved from memory to TFIFO slots simultaneously

in this scenario.

Thus, TFIFO slots for ports 0 and 2 get filled faster as compared to Figure A.3,

decreasing the chance of underflow at these ports. This agrees with our evaluation

results; the egress task does not cause port underflows with packet transmission on

only two of the four ports, and can handle close to line rate on two ports. In the

new design, we take advantage of this observation by running the egress task on

two microengines to handle line rate transmission on all four ports. We statically

divide the TFIFO slots, the transmit queues, and the transmit ports between the

two Egress microengines to avoid synchronization overheads between them. The

next section describes this design in detail.

A.3 The Two-microengine Egress Design

In this section, we describe the design of the egress task that uses two micro-

engines. In the previous section, we saw that since the three fill threads cooperate

to move packets from memory to TFIFO slots for all four ports, they could fill the

TFIFO slots at a faster rate when packets were transmitted across only two of the

four ports. This was because the fill threads which were unused for ports without

packets, were used to fill up slots for the ports which had packets to transmit.

Our evaluation for LinkEM shows that the egress task causes port underflows when

transmitting on four ports, but can handle line rate transmission on two 100-Mbps

ports.
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Thus, three fill threads are enough to handle line rate transmission on two ports.

This provides the motivation for using two microengines for the Egress task: three

fill threads on one microengine can handle transmission on two of the four ports,

while the three fill threads on the other microengine can handle the remaining two

ports. Also, if we split the ports, the TFIFO slots, and the transmit queues such

that there is no synchronization needed between the two microengines, then we can

expect near line rate transmission on all four ports using this design.

Figure A.5 shows the TFIFO/port/fillthread mapping for this design. We keep

the scheduler-fill thread model on both microengines (MEs). Thus one thread on

each microengine runs the scheduler code, while the other three threads on each

microengine run the fill thread code. To reduce synchronization overhead between

the two microengines, we statically map the transmission of packets on ports 0 and

2 to Egress ME 1, and transmission of packets on ports 1 and 3 to Egress ME 2.

Thus the scheduler thread on ME 1 runs round-robin algorithm over queues for

ports 0 and 2, while the fill threads on the microengine move packets from memory

to TFIFO slots allocated for ports 0 and 2 (all even-numbered slots). Similarly,

the scheduler thread on ME 2 runs round-robin algorithm over queues for ports 1

and 3, while the fill threads move packets from memory to TFIFO slots allocated
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Figure A.5. TFIFO/port/fill thread mapping with two microengines for egress



79

for ports 1 and 3 (all odd-numbered slots). In the figure, “fill uv” represents fill

thread v running on microengine u. Fill threads on both MEs jump by 6 slots to

go to their next assigned slot. As seen in the figure, the ith and i + 1st chunks for

a packet destined for port 0 are filled at the same time; this is true for packets

destined to other ports too (similar to packet transmission on only two ports in the

one-microengine Egress design, see section A.2). Thus with this design, the egress

task should be able to transmit at near line rate for all four 100-Mbps ports.
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