
�

Hybrid Resource
Control for Active
Extensions

Parveen Patel
Jay Lepreau

University of Utah

�

The Problem

� Resource-greedy active code
� Resource control of untrusted code

� CPU, memory, network bandwidth

� Context: Active Extensions

� Code downloaded via the control channel

� Examples: Application Layer Gateways,
Multicast scoping agents

�

Current Solution #1: Dynamic

� “Sandbox” the active code

� Run-time checks in the critical path

� Asynchronous termination

� Requires checks at the “user-kernel” boundary
to protect integrity of the “kernel” code

� Flexible

� Examples: Janos, Smart Packets, RCANE,
OKE Corral

�

Current Solution #2: Static Analysis

� Constrained programming model bounds
resource consumption

� Admission control == Resource control

� Examples: PLAN, SNAP, PCC

Issue: Existing work does not yet address the
problem with pessimistic estimates, valid code
gets rejected.

�

Current Solutions - Summary

�� dynamic checkingdynamic checking

��

runrun--time overheadtime overhead

��

asynchronous termination asynchronous termination

�� static checking is very conservativestatic checking is very conservative

�

Hybrid Resource Control #1

� Static checking

� Constrained programming model to bound
the resources and guarantee termination

� Static analysis rejects resource greedy code
from the “kernel” fast-path environment

� Liberal resource limits

�

Hybrid resource control #2

� Dynamic resource accounting

� Detects misbehavior

� Misbehaving code is detected and unloaded
only when idle (between packets)

� Limits overall resource consumption

�

Poll points
� Extension could cause packet drops at

device input queue

� Split the active extension code and poll
network interfaces

� Adds some runtime cost

�

Merits of Hybrid Resource Control

� No asynchronous termination

� Implies no runtime checks at the
“user-kernel” boundary

� Reduced runtime overhead

� Runtime accounting checks are inexpensive

� Flexibility via “poll points”

� DoS prevention

� �

Outline

� Prototype: resource bounded Click or
RBClick

� Building blocks

� The big picture

� Preliminary evaluation

� �

Cyclone

� Cyclone: typesafe C-like language from
Cornell and AT&T

� Region-based memory management

� control over data-representation

� Easy to interface with C

� Namespaces

� �

Resource-bounded Cyclone

� Namespace control

� Restricted programming constructs (bounded loops)

� Memory management via 4 distinct dynamic regions

� Per-packet

� Packet-cache

� Inter-packet

� Global memory

� �

Click

� Modular router toolkit from MIT
� Data-flow programming model
� Has an increasingly large base of router

extensions

��� � � ��� � 	�
 � � �� � � 	 � 	 � �

� � �� � 	�
 ��� � � � �� �� � � �

� �� � �� � � � � �

� �

Prototype: Architecture

� An active extension is a special Click graph

� Mix of trusted and untrusted elements

� Statically analyzed

� Admitted to kernel fast-path

��

An Active Extension

��� ��� � � �
	 �

� ��� � ��� � 	 � � 	 � 	 � �

�

���� � ��� ! " " # $ � % � & � '

() *

� �

The big picture

�
'

() *

Code Analysis Tool Element
Resource
bounds

� �

The big picture

�
'

() *

Graph Analysis Tool

Overall
Resource
bounds

Element
Resource
bounds

'

() *

�
�

Poll Element

��

Loop configuration

�
'

() *

Graph Analysis Tool

Overall
Resource
bounds

Element
Resource
bounds

'

() *

�
�

Loop Element

��

Evaluation

� Flexibility of programming model

� Experimental performance gains

��

Classification of Click elements

� Categorized all 234 Click v1.2.1 elements into 7
different classes based on their resource use

�

E1 - Constant resource consumption

�

E2 - ~ length of the packet

�

E3 - ~ length of some protocol header

�

E4 - ~ length of element configuration

�

E5 - ~ some value in the configuration of an element.

�

E6 - ~ field in a protocol header

�

E7 - Potentially unbounded

� �

Evaluation: flexibility

� Results:

� 88% resource-bounded

� The rest can be easily rewritten to be bounded

� Demonstrates that RBClick can reuse a rich
set of Click elements
� Strongly suggests that RBCyclone

programming model is sufficiently
expressive

� �

Prototype Context

� Janos

��

Evaluation – experiment
configurations

� �

Evaluation: performance

0
20
40
60
80

100
120
140

0 20 40 60 80 10
0

12
0

Send Rate

R
ec

ei
ve

 R
at

e

Moab Fast path

RBClick

RBCyclone

Click

��

Conclusion

� Hybrid resource control

� Static analysis reduces runtime overhead

� Dynamic accounting allows liberal admission control

� RBCyclone is expressive and practical
(“tastes great”)

� RBClick doubles forwarding rate in Janos
(“less filling”)

