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What is Hourglass?

� Synthetic real-time application
� Only purpose is to take 
measurements

� Timing constraints

� No kernel modules or patches
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Goal

� Provide fast, accurate answers 
to CPU scheduling questions
� Microbenchmarks: Dispatch 
latency? Timer accuracy? Context 
switch time?

� Single-application: Would it help 
to use a different timer?  To 
reduce compute time by 15%?

� Multi-application: Will X, Y, and 
Z work together?
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Why Answer Scheduling 
Questions?

� Identify / solve application timing 
problems

� Make predictions about application 
performance

� Compare OSs e.g.
� Linux 2.2 vs. 2.4

� Preemptible vs. low latency Linux

� Linux vs. Windows XP vs. FreeBSD

� Debug schedulers
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Other Ways to Answer 
Scheduling Questions

� Add instrumentation to a non-
synthetic real-time application
� E.g. Game, DVD player, mp3 
player, software modem, …

� Use an instrumented kernel
� E.g. Linux Trace Toolkit

� More detail in paper…
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Key Capabilities

� Create accurate execution trace

� Support multiple thread models

� Provide portable access to 
scheduling functionality
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Execution Trace

� Precise map of when each 
Hourglass thread runs
� Threads poll timestamp counter

� Log “gaps” to memory buffer

� Important details: need to
� Know CPU speed

� Select minimum gap size 
appropriately

� Avoid spurious page faults
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Raw Execution Trace
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Graphical Execution Trace

� Postprocess with Perl, jgraph, 
etc. to get:
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Supported Thread Models

� Periodic with blocking
� Most non-game real-time apps

� Periodic non-blocking
� Most games and other rendering 
loops

� Also: CPU-bound, latency test, 
scanning

� Easy to extend…
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Portability

� Uniform command-line access to
� Thread models

� Timers

� Priorities

� CPU reservations
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How It Works

� main()
� Spawns worker threads

� Sleeps

� Prints results

� Worker threads
� Run gap-detection loop

� At appropriate times:

� Schedule wakeup and go to sleep

� Register deadline hit / miss

� Touch memory
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Using Hourglass

� First: Map the scheduling 
question onto a concrete 
scenario

� Second: Create an Hourglass 
command line that implements 
the scenario
� Use other apps to supply 
contention

� Third: Run Hourglass, interpret 
the results
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Example
� Question 1: Can a demanding digital 
audio app reliably meet its 
deadlines on Linux?
� App requires 4ms CPU during every 
5ms period

� Command line:
hourglass -d 20s -n 1 -t 0 \

-p RTHIGH \

-w PERIODIC 4ms 5ms \

-i RTC
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Example Cont’d

� Answer: YES
� No deadlines missed on a variety 
of Linux kernels

� (On an otherwise quiet machine)
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Example Cont’d

� Question 2: How about during 
network receive processing?
� Same Hourglass command line

� Use Netperf to receive full-
bandwidth data over 100Mbps 
Ethernet

� Answer: Sometimes…
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Example Cont’d

� Numerical answer:

� RML == preemptible kernel + 
lock breaking patches

� Netperf baseline: 94 Mbps

59 Mbps0.0%2.4.7 TimeSys

66 Mbps0.4%2.4.17 RML

68 Mbps33.0%2.4.17 plain

ThroughputMissed deadlinesExperiment
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Example Cont’d

� Visual answer:
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Related Work

� LMBench, HBench, Latencytest

� Linux Trace Toolkit

� Gscope

� txofy, mptxofy
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Availability
� Runs on

� Pentium-class x86

� Linux, FreeBSD, Win32

� BSD style license

� Home page
� www.cs.utah.edu/~regehr/hourglass

� Or Google for “regehr hourglass”
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Conclusion

� Can learn a lot using a synthetic 
real-time application:
� Execution trace is surprisingly 
useful for making inferences about 
scheduling behavior

� A few thread models cover most 
interesting applications
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The End

� More info at

www.cs.utah.edu/~regehr/hourglass

� Let’s talk…


