
Page 1

1

Inferring Scheduling
Behavior with Hourglass

John Regehr

School of Computing, University of Utah
http://www.cs.utah.edu/~regehr

6/14/2002

2

What is Hourglass?

� Synthetic real-time application
� Only purpose is to take
measurements

� Timing constraints

� No kernel modules or patches

3

Goal

� Provide fast, accurate answers
to CPU scheduling questions
� Microbenchmarks: Dispatch
latency? Timer accuracy? Context
switch time?

� Single-application: Would it help
to use a different timer? To
reduce compute time by 15%?

� Multi-application: Will X, Y, and
Z work together?

4

Why Answer Scheduling
Questions?

� Identify / solve application timing
problems

� Make predictions about application
performance

� Compare OSs e.g.
� Linux 2.2 vs. 2.4

� Preemptible vs. low latency Linux

� Linux vs. Windows XP vs. FreeBSD

� Debug schedulers

5

Other Ways to Answer
Scheduling Questions

� Add instrumentation to a non-
synthetic real-time application
� E.g. Game, DVD player, mp3
player, software modem, …

� Use an instrumented kernel
� E.g. Linux Trace Toolkit

� More detail in paper…

6

Key Capabilities

� Create accurate execution trace

� Support multiple thread models

� Provide portable access to
scheduling functionality

Page 2

7

Execution Trace

� Precise map of when each
Hourglass thread runs
� Threads poll timestamp counter

� Log “gaps” to memory buffer

� Important details: need to
� Know CPU speed

� Select minimum gap size
appropriately

� Avoid spurious page faults

8

Raw Execution Trace

2 9.976 0.006

2 9.976 0.005

0 9.972 0.009

0 9.976 0.005

1 7.574 0.006

1 1.242 0.009

1 1.139 0.009

1 0.122 0.005

Duration GapThread

9

Graphical Execution Trace

� Postprocess with Perl, jgraph,
etc. to get:

10

Supported Thread Models

� Periodic with blocking
� Most non-game real-time apps

� Periodic non-blocking
� Most games and other rendering
loops

� Also: CPU-bound, latency test,
scanning

� Easy to extend…

11

Portability

� Uniform command-line access to
� Thread models

� Timers

� Priorities

� CPU reservations

12

How It Works

� main()
� Spawns worker threads

� Sleeps

� Prints results

� Worker threads
� Run gap-detection loop

� At appropriate times:

� Schedule wakeup and go to sleep

� Register deadline hit / miss

� Touch memory

Page 3

13

Using Hourglass

� First: Map the scheduling
question onto a concrete
scenario

� Second: Create an Hourglass
command line that implements
the scenario
� Use other apps to supply
contention

� Third: Run Hourglass, interpret
the results

14

Example
� Question 1: Can a demanding digital
audio app reliably meet its
deadlines on Linux?
� App requires 4ms CPU during every
5ms period

� Command line:
hourglass -d 20s -n 1 -t 0 \

-p RTHIGH \

-w PERIODIC 4ms 5ms \

-i RTC

15

Example Cont’d

� Answer: YES
� No deadlines missed on a variety
of Linux kernels

� (On an otherwise quiet machine)

16

Example Cont’d

� Question 2: How about during
network receive processing?
� Same Hourglass command line

� Use Netperf to receive full-
bandwidth data over 100Mbps
Ethernet

� Answer: Sometimes…

17

Example Cont’d

� Numerical answer:

� RML == preemptible kernel +
lock breaking patches

� Netperf baseline: 94 Mbps

59 Mbps0.0%2.4.7 TimeSys

66 Mbps0.4%2.4.17 RML

68 Mbps33.0%2.4.17 plain

ThroughputMissed deadlinesExperiment

18

Example Cont’d

� Visual answer:

Page 4

19

Related Work

� LMBench, HBench, Latencytest

� Linux Trace Toolkit

� Gscope

� txofy, mptxofy

20

Availability
� Runs on

� Pentium-class x86

� Linux, FreeBSD, Win32

� BSD style license

� Home page
� www.cs.utah.edu/~regehr/hourglass

� Or Google for “regehr hourglass”

21

Conclusion

� Can learn a lot using a synthetic
real-time application:
� Execution trace is surprisingly
useful for making inferences about
scheduling behavior

� A few thread models cover most
interesting applications

22

The End

� More info at

www.cs.utah.edu/~regehr/hourglass

� Let’s talk…

