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Abstract

Although computer programs explicitly represent data
values, time values are usually implicit. This makes
it difficult to analyze and debugreal-time programs
whose correctness depends partially on the time at which
results are computed. This paper shows how to use
Hourglass, an instrumented, synthetic real-time applica-
tion, to make inferences about what is happening on a
computer at millisecond and microsecond granularities.
These inferences are possible because Hourglass records
a very fine-grained map of when each of its threads runs,
and because Hourglass supports a variety ofthread ex-
ecution modelsthat model the properties and require-
ments of non-synthetic real-time applications. We con-
clude that between measurements and inferences, sur-
prisingly detailed knowledge about scheduling behavior
can be obtained without modifying, or even explicitly
interacting with, the operating system kernel.

1 Introduction

Real-time applications such as games, audio playback,
video display, and voice recognition need to finish com-
putations by certain times, in addition to producing the
right result, in order to operate correctly. Task execution
can become complex because tasks share resources, be-
cause time-sharing schedulers such as the ones in Linux
and FreeBSD execute complex algorithms, and because
kernel activity such as hardware and software interrupt
handlers can interfere with application execution. These
factors often make it difficult to figure out what is really
happening at microsecond and millisecond granularities
when a real-time application runs. The situation is com-
plicated by the many modified Linuxes that provide im-
proved real-time services, since each has different per-
formance characteristics. These real-time enhanced ker-
nels fall into two main categories. First, there are those
that improve the real-time performance of basic mecha-
nisms, such as high-resolution timers [1], Robert Love’s

preemptible kernel patch [12], Andrew Morton’s lock-
breaking patch [13], and the TimeSys Linux/GPL ker-
nel [23], which includes a number of scheduler enhance-
ments and also makes most device driver activity pre-
emptible by threads. Second, there are those that change
the CPU scheduling algorithm, such as Linux-SRT [4],
QLinux [22], RED-Linux [25], and Linux/RK [14].

It is difficult to measure, analyze, and understand the
behavior of real-time applications that are scheduled by
these different Linux variants and by other operating
systems. To address this problem we have developed
Hourglass, a heavily instrumented synthetic real-time
application that operates entirely in user space and re-
quires no modifications to the operating system. Our
focus is on Linux, but Hourglass also runs on Win-
dows 2000 and FreeBSD; it should be easy to port to
other Win32- and Unix-based systems.

2 Monitoring Scheduling Behavior

Broadly speaking, there are two ways to learn about the
run-time behavior of an application: by instrumenting
the application and by instrumenting the kernel. Each
approach has advantages and disadvantages.

2.1 Instrumented Kernels

Kernel-based instrumentation and measurement tech-
niques can be divided into approaches that monitor the
execution of a single application and those that monitor
the system as a whole. An example that fits into the first
category isptrace() , a system facility that permits a
parent process to monitor and intercept any kernel calls
made by a child process. The second category is exem-
plified by the Linux Trace Toolkit (LTT) [26], a general-
purpose event logging facility for the Linux kernel. The
important properties of LTT are that it logs events into
physical memory, doing no I/O until requested, and that
it does not add a lot of overhead to normal operations.
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Some of the factors favoring use of an instrumented
kernel include:

• Since the kernel is not treated as a black box, it is
possible to figure out exactly why particular timing
effects were observed rather than relying on indi-
rect inferences.

• Since applications do not need to be modified, real
applications can be run without adding instrumen-
tation code that may increase complexity or affect
their timing behavior.

2.2 Instrumented Applications

Instrumented applications fall into two categories. First,
it is possible to add instrumentation to real applications
and second, synthetic applications can be used. Real ap-
plications can be instrumented in a variety of ways: by
hand, by linking against instrumented library routines,
by interposing on library calls using macro or linker
tricks, or by rewriting a binary. For example, gscope [6]
is a visualization tool that uses the metaphor of an os-
cilloscope; it provides an API that applications can use
to send signals to gscope, where they are processed and
displayed. ATOM [21] exemplifies a very different ap-
proach: it uses binary rewriting to add customized in-
strumentation to an application. Because ATOM pro-
vides very fine-grained instrumentation it could be used
to add timing instrumentation to real applications, al-
though care would have to be taken to avoid slowing a
program down too much.

Synthetic applications such as Hourglass need not be
instrumented further because their entire purpose is to
provide instrumentation. By abstracting away from real
applications it is possible to obtain very predictable and
controllable behavior, to get fine-grained timing mea-
surements, and to easily model a wide variety of ap-
plication scenarios without changing complex applica-
tion code. On the other hand some application char-
acteristics, such as patterns of synchronization between
threads, may be difficult or impossible to model using a
synthetic application.

Instrumented applications have the following benefits:

• The timing information reported is guaranteed to
be authentic in the sense that actual application
scheduling behavior is measured. This is often bet-
ter than measuring timing in the kernel, where it
may be difficult to instrument all code of interest,
e.g. interrupt handlers, bottom-half handlers, etc.
Furthermore, cache effects can be measured at the
application level.

thrd_func () {
sleep_until (my_start_time);
while (now < my_finish_time) {

run_workload ()
}

}

main () {
parse_command_line_args ()
foreach (0..num_threads-1) {

pthread_create (thrd_func)
}
sleep_until (overall_finish_time)
print_results ()

}

Figure 1: Hourglass in a nutshell

• Since the kernel is not modified, there is no risk
of destabilizing the system, or breaking or slowing
down non-real-time applications. Also, there are no
kernel patches to conflict with the many modified
Linux kernels listed in Section 1.

2.3 Summary

Kernel-based instrumentation is the best way to mea-
sure OS-specific metrics such as the time to execute a
particular code path in the kernel. A combination of
kernel-based instrumentation and hand-inserted applica-
tion instrumentation is almost always the right choice for
debugging a specific real-time application on a specific
operating system. On the other hand, for performing a
comparative evaluation of real-time operating systems or
for exploring application scenarios other than those pro-
vided by available applications, a user-space synthetic
application is almost always the right choice.

3 Hourglass Structure and Internals

Hourglass is structured as a collection of cooperating
threads: one for each thread that the user requests, plus
the thread that initially runsmain() . Figure 1 shows
pseudocode for Hourglass. Most of the complexity is in
run workload() , which is covered in this section.

3.1 Detecting Gaps

While starting up, Hourglass allocates a memory buffer
(about 5 MB long, by default) for storing anexecution
trace. The trace is generated by threads as they run: each
time a thread detects a gap in its execution, it allocates
a record in the trace buffer and uses it to store the start
and end time of a continuous block of CPU time that the
thread received. Taken together, these records produce a
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while (1) {
now = rdtsc ()
if (now - last_exec > GAP) {

rec = allocate_record ()
rec.id = my_pid
rec.start = exec_start
rec.end = last_exec
exec_start = now

}
last_exec = now

}

Figure 2: Algorithm for recording intervals of continuous
CPU time received by a thread

map of how the CPU was used during a particular Hour-
glass run.

To learn when it is receiving CPU time, each thread
continuously polls the Pentium timestamp counter by
executing therdtsc instruction, which returns a 64-
bit quantity indicating the number of processor cycles
since the machine was booted. If the difference be-
tween successive reads of the timestamp counter exceeds
a GAPthreshold, the thread considers its execution to
have been interrupted and adds an element to the trace
buffer recording the start and finish of the time interval
during which it had uninterrupted access to the proces-
sor. By settingGAPappropriately, even very small inter-
ruptions, such as those caused by interrupt handlers that
run for a few microseconds, can be detected. Figure 2
shows pseudocode for the gap-detection algorithm, and
Figure 3 shows some execution traces produced by post-
processing Hourglass output withrender trace , a
script that is distributed with Hourglass. Gray rectan-
gles represent continuous blocks of CPU time allocated
to a thread. To produce these traces, Hourglass was run
with this command line

hourglass -n 3 -d 5s \
-t 0 -p LOW \
-t 1 -p NORMAL \
-t 2 -p HIGH

which creates three threads at different priorities and lets
them record an execution trace for five seconds (Ap-
pendix A provides command line usage information for
Hourglass). The top three traces in Figure 3 are 500 ms
segments of the 5 s traces, and were respectively taken
on an otherwise idle Linux machine, an otherwise idle
Windows 2000 machine, and an otherwise idle FreeBSD
machine. The bottom trace segment is 100 ms long in or-
der to show more detail, and was taken on a Linux ma-
chine runningxmms, an audio player application. The
operating system versions used are described at the be-
ginning of Section 5.
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(a) Hourglass running by itself on plain Linux 2.4.17
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(b) Hourglass running by itself on Windows 2000
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(c) Hourglass running by itself on FreeBSD 4.5
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(d) Detail of Hourglass sharing the processor withxmmson
plain Linux 2.4.17

Figure 3: Example execution traces
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The first trace clearly shows Linux’s clock interrupts
arriving every 10 ms, and it also shows that higher-
priority threads run for longer than low-priority threads
rather than running more often. Running for longer is
the correct implementation for a server operating sys-
tem since it minimizes context switch overhead. The
second trace shows that the Windows 2000 scheduler is
not nearly as fair to low-priority threads as the Linux
scheduler is. In fact, the Windows 2000 scheduler is
almost a static priority scheduler: in the presence of a
high-priority CPU-bound thread, lower-priority threads
only receive brief use of the CPU every few seconds [20,
pp. 367–368]. The FreeBSD trace (third from the top)
seems to show some sort of complex behavior caused by
its multi-level feedback queue. FreeBSD lies between
Linux and Windows 2000 with respect to scheduling
fairness. Finally, the bottom trace is broken up by system
activity: the C-Media sound card driver handles about
700 interrupts per second whenxmmsis active, and the
act of reading mp3 data from disk causes about 20 IDE
interrupts per second.

Keeping close track of when each thread runs pro-
vides a basis for implementing many useful capabilities.
For example, by examining gaps in thread execution,
we can determine how long various events of interest
such as context switches and interrupts take to execute.
By adding up the durations of intervals during which
a thread had uninterrupted access to the CPU, a thread
can determine if it has received enough processor time
to perform some computation.

A number of details have to be taken care of for Hour-
glass to operate correctly. First, threads that require
low-latency scheduling must run at a real-time priority,
allowing them to preempt normal application threads.
Second, the Hourglass process should be locked into
physical memory in order to avoid reporting spurious
delays that are caused by page faults. On systems that
do not supportmlockall() , Hourglass touches each
page of dynamically allocated memory to ensure that it
is mapped to a physical page before any timing opera-
tions are run. This is a hack, but it should work in situa-
tions where there is no memory pressure during an Hour-
glass run. Third, the value of theGAPconstant needs
to be chosen to be longer than the typical iteration time
of the loop in Figure 2, but shorter than the length of
the shortest actual gap in execution that a thread experi-
ences. In practice, this is not difficult: on our test ma-
chine, an 850 MHz Pentium III, the execution trace loop
usually takes about 225 ns to execute. SettingGAPto
twice this value appears to avoid detecting spurious gaps
while still detecting even fast interrupt handlers. Fourth,
sincerdtsc returns values in cycles, Hourglass needs
to be aware of the clock speed of the processor it is run-

ning on. This is can be determined by comparing the
rates at whichrdtsc andgettimeofday() run.

3.2 Thread Execution Models

To facilitate the modeling of a variety of application sce-
narios, Hourglass supports a number of thread execution
models. All thread models except the last, the latency
test, record records of when they run in order to partici-
pate in the creation of an execution trace.

CPU bound: These threads simply run whenever
they can.

CPU bound, scanning: These threads are CPU-
bound, and they sequentially access elements in an ar-
ray, modeling tasks with non-zero working sets in the
data caches.

CPU bound, yielding: These threads are CPU-bound
but voluntarily yield the processor each time they have
received a configurable amount of CPU time.

Periodic: These threads have a characteristic execu-
tion time and period. During each period they run until
they have received their execution time, at which point
they block until the beginning of the next period. The
timer that they block on can be selected at run time. Each
time a periodic thread has not received its execution time
by the end of its period, it registers a deadline miss. Pe-
riodic threads model real-time applications that have a
characteristic rate, such as real-time audio processing,
video decoding, or a software modem.

CPU bound, periodic: These threads have a charac-
teristic execution time and period, but they never block.
Rather, each time a thread receives its CPU time re-
quirement, it simply begins another period. This mod-
els the class of applications such as games and other
real-time simulations that must provide some minimum
frame rate, but can opportunistically use extra CPU time
to provide higher frame rates. For example, we might
require that a game produce at least 20 frames per sec-
ond. If it requires 10 ms to produce a single frame, then
its execution time is 10 ms and its period is 50 ms. This
thread will register a deadline miss any time a 50 ms pe-
riod elapses where no frame is produced. If all CPU time
is available to this thread, it will provide 100 frames per
second.

Latency test: When these threads run they record the
current time and then sleep until a period has passed.
They are used to measure dispatch latency: the time be-
tween when a thread becomes ready and when it starts
to run. Latency test threads are different from periodic
threads in that they automatically synchronize their peri-
ods to the timer source rather than maintaining an inde-
pendent period. In other words, each time they awaken
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they compute their next wakeup time by adding their pe-
riod to the current time instead of the time at which they
should have awakened. This simplifies latency testing by
eliminating phasing errors that can make things difficult
for actual real-time applications.

It is easy to add new thread execution models to Hour-
glass. For example, it might be useful to add a new pe-
riodic task model where, instead of requiring the same
amount of CPU time during each period, the execu-
tion time requirement follows a statistical distribution or
uses a table-driven approach to simulate the determinis-
tic variability shown by an MPEG-2 video decoder as it
processes different types of frames.

3.3 Time and Timers

In most general-purpose operating systems it is hard to
gain control of the CPU at a precise time, unless that
time happens to be synchronized with a periodic clock
interrupt. In many systems clock interrupts arrive every
10 ms. In Linux and Windows 2000, better timing can be
obtained using the real-time clock (RTC), which can be
programmed to interrupt the CPU at power-of-two fre-
quencies; for example, at 1024 Hz it provides 976µs res-
olution — precise enough for most applications. Even
better timers for Linux can be obtained through a ker-
nel patch [1] that provides the POSIX timer interface to
applications based on either the RTC, the programmable
interrupt timer (PIT), or the ACPI power management
timer. The last two can achieve small-microsecond ac-
curacy. Windows 2000 providesmultimedia timersthat,
on most platforms, provide a timer resolution of about
1 ms. Hourglass is capable of using all of these timers,
and even of mixing them within a run.

3.4 Data Output and Analysis

Hourglass has three main design goals with respect to
its output. First, all output happens after a run finishes,
in order to avoid contaminating timing information with
I/O effects. Second, Hourglass produces output that is
as complete as possible, and is (in principle) human-
readable. And finally, lines that contain data that is likely
to be of interest to scripts are tagged with special strings
that make them easy to identify.

4 Inferring Scheduling Behavior

Because Hourglass runs entirely in user space, the
causes for gaps need to be inferred, and often this knowl-
edge can only be statistical. The following list pro-
vides examples of some kinds of inferences that can be
made using Hourglass, and it illustrates the distinction
between statistical and non-statistical inference.

• If Thread 1 runs, a gap occurs, and then Thread 2
runs, one can make the non-statistical inference that
a context switch occurred during the gap. Statistical
inferences that can be made after looking at a num-
ber of such gaps include: (1) that the shortest gap
indicates the fastest path through the context switch
code, (2) that if there are many gaps of about the
same length, and this length isn’t much longer than
the shortest gap, then the median member of this
set of gaps is representative of the expected context
switch time, and (3) that any very long outlier gaps
have either been contaminated by other system ac-
tivity such as interrupt handlers, or that the context
switch code has an unpredictable execution time.

• If a context switch is observed between two threads
that are known to never yield or block (voluntarily
or involuntarily), one can make a non-statistical in-
ference that the context switch was an involuntary
preemption, and hence a clock interrupt must have
occurred during the gap, in addition to a context
switch.

• If the highest priority active thread is known to
never block, gaps in its execution must be caused
by high-priority non-thread activity such as inter-
rupts and bottom-half device driver routines.

• If threads running on an idle machine have few
gaps, and if threads running on the same machine
under a particular workload (e.g. receiving network
data) show many gaps, one can make the statistical
inference that the workload is causing the gaps.

• If a thread running on an otherwise idle machine
has occasional high dispatch latencies when using
one kind of timer, but not another, then the statis-
tical inference can be made that one of the timer
implementations is inaccurate or broken. One can
have higher confidence in this inference when run-
ning on a low-latency or preemptible kernel that al-
most never shows long “real” gaps.

If these kinds of inferences are insufficient, there are
two potential solutions. First, it might be possible that a
more clever use of Hourglass, or a modification to Hour-
glass, would permit stronger inferences to be made. Sec-
ond, it might be necessary to stop viewing the kernel as
a black-box, and to start using a package such as the
Linux Trace Toolkit. Although Hourglass does not cur-
rently interact with LTT, it would be useful to be able
to correlate results from the two sources. This would be
straightforward because a single time line, fromrdtsc ,
is available.

5



5 Usage Scenarios

The purpose of this section is to provide a number of ex-
amples showing how to use Hourglass to measure differ-
ent kinds of scheduling behavior. We arenot attempting
a good comparative evaluation of the different operating
systems; for this reason and because the effects being
shown are easily repeatable from run to run, we usually
omit confidence intervals for the data being presented.

The scenarios in this section are intended to tell a
story. We begin with two ways to measure context
switch costs — these provide useful bits of knowledge
but often have little direct impact on application pro-
grammers. The next example shows how to measure
dispatch latency, which is a useful metric for real-time
application developers but is still in the operating sys-
tem domain. The fourth example moves into the ap-
plication domain by directly measuring the ability of a
single application to meet its deadlines while the op-
erating system is busy doing other things; the example
after that focuses on using a response time analysis to
make predictions about the interaction between several
real-time applications. Finally, the last example is about
CPU reservations, a scheduling abstraction for guaran-
teeing that the requirements of multiple real-time appli-
cations will be met even when there is no coordination
or cooperation between applications.

All performance data for this paper were taken on
a uniprocessor 850 MHz Pentium III with 512 MB of
RAM. Linux experiments were run on kernel version
2.4.17 unless otherwise specified. The high-resolution
timer patch [1] is version 2.4.17-2.0. The preemptible
kernel uses Robert Love’s preempt-kernel-rml-2.4.17-
3 and lock-break-rml-2.4.17-2 patches [12]. TimeSys
Linux/GPL [23] is their version 3.0.108, based on Linux
2.4.7. FreeBSD measurements were taken on 4.5-
RELEASE, and on that platform Hourglass uses the Lin-
uxthreads package in order to get kernel threads. Win-
dows 2000 measurements were taken on service pack 2.

5.1 Measuring the Direct Cost of Context
Switches

One of the most straightforward uses of Hourglass’s
ability to measure gaps in thread execution is to infer
the cost of running the kernel context switch code. To
do this, invoke Hourglass with:

hourglass -d 60s -n 10 -a -p NORMAL -w CPU

or:

hourglass -d 60s -n 10 -a -p NORMAL \
-w CPU_YIELD 0.9ms

These commands cause Hourglass to run for 60 seconds
after creating ten threads, all running at the default time-
sharing priority, all of which are CPU-bound. The only
difference between the two commands is that the second
causes each thread to yield the processor each time it
has received 900µs of processor time, permitting us to
distinguish between voluntary context switches (caused
by yielding) and involuntary context switches (quantum
expirations). Involuntary context switches are more ex-
pensive because they always occur at the same time as a
clock interrupt. The output from these commands con-
tains many lines of the following form:

0 442.323192 443.222287 0.899095 0.002184
1 443.224485 444.123644 0.899159 0.002198
9 444.125827 445.024925 0.899098 0.002183

The first column is the thread id, the second and third
columns show the start and finish times of a gap-free in-
terval of CPU time that the thread received, the fourth
column is the duration of the interval (the difference be-
tween the second and third columns), and the last col-
umn is the “gap” between the start of the record being
reported and the end of the previous record. All times
are in milliseconds.

Hourglass is distributed with a Perl scriptpro-
cess ctx that produces a histogram of context switch
times from Hourglass output, and also performs some
simple statistical analyses. Figure 4 shows some his-
tograms of context switch times for thread quantum ex-
pirations on several different OS configurations. These
histograms reveal some interesting performance char-
acteristics of the different systems. First, we can see
that Linux with high-res timers appears to have a more
efficient clock interrupt handler than standard Linux,
while the TimeSys kernel appears to be a bit less ef-
ficient than the high-res kernel but is still more effi-
cient than standard Linux. Second, we see that RML’s
preemptible kernel and lock breaking patches don’t ap-
pear to affect context switch time. Third, the TimeSys
Linux/GPL kernel, Windows 2000, and FreeBSD all
cause about 50 context switches per second, rather than
about 18 context switches per second for the Linux ker-
nels based on 2.4.17. In other words, a modern stable
Linux kernel provides CPU-bound threads with 60 ms
quanta; TimeSys Linux (which is based on 2.4.7), Win-
dows 2000, and FreeBSD give them 20 ms quanta; the
kernel distributed with RedHat Linux 6.2 causes only
about 7 context switches per second. The context switch
cost for FreeBSD 4.5 kernel threads is over 30µs — con-
siderably higher than the other OSs measured. This is
because FreeBSD 4.5 Linuxthreads have not been op-
timized, and fail to take advantage of the opportunity
to avoid page table operations when switching between
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Figure 4: Histograms of times for involuntary context
switches (e.g. caused by quantum expirations) between CPU-
bound threads within a single process

threads in the same address space. We verified this by
comparing the costs shown for FreeBSD in Figure 4 with
the cost to context switch between processes. There was
no statistically significant difference.

5.2 Measuring the Indirect Cost of Context
Switches

Time spent in the kernel accounts for only one of the
costs of context switches. Another cost, caused by lost
cache locality, is potentially more severe. To see this,
consider a thread whose working set in the L2 cache is
100 KB. If this thread is descheduled and, when sched-
uled again, starts running on a cold cache, it will spend
time executing slowly until its working set again com-
pletely resides in the cache. The 850 MHz machine
that we use has a memory read bandwidth of approxi-
mately 300 MB/s, so reading the 100 KB will take about
333µs — far longer than the context switches that we
saw in the previous section that took on the order of
10µs. This explains why scheduling quanta have not
gotten much smaller over the past few decades, even
though microprocessors have gotten thousands of times
faster: for applications with non-trivial cache state, con-
text switch times are tied to DRAM speeds, which grow
much more slowly than processor speeds. For example,
1 ms scheduling quanta would lead to extremely good
average application response time — this would be great
for multimedia and interactive applications. However,
instead of causing a 1% overhead, as the 10µs context
switch costs from the previous section might lead us to
believe, this would create a 33% overhead if the average
application has a 100 KB working set in the L2 cache.

Measuring application slowdown due to lost cache lo-
cality requires a more subtle technique than the one we
used in the previous section: rather then measuring gaps,
we must directly measure progress made by the applica-
tion. The experimental methodology is as follows. To
model a thread with, say, a 32 KB working set, Hour-
glass creates a thread that allocates 32 KB and repeatedly
scans through it. For the control, Hourglass creates a
single thread with a specified working set and measures
how much “work” it can accomplish during a specific
period of time. Each pass over the thread’s working set
is considered to be a unit of work. We can then compare
this amount of work with the total work performed by
ten threads during the same time period. With all other
factors being equal, any lost work for the ten-thread case
must be caused by context switch overhead. The perfor-
mance penaltyC per context switch can be computed
as

C =
(
W1 −W10

W1

)(
T

N10

)
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Figure 5: Thread working set size vs. performance lost to
context switches on an 850 MHz Pentium III

whereW1 andW10 are respectively the total amount
of work done by one and ten threads,T is the duration
of an experimental run, andN10 is the number of con-
text switches that occurred during the ten-thread run. In
other words, the first term represents the fraction of work
lost due to context switches; when multiplied by the du-
ration of the experiment this gives the total performance
penalty due to context switches; dividing by the number
of context switches gives the penalty per switch.

Figure 5 shows the results of running this experi-
ment for a variety of thread working set sizes on Linux
2.4.17. For each working set size, 15 trials were run;
each trial consisted of a 45-second run of Hourglass
with one thread, and a 45-second run with ten threads.
Confidence intervals were calculated at 95% using the
t-test [7, pp. 209–211]. The surprising thing about this
graph is not how bad the results are (in fact, the results
are roughly in line with the back-of-the-envelope calcu-
lation from the beginning of this section), but how un-
predictable the data becomes for working set sizes over
128 KB (half the size of the L2 cache on a Pentium III
Coppermine chip). We don’t have a good explanation
for this, but it probably has to do with the lack of page
coloring logic in the Linux memory allocator — this can
lead to cache conflict misses within a single application
that are very unpredictable from run to run. Similar ex-
periments, when run on FreeBSD, produced much more
predictable results (see [5] for some discussion of the
FreeBSD VM system, including page coloring optimiza-
tions).

Samples later than:
Linux version 1 ms 5 ms 10 ms 50 ms
2.2.14 RedHat 179 112 112 0
2.4.17 plain 284 56 45 1
2.4.17 RML 202 8 2 0
2.4.7 TimeSys 0 0 0 0

Table 1: Dispatch latencies for various Linux kernels with con-
tention from filesystem and network activity

5.3 Measuring Dispatch Latency

A real-time operating system should be able to start
running a high-priority thread shortly after it becomes
ready. The time interval between when a thread becomes
ready and when it begins to run is calleddispatch la-
tency. Dispatch latency is a serious problem for applica-
tions such as real-time audio where failure to produce a
sample on time can result in audible artifacts. The point
of the various lock-breaking and preemption patches for
Linux is to get a substantial reduction in dispatch latency
without overly increasing system overhead or reducing
system maintainability. Running Hourglass with

hourglass -d 6m -n 1 -t 0 -p RTHIGH \
-w LAT 5.3ms -i RTC

creates a high-priority thread that uses Hourglass’s built
in real-time clock timers to wake itself up every 5.3 ms
(the reason for the funny period is that it approximates
a multiple of the power-of-two frequencies supported
by the RTC). The Hourglass output then contains many
lines like

latlate: 97.843206
latlate: 54.101933
latlate: 62.381242

indicating, in microseconds, the lateness of successive
timer expirations.

Our experimental procedure for measuring dispatch
latency was to run Hourglass in latency test mode for
six minutes while running background work that creates
scheduling contention. The background work that we
chose was to concurrently (1) run a recursivegrep over
about 900 MB of data in about 60,000 files that is NFS3-
mounted over a loopback connection, and (2) run a re-
cursivegrep over another copy of the same data that
is NFS3-mounted with the server running on a separate
machine. This is not necessarily a good choice for a
real-world latency test, but it’s fine for a demonstration.

Table 1 shows the results of this experiment for sev-
eral Linux kernel versions where the total number of
samples taken per operating system version is about
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Linux version Missed deadlines Throughput
control 1 0.0% –
control 2 – 94 Mbps
2.4.17 plain 33.0% 68 Mbps
2.4.17 RML 0.4% 66 Mbps
2.4.7 TimeSys 0.0% 59 Mbps

Table 2: A real-time thread that requires 4 ms of CPU time
during every 5 ms can miss deadlines due to Ethernet receive
processing

65,000. The results are pretty much what we would ex-
pect: the standard Linux kernels are fine most of the
time, but they display occasional high latencies. The
kernel with RML patches (supporting preemption and
breaking of some locks [12]) does better, and the more
aggressively modified TimeSys Linux/GPL kernel [23]
never shows a latency above about 600µs.

5.4 Meeting Application Deadlines during Re-
ceive Processing

Although average- and worst-case dispatch latency are
useful metrics for characterizing real-time operating sys-
tems, they only tell part of the story. As far as appli-
cations are concerned, what is important is not when
theystart running, but when theyfinish. In this section
we show how kernel activity, in particular network re-
ceive processing, can affect applications’ ability to get
work done. Other kinds of receive processing, such as
disk and USB, can also cause scheduling problems [17].
The experimental procedure was to hit the test machine
with a full-speed TCP stream from another machine over
100 Mbps Ethernet usingnetperf at the same time
that a real-time application attempts to meet its dead-
lines. If the receive processing interferes too much with
application execution, deadlines will be missed.

The real-time application has very demanding re-
quirements: it is a periodic thread that requires 4 ms
of CPU time during each 5 ms period. This models a
thread used for professional-quality real-time digital au-
dio, where the end-to-end processing latency for sound
data must be extremely low. The thread has the high-
est possible priority and uses real-time clock timers to
schedule itself. The command line that does this is:

hourglass -d 20s -n 1 -t 0 -p RTHIGH \
-w PERIODIC 4ms 5ms -i RTC

We first ran two controls: one with only the real-time
task, and one with only network receive processing. The
results, shown in the first two lines of Table 2, were
that all of the versions of Linux that we tested can meet
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Figure 6: The effects of Ethernet receive processing on the
execution of a periodic real-time thread

all deadlines on an otherwise quiet machine (control 1),
and that a machine running onlynetperf can receive
94 Mbps of Ethernet data (control 2). The third line in
Table 2 shows that plain Linux permits the application
to miss about a third of its deadlines, but that it achieves
the highest throughput. The preemptible Linux kernel
with lock breaking patches misses less than one percent
of its deadlines (53 out of about 12,000 deadlines, to
be precise) and it gets only marginally lower throughput
than plain Linux. Finally, the TimeSys Linux/GPL ker-
nel misses no deadlines at all, but at the cost of reduced
network throughput.

The tradeoff here is clear: by more strictly respect-
ing the programmer’s choice to run a user-level thread in
preference to kernel activity, the two real-time-enhanced
kernels permit real-time workloads to miss fewer dead-
lines. However, this causes network processing to be
delayed, resulting in lower throughput. Figure 6 shows
25 ms segments of the execution traces generated by
Hourglass while running these experiments. The top
trace, generated on plain Linux, shows receive process-
ing — interrupt and bottom-half handlers — interfering
with thread execution to a significant extent. In the mid-
dle execution trace the 5 ms periodic structure of the
real-time thread’s execution is a little more apparent.
However, there is still considerable interference: this is
because RML’s preemptible kernel patches only apply to
the top half of the kernel; interrupts and bottom-half han-
dlers can still freely run during the execution of a high-
priority thread. Finally, the execution of the TimeSys
Linux/GPL kernel shows that the real-time thread al-
most entirely locks out Ethernet processing: in this ker-
nel both bottom-half handlers and most of each interrupt
handler are run in thread context, and are therefore pre-
emptible by user-mode threads.

The results of this experiment are sensitive to a
number of parameters. For example, although plain
Linux 2.4.17 did not permit a thread requiring 4 ms of
CPU time during every 5 ms to meet most of its dead-
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lines while the host receives full-bandwidth data over
100 Mbps Ethernet, under the same conditions a thread
that requires 8 ms of CPU time during every 10 ms can
meet essentially all of its deadlines. However, in this
case the incoming bandwidth is only 52 Mbps. There are
several factors at work here. First, at small-millisecond
granularities operating system performance can be com-
plex and unpredictable: even a small number of cache
misses can affect performance at this level. Second, the
window-based nature of TCP makes it somewhat unde-
sirable for use in performance studies like this because
its behavior may be highly nonlinear with respect to
other factors in the experiment. The reduced bandwidth
for the 10 ms periodic thread is most likely a result of
the longer blocks of CPU time allocated to the real-time
thread, which starves thenetperf application for long
enough that the sender must back off. Also, it is impor-
tant to realize that 100 Mbps Ethernet puts a fairly mod-
est load on a modern CPU: gigabit Ethernet, FireWire,
and USB 2.0 can all potentially cause much larger re-
ceive processing loads than the ones measured here.

In summary, doing this kind of performance analysis
“right” is very difficult because (1) the results are of-
ten highly sensitive to details of the how the experiment
is performed, and (2) tuning the real-time performance
of an OS kernel is inherently a matter of tradeoffs, and
different people have different metrics for success. For
example, it is possible to find otherwise reasonable peo-
ple who are almost solely concerned with any one of the
following metrics: average-case application throughput,
real-time response, kernel code cleanliness and clarity,
scalability to large multiprocessors, and scalability to
small embedded devices.

5.5 Determining whether Concurrent Applica-
tions can meet Deadlines

The previous section addressed the ability of a single
task to meet its deadlines under adverse conditions. In
this section we consider multiple tasks. The motivation
for this includes scenarios where, for example, a user is
concurrently using a software modem, playing a game or
listening to music, and encoding live video in the back-
ground. Modern PC hardware is capable of perform-
ing all of these tasks concurrently, provided that the op-
erating system schedules each application at the proper
times.

The workload is comprised of two tasks. The first
task models either audio or software modem processing,
and requires that a thread receive 3 ms of processor time
during every 8 ms period. Software modems [10] and
real-time audio can have tight latency requirements that
are in this range. The second task represents a video

application that must maintain about 30 frames per sec-
ond: it requires 17 ms of CPU time during each 33 ms
period. We assign priorities to the two tasks in rate-
monotonic fashion: the application with the shorter pe-
riod gets a higher priority. Then, we use a standard
real-time schedulability analysis to see if each applica-
tion can be expected to meet its deadlines. The analy-
sis returns answers asworst-case response times— the
longest possible time between a task becoming ready
and finishing its computation after taking into account
all possible interleavings between the tasks [24]. If the
response time of a task is less than or equal to its period,
the task should work; otherwise it probably will not. In
this example the response time of Task 0 is 3 ms, and
Task 1 is 29 ms. In other words, there is no possible
interleaving of the executions of the two tasks that can
cause Task 0 to finish more than 3 ms after it becomes
ready to run (this should be obvious — since Task 0 has
higher priority, Task 1 cannot interfere with its execu-
tion), and Task 1 will always finish its work by 29 ms
after it becomes ready, leaving 4 ms of slack before the
end of its period.

To model this scenario in Hourglass, we run

hourglass -n 2 \
-t 0 -p RTMED -w PERIODIC 3ms 8ms -i HR \
-t 1 -p RTLOW -w PERIODIC 17ms 33ms -i NATIVE

Here, we give Task 0 a high-resolution timer to model
the fact that we are considering it to be interrupt-driven,
where the interrupts come from either the soft modem
or audio hardware. Task 1, on the other hand, uses
usleep() to effect wakeups. The result of this exper-
iment on a Linux kernel with the high-resolution timer
patch contains lines that look something like

thread 0: missed 0 deadlines, hit 1001
thread 1: missed 142 deadlines, hit 143

meaning that Task 1 misses about as many deadlines as
it hits. There are two reasons for the disagreement be-
tween the response time analysis and Hourglass output.
First, the 10 ms granularity ofusleep() -based timers
results inrelease jitter. Release jitter occurs when a
thread is conceptually ready to run earlier than the op-
erating system becomes ready to run it. To see how this
happens here, consider the case where Task 1, the video
application, finishes a frame just four or five millisec-
onds before it is due to start processing the next frame.
It then puts itself to sleep, but may have to wait 10 ms
for the next clock interrupt to arrive and wake it up. The
added delay can cause it to miss deadlines. The sec-
ond reason for disagreement is that if a thread in the
real-time priority class calls the Linux implementation
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of usleep() with an argument of 2 ms or smaller, the
kernel will actually busy-wait until the expiration time.
This has the effect of increasing the worst-case run time
of Task 1 from 17 ms to 19 ms.

Fortunately, the response time analysis is able to take
release jitter into account. Re-running the analysis for
Task 1 with 8 ms of release jitter and a 19 ms worst-case
compute time shows that its worst-case response time
is 39 ms. This is longer than its period, and therefore
Task 1 is not guaranteed to meet all deadlines.

Since the task set isinfeasible, or not guaranteed to
allow all tasks to meet all deadlines, we now consider
ways to make it feasible. One way is to schedule Task 1’s
wakeups using a timer that causes less release jitter and
avoids the harmful busy-waiting; another way is to de-
crease the run-time of one of the tasks enough that the
tasks become feasible in spite of these factors. To test
the first method, we invoke Hourglass with

hourglass -n 2 \
-t 0 -p RTMED -w PERIODIC 3ms 8ms -i HR \
-t 1 -p RTLOW -w PERIODIC 17ms 33ms -i HR

which produces these results

thread 0: missed 0 deadlines, hit 1003
thread 1: missed 0 deadlines, hit 304

on a Linux kernel with the high-res timers patch. This
corroborates the initial response time analysis in this
section that predicted that the task set is feasible.

To apply the second method, assume that we have re-
duced the execution time of Task 1 to 12 ms by decreas-
ing the resolution of the video display or by making use
of a hardware accelerator. The response time analysis
indicates that in this case all deadlines can be met. We
test this by running

hourglass -n 2 \
-t 0 -p RTMED -w PERIODIC 3ms 8ms -i HR \
-t 1 -p RTLOW -w PERIODIC 12ms 33ms -i NATIVE

which gives these results:

thread 0: missed 0 deadlines, hit 1001
thread 1: missed 0 deadlines, hit 303

Papers by Audsley et al. [3] and Tindell et al. [24] are
good sources of information about response time analy-
sis for real-time task sets.SPAK [15] is a static priority
analysis kit that implements response time analyses for a
variety of task set assumptions, as well as a task simula-
tor that can serve as a middle ground between response-
time analysis and Hourglass for testing the ability of task
sets to meet their deadlines.

5.6 Using CPU Reservations

The response time analysis used in the previous section
requires aclosed system, where all real-time applications
and their requirements must be known before the analy-
sis can be performed. However, when real-time applica-
tions are run on general-purpose operating systems like
Linux theopen systemmodel is usually more appropri-
ate: real-time applications can begin or end at any time,
and applications can change their requirements freely.
The standard Linux kernel can be used as an open sys-
tem, but there is a problem: without knowing the re-
quirements of the other applications, it is impossible to
know, for a given application, what priority should be
assigned to it in order to allow it to operate correctly,
and to not interfere with existing applications. This lack
of coordination between applications can lead toprior-
ity inflation where developers overestimate the priority
at which their application should run, since a badly per-
forming application reflects negatively on its developer.
In the extreme case, this results in excessive migration
of code into interrupt handlers [10]. Also, priority-based
scheduling suffers from the problem that a misbehaving
application can stop the progress of all applications run-
ning at lower priorities. Furthermore, rate-monotonic
scheduling assigns priorities solely based on the peri-
ods of applications; this can result in anomalies where,
for example, a critical application is given lower priority
than an unimportant application.

In recent years scheduling solutions have been devel-
oped that address all of these problems. They go by dif-
ferent names, but the core abstraction is always some
form of CPU reservation. For example, a video applica-
tion could reserve 5 ms of CPU time during every 30 ms
period, in order to ensure that it can always display 33
frames per second. If the operating system agrees to pro-
vide the reservation, it is essentially guaranteeing that
the CPU time will always be available. This sort of
guarantee relieves developers of the burden of finding a
good priority for their application. However, it adds the
non-trivial difficulty of specifying application require-
ments — this is probably the main reason that reserva-
tion schedulers have not yet made it into mainstream op-
erating systems.

Hourglass provides direct support for making CPU
reservations. Currently it supports only Linux/RK from
CMU [11] and TimeSys Linux/CPU [23] (a proprietary
extension to TimeSys Linux/GPL). However, reserva-
tion functionality is modular and support for new sched-
ulers can be added with minimal effort.

To illustrate the use of CPU reservations, we return
to the task set from the previous section. To run the
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tasks in CPU reservations rather than using priority-
based scheduling, we invoke Hourglass like this:

hourglass -n 2 \
-t 0 -w PERIODIC 3ms 8ms -rh 3ms 8ms \
-t 1 -w PERIODIC 17ms 33ms -rh 17ms 33ms

The resulting output contains the lines:

thread 0: missed 985 deadlines, hit 12
thread 1: missed 106 deadlines, hit 197

Obviously things did not go well during this run. The
mistake was to reserve exactly as much CPU time as
each thread needed — this makes them vulnerable to
minute perturbations in the schedule. Rather, we should
reserve just a little extra CPU time like this:

hourglass -n 2 \
-t 0 -w PERIODIC 3ms 8ms -rh 3.1ms 8ms \
-t 1 -w PERIODIC 17ms 33ms -rh 17.1ms 33ms

The resulting output contains the lines:

thread 0: missed 0 deadlines, hit 1000
thread 1: missed 0 deadlines, hit 303

For real applications, we would have done two things
differently. First, we would have given themsoft CPU
reservations instead ofhard CPU reservations — hard
reservations enforce a strict upper limit on the amount of
time a thread will receive, while soft reservations guar-
antee that applications will receive a minimum amount
of CPU time, but permit them to receive extra time if it
is available. Hourglass accepts the-rs command-line
option to provide a soft reservation. Second, rather than
just reserving 0.1 ms of extra CPU time per thread per
period, we would tune the amount of over-reservation to
match the application’s importance (e.g. a critical appli-
cation gets a bigger reservation, all other things being
equal) and its expected variability (e.g. an application
with high variance in run-time, such as an MPEG video
decoder, would get a larger reservation than a more pre-
dictable application).

6 Related Work

Hourglass fits into the general methodology that has
been calledgray-box systems[2]. The name refers to the
fact that these techniques make inferences about system
behavior by combining the results of observations with
general knowledge about internal structure — the oper-
ating system is treated as a mixture between a black-box
and a white-box.

Section 2 compared Hourglass with other ways to
measure or infer scheduling behavior. As far as we
know, Hourglass has no direct competition — there are
no publicly available tools that occupy the same niche.
However, Hourglass was influenced bytxofy , a tool
developed by Mike Jones and others for internal use at
Microsoft Research; it was instrumental in producing
data for a number of papers [8, 9, 16, 17, 18]. The gap
detection algorithm from Section 3.1 was first developed
for txofy . However, the two tools have diverged con-
siderably: txofy was a one-off tool specifically de-
signed to monitor and debug CPU reservation sched-
ulers; it supports only a single source of timers, a single
thread model, and a static set of threads (it has, however,
been modified to support multiprocessors). Hourglass,
on the other hand, is a general framework for making
inferences about scheduling behavior; it is portable and
extensible, and provides direct support for all techniques
described in Section 5.

7 Availability and Status

Hourglass was written from scratch and is released under
a BSD-style license. It runs on Linux, FreeBSD, and
Windows 2000. The Hourglass home page is:

http://www.cs.utah.edu/˜regehr/hourglass

Since web links tend to die, in the long run we suggest
the alternate strategies of looking for Hourglass at the
Flux Group web site:http://www.cs.utah.edu/flux

or using the dominant web search engine to look for
“regehr” and “hourglass.”

Hourglass currently supports uniprocessor x86-based
systems. Both of these limitations could be addressed in
straightforward ways. For example, Alphas support the
rpcc instruction and UltraSPARCs have a%tick reg-
ister; these are basically equivalent to therdtsc cycle
counter on x86 machines. To support multiprocessors
Hourglass would require that the cycle counters on all
processors are synchronized. Although Hourglass could
not tell which processor each thread runs on without help
from the kernel, it is possible to infer a consistent time-
line from a multiprocessor execution trace. For exam-
ple, if it is observed that Thread 1 receives a continu-
ous segment of CPU time while Thread 2 stops running
and Thread 3 starts, we can infer that Thread 1 was on
one processor, and on a different processor Thread 2 was
preempted in order to run Thread 3.

A more brute-force approach to generating accurate
execution traces on multiprocessors would involve writ-
ing a minimal kernel extension that overloads the high-
order bits of the cycle counters in such a way that any
timestamp value could be identified as coming from a
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particular processor — kernel support is required be-
cause writing to the model-specific x86 registers is a
privileged operation. This approach would give accu-
rate, unambiguous multiprocessor execution traces but
would cause problems if the kernel or some other ap-
plication relies on accurate or synchronized timestamp
counters.

Machines such as laptops and Pentium 4s can vary
their clock speeds dynamically to deal with heat and
power issues, makingrdtsc less useful or useless.
We have not attempted to address this problem since
at present it’s easy to avoid these processors. Dynamic
speed scaling is not only a problem for programs like
Hourglass, but also for actual real-time applications that
depend on getting a certain amount of work done during
a given time period.

Finally, an inconvenience of Hourglass on Unix-like
systems is that users need root privileges to create
threads in the real-time priority class and to pin pages
into physical memory.

8 Conclusion

The contributions of this paper have been (1) to show
that a lot of detail about operating system scheduling
behavior can be inferred using an instrumented applica-
tion and a little knowledge about internals, (2) to present
some new gray-box inference techniques for learning
about scheduling behavior, and (3) detailed descriptions
of how to use a freely available tool to perform these
measurements.

Although there are tools for measuring scheduling la-
tency [19], Hourglass is a more comprehensive user-
level real-time test application than any other software
that we know of. It has been invaluable for discovering
what is really happening to applications at the granular-
ity of microseconds and milliseconds. We believe that
this kind of application will become increasingly impor-
tant as multimedia and other soft real-time applications
become a more important part of the mix of programs
that users run.
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A Command Line Arguments

This is Hourglass 0.5

usage: hourglass <options>

global options:
-n <number of threads to create> -- this is

the only mandatory option
-d <duration of experiment> (default is 10s)
-c -- print raw execution trace (in cycles and

not based at zero) in addition to standard
trace (which starts at zero and is in ms)

-t <thread number for subsequent options to
affect in the range 0..n-1>

-a -- subsequent per-thread options apply to
all threads; this remains in effect until
the next ’-t’ option is encountered

-e -- number of records in execution trace;
default is 300000 (about 5 MB)

per-thread options:
-p <priority> -- priority is one of:

IDLE, LOW, NORMAL, HIGH, HIGHEST
(timesharing -- default is NORMAL)
RTLOW, RTMED, RTHIGH (real-time)

-rh <amount> <period> -- request a hard
CPU reservation

-rs <amount> <period> -- request a soft
CPU reservation

-w <workload>
CPU -- cpu-bound execution trace (default)
CPU_SCAN <size> -- cpu-bound and also scans

an array that is size KB long
CPU_YIELD <amount> -- yield the processor

after getting <amount> of CPU time
CPU_SCAN_YIELD <size> <amount> -- combine

scanning and yielding behaviors
PERIODIC <amount> <period> -- periodic

task, make execution trace
CPU_PERIODIC <amount> <period> -- cpu-bound

periodic (see documentation)
LAT <period> -- dispatch latency test

-i <timer>
NATIVE -- native Unix or Windows timers

(default)
HR -- high resolution timers (if available:

requires a patched kernel)
RTC -- timers based on Linux real-time

clock (if available)
MM -- multimedia timers (Win32 only)

-s <time> -- start running this thread <time>
units into the Hourglass run

-f <time> -- terminate this thread <time>
units into the Hourglass run

Times are self-describing; valid examples are:
3m, 1.5s, 1020ms, 87.0us.
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