
Page 1

1

HLS: A Framework
for Composing
Soft Real-Time

Schedulers

John Regehr – University of Utah
John A. Stankovic – University of Virginia

Dec. 4, 2001

2

Motivation
� People use general-purpose OSs

(GPOSs) for many kinds of tasks
� e.g. Unix, Windows, MacOS variants
� Compatibility, commodity, convenience

� Applications have diverse scheduling
requirements
� Time-sharing, soft RT, hierarchical

isolation, gang scheduling, …

� Schedulers are inflexible
� Hierarchical scheduling is a solution

3

HLS: Hierarchical Loadable
Schedulers

FP

Voice
Recognition

RES

J

Video
Player

Word
Processor

SFQ

H

L

Start-Time Fair
Queuing

SFQ:

JoinJ:

CPU
Reservation

RES:

Fixed PriorityFP:

4

Research Questions

� How to reason about a
hierarchical composition of
schedulers?

� What novel uses are there?
� Can efficient run-time support

for HLS be developed?

5

Contributions

� System of guarantees that permits
reasoning about hierarchies

� Build complex behaviors using
simple schedulers as components

� Novel implementation using
generalization of scheduler
activations
� Runs in Windows 2000 kernel

6

Outline

� Motivation and Approach
� Guarantees
� Building Complex Behaviors
� Runtime Support
� Conclusion

Page 2

7

Guarantee
� Definition:

� Ongoing lower (and possibly
upper) bound on CPU allocation
over time

� Goals:
� Formally describe useful classes

of schedules
� Permit schedules to be reasoned

about

� Syntax:
� TYPE p1 p2 …

8

Using Guarantees

� Approach: label hierarchy edges
with guarantees

� Basis step: known label for edge
leading to root of hierarchy

� Induction step:
� Each scheduler requires and

provides guarantees
� Guarantees can be rewritten

9

Example Guarantees

� 100% of a CPU: ALL
� Strictly best-effort scheduling: NULL
� Proportional share:

� PS s, PSBE s
�

� CPU Reservations:
� RESBS x y, RESBH x y
� RESCS x y, RESCH x y

10

CPU Reservation
Guarantees

� Hard / Soft:
� “ Hard CPU reservation” � hard real-time
� Soft reservations guarantee a lower bound
� Hard reservations also guarantee an upper

bound

� Basic / Continuous:

11

Guarantee Conversion
by Schedulers

� Schedulers require and provide
guarantees
� SFQ: PSBE � PSBE+

� Rez: ALL � RESBH+

� Schedulers determine if specific
guarantees can be provided
� ALL � RESBH 5 10, RESBH 25 100

� EDF-based reservation scheduler
X Naïve rate monotonic reservation

scheduler 12

Selected Conversions by
Schedulers

� Full table contains 23 schedulers

ALL � RESBS+, RESBH+Linux/RT
NULL � NULL+Time Sharing

ALL � RESBH+Rez, CBS
ALL � RESCS+Rialto, Rialto/NT
PS � PS+Lottery, Stride
ALL � PSBE+EEVDF
PSBE � PSBE+, PS � PS+SFQ
any � any, NULL+Fixed Priority
ConversionsScheduler

Page 3

13

Guarantee Conversion
by Rewrite Rules

� A � B means:
� Schedule satisfying definition of A

also satisfies definition of B

� Trivial examples:
� PSBE s

� � PS s
� RESBH x y � RESBS x y

� Non-trivial examples:
� RESBS x y � RESCS x (2y-x+c) for

any c � 0
� RESCS x y � PSBE (x/y) x/y (y-x)

14

Rewrite Rule Overview

RESCH

RESBH RESBS PSBE

PSRESCS

15

More Rewrite Rules

NULLPSPSBERESCSRESCHRESBSRESBHALL�
TFFFFFFFNULL
TTFFFFFFPS
TTTTFTFFPSBE
TTTTFTFFRESCS
TTTTTTTFRESCH
TTTTTTTFRESBS

TTTTFTTFRESBH

TTTTFTFTALL

T = rewr ite rule exists
F = rewr ite rule does not exist

16

Guarantees in Action

FP

RES

J

Video
Player

Voice
Recognition

SFQ

ALL

NULL

ALL

RESBH 5 33 *

RESBS 10 20 �

Word
Processor

PSBE 0.1 15 PSBE 0.3 35

PSBE 0.5 10

* RESBH 10 20

17

Outline

� Motivation and Approach
� Guarantees
� Building Complex Behaviors
� Runtime Support
� Conclusion

18

Example:
CPU Service Classes

� Support tasks whose WCET >>
average case execution time

� Each task has a CPU reservation
� In addition, tasks share an

overrun partition
� Can implement monolithically,

or…

Page 4

19

CPU Service Classes in HLS

FP

RES

TS
OVR

J2 J3

T1

T2 T3

ALL

ALL
NULL

NULL

T4

*

* RESBH

*
**

† RESBS

††

20

Other Complex Behaviors
� Rialto:

� CPU reservations for groups of
threads, RR for indiv. threads

� Portable Resource Kernel:
� Hard and soft CPU reservations

� Benefits:
� Little or no coding required
� Component-based schedulers easy

to understand
� Behaviors are not hardwired

21

Outline

� Motivation and Approach
� Guarantees
� Building Complex Behaviors
� Runtime Support
� Conclusion

22

Runtime Overview
� Key difference between

hierarchical and non-hierarchical
schedulers: Revocation

� Explicit notifications
� Request, release
� Grant, revoke

� Runtime invariant: schedulers
always know number of physical
processors they control
� Permits informed decisions

23

HLS and Scheduler
Implementation

� HLS runs in Windows 2000 kernel
� Added ~3100 lines of code

� Loadable schedulers:
� CPU reservation, proportional share,

join, time sharing / fixed priority
� A representative set of schedulers, but

not a complete one

� Implemented CPU reservations in
about two days, PS scheduler in a
few hours 24

Performance
� Test machine is a 500MHz Pentium III
� Most mode change operations run in

less than 40� s
� Create / destroy scheduler instance,

begin / end CPU reservation, etc.

� Median context switch time
� Unmodified Windows 2000: 7.1� s
� HLS time-sharing scheduler: 11.7� s

� Many opportunities for optimization

Page 5

25

Outline

� Motivation and Approach
� Guarantees
� Building Complex Behaviors
� Runtime Support
� Conclusion

26

How to Deploy HLS

� Put HLS into a multimedia OS –
Windows XP or Linux

� By default:
� Support interactive, batch, and

multimedia applications for a
single user

� However, also include
� Library of useful schedulers and

API for composing them
� API for implementing new

schedulers

27

Related Work
� CPU inheritance scheduling [Ford

and Susarla 96]
� Hierarchical start-time fair queuing

[Goyal et al. 96]
� EDF-based scheduler composition

� Open environment for real-time
applications [Deng et al. 99]

� BSS-I and PShED [Lipari et al. 00]

� Static and bounded-delay partition
models [Mok et al. 00]

28

Conclusion
� Possible to reason about

hierarchical composition of soft
real-time schedulers

� HLS enables:
� Complex schedulers to be composed

from simple components
� New schedulers to be developed

more easily

� HLS is implemented and performs
well

29

The End

� More info and papers:
http://www.cs.utah.edu/~regehr/

� Let’s talk…

