
1

Securing the Frisbee
Multicast Disk Loader

Robert Ricci, Jonathon Duerig

University of Utah

2

What is Frisbee?

3

Frisbee is Emulab’s tool to
install whole disk images from a

server to many clients using
multicast

4

What is our goal?

5

Motivation

 Frisbee was developed for a relatively
trusting environment
 Existing features were to prevent accidents

 Changing Environment
 More users
 More sensitive experiments
 More private images

6

Security Goals

 Confidentiality
 Integrity Protection
 Authentication

 Ensure that an image is authentic
 Use cases

 Public images
 Private images

7

Our Contribution

 Analyze and describe a new and
interesting threat model

 Protect against those threats while
preserving Frisbee’s essential strengths

8

Outline

 Motivation
 Frisbee Background
 Threat Model
 Protecting Frisbee
 Evaluation

9

Frisbee & Emulab

10

Emulab

11

Control Plane

12

Frisbee’s Strengths

13

Frisbee’s Strengths

 Disk Imaging System
 General and versatile
 Robust

 Fast
 Loads a machine in 2 minutes

 Scalable
 Loads dozens of machines in 2 minutes

 Hibler et al. (USENIX 2003)

14

How Does Frisbee Work?

15

Creation

Source

Frisbee Life Cycle

Installation

Targets

Fileserver

Distribution

Control Server

Storage

16

Image Layout

 Image is divide into
chunks

 Each chunk is
independently
installable
 Start receiving

chunks at any point
 Chunks are multicast

Allocated
Blocks

Free
Blocks

Source Disk

Header

Compressed
Data

Header

Compressed
Data

Stored Image

Chunk

17

Outline

 Motivation
 Frisbee Background
 Threat Model
 Protecting Frisbee
 Evaluation

18

Potential Attackers

19

Potential Attackers

 Firewall
 Frisbee traffic can’t leave control network
 Forged Frisbee traffic can’t enter control

network
 Any attackers are inside Emulab

 Compromised Emulab node
 Infiltrated Emulab server
 Emulab user

20

Vectors for Attack in Emulab

 Space Shared
 Multiple users on the testbed at the same time

 Shared control network
 Frisbee runs on control network

 No software solution to limit users
 Users have full root access to their nodes

21

What do attackers want?

22

What do attackers want?

 Steal your data
 Malicious software (security research)
 Unreleased software (trade secrets)

 Modify your image
 Denial of Service
 Add a backdoor

 /etc/passwd
 ssh daemon

 Tainting results

23

Frisbee Weakpoints

24

Frisbee Weakpoints

Targets

Fileserver

Steal &
Modify

Control Server

Steal &
Modify

Distribution

Installation

Storage

25

How do the attacks work?

26

Storage Attack

 Images are stored on a common fileserver
 All users have shell access on this server
 Images are protected by UNIX

permissions
 Any escalation of privilege attacks

compromise images

27

Distribution Attack

 Emulab is space shared
 A single control network is used to

communicate with all nodes
 Join multicast group

 No security protection in IP multicast
 Receive copies of packets
 Inject packets into stream

28

Multicast

Targets

Frisbee Server

29

Outline

 Motivation
 Frisbee Background
 Threat Model
 Protecting Frisbee
 Evaluation

30

Storage and Distribution Attacks

 Two birds with one stone
 End-to-end encryption & authentication

 Image creation: Encrypt & Sign
 Image installation: Decrypt & Verify
 Same techniques prevent both attacks

 Distribution protocol remains identical

31

Confidentiality

 Encrypted at image creation
 Remains encrypted on fileserver

 Decrypted only at image installation
 Details

 Encryption algorithm: Blowfish
 Encrypt after compression

32

Integrity Protection &
Authentication
 Calculate cryptographic hash

 Breaks backwards compatibility
 Sign hash using public-key cryptography

(RSA)

33

Chunk by Chunk

 Each chunk is self-
describing

 Hash & sign each
chunk independently

 CBC restarts at each
chunk

 Each header must have
 Digital Signature
 Initialization Vector

Header

Encrypted
Data

Header

Encrypted
Data

Chunk

Header

Compressed
Data

Header

Compressed
Data

34

Image Authentication

 Weakness
 Cut and paste attacks

 Give each image a unique UUID and put
that in chunk headers
 UUID is a 128 bit universal identifier
 Can be selected randomly

35

Key Distribution

 Through secure control channel
 Already part of Emulab
 Encrypted using SSL with well-known certificate
 TCP spoofing prevented by Utah Emulab’s network

setup
 No forged MAC addresses
 No forged IP addresses

 Key can come from user
 Flexible policy for images

 Not yet integrated into Emulab

36

Outline

 Motivation
 Frisbee Background
 Threat Model
 Protecting Frisbee
 Evaluation

37

Experimental Procedure

 Machine Specs
 3 GHz Pentium IV Xeon
 2 GB RAM

 Measurement
 CPU time

 Network and disk usage unaffected
 Per chunk

 Typical Image has 300 chunks (300 MB)

38

Performance

53.8

208.8

44.5

198.5

34.3

187.9

0 50 100 150 200 250

Install

Create

Time per chunk (ms)

Base

Signed Hash

Signed Hash +
{En,De}cryption

39

Conclusion

40

Conclusion

 Frisbee faces an unusual set of attacks
 Cause: Space sharing of infrastructure

 Frisbee can be secured against these
attacks
 Cost: An extra 6 seconds for an average

image

41

Emulab

http://www.emulab.net

42

43

Preventing Disk Leakage

44

Disk Leakage

 Disks are time shared
 Frisbee is aware of

filesystem
 Does not write free blocks
 Old image will not be

completely overwritten

 Another user could read
the unwritten parts

45

Fixing Disk Leakage

 Zero out disks on
next disk load

 Implemented in
Frisbee
 Much slower

46

Comparison to Symantec Ghost

47

48

Image Creation (CPU per chunk)

11.1%20.9208.8Signed
Hash +

Encryption

5.6%10.5198.5Signed
Hash

187.9Base

Overhead
(%)

Overhead
(ms)

Time
(ms)

49

Image Installation (CPU per chunk)

56.8%19.553.8Signed
Hash +

Decryption

29.5%10.244.5Signed
Hash

34.3Base

Overhead
(%)

Overhead
(ms)

Time
(ms)

50

Disk Imaging Matters

 Data on a disk or partition, rather than file,
granularity

 Uses
 OS installation
 Catastrophe recovery

 Environments
 Enterprise
 Clusters
 Utility computing
 Research/education environments

51

Key Design Aspects

 Domain-specific data compression
 Two-level data segmentation
 LAN-optimized custom multicast protocol
 High levels of concurrency in the client

52

Image Creation

 Segments images into self-describing
“chunks”

 Compresses with zlib
 Can create “raw” images with opaque

contents
 Optimizes some common filesystems

 ext2, FFS, NTFS
 Skips free blocks

53

Image Distribution Environment

 LAN environment
 Low latency, high bandwidth
 IP multicast
 Low packet loss

 Dedicated clients
 Consuming all bandwidth and CPU OK

54

Custom Multicast Protocol

 Receiver-driven
 Server is stateless
 Server consumes no bandwidth when idle

 Reliable, unordered delivery
 “Application-level framing”
 Requests block ranges within 1MB chunk

55

Client Operation

 Joins multicast channel
 One per image

 Asks server for image size
 Starts requesting blocks

 Requests are multicast

 Client start not synchronized

56

Client Requests

Request

57

Client Requests

Block

58

Tuning is Crucial

 Client side
 Timeouts
 Read-ahead amount

 Server side
 Burst size
 Inter-burst gap

59

Image Installation

 Pipelined with distribution
 Can install chunks in any

order
 Segmented data makes

this possible

 Three threads for overlapping
tasks

 Disk write speed the bottleneck
 Can skip or zero free blocks

Decompression Disk Writer

Blocks Chunk

Distribution

Decompressed
Data

60

Evaluation

61

Performance

 Disk image
 FreeBSD installation used on Emulab
 3 GB filesystem, 642 MB of data
 80% free space
 Compressed image size is 180 MB

 Client PCs
 850 MHz CPU, 100 MHz memory bus
 UDMA 33 IDE disks, 21.4 MB/sec write speed
 100 Mbps Ethernet, server has Gigabit

62

Speed and Scaling

63

FS-Aware Compression

64

Packet Loss

65

Related Work

 Disk imagers without multicast
 Partition Image [www.partimage.org]

 Disk imagers with multicast
 PowerQuest Drive Image Pro
 Symantec Ghost

 Differential Update
 rsync 5x slower with secure checksums

 Reliable multicast
 SRM [Floyd ’97]
 RMTP [Lin ’96]

66

Ghost with Packet Loss

67

How Frisbee Changed our Lives
(on Emulab, at least)
 Made disk loading between experiments

practical
 Made large experiments possible

 Unicast loader maxed out at 12
 Made swapping possible

 Much more efficient resource usage

68

The Real Bottom Line

“I used to be able to go to lunch while I
loaded a disk, now I can’t even go to the
bathroom!”

 - Mike Hibler (first author)

69

Conclusion

 Frisbee is
 Fast
 Scalable
 Proven

 Careful domain-specific design from top to
bottom is key

Source available at www.emulab.net

70

71

Comparison to rsync
 Timestamps not robust
 Checksums slow
 Conclusion: Bulk writes beat

data comparison

0 50 100 150 200

Frisbee:

Write

rsync:

Checksum

rsync:

Timestamps

Seconds

72

How to Synchronize Disks

 Differential update - rsync
 Operates through filesystem
 + Only transfers/writes changes
 + Saves bandwidth

 Whole-disk imaging
 Operates below filesystem
 + General
 + Robust
 + Versatile

 Whole-disk imaging essential for our task

73

Image Distribution Performance:
Skewed Starts

74

Future

 Server pacing
 Self tuning

75

The Frisbee Protocol

Chunk
Finished?

More Chunks
Left?

Wait for
BLOCKs

Outstanding
Requests?

Send
REQUESTStart

Finished

No
BLOCK

ReceivedYes

Yes

Yes

Timeout

No

No

76

The Evolution of Frisbee

 First disk imager: Feb, 1999
 Started with NFS distribution
 Added compression

 Naive
 FS-aware

 Overlapping I/O
 Multicast
30 minutes down to 34 seconds!

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Generation
S
e
c
o
n
d
s

