
1

1

Fast, Scalable Disk 
Imaging with Frisbee

University of Utah

Mike Hibler, Leigh Stoller, 
Jay Lepreau, Robert Ricci ,
Chad Barb

2

Key Points

Frisbee clones whole disks from a server to 
many clients using multicast

n Fast
� 34 seconds for standard FreeBSD to 1 machine

n Scalable
� 34 seconds to 80 machines!

n Due to careful design and engineering
� Straightforward implementation loaded in 30 minutes

3

Disk Imaging Matters

n Data on a disk or partition, rather than file, 
granularity

n Uses
� OS installation
� Catastrophe recovery

n Environments
� Enterprise
� Clusters
� Utility computing
� Research/education environments

4

Emulab

5

The Emulab Environment

n Network testbed for emulation 
� Cluster of 168 PCs 100Mbps Ethernet LAN

n Users have full root access to nodes
n Configuration stored in a central database
� Fast reloading encourages aggressive experiments
� Swapping to free idle resources

n Custom disk images
n Frisbee in use 18 months, loaded > 60,000 disks

6

Disk Imaging Unique Features

n General and Versatile
� Does not require knowledge of filesystem
� Can replace one filesystem type with another

n Robust
� Old disk contents irrelevant

n Fast



2

7

Disk Imaging Tasks

Distribution

Installation

Targets

Creation

Source Server

8

Key Design Aspects

n Domain-specific data compression
n Two-level data segmentation
n LAN-optimized custom multicast protocol
n High levels of concurrency in the client

9

Image Creation

n Segments images into self-describing 
“chunks”

n Compresses with zlib
n Can create “raw” images with opaque 

contents
n Optimizes some common filesystems
� ext2, FFS, NTFS
� Skips free blocks

10

Image Layout

n Chunk logically divided 
into 1024 blocks

n Medium-sized chunks 
good for
� Fast I/O
� Compression
� Pipelining

n Small blocks good for
� Retransmits

11

Image Distribution Environment

n LAN environment
� Low latency, high bandwidth
� IP multicast
� Low packet loss

n Dedicated clients
� Consuming all bandwidth and CPU OK

12

Custom Multicast Protocol

n Receiver-driven
� Server is stateless
� Server consumes no bandwidth when idle

n Reliable, unordered delivery
n “Application-level framing”
n Requests block ranges within 1MB chunk



3

13

Client Operation

n Joins multicast channel
� One per image

n Asks server for image size
n Starts requesting blocks
� Requests are multicast

n Client start not synchronized

14

Client Requests

Request

15

Client Requests

Block

16

Tuning is Crucial

n Client side
� Timeouts
� Read-ahead amount

n Server side
� Burst size
� Inter-burst gap

17

Image Installation

n Pipelined with distribution
� Can install chunks in any 

order
� Segmented data makes 

this possible

n Three threads for overlapping 
tasks

n Disk write speed the bottleneck
n Can skip or zero free blocks

Decompression Disk Writer

Blocks Chunk

Distribution

Decompressed
Data

18

Evaluation



4

19

Performance

n Disk image
� FreeBSD installation used on Emulab
� 3 GB filesystem, 642 MB of data
� 80% free space
� Compressed image size is 180 MB

n Client PCs
� 850 MHz CPU, 100 MHz memory bus
� UDMA 33 IDE disks, 21.4 MB/sec write speed
� 100 Mbps Ethernet, server has Gigabit

20

Speed and Scaling

21

FS-Aware Compression

22

Packet Loss

23

Related Work

n Disk imagers without multicast
� Partition Image [www.partimage.org]

n Disk imagers with multicast
� PowerQuest Drive Image Pro
� Symantec Ghost

n Differential Update
� rsync 5x slower with secure checksums

n Reliable multicast
� SRM [Floyd ’97]
� RMTP [Lin ’96]

24

Comparison to Symantec Ghost



5

25

Ghost with Packet Loss

26

How Frisbee Changed our Lives
(on Emulab, at least)

n Made disk loading between experiments 
practical

n Made large experiments possible
� Unicast loader maxed out at 12

n Made swapping possible
� Much more efficient resource usage

27

The Real Bottom Line

“I used to be able to go to lunch while I 
loaded a disk, now I can’t even go to the 
bathroom!”
- Mike Hibler (first author)

28

Conclusion

n Frisbee is
� Fast

� Scalable
� Proven

n Careful domain-specific design from top to 
bottom is key

Source available at www.emulab.net

29 30

Comparison to rsync

n Timestamps not robust
n Checksums slow
n Conclusion: Bulk writes beat 

data comparison

0 50 100 150 200

Frisbee:
Write

rsync:
Checksum

rsync:
Timestamps

Seconds



6

31

How to Synchronize Disks

n Differential update - rsync
� Operates through filesystem
� + Only transfers/writes changes
� + Saves bandwidth

n Whole-disk imaging
� Operates below filesystem
� + General
� + Robust
� + Versatile

n Whole-disk imaging essential for our task

32

Image Distribution Performance: 
Skewed Starts

33

Future

n Server pacing
n Self tuning

34

The Frisbee Protocol

Chunk
Finished?

More Chunks
Left?

Wait for
BLOCKs

Outstanding
Requests?

Send
REQUESTStart

Finished

No
BLOCK

ReceivedYes

Yes

Yes

Timeout

No

No

35

The Evolution of Frisbee

n First disk imager: Feb, 1999
n Started with NFS distribution
n Added compression
� Naive
� FS-aware

n Overlapping I/O
n Multicast
30 minutes down to 34 seconds!

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Generation

S
e

c
o

n
d

s


