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Key Points

Frisbee clones whole disks from a server to 
many clients using multicast

n Fast
� 34 seconds for standard FreeBSD to 1 machine

n Scalable
� 34 seconds to 80 machines!

n Due to careful design and engineering
� Straightforward implementation loaded in 30 minutes
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Disk Imaging Matters

n Data on a disk or partition, rather than file, 
granularity

n Uses
� OS installation
� Catastrophe recovery

n Environments
� Enterprise
� Clusters
� Utility computing
� Research/education environments
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Emulab
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The Emulab Environment

n Network testbed for emulation 
� Cluster of 168 PCs 100Mbps Ethernet LAN

n Users have full root access to nodes
n Configuration stored in a central database
� Fast reloading encourages aggressive experiments
� Swapping to free idle resources

n Custom disk images
n Frisbee in use 18 months, loaded > 60,000 disks
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Disk Imaging Unique Features

n General and Versatile
� Does not require knowledge of filesystem
� Can replace one filesystem type with another

n Robust
� Old disk contents irrelevant

n Fast
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Disk Imaging Tasks

Distribution

Installation

Targets

Creation

Source Server
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Key Design Aspects

n Domain-specific data compression
n Two-level data segmentation
n LAN-optimized custom multicast protocol
n High levels of concurrency in the client
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Image Creation

n Segments images into self-describing 
“chunks”

n Compresses with zlib
n Can create “raw” images with opaque 

contents
n Optimizes some common filesystems
� ext2, FFS, NTFS
� Skips free blocks
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Image Layout

n Chunk logically divided 
into 1024 blocks

n Medium-sized chunks 
good for
� Fast I/O
� Compression
� Pipelining

n Small blocks good for
� Retransmits
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Image Distribution Environment

n LAN environment
� Low latency, high bandwidth
� IP multicast
� Low packet loss

n Dedicated clients
� Consuming all bandwidth and CPU OK
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Custom Multicast Protocol

n Receiver-driven
� Server is stateless
� Server consumes no bandwidth when idle

n Reliable, unordered delivery
n “Application-level framing”
n Requests block ranges within 1MB chunk
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Client Operation

n Joins multicast channel
� One per image

n Asks server for image size
n Starts requesting blocks
� Requests are multicast

n Client start not synchronized
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Client Requests

Request
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Client Requests

Block
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Tuning is Crucial

n Client side
� Timeouts
� Read-ahead amount

n Server side
� Burst size
� Inter-burst gap
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Image Installation

n Pipelined with distribution
� Can install chunks in any 

order
� Segmented data makes 

this possible

n Three threads for overlapping 
tasks

n Disk write speed the bottleneck
n Can skip or zero free blocks

Decompression Disk Writer

Blocks Chunk

Distribution

Decompressed
Data
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Evaluation
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Performance

n Disk image
� FreeBSD installation used on Emulab
� 3 GB filesystem, 642 MB of data
� 80% free space
� Compressed image size is 180 MB

n Client PCs
� 850 MHz CPU, 100 MHz memory bus
� UDMA 33 IDE disks, 21.4 MB/sec write speed
� 100 Mbps Ethernet, server has Gigabit

20

Speed and Scaling
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FS-Aware Compression
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Packet Loss
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Related Work

n Disk imagers without multicast
� Partition Image [www.partimage.org]

n Disk imagers with multicast
� PowerQuest Drive Image Pro
� Symantec Ghost

n Differential Update
� rsync 5x slower with secure checksums

n Reliable multicast
� SRM [Floyd ’97]
� RMTP [Lin ’96]
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Comparison to Symantec Ghost
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Ghost with Packet Loss
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How Frisbee Changed our Lives
(on Emulab, at least)

n Made disk loading between experiments 
practical

n Made large experiments possible
� Unicast loader maxed out at 12

n Made swapping possible
� Much more efficient resource usage
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The Real Bottom Line

“I used to be able to go to lunch while I 
loaded a disk, now I can’t even go to the 
bathroom!”
- Mike Hibler (first author)
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Conclusion

n Frisbee is
� Fast

� Scalable
� Proven

n Careful domain-specific design from top to 
bottom is key

Source available at www.emulab.net
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Comparison to rsync

n Timestamps not robust
n Checksums slow
n Conclusion: Bulk writes beat 

data comparison

0 50 100 150 200

Frisbee:
Write

rsync:
Checksum

rsync:
Timestamps

Seconds
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How to Synchronize Disks

n Differential update - rsync
� Operates through filesystem
� + Only transfers/writes changes
� + Saves bandwidth

n Whole-disk imaging
� Operates below filesystem
� + General
� + Robust
� + Versatile

n Whole-disk imaging essential for our task
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Image Distribution Performance: 
Skewed Starts
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Future

n Server pacing
n Self tuning
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The Frisbee Protocol

Chunk
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More Chunks
Left?

Wait for
BLOCKs
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REQUESTStart

Finished

No
BLOCK
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Timeout

No
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The Evolution of Frisbee

n First disk imager: Feb, 1999
n Started with NFS distribution
n Added compression
� Naive
� FS-aware

n Overlapping I/O
n Multicast
30 minutes down to 34 seconds!
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