
Towards a High Quality Path-oriented Network

Measurement and Storage System

David Johnson Daniel Gebhardt Jay Lepreau

University of Utah, School of Computing

Abstract. Researchers need current and historical measurements of In-
ternet paths. We built and deployed a complete system designed to fill
these needs: a safe, shareable, multi-user active network measurement
system probes network paths and reliably records measurements in a
storage facility with multiple levels of caching, providing users with fast,
flexible querying. Our system, deployed on PlanetLab for over 20 months,
has accumulated 940 million measurements and made them publicly
available in a separate, federated data repository. Our experience shows
that building and running such a valuable research tool poses significant
engineering and practical challenges.

1 Introduction

For a multitude of reasons, researchers need current and historical measurements
of Internet paths. These reasons include creating or validating network models,
using those models to perform experiments under Internet conditions in network
testbeds, studying trends and stationarity in network conditions, and selecting
Internet paths that tend to exhibit certain properties. We explored one design
point on the spectrum of path-oriented network measurement and storage sys-
tems, motivated by 1) the needs of a network emulation environment and 2) the
need to provide permanent, public repositories of historical measurement data.
The result is Flexmon: a shareable, multi-user active measurement system that
collects pairwise path data between sites in a network at tunable frequencies, yet
protects the network from excess traffic. Its architecture allows multiple clients
to schedule their own probes on subsets of nodes in the network, while sharing
probe results among clients, amortizing the costs. Furthermore, Flexmon pro-
vides a reliable storage path for probe data and stores them permanently in a
separate federated data repository.

Flexmon’s design provides a measurement infrastructure that is shared, re-

liable, safe, adaptive, controllable, and accommodates high performance data re-

trieval. Each feature is not novel, but the design, the lessons learned, and its
eventual more mature implementation should provide an important community
resource—and indeed, our accumulated measurements are already publicly avail-
able. Flexmon has some features in common with other measurement systems
such as S3 [16] and Scriptroute [13], but is designed to support different goals
including shared control over measurements and easy public data availability.

Flexmon measurement is controllable and dynamic in that an authenticated user
may adjust the measurement frequency of any particular path, while Flexmon
itself caps and adjusts the rates based on overall network resources consumed.
These features allows higher frequency measurement than what would be possi-
ble globally, and thus a more accurate path emulation, while still preserving its
safety to large networks like PlanetLab.

Our experience shows that building and running such a system poses ma-
jor engineering and practical challenges, some of which Flexmon does not yet
meet. We have been running Flexmon on the PlanetLab network testbed for
over twenty months, accumulating 940 million publicly available measurements
between PlanetLab sites. In this paper, we describe the Flexmon architecture
and implementation, discuss its reliability, outline our dataset, and draw lessons
for developing high quality network measurement and storage systems.

2 Design

In this section, we present Flexmon’s architecture and discuss our design choices.
We originally built Flexmon to serve as the measurement infrastructure for
Flexlab [10]. Flexlab allows researchers to experiment in the controllable, re-
peatable environment provided by the Emulab [15] testbed, but using link char-
acteristics that are dynamically updated using traffic models derived from a
real network, specifically the PlanetLab [8] testbed embedded in the Internet.
Consequently, Flexmon inherits several design goals from Flexlab.

2.1 Design Choices

Flexmon’s design was driven by four primary requirements: the need to obtain
and provide “raw measurements” to researchers, the need to operate within un-
reliable networks, the desire to obtain data that are useful for many researchers,
and the need to protect the network from excess traffic.

First, Flexmon is designed to measure end-to-end network path properties,
using (typically standard) external programs wrapped by a script that canonical-
izes the parameters. Our initial experiments with packet-pair and packet-train
tools, including pathload [3] and pathchirp [9], produced poor results on Planet-
Lab due to its extremely overloaded hosts. Consequently, we currently use two
simple, controllable tools: a modified version of iperf measures bandwidth, and
fping measures connectivity and latency. However, this experience reveals the
importance of allowing multiple measurement tools. Flexmon’s design supports
the addition of new measurement tools, as they prove desirable in the future.

The design also supports two methods for running these tools, either one-

shot or continuous. In one-shot mode, the tool is spawned at regular intervals to
produce a single measurement that is captured by the system. This mode makes
it easy to integrate existing probe tools such as ping and iperf that can produce
a “summary” result before exiting. However, this mode can cause high overhead
when the probe frequency is high. In continuous mode, the tool is spawned once,

for a longer duration, and its periodic results are collected by the path prober.
Many probes can benefit from collecting state over an extended period, while
still reporting periodic results.

Our system must function over unreliable networks. PlanetLab is a heavily
utilized, multi-user overlay testbed with hundreds of nodes distributed around
the world. Thus, like the Internet it is a part of, PlanetLab nodes are often
unresponsive. To be useful such an environment, Flexmon must be reliable in
a number of key ways. When nodes return from an unresponsive state, they
must quickly rejoin the measurement network and continue probing. During a
network outage, Flexmon nodes must continue probing and reliably store results
to persistent storage for delivery when connectivity returns.

Potential users of Flexmon will likely often require the same types of mea-
surements. However, frequent or simultaneous probing with tools such as iperf
can be both costly and cause self-interference, affecting accuracy. Thus, it is
important for Flexmon to allow users to share probe results. In Flexmon, prob-
ing costs can be amortized across several users, which can alleviate the larger
bandwidth costs incurred by iperf and similar network measurement tools.

Finally, both the underlying network and the measurement system itself must
be protected from excess measurement traffic. Given our trust model, such traf-
fic is typically caused accidentally, but our experience shows that it is a real
problem. Our design can limit global and per-user bandwidth usage, providing
both defense in depth and reflecting the reality of traffic limiting on PlanetLab.

2.2 Software Architecture

Fig. 1. Flexmon architecture.

Flexmon consists of six types of components: path probers, a manager, man-

ager clients, the auto-manager client, a data collection subsystem, and a fed-
erated, permanent data repository. Two additional components from the base
Emulab system are essential: a reliable but lightweight control system, and a
database that includes static and dynamic state of the measurement nodes. Fig-
ure 1 shows an overview of the communication between these components.

Flexmon users request that measurement probes be performed among sets
of nodes using manager clients. They indicate the nodes to be probed, the type,
frequency, and duration of measurements, and any other parameters required
by the tool. A special type of manager client, the auto-manager client, attempts
to maintain a fully connected measurement set for the entire network. The cen-
tralized manager receives client probe requests, performs safety checks on them,
and forwards the requests to path probers.

Path probers run on each network node and receive control commands from
the manager. Commands mirror the client requests, allowing changing of the
measurement destination nodes, the type of measurement (e.g., latency), and
the measurement frequency and duration.

Path probers send results to a data collection service that caches and batches
before sending them on to the permanent federated repository, the Dataposi-
tory [1]. To speed up both queries and updates, the data collector places the
results in a smaller database, which functions as a write-back cache of the mea-
surements taken in the last 24 hours. New data in the cache is flushed hourly
to the Datapository database. Finally, an XML-RPC server provides publicly
available query functionality to users, allowing queries to its pairwise internal
cache, the 24 hour cache, and the Datapository database.

We anticipate that researchers will typically use manager clients to schedule
probes at higher frequencies between nodes of specific interest, while the auto-
manager client maintains low-frequency, low-cost, network-wide measurements.
As an example, the Flexlab [10] testbed uses a manager client to run a high-
fidelity path measurement between PlanetLab nodes to determine the initial
conditions for link shaping within an emulated network.

Multiple manager clients may send requests specifying different measurement
frequencies for the same path. The path prober maintains a queue of probe
requests ordered by frequency, and serially executes the highest frequency probe
request per type (i.e., available bandwidth estimation, latency, connectivity).
Once the duration of that request expires, it is removed from the queue, and
the prober executes the next probe. Since the prober runs only the highest
frequency probe request per type, all users of the system will see at least the
rate of measurements that they requested.

Flexmon can reject probe requests based on resource constraints in the net-
work. For instance, network administrators for probed nodes may request that
Flexmon limit its bandwidth consumption to a specific rate. Flexmon maintains a
per-path available bandwidth average based on prior available bandwidth probes,
and performs admission control on probe requests by computing the expected
bandwidth utilization of the probe. If the expectation is that the request will
exceed a global limit, or a per-user limit, the probe request would be rejected.

3 Implementation

Flexmon currently serves as the measurement infrastructure for Flexlab, a service
running on Emulab. Many of its central components run on Emulab servers,

and it measures a subset of the PlanetLab network. In this section, we provide
background on how Flexmon is deployed across Emulab and PlanetLab, and
discuss implementation details for key system components.

Deployment. Emulab provides a portal [14] to PlanetLab, through which
PlanetLab resources can be used in much the same way as other Emulab re-
sources. To deploy Flexmon’s path probers on PlanetLab nodes, we create an
Emulab experiment containing all PlanetLab nodes considered “live” by Emulab.
When this experiment swaps in, Emulab automatically deploys the measurement
scripts and tools and starts the node’s path prober daemon. Although the num-
ber varies over time, Flexmon typically monitors 275–350 PlanetLab nodes .1

Background Measurements. From the set of PlanetLab nodes in the Flex-
mon experiment, the auto-manager client chooses a subset so that each node
represents a unique PlanetLab site. The auto-manager client requests all site-
pairs latency, connectivity, and bandwidth probes to run with infinite duration
between all nodes in this set. The auto-manager client chooses a single node
per site because all nodes at one site should exhibit similar path characteristics
to nodes at another site. The auto-manager client prioritizes site nodes based
on least CPU utilization to minimize the effect of observed latencies in process
scheduling on PlanetLab nodes [10, 12], and updates priorities as loads change.

The auto-manager client parameterizes its latency probing by period (each
path is measured after an interval), and bandwidth probing by duty cycle (the
fraction of time a path prober is measuring bandwidth to any destination).
All-sites latency probing is inexpensive when compared to all-sites bandwidth
probing, even in a large-scale network such as PlanetLab. However, all-sites
bandwidth probing can become extremely costly and could cause Flexmon to run
afoul of PlanetLab bandwidth caps. Although Flexmon allows its administrator
to set global and per-user caps , it remains important for background probing to
leave space under the cap for high frequency, per-user manager client probing.
We have found that by setting the latency probing period to 600 seconds, and
the bandwidth probing duty cycle to 10%, auto-manager client probes do not
exceed PlanetLab caps, and leaves sufficient resources for manager clients.

Probing. A path prober runs on each node in the measurement network.
Each path prober receives commands from the manager that control probe ex-
ecution. Commands result from probe requests to the manager, and set the
destination nodes, the probe types to be executed (e.g., latency or bandwidth)
between the source and each destination node, the mode in which the probe
should run (one-shot or continuous), the period between individual tests, the to-
tal duration of probing, and any additional arguments. The path prober spawns
wrapper scripts that translate the canonicalized parameters to tool-specific argu-
ments, runs the tool, and converts its results and error conditions into a generic
form. For one-shot probes, a result message is sent to the data collector once

1 Regular PlanetLab users will note that this number is lower than the number of
nodes typically reported as live by CoMon [6]. Emulab’s portal to PlanetLab creates
a richer environment on nodes than the default PlanetLab sliver creation method,
and thus requires a higher level of node health.

the probe has finished execution. For continuous probes, the path prober moni-
tors the output of the probe and sends periodic messages to the data collector.
Messages contains the node pair, probe type, the probe result (including error
information), the time at the start of probe execution, and a magic protocol ID.

When deciding how to estimate available bandwidth, we first experimented
with several packet-pair and packet-train tools, including pathload [3] and
pathchirp [9]. Others report those two programs to work acceptably well on
PlanetLab [5], but in our experience they often returned extremely unreliable
results, or none. Therefore, we estimate available bandwidth with iperf, a so-
called Bulk Transfer Capacity method. iperf consumes much bandwidth during
tests, but it has the advantage that, by using a real TCP flow, it obtains a highly
accurate measurement of the bandwidth seen by a TCP flow, including taking
into account the reactivity of other flows. We extended iperf with our own
iperf daemon, since iperf produced memory leaks during long runtimes. Each
path prober runs an iperf daemon to handle incoming probes from other nodes.

Flexmon uses the fping utility to measure latency and detect path outages.
When a loss occurs, a state machine drives a frequency-adaptive probing process
to distinguish packet loss from true connectivity failure (in four seconds), and
to subsequently detect connectivity restoration (within ten seconds).

Probing tools may experience errors due to underlying network behavior.
Path probers capture certain errors and report them as anomalous measurements
since errors provide users with useful information about the state of the network.
We currently capture timeout, unresolvable hostname, and host unreachable
errors. However, our system can flexibly record arbitrary error conditions.

Flexmon is designed to run safely on unreliable networks. Since PlanetLab
is a large, heavily-utilized network, it is inevitable that nodes will periodically
reboot or become unresponsive for extended periods of time. If a PlanetLab
node is rebooted, or the sliver is reset, the path prober restarts when the sliver
does. However, we chose not to have the path prober checkpoint the current
running state and resume from it during failure recovery. Each path prober has
no knowledge of the overall system goals, and the manager or auto-manager
client may have already adapted to deal with the loss of particular nodes.

Measurement Transfer and Storage. Flexmon’s reliability and availabil-
ity are greatly improved by strategic buffering, reliable probe result transfer, and
caching. Each path prober sends probe result to the data collector over UDP.
Before a prober sends a result, it first inserts it into a Berkeley database, which
acts as a stable storage buffer. The prober then sends the message to the data
collector and retransmits after five seconds if the result message is not acknowl-
edged by the data collector. The data collector does not acknowledge the result
message until it has been successfully inserted into a SQL database; therefore,
it must be aware of duplicate measurements, and will drop them when they are
detected. Through this mechanism, Flexmon largely ensures application reliabil-
ity; however, measurements may be lost if a path prober node’s disk fails while
the data collector is not running.

The data collector maintains the caching database containing measurements
taken within the last 24 hours, making result polling and queries on recent data
much faster than if all results were inserted directly into the Datapository. A
script reliably “flushes” measurements in this cache back to the Datapository

each hour, ensuring that measurements older than 24 hours are not aged out of
the cache until they are successfully entered into the Datapository.

Query Interfaces. To facilitate efficient and easy data access, while mini-
mizing security concerns and increasing functionality, Flexmon provides several
interfaces to query measurement result data. First, as mentioned in the previous
section, Flexmon maintains the results from the previous 24 hours in a database
that acts as a write-back cache. This database, into which the data collector
inserts new measurements, provides a reasonably efficient query mechanism for
services that require access only to recent data. At this time, the users database
is accessible by any researcher with an Emulab account. However, due to security
and performance risks, we only provide raw SQL access to the Datapository

database to those “power users” who must be able to compose their own queries.
Instead of providing raw SQL access to the Flexmon databases to all po-

tential users, we provide a safer, controlled means of accessing measurement
data. Flexmon runs a simple XML-RPC server that periodically polls the users
database and keeps an in-memory cache of the single most recent latency and
bandwidth measurements for each known path. The XML-RPC server ages mea-
surements out of its internal cache once they reach an age of 24 hours. It also
provides a simple API that can be used to query either the users database
or the Datapository database, depending on the specified time interval . The
getMeasurements method requires an interval to restrict query responses to a
manageable size, and can filter results based on source and destination node
and site, as well as on basic measurement value constraints. Another method,
getFullyConnectedSet, finds a max-clique from the data in the in-memory
cache, and can restrict its search to a specific set of nodes.

4 System Status

Flexmon has been monitoring sets of PlanetLab nodes since February 2006,
and has placed approximately 940 million measurements of pairwise latency and
available bandwidth in the Datapository, accounting for approximately 89%
and 11% of total measurements respectively. Until December 2006, Flexmon ran
in “beta” mode, and underwent several architectural changes. After this time,
although several bugs were fixed, the system remained largely unchanged, aside
from occasional changes in the set of PlanetLab nodes monitored.

The number of nodes in the experiment can change over time. When we
change the experiment configuration, we normally restart key Flexmon dae-
mons, such as the auto-manager client and the manager. Depending on when
restarts occur, there may be slight anomalies for a brief window of time in the
measurement archive. Prior to fixing a bug, many of our PlanetLab nodes were
given bandwidth caps by PlanetLab for a short time due to detected overuse.

Since Flexmon path probers may not always be able to conduct a pairwise
site measurement successfully (i.e., due to unexpected node unavailability, path
outages, packet filtering at PlanetLab sites), measurement results stored in the
Datapository also include pairwise errors. For instance, over the measurement
history, approximately 17% of latency measurements and 11% of bandwidth
measurements represent errors. Of known latency errors, approximately 74% are
timeouts; 18% are DNS lookup failures; and 6% are ICMP unreachable errors.

5 Metrics

We analyzed a snapshot of logfiles produced by Flexmon during a 100-day period
to evaluate key properties of our system. There are times when the number of
available sites is much lower due to the inherent unreliability of distributed
systems and PlanetLab. The number of nodes in the experiment changes over
time. During the period analyzed, we monitored a median of 151 sites.

We first evaluate the number of available sites in our system during the
period. We extract the number of available sites from periodic liveness checks
performed by the auto-manager client. Figure 2(a) shows the available sites over
the period. Near Day 23, there is a sharp drop in the available sites, caused by an
experiment restart. Overall, this graph demonstrates a relatively stable number
of available sites.

 0

 50

 100

 150

 200

 0 20 40 60 80 100

A
va

ila
bi

lit
y

(s
ite

s)

Time (days)

Site Availability Over Time

(a) Site availability.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

of

 N
od

es
 L

ea
vi

ng
 S

ys
te

m

Time (days)

Node Churn Over Time

(b) Node churn rate (shown as leave events).

Fig. 2. Measurement node availability and churn rate.

We also analyzed the churn rate of nodes in our system. We compute the
churn rate as the number of nodes that “left” (were newly unresponsive) in a
single period of liveness checks. Figure 2(b) shows the churn rate over the period.
First, we see large spikes near Day 23 that are caused by the experiment restart,
where a large number of nodes suddenly left the system. These correlate well
with the decreased site availability shown in Figure 2(a), as do other spikes in
this graph, which may represent transient failures.

6 Related Work

Researchers have built a number of network measurement infrastructures, each
with its unique spin on the measurement task.

Scriptroute [13] provides a safe, publicly-available network probe execution
environment. Users submit probe scripts written in an interpreted language to
Scriptroute servers, which execute the scripts while ensuring that scripts do
not exceed resource limits and do not send malformed packets. Flexmon also
constrains probes according to resource limits. However, since Flexmon prevents
users from running arbitrary tools or algorithms, and only allows probes between
nodes within the monitored network, a malformed packet filtering mechanism
such as that provided by Scriptroute is unnecessary. Due to its more permissive
trust model, Scriptroute does not allow node-local data storage, which compro-
mises reliability. It is also not linked to a public data repository.

ANEMOS [2] is an extensible measurement system which stores results in a cen-
tral database. However, task scheduling is done on the centralized Coordinator

rather than in a distributed fashion, and results are not buffered at the Workers.
These two traits limit its usefulness on an unreliable network. While Flexmon
demonstrates scalability at least to hundreds of nodes, ANEMOS has only been
tested to tens. The work in ATMEN [4] describes an open framework for providing
network measurement services and querying the results. Its distributed architec-
ture provides scalability for measurement, but does not provide functionality for
a general user or application to access the entire history of all collected data.

NIMI [7] is a well-known measurement framework for measuring Internet traf-
fic, with a trust model that is more restricted than Flexmon’s. It is secure,
scalable, and extensible, but lacks a central result repository.

TCP Sidecar [11] is the foundation of sideping, a tool designed to passively
estimate RTTs. Sidecar snoops on sent TCP packets and retransmits them,
with subtle changes. When Sidecar receives a duplicate ACK from the remote
host, sideping can estimate the RTT. Flexmon differs from sideping since it is
designed to service probe requests from its users with the given frequency and
duration arguments, between specific nodes, so it cannot passively wait for a
TCP connection to occur between the target nodes.

7 Conclusion

We have described Flexmon, a shareable, path-oriented, active network mea-
surement system with reliable measurement storage. Our experience shows that
building such a system poses significant engineering and practical challenges. It
should ensure reliable measurement storage, avoid overloading monitored nodes
and networks, and function in unreliable networks with heavily loaded nodes.

It will require a major effort to provide such a system that is truly reliable,
safe, and efficient, with high availability and high performance. The level of
effort is probably similar to the effort we ourselves expended in building the
initial version of the Emulab network emulation testbed. However, Flexmon is

a real, working system that has collected 940 million measurements, it has been
successfully used by the Flexlab network testbed, and we plan to evolve it to a
permanent and production-quality measurement and storage system.

Acknowledgments

We thank many of our colleagues in the Flux Research Group for their significant
contributions. Robert Ricci, Mike Hibler, Leigh Stoller, and Sachin Goyal added
functionality to Flexmon. Robert, Sachin, and Kirk Webb also helped operate
the deployed system. Pramod Sanaga and Kevin Atkinson assisted in gathering
performance numbers. Eric Eide provided feedback and editing support. We
thank David Andersen for his work on the Datapository.

References

[1] D. G. Andersen and N. Feamster. Challenges and Opportunities in Internet Data
Mining. Technical Report CMU–PDL–06–102, CMU Parallel Data Laboratory,
Jan. 2006. http://www.datapository.net/.

[2] A. Danalis and C. Dovrolis. ANEMOS: An Autonomous Network Monitoring
System. In Proc. PAM, San Diego, CA, Apr. 2003.

[3] M. Jain and C. Dovrolis. End-to-End Available Bandwidth: Measurement
Methodology, Dynamics, and Relation with TCP Throughput. IEEE/ACM Trans.
Networking, 11(4):537–549, Aug. 2003.

[4] B. Krishnamurthy, H. V. Madhyastha, and O. Spatscheck. ATMEN: A Triggered
Network Measurement Infrastructure. In Proc. WWW, May 2005.

[5] S.-J. Lee et al. Measuring Bandwidth Between PlanetLab Nodes. In Proc. PAM,
Mar.–Apr. 2005.

[6] K. Park and V. Pai. CoMon: A Mostly-Scalable Monitoring System for PlanetLab.
OSR, 40(1):65–74, Jan. 2006.

[7] V. Paxson, J. Mahdavi, A. Adams, and M. Mathis. An Architecture for Large-
Scale Internet Measurement. IEEE Comm., 36(8):48–54, Aug. 1998.

[8] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A Blueprint for Introducing
Disruptive Technology into the Internet. In Proc. HotNets-I, Oct. 2002.

[9] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil, and L. Cottrell. pathChirp: Efficient
Available Bandwidth Estimation for Network Paths. In Proc. PAM, Apr. 2003.

[10] R. Ricci et al. The Flexlab Approach to Realistic Evaluation of Networked Sys-
tems. In Proc. NSDI, Apr. 2007.

[11] R. Sherwood and N. Spring. A Platform for Unobtrusive Measurements on Plan-
etLab. In Proc. of WORLDS’06, Seattle, WA, Nov. 2006.

[12] J. Sommers and P. Barford. An Active Measurement System for Shared Environ-
ments. In Proc. IMC, Oct. 2007.

[13] N. Spring, D. Wetherall, and T. Anderson. Scriptroute: A Public Internet Mea-
surement Facility. In Proc. USITS, Mar. 2003.

[14] K. Webb et al. Implementing the Emulab-PlanetLab Portal: Experience and
Lessons Learned. In Proc. WORLDS, Dec. 2004.

[15] B. White et al. An Integrated Experimental Environment for Distributed Systems
and Networks. In Proc. OSDI, Dec. 2002.

[16] P. Yalagandula et al. S3: A Scalable Sensing Service for Monitoring Large Net-
worked Systems. In Proc. Workshop on Internet Network Mgmt., Sept. 2006.

