
Carnegie Mellon

Towards Fingerpointing in the Emulab Dynamic
Distributed System

Michael P. Kasick
Priya Narasimhan

Carnegie Mellon University

Kevin Atkinson
Jay Lepreau

University of Utah

November 5, 2006

Michael P. Kasick (Carnegie Mellon) Towards Fingerpointing in Emulab November 5, 2006 1 / 37

Carnegie Mellon

Introduction to Emulab Classic

University of Utah:
Flux Research Group
Network emulation testbed
1300 users
430 local nodes
740 distributed nodes
In service for 6 years

Michael P. Kasick (Carnegie Mellon) Towards Fingerpointing in Emulab November 5, 2006 2 / 37

Carnegie Mellon

Emulab’s Experiments

Users upload an experiment configuration (NS file)
Configuration specifies virtual node topology
Users granted full, exclusive access to nodes
Nodes automatically redelegated when experiments go idle

Michael P. Kasick (Carnegie Mellon) Towards Fingerpointing in Emulab November 5, 2006 3 / 37

Carnegie Mellon

Emulab Software Infrastructure

Off-the-shelf components
Database, OS, etc.

Custom developed components
Web interface
Testbed setup & management
490,000 lines of code

Swap-* procedures
swap-in, swap-out, swap-modify
40+ script invocations

Michael P. Kasick (Carnegie Mellon) Towards Fingerpointing in Emulab November 5, 2006 4 / 37

Carnegie Mellon

Emulab’s Difficulties

System errors reported to operator mailing list
Average of 82 failure emails per day (April 2006)
Swap-* procedures are largest sources of errors

Each mail is 100+ lines long
Problem is not always obvious
Many underlying causes
Only a few errors require operator attention

Michael P. Kasick (Carnegie Mellon) Towards Fingerpointing in Emulab November 5, 2006 5 / 37

Carnegie Mellon

Example Swap-* Failure
TIMESTAMP: 11:12:38:659154 assign started

assign foo-bar-5987.ptop foo-bar-5987.top

ASSIGN FAILED:

Type precheck passed.

Node mapping precheck:

Node mapping precheck succeeded

Annealing.

Fixed node: Could not map srs-101 to pc106

Trying assign on an empty testbed.

TIMESTAMP: 11:12:40:663660 ptopgen started

ptopargs -p foo -e bar -a

TIMESTAMP: 11:12:41:576498 ptopgen finished

TIMESTAMP: 11:12:41:576719 assign started

assign -n foo-bar-5987.ptop foo-bar-5987.top

Precheck succeeded.

Assign succeeded on an empty testbed.

*** /usr/testbed/libexec/assign_wrapper:

Unretriable error. Giving up.

*** Failed (65) to map to reality.

Recovering virtual and physical state.

Doing a recovery swap-in of old state.

236 line email
111 lines of log
4 errors
1 root cause

Michael P. Kasick (Carnegie Mellon) Towards Fingerpointing in Emulab November 5, 2006 6 / 37

Carnegie Mellon

Problem Summary

Need to automate swap-* failure analysis
Isolate errors
Determine error relevance

Can be done with post-processing analysis
This problem solved by concurrent work

Emulab’s new tblog logging mechanism

Can we do better?

Michael P. Kasick (Carnegie Mellon) Towards Fingerpointing in Emulab November 5, 2006 7 / 37

Carnegie Mellon

Local vs. Global Analysis

Analysis of a single swap-* failure:
Considers a single, local, error domain
Scope limits precision of fingerpointing

Concurrent analysis of many swap-* failures:
Considers the entire, global, error domain
Error correlation increases precision of fingerpointing

Michael P. Kasick (Carnegie Mellon) Towards Fingerpointing in Emulab November 5, 2006 8 / 37

Carnegie Mellon

The Bigger Problem

Current error reporting does not facilitate global analysis

We propose a new structured error reporting
mechanism that does facilitate global analysis

Michael P. Kasick (Carnegie Mellon) Towards Fingerpointing in Emulab November 5, 2006 9 / 37

Carnegie Mellon

Outline

1 Introduction

2 Initial Attempt at Fingerpointing
tblog Logging Mechanism
Lessons Learned

3 Structured Error Reporting
Ingredients of a Solution
Development & Deployment
Initial Results

4 Summary

Michael P. Kasick (Carnegie Mellon) Towards Fingerpointing in Emulab November 5, 2006 10 / 37

Carnegie Mellon

tblog Logging Mechanism

Perl module interfaces scripts with an error-log database
Automatically logs diagnostic messages

stdout, stderr, die(), warn(), etc.

Provides an API for scripts to write messages
Records script execution context

Time stamp, script invocation #, parent script #, etc.

Michael P. Kasick (Carnegie Mellon) Towards Fingerpointing in Emulab November 5, 2006 11 / 37

Carnegie Mellon

tblog Analysis

Reconstructs script call-chain
Ascertains most recent error at greatest depth
Flags script and its errors as relevant

Michael P. Kasick (Carnegie Mellon) Towards Fingerpointing in Emulab November 5, 2006 12 / 37

Carnegie Mellon

tblog Example

swapexp

tbswap

assign wrapper

Michael P. Kasick (Carnegie Mellon) Towards Fingerpointing in Emulab November 5, 2006 13 / 37

Carnegie Mellon

tblog Example

swapexp

tbswap

assign wrapper

ptopgen assign

Fixed node: Could not map srs-101 to pc106

Michael P. Kasick (Carnegie Mellon) Towards Fingerpointing in Emulab November 5, 2006 14 / 37

Carnegie Mellon

tblog Example

swapexp

tbswap

assign wrapper

ptopgen assign ptopgen assign

Fixed node: Could not map srs-101 to pc106

*** /usr/testbed/libexec/assign_wrapper:

Unretriable error. Giving up.

Michael P. Kasick (Carnegie Mellon) Towards Fingerpointing in Emulab November 5, 2006 15 / 37

Carnegie Mellon

tblog Example

swapexp

tbswap

assign wrapper

ptopgen assign ptopgen assign

Fixed node: Could not map srs-101 to pc106

*** /usr/testbed/libexec/assign_wrapper:

Unretriable error. Giving up.

*** Failed (65) to map to reality.

Michael P. Kasick (Carnegie Mellon) Towards Fingerpointing in Emulab November 5, 2006 16 / 37

Carnegie Mellon

tblog Example

swapexp

tbswap

assign wrapper

ptopgen assign ptopgen assign

Fixed node: Could not map srs-101 to pc106

*** /usr/testbed/libexec/assign_wrapper:

Unretriable error. Giving up.

*** Failed (65) to map to reality.

*** /usr/testbed/bin/swapexp:

Update aborted; old state restored.

Michael P. Kasick (Carnegie Mellon) Towards Fingerpointing in Emulab November 5, 2006 17 / 37

Carnegie Mellon

tblog Example

swapexp

tbswap

assign wrapper

ptopgen assign ptopgen assign

Fixed node: Could not map srs-101 to pc106

*** /usr/testbed/libexec/assign_wrapper:

Unretriable error. Giving up.

*** Failed (65) to map to reality.

*** /usr/testbed/bin/swapexp:

Update aborted; old state restored.

Michael P. Kasick (Carnegie Mellon) Towards Fingerpointing in Emulab November 5, 2006 18 / 37

Carnegie Mellon

Opaque Failure Messages

Designed to be human interpretable
Vague and lacking in context details

Need context for spatial correlation
“Unretriable error. Giving up.”

Messages are cumbersome to parse
Different messages may describe the same error

“Invalid OS FOO in project bar!”
“[tb-set-node-os] Invalid osid FOO”

Michael P. Kasick (Carnegie Mellon) Towards Fingerpointing in Emulab November 5, 2006 19 / 37

Carnegie Mellon

Absence of Error Context

tblog only captures a general context
time stamp, script name, etc.

No provision for capturing error-specific context
nodes, OS images, configuration, etc.

Reporting must preserve the error-specific context
Required for error correlation
Facilitates global analysis

Michael P. Kasick (Carnegie Mellon) Towards Fingerpointing in Emulab November 5, 2006 20 / 37

Carnegie Mellon

Outline

1 Introduction

2 Initial Attempt at Fingerpointing
tblog Logging Mechanism
Lessons Learned

3 Structured Error Reporting
Ingredients of a Solution
Development & Deployment
Initial Results

4 Summary

Michael P. Kasick (Carnegie Mellon) Towards Fingerpointing in Emulab November 5, 2006 21 / 37

Carnegie Mellon

Discrete Error Types

Identify distinct errors
Defined by a specification for each error type

named error type, definition, associated specific context

Node-boot failure example:
Error type: node boot failed
Definition: Node failed to boot twice
Context: node, type, osid

Michael P. Kasick (Carnegie Mellon) Towards Fingerpointing in Emulab November 5, 2006 22 / 37

Carnegie Mellon

Error Context & Propagation

Context distinguishes between errors of the same type
Node boot failures across different nodes
Node boot failures with different OSes

Propagation centers focus on relevant errors
Nested scripts should propagate the primary error
Otherwise parent scripts generate “me-too” errors
Secondary (“me-too”) errors add noise
Achievable with exceptions (RPC, middleware)

Michael P. Kasick (Carnegie Mellon) Towards Fingerpointing in Emulab November 5, 2006 23 / 37

Carnegie Mellon

Research Phase

Used tblog to identify a set of target errors
Goal was not to obtain 100% coverage
System functionality is always expanding
Small portion of possible errors actually observed

Drafted error specifications and error types
Required significant knowledge of errors and meaning
Eliminated error ambiguities
Identified relevant error specific context

Michael P. Kasick (Carnegie Mellon) Towards Fingerpointing in Emulab November 5, 2006 24 / 37

Carnegie Mellon

Development Phase

Developed a prototype Perl reporting module
Structured error reporting function
Error parsers for C++ & TCL language components

Added reporting hooks for the target errors
Problem: Emulab provides no error propagation
Nested scripts return success or failure only
Fix: severity-level assignment
Alternative: tblog post-processing analysis

Michael P. Kasick (Carnegie Mellon) Towards Fingerpointing in Emulab November 5, 2006 25 / 37

Carnegie Mellon

Testing & Deployment Phases

Tested prototype in elabinelab
Integrated prototype into tblog framework

New local analysis engine: tbreport

Deployed on the production Emulab testbed
750 lines of added or changed code

Michael P. Kasick (Carnegie Mellon) Towards Fingerpointing in Emulab November 5, 2006 26 / 37

Carnegie Mellon

Initial Results

Data collected August 16-24th, 2006
681 swap-* sessions started

108 (17.3%) reported at least one error

283 total fatal errors reported
Many errors repeated for each node in a session
118 unique instances of errors in a given session

Michael P. Kasick (Carnegie Mellon) Towards Fingerpointing in Emulab November 5, 2006 27 / 37

Carnegie Mellon

Error Statistics

Occurrences Error Type
31 26.3% assign violation/feasible

(resource shortage)
24 20.3% assign type precheck/feasible

(node shortage)
22 18.6% node boot failed
10 8.5% ns parse failed

(bad experiment configuration)
...

Normalized errors (unique in a session) grouped by error type.

Michael P. Kasick (Carnegie Mellon) Towards Fingerpointing in Emulab November 5, 2006 28 / 37

Carnegie Mellon

Node Shortage Failures

Second most common error (20.3%)
Insufficient free nodes for experiment swap-in
Current node availability is listed on website

Illustrates user demand
48% due to lack of pc3000

Michael P. Kasick (Carnegie Mellon) Towards Fingerpointing in Emulab November 5, 2006 29 / 37

Carnegie Mellon

Other Resource Shortage Failures

Most common error (26.3%)
Sufficient free nodes to swap-in, but:

Attempted assignment violated mapping constraints
Often due to oversubscribed switch bandwidth

Assignment algorithm is non-deterministic
User cannot predict when these errors might occur
Later attempts may succeed w/o topology change

Frequent resubmissions lead to further errors

Michael P. Kasick (Carnegie Mellon) Towards Fingerpointing in Emulab November 5, 2006 30 / 37

Carnegie Mellon

Node-Boot Failures

Third most common error (18.6%)
Node status daemon

Reports boot success
Timeout results in error

Many underlying causes
Faulty hardware, broken user contributed OS, etc.

Motivating scenario for our future research

Michael P. Kasick (Carnegie Mellon) Towards Fingerpointing in Emulab November 5, 2006 31 / 37

Carnegie Mellon

Node-Boot Failure Example (I)

pc297
cust_os1

Single node, one session
Unknown culprit

Michael P. Kasick (Carnegie Mellon) Towards Fingerpointing in Emulab November 5, 2006 32 / 37

Carnegie Mellon

Node-Boot Failure Example (II)
pc297

cust_os1

cust_os1
pc301

Two nodes, two sessions, same OS
Suggests bad OS

Michael P. Kasick (Carnegie Mellon) Towards Fingerpointing in Emulab November 5, 2006 33 / 37

Carnegie Mellon

Node-Boot Failure Example (III)
pc297 pc297

cust_os1

cust_os1

cust_os2

cust_os2
pc301 pc301+

Same two nodes, four sessions, different OS
Strongly suggests bad OS

Michael P. Kasick (Carnegie Mellon) Towards Fingerpointing in Emulab November 5, 2006 34 / 37

Carnegie Mellon

Node-Boot Failures: What’s Next?

Cannot diagnose root cause from a single trace
Operator dilemma:

Assume node is faulty and quarantine?
Assume OS is faulty and leave node as is?

Motivates global fingerpointing (future work)
Correlation of multiple error instances
Reliably fingerpoints the culprit

Michael P. Kasick (Carnegie Mellon) Towards Fingerpointing in Emulab November 5, 2006 35 / 37

Carnegie Mellon

Summary

Manual diagnosis of system errors is costly
tblog-style analysis aids in message filtering
Opaque failure messages limits error usefulness
Structured error reports enable global analysis
Global analysis fingerpoints errors with fine granularity
Future work:

Develop a global analysis engine for Emulab
Start by targeting the identified node-boot failure scenario
Target other real-world systems for error analysis

Michael P. Kasick (Carnegie Mellon) Towards Fingerpointing in Emulab November 5, 2006 36 / 37

Carnegie Mellon

Further Reading

Michael P. Kasick, Priya Narasimhan, Kevin Atkinson, and Jay Lepreau.
Towards fingerpointing in the Emulab dynamic distributed system.
In Proceedings of the 3rd USENIX Workshop on Real, Large Distributed Systems
(WORLDS ’06), Seattle, WA, November 2006.

Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac Newbold,
Mike Hibler, Chad Barb, and Abhijeet Joglekar.
An integrated experimental environment for distributed systems and networks.
In Proceedings of the Fifth Symposium on Operating System Design and Implementation
(OSDI ’02), pages 255–270, Boston, MA, December 2002.

Michael P. Kasick (Carnegie Mellon) Towards Fingerpointing in Emulab November 5, 2006 37 / 37

	Introduction
	
	
	

	Initial Attempt at Fingerpointing
	tblog Logging Mechanism
	Lessons Learned

	Structured Error Reporting
	Ingredients of a Solution
	Development & Deployment
	Initial Results

	Summary
	Further Reading

