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Abstract
Many problems in developing and maintaining systems
software stem from inappropriate choices ofexecution
environments: sets of rules and conventions for structur-
ing code. We have developedcomposable execution en-
vironments(CEE), a new way to compose systems soft-
ware that is based on two main capabilities: the hierar-
chical composition of execution environments, and the
late binding of design requirements to implementation
constructs.

Our contributions include a number of techniques to
support CEE: first, an environment description language
in which compositions of environments are specified;
second, the task / scheduler logic for checking safety
properties of compositions, which exploits the low-level
hierarchical scheduling relationships that are present in
systems software; and third, integrated support for real-
time schedulability analysis. Together, the CEE model
and these techniques enable developers to create systems
software out of multiple restricted, domain-specific exe-
cution environments and to more easily retarget code to
new environments.

1 Introduction
Creating good systems software often depends on choos-
ing appropriate execution environments. For exam-
ple, a small embedded system is often structured as a
cyclic executive— a glorified infinite loop. In this non-
preemptive, statically scheduled environment it is diffi-
cult or impossible to write a program containing a race
condition or a deadlock. At the other end of the spec-
trum, preemptive multithreading with blocking locks en-
ables very flexible resource utilization. It also permits
threads with short response time requirements to run in
a timely way even if other threads run for long periods
without voluntarily blocking. However, developers have
a notoriously difficult time creating correct systems us-
ing concurrent threads [13, 20]. There is a tension be-
tween picking a powerful execution environment such as
preemptive multithreading, and picking a restricted envi-
ronment such as a cyclic executive or a non-preemptive

event loop. Furthermore, different parts of a single sys-
tem are often best structured using different execution
environments.

This paper describes CEE, a model for systems soft-
ware programming that supportsfirst-class, composable
execution environments. We define anexecution envi-
ronmentto be a set of rules and conventions for structur-
ing systems code along axes such as sequencing, concur-
rency, atomicity, resource management, and real-time
constraints. In other words, execution environment con-
siderations come from architectural issues rather than
from functional issues. Restricted execution environ-
ments help make systems easier to design, understand,
and analyze by enforcing rules that deprive developers
of unwanted or unneeded design freedom while main-
taining freedom along axes that help solve specific prob-
lems. For example, Click [14] is all about packet pro-
cessing: its push/pull distinction and strict restrictions
on concurrency and communication make it much easier
to create and debug Click graphs than unstructured C++
code that performs the same functions.

CEE provides two complementary benefits. First, it
permits systems to be constructed by hierarchically com-
posing execution environments. The execution environ-
ments supported by CEE include traditional ones such
as non-preemptive event loops and preemptive multi-
threading, as well as more restricted, domain-specific
execution environments such as Port-Based Objects [26]
and TinyOS [11]. We work with, rather than attempt-
ing to supplant, existing component languages such as
those used to compose Port-Based Objects and TinyOS
systems. This is necessary because some of the valu-
able features provided by these systems, such as the
nested component interconnection model in TinyOS,
have nothing to do with execution environments.

The second main benefit of CEE is that it permits the
late bindingof some types of design requirements to im-
plementation constructs. As an example of late binding,
consider rate-monotonic scheduling [18]. By delaying
the binding of threads to priorities until an entire system
is available for analysis, it avoids composing prioritized
threads: they are known to compose poorly. Our work



is analogous but goes much farther: we permit the late
binding of components to threads, threads to schedulers,
and critical sections to synchronization primitives.

In systems software developed with traditional lan-
guages and module systems, execution environment
considerations areimplicit and hardwired. Real-time
constraints, atomicity requirements, and design rules are
buried in the code where they are hard to find, and
hard to modify in response to changes in hardware ca-
pabilities or software requirements. In our program-
ming model, execution environment considerations are
explicit andflexible: environments declare their require-
ments and assumptions, and our analysis tools determine
a concrete implementation of the requirements that does
not break any of the assumptions. Explicit requirements
makes it easier to develop, maintain, and evolve systems
software, since it helps cut down on subtle, non-local er-
rors that can be caused by changes in execution environ-
ments. Furthermore, common strategies for generalizing
the execution environment, e.g., using a preemptive ker-
nel rather than a single-threaded event loop, can cause
the benefits of the more restricted environment to be lost.
By supporting multiple concurrent environments, we of-
ten permit part of the system to be generalized while
preserving the benefits of restricted environments else-
where.

The work described in this paper applies where there
is significant diversity in execution environments. This
includes most embedded systems, all general-purpose
operating systems, most complicated server and middle-
ware infrastructures, and some distributed systems. The
focus of this paper is on embedded systems, for a num-
ber of reasons. First, it tends to be hard to fix bugs in em-
bedded systems after deployment: for this reason a more
formal underpinning for systems software is particularly
valuable for embedded systems. Second, there is pres-
sure to produce embedded software quickly, and prod-
ucts often form product families. Members of the family
are similar enough that the similarity must be exploited,
while there are too many differences to be ignored [29].
Third, because time and space efficiency are so impor-
tant, embedded systems tend to be low-level and hand-
rolled, and developers have significant design freedom
with respect to execution environments. This can result
in evolution and maintenance headaches as the capabil-
ities of embedded systems track Moore’s Law. Finally,
although we plan later to apply CEE to other classes of
systems software, embedded systems offer an especially
promising starting point. They are small and they are
typically more static than higher-level software.

Our contributions are as follows. We present CEE, a
unified model capable of describing a large class of ex-
ecution environments including those commonly found
in embedded systems. We have developed novel tech-
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Figure 1: Overview of CEE

niques that help make CEE into a practical way to build
systems software: the environment description language
(EDL) for specifying hierarchies of environments (Sec-
tion 4), and the task / scheduler logic, a way to reason
about safety properties for concurrent processes using
hierarchical schedulers (Section 5). We have also in-
tegrated a real-time task model with CEE (Section 6).
In Section 7 we evaluate CEE by using it to combine
TinyOS and AvrX [4] environments in ways that can
help solve real-world problems.

2 Overview of the CEE Architecture
Figure 1 depicts the architecture of CEE. On the left
are the inputs (environment hierarchies and application
code); in the center is the CEE toolchain; and on the
right are the outputs: analysis results and the application
binary. This section describes the parts of the model and
how they fit together, while Sections 4–6 go into more
detail about important elements.

Components: A major motivation for CEE is to
make component programming feasible when writing
programs that involve multiple execution environments
(i.e., systems software). Components can bepartially
bound(they interact with their scheduling environment
through a layer of indirection such as a function call or
macro) orfully bound(they interact with their schedul-
ing environment directly). CEE can work with both
kinds of components, but the ways in which fully bound
components can be composed is necessarily limited.

Third-party component languages:There are many
component languages available (including “plain old
C”). Rather than invent yet another component language,
CEE allows third-party component languages to be em-
bedded in scheduler hierarchies.

Environment Description Language (EDL): The
EDL compiler processes descriptions of environment hi-
erarchies; it resolves references between environments,
integrates component annotations and the results of anal-
yses, generates a checkable task / scheduler logic specifi-
cation for a system, and generates a linking specification
that is passed to the CEE linker.

Task / Scheduler Logic: Components and environ-
ments in EDL instantiateprototypesthat are accompa-
nied by specifications in task / scheduler logic (TSL).
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Figure 2: The TinyOS scheduling hierarchy with tasks from
the cnt to rfm TinyOS kernel. In this and subsequent fig-
ures preemptive schedulers are shown in a bold, oblique font,
non-preemptive schedulers are oblique, and non-scheduler en-
tities in the hierarchy are in the standard font. Annotations are
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TSL provides the concurrency semantics for EDL; it is
used to verify safety properties of the system as a whole,
and also to enable optimizations.

Real-time scheduling:Real time tasks can be anno-
tated with their real time properties (worst case execu-
tion time, period, etc.) enabling CEE to check schedu-
lability, assign priorities, and merge logically separate
tasks into a single physical thread when appropriate.

3 Background: TinyOS and AvrX
TinyOS [11] and AvrX [4] are operating systems for
Atmel AVR microcontrollers; they will serve as the
primary examples of systems throughout this paper.
TinyOS was written to run on themotehardware de-
veloped at UC Berkeley. It has a static memory model
that can result in systems with a very small footprint
(some motes have only 512 B of RAM). TinyOS embeds
a component model that makes it easy to compose new
systems, often without touching source code.

The execution environment structure of TinyOS,
shown in Figure 2, is basically identical to that of the
bottom half of a modern general-purpose operating sys-
tem: it runs in a single address space and consists of
interrupt handlers with partial preemption relations run-
ning at high priority; at lower priority there is a non-
preemptive FIFO scheduler that runstasks. Tasks pro-
vide a level of deferred processing, reserving interrupt
context for short, time-critical sections of code.

In this paper we also usetaskin a more general way: a
task can simply be a piece of code to be executed by the
system. This sense of task does not connote execution in
any particular environment.

Like TinyOS, AvrX targets very small systems. It pro-
vides features found in most real-time executives: pre-
emptive multithreading, mutual exclusion, timers, mes-
sage queues, and a debugging monitor that can be used
to single-step the processor. AvrX is structured so that
unused code is not included in applications. AvrX

saves RAM by running all interrupt handlers on a ker-
nel stack.

4 Specifying Hierarchies of Environments
This section describes the CEE environment description
language and the embedding of other component lan-
guages within it. Subsequent sections describe TSL (the
logic we developed to detect systems composition er-
rors) andSPAK (the schedulability analysis tool that we
use to check real-time properties).

4.1 The Environment Description Language
A hierarchy of execution environments is expressed as
a scheduling hierarchy. For example, Figure 2 shows
a typical TinyOS configuration. At the top level is
the AVR microcontroller. The AVR supports 23 in-
terrupt handlers, most of which are not present in any
given TinyOS kernel. Interrupts are run in preference
to user-mode code; in user mode, TinyOS runs a non-
preemptive task scheduler.

Systems are described in EDL by a number of object
instance definitions such as the following:

code = TinyOS{
desc = "cnt_to_rfm.desc"

};
avr = AVR{

irq = irq,
user = fifo

};
irqs = IRQs{

irq10 = IRQ{fn = code.desc.OUTPUT_COMPARE},
irq16 = IRQ{fn = code.desc.SPI},
irq18 = IRQ{fn = code.desc.UART_RECV},
irq21 = IRQ{fn = code.desc.UART_TRANS},
irq22 = IRQ{fn = code.desc.ADC},
default_irq = IRQ{fn = code.desc._unexpected_}

};
fifo = FIFO{

tasks =
[ TASK{func = code.desc.AM_send_task},

TASK{func = code.desc.calc_crc},
TASK{func = code.desc.packet_sent),
TASK{func = code.desc.packet_received}

],
max_queue = 6

};

Every node in the scheduler hierarchy in Figure 2
has a corresponding instance definition in this de-
scription. Each object definition is of the form
Type{field1, ... fieldn} where the Type
determines which fields may be defined and their mean-
ing, while fields define properties of the instance. The
instancecode is an embedded TinyOS system and con-
tains a pointer to a TinyOS description file. EDL code
can refer to objects inside the TinyOS system using ref-
erences of the formcode.desc.<fieldname> .

The typesAVR, IRQs , IRQ, FIFO , andTASKused
above are, in fact, “prototypes:” incomplete object in-
stances to be completed later. We use prototypes when-
ever we want to reuse a piece of system description (of
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which types are just one example). We shall not show
how to define prototypes in this paper.

As is common when comparing diagrams with text,
the figure quickly conveys the gist of the design (and,
for that reason, we shall use figures in the remainder of
this paper) while the textual definition expresses details
that would be hard to include in the figure. In this case,
the textual definition specifies which code is used, the
default interrupt handler to use if no interrupt handler
is explicitly specified, and the maximum number (6) of
tasks that can be in the scheduling queue at once.

Whereas execution environments form a tree, the code
itself can form an arbitrary directed graph and a single
piece of code is often connected either directly or indi-
rectly to multiple parts of the execution environment hi-
erarchy. In other words, the traditional modular decom-
position of a system is often quite independent of the
execution environment structure. For example, TinyOS
code to control a radio transceiver might be accessed
both by two separate interrupt handlers. It is this shar-
ing that leads to race conditions: if every resource could
only be attached to just one branch of the scheduler hi-
erarchy, there would be no race conditions.

4.2 Interacting with Component Languages
As demonstrated in the previous section, EDL acts as a
glue language for component languages such as TinyOS
and Click. Since each component language may be in-
ternally quite complex and we wish to support a wide
range of languages, our implementation is designed to
work with the implementation of other languages rather
than to fight against it. Thus, we make very few assump-
tions about any given component language while pro-
viding ways to take advantage of those that are able to
provide more information.

The absolute minimum required of a component lan-
guage is that it provides a standard interface for invok-
ing the component language compiler, and that all use
of schedulers, tasks, and locks is virtualized and adheres
to a standard API. Interfacing with the runtime behavior
is largely a matter of identifying the scheduler interac-
tions and modifying the code to conform to our APIs. In
many cases this can be done by modifying a few header
files and a few lines of the scheduler. Interfacing with the
build process is largely a matter of understanding a maze
of Makefiles but is made feasible by the fact that we are
primarily interested in eliminating the final linking step
in order to permit what was once a complete system to
be embedded in a larger system. Issues of name clashes
between clients can be resolved either using the C pre-
processor or using a tool to rename symbols in object
files.

Component systems that provide only a “.o ” in-
terface necessarily force us to use externally acquired

knowledge in order to bound their behavior, or to simply
make pessimistic assumptions about them. Additional
information about components can come from a variety
of sources. For example, if we need to know for how
long a particular TinyOS task runs in order to perform a
real-time analysis, we can make inferences from how it
is used (e.g., the task is called once per incoming packet,
and therefore its run-time cannot be longer than the total
time taken by TinyOS to process an incoming packet) or
we can simply measure its run time and make the pro-
visional assumption that its worst-case run time is not
much different. Another way to learn about components
is to mechanically analyze their source or object code
(we do this for TinyOS systems in Section 5) or make
use of properties that are known to be true of all valid
compositions. For example, resources other than packet
buffers in TinyOS are directly accessed by at most one
component.

4.3 Encapsulating Foreign Schedulers
The ideal software component for CEE has a well-
defined entry point that, when called, returns control to
the caller within bounded time. In practice reuse of sys-
tems software is seldom so convenient, and we have de-
veloped a number of techniques for dealing with compo-
nents with different control-flow characteristics. In gen-
eral there are two ways to deal with components that do
not gracefully return control: to alter them to change this
behavior and to create a scheduling hierarchy such that
they can be preempted when the need arises. We use
both methods.

The TinyOS scheduler, for example, is easy to work
with in the sense that it returns control to its caller
when it has no work to perform. However, in prac-
tice all TinyOS kernels execute this scheduler inside an
infinite loop that executes the AVRsleep instruction
when there are no tasks to execute, putting the proces-
sor to sleep until the next interrupt arrives. We replicate
the sleep-loop when using CEE to create kernels where
TinyOS is the only user-level scheduler, but it must be
replaced, for example, when running TinyOS tasks in a
thread as we do in Section 7.

When system response-time requirements make it
necessary to preempt TinyOS components, we run ei-
ther a single TinyOS component, or an entire TinyOS
scheduler, in a preemptible thread. Threads act as vir-
tual processors and so we need a virtual version of the
sleep-loop that native TinyOS uses; this is accomplished
by having the thread block on a semaphore each time
it has no work to perform. Since the scheduler is no
longer implicitly awakened by an interrupt, an explicit
signal must be sent to the semaphore each time work is
sent to the corresponding TinyOS scheduler. The CEE
linker automatically generates the code to do this, when
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necessary, by inspecting the path between the task being
posted and the root of the scheduling hierarchy.

The AvrX RTOS, which we currently use as our
thread implementation, never returns control once
called. We could arrange for it to return control, or to
be preemptible, but we have not done so. Consequently,
AvrX does not compose well: other environments can
be run in AvrX threads, but not the other way around.
AvrX has no idle thread, but rather invokes the proces-
sorsleep function when it has nothing to run.

4.4 Linking Components
The EDL compiler emits a lexically flat linking specifi-
cation that is passed to theCEE linkerwhose job it is to
generate a system image. The linking specification en-
codes the type of each scheduler in the hierarchy as well
as extra information such as priorities, stack sizes, and
the like. The linker is general purpose but contains non-
generic modules to deal with specific schedulers. For
example, when an AvrX thread is instantiated, the linker
calls a routine that generates code to statically allocate
a thread control block and to dynamically initialize the
thread as part of the overall system initialization. The
modules may also perform additional scheduler-specific
checking. An extreme example is the modules for the
AVR processor: since we cannot generate fresh hard-
ware matching the user’s specification, the module can
only check that the scheduler connections match those
provided by the physical processor.

5 Task / Scheduler Logic
CEE adds flexibility to systems software. Increased flex-
ibility creates the potential for new kinds of program-
mer errors and therefore it is important that we have the
ability to detect these errors. In particular, concurrency
problems that are notoriously difficult to reproduce and
fix.

This section defines the “Task / Scheduler Logic”
(TSL) that we use to detect race conditions in systems.
TSL consists of a language for describing concurrency-
related properties of schedulers and code, and a logic for
reasoning about compositions of these components (i.e.,
schedulers and ordinary code). The advantage that TSL
has over traditional concurrency languages and logics is
that it focuses on a specific domain: it makes direct use
of low-level hierarchical scheduling relationships that
are present in most kinds of systems software. At present
TSL only checks for race conditions; we would like to
extend TSL to check liveness properties in the future.

In designing TSL (and, indeed, all of CEE), we
had two usability goals in mind: that TSL should
provide benefit even at low levels of programmer ef-
fort/investment; and that TSL should be usable by “nor-
mal” programmers. To achieve our first goal, we took

care that our system would work with no input annota-
tions and give progressively better results as the preci-
sion of the annotations improved. To achieve our sec-
ond goal, we restricted the form of TSL specification
to what we hoped systems programmers could quickly
understand and could use correctly. We also restricted
the need to write TSL specifications to the less common
parts of system design where considerable expertise and
understanding is already required (like implementing a
new scheduler or supporting a new processor). Where
this could not be done, we wrote tools to automate the
process.

TSL is primarily concerned with reasoning about
when tasks can run and conflicts between running tasks.
When tasks can run is determined by the scheduler hier-
archy and the use of locks, while conflicts between run-
ning tasks are determined by the function callgraph and
which resources each function accesses.

We use the following naming conventions in the re-
mainder of this section. The variabless, s1, etc. range
over schedulers; the variablese, e1, etc. range over en-
trypoints; the variablesr, r1, etc. range over resources;
and the variablesl, l1, etc. range over locks.

5.1 TSL Specifications
There are two aspects to TSL: what the user sees and
how we find races in TSL specifications. This section is
about what the user sees.

We treat tasks as a degenerate form of scheduler.
Schedulers are required to form a tree: a parent sched-
uler decides if and when its children run. We write
s1C s2 whens1 is the parent ofs2. Schedulers are the
only mechanism that can cause two tasks to run concur-
rently. That is, multiprocessors, interrupt mechanisms,
etc. are all modeled as schedulers. For each schedulers,
we define!s to be a relation between child schedulers
such thats1!s s2 if s2 can start to run whiles1 is run-
ning. A number of common relations between tasks can
be expressed in terms of!:

� s1 is strictly higher priority thans2 on a uniproces-
sor scheduler is modeled by:(s1 ! s2) ^ (s2 !
s1). Although priority does not have a first-class
representation in TSL, it is an important concept
since systems that are described in TSL will often
map to implementations containing priority-based
schedulers.

� s1 and s2 may run simultaneously (may preempt
each other on a uniprocessor scheduler, or may be
scheduled by different processors on an SMP) is
modeled bys1! s2 ^ s2! s1.

� s1 and s2 cannot run simultaneously (are mutu-
ally non-preemptible on a uniprocessor scheduler)
is modeled by:(s1! s2) ^ :(s2! s1).
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Although TSL is applicable to multiprocessor systems,
we restrict our attention to uniprocessor systems for the
remainder of this paper. Thus,s1 ! s2 iff s2 can pre-
empts1.

In this paper, we use the term ‘lock’ to mean any
mechanism used to make a section of code atomic with
respect to another piece of code including spinlocks,
disabling interrupts, and traditional thread locks. That
is, a lock is anything which can be taken and released
and which overrides concurrency relations introduced
by schedulers. For each lockl, we specify the setbl
of schedulers that cannot start to run ifl is held. Each
lock is provided by a particular scheduler andbl may
only contain children of that scheduler. A consequence
of this is that TSL rejects the classic programming error
of attempting to block on a thread lock in an interrupt
handler as a malformed TSL specification.

Since CEE is concerned with schedulers, we only
need a simple model of code. In fact, we provide two
complementary ways of specifying code. (We motivate
the need for two methods in Section 5.4.)

In the first (traditional) method, code consists ofen-
trypointsand resources. Entrypoints are functions that
may be invoked and resources are, by definition, things
that must be accessed atomically. Entrypoints may ac-
quire locks before accessing resources. We say that an
entrypointe accesses a resourcer with a set of locks
ls (written e #ls r) if all the locks in ls are acquired
before any access ofr by any function directly or indi-
rectly invoked bye. When a scheduler (typically a task)
s invokes an entrypointe, we writesC e.

In the second method, we annotate entrypoints with
the current set of preemptions that may occur and use
TSL to report preemptions introduced by changes to the
scheduling hierarchy. This amounts to trusting the orig-
inal system designer to get the design right: a not un-
reasonable starting point. We writee1  ls e2 if it is
considered safe for entrypointe2 to be invoked whilee1
is running and holding a setls of locks.

The above are all local properties: they can be deter-
mined by independently inspecting schedulers, compo-
nents, and the interconnections in the EDL specification.
To determine the behavior of the complete system, we
must combine these individual properties.

5.2 Reasoning about TSL Specifications
Race conditions occur when two tasks (or two instances
of the same task) can execute simultaneously and both
access the same resource. Thus we must determine when
two tasks can execute simultaneously. We do this by
extending the relation!s and the propertybl.
Definition: For a schedulers, we define the relation)s

to be the least relation containing!s such that:

s1)s s2 ^ s1C s10 =) s10 )s s2

FIFO2

IRQs

irq10
irq16
irq18
irq21
irq22AVR

AvrX

calc_crc
packet_sent
packet_received

AM_send_task

background1
background2

low

high

high

low

FIFO1

Figure 3: Composing TinyOS and AvrX

and

s1)s s2 ^ s2C s20 =) s1)s s20

That is, if a schedulers allows its children to run con-
currently, then so can their descendents.
Definition: For a lockl, we define the setBl to be the
least set containingbl such that:

s 2 Bl ^ sC s0 =) s0 2 Bl

That is, if a lock blocks a schedulers, then it blocks any
descendents0.

With these definitions in hand, we can state precisely
when two components can access a resource simultane-
ously:
Definition: A race conditionexists when two entry-
points access the same resource concurrently.

race(e1; e2; r)
def
= e1)s e2
^ e1 #ls1 r
^ e2 #ls2 r
^ :(9l 2 ls1 : e2 2 Bl)
^ :(e1 ls1 e2)

In other words, a race exists ife1 ande2 both access a
resource where: there exists a schedulers that permitse2
to preempte1, e1 does not hold any locks that overrides
that preemption, and the user has not indicated that it is
safe fore2 to preempte1. A corollary of this definition is
that if the nearest scheduler in the hierarchy common to
e1 ande2 is non-preemptive, then a race condition can-
not exist betweene1 ande2. (Note: In fact, a race can
only occur if at least one accessor modifies the resource
— a detail we shall ignore in this paper.)

5.3 A Simple TSL Example
In general it is easier to meet deadlines in preemptively
scheduled systems, while non-preemptive systems are
easier to develop. Composing execution environments
hierarchically affords us the potential to have the best of
both worlds. Consider the example in Figure 3 where
AvrX runs a non-preemptive TinyOS task scheduler in
each of two threads.
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We start by specifying the scheduler hierarchy:
avr C irqs avr C avrx
irqs C irq10 � � � irqs C irq22
avrx C fifo1 avrx C fifo2
fifo1 C AM sendtask � � � fifo1 C packetreceived
fifo2 C background1 fifo2 C background2

and the preemption relations
avrx !AVR irqs

irq10 !IRQs irq10 � � � irq10 !IRQs irq22

.. .
irq22 !IRQs irq10 � � � irq22 !IRQs irq22
fifo2 !AvrX fifo1

From this we can derive additional preemption rela-
tions and the impossibility of some preemptions. For
example,

AM sendtask ! irq10
background1 ! AM sendtask

:(AM sendtask ! calc crc)
:(calc crc ! AM sendtask)

:(background1 ! background2)
:(background2 ! background1)

For any resources that are accessed only by tasks
AM sendtask and calccrc, or by tasks background1
and background2, a TSL derivation tells us that no locks
are needed: the tasks are already mutually atomic. On
the other hand, if tasks AMsendtask and background1
share a resource, or if AMsendtask shares a resource
with irq10, then a lock is needed. TSL tells us that the
lock to protect from an interrupt handler can be one-
sided, because part of the definition of “interrupt han-
dler” is that it executes atomically with respect to user
mode. The lock enforcing atomic access to a resource
shared by two tasks, on the other hand, must be two-
sided. It can, however, be implemented by either of
the two preemptive schedulers between the tasks and the
root of the scheduling hierarchy, i.e., by taking a thread
lock in the AvrX scheduler or by disabling interrupts in
the AVR scheduler.

5.4 Implementing TSL
The TSL specifications for components are part of the
EDL specification of that component: each component
contains a string field called “tsl.” For example the spec-
ification of fifo2 could be written like this:
fifo2 = FIFO{

task1 = ...;
task2 = ...;
tsl = << EOF

${ˆ} <| ${ˆ.task1};
${ˆ} <| ${ˆ.task2};

EOF
};

The EDL compiler expands the references in the tsl
string into:

fifo1 <| fifo1.task1;
fifo1 <| fifo1.task2;

A separate TSL checker parses all the tsl fields, trans-
lates them into Prolog statements, and invokes a Prolog
program to check for races.

Putting the TSL specifications in the instance defini-
tions like this would work but it would lead to poor reuse
and require all users to write their own TSL specifica-
tions of each component. Instead, we put the TSL spec-
ification in the prototypeFIFO , the prototypeAVR, etc.
so that specifications of schedulers and of TinyOS appli-
cations may be shared between all systems.

TSL specifications for schedulers are generally writ-
ten by hand. This is feasible because there are few
schedulers and because a user choosing a new scheduler
is usually interested in precisely those properties of the
scheduler that TSL describes. To aid us in generating
TSL specifications for the remaining TinyOS compo-
nents, we wrote a simple code analyzer that treats each
byte of memory and each I/O port as an individual re-
source and treats each of the 24 independent interrupt
disabling mechanisms as locks. This model is rather lax
(it is often necessary to treat a set of variables as a single
logical resource) but even so, TSL reported many race
conditions in working TinyOS systems. On inspection,
the problem is that TinyOS uses lock free synchroniza-
tion in many cases and our analysis tool cannot identify
these uses. This motivated the complementary approach
of using to specify which entrypoints may run con-
currently. This approach has proven to be simple and
effective in actual use.

5.5 Synchronization Inference
Thus far, we have described the use of TSL tocheckthat
the user’s choices of locks and schedulers are correct. In
fact, TSL has enough information to make the choices
of locks itself in almost all cases. If the user declares a
lock as being “virtual,” the TSL checker will search for a
choice of physical lock that eliminates any races. A use-
ful special case of synchronization inference is when a
particular composition of environments does not permit
concurrent access to a protected resource: in this case
the locks can be dropped from the implementation.

We currently use a simple heuristic to pick a lock
implementation. In the future we want to integrate
lock choice with real-time analysis: this will be useful
because the choice of locking has global side effects.
For example, disabling interrupts is often the most effi-
cient lock implementation, but it disables all preemptive
scheduling in the system for the duration of the critical
section. Thread locks, on the other hand, are less effi-
cient but have fewer side effects.

6 Real-Time Scheduling
The scheduling model that underlies CEE is based on ex-
tensions to the existing response-time analysis for fixed-
priority scheduling [28]. First, we make use of a model
developed by Saksena and Wang [23] that shows how
to map adesign model, consisting of a set of preemp-
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Tasks 1–4 Tasks 5–6 CPU
scenario WCET deadline WCET deadline utilization result of analysis
1 1 10 1 10 60% schedulable w/o preemption
2 1 10 10 100 60% schedulable with preemption

Task 5: 1 Task 5: 103 1 10
Task 6: 10 Task 6: 100

60% not schedulable

Figure 5: Three different scenarios for the environment hierarchy in Figure 4

Task6

AvrX
low

high

FIFO1

FIFO2

Task1
Task2
Task3
Task4

Task5

Figure 4: Scheduling hierarchy fragment for the real-time ex-
ample

tive tasks with real-time requirements, to animplemen-
tation modelthat usually contains significantly fewer
threads than the design model contained tasks. Sak-
sena and Wang’s contribution was to show how to per-
form this transformation without causing deadlines to be
missed. We believe that techniques like this are impor-
tant for embedded systems, where the memory overhead
of threads is significant, and in server systems, where the
context switches associated with threads can add signif-
icant CPU overhead. Furthermore, when synchronizing
tasks are mapped to the same thread, TSL gets a chance
to eliminate locks that have become superfluous.

We have extended Saksena and Wang’s scheduling
model to incorporatetask clusters, or collections of tasks
with real-time requirements that are designed to be mu-
tually non-preemptible. In other words, while Saksena
and Wang showed how introduce non-preemption into a
preemptive system as a performance optimization, we
showed how to make structured mixes of preemption
and non-preemption into a first-class part of the pro-
gramming model, while still meeting real-time dead-
lines [21]. We have implementedSPAK, a tool that can
check the schedulability of systems containing task clus-
ters; it serves as the real-time analysis tool for CEE. By
using task clusters it is easy to embed, for example, a
collection of TinyOS components in a real-time system
without (1) breaking the invariant that TinyOS tasks be
mutually non-preemptible, (2) making the system glob-
ally non-preemptible, or (3) sacrificing global schedula-
bility analysis.

We introduced task clusters in a previous paper [21].
In this paper we integrate task clusters into CEE’s hier-
archical scheduling model: Section 7.3 provides an ex-
ample showing how this works.

6.1 A Schedulability Example
Figure 4 is a subset of Figure 3, relabeled for easier dis-
cussion. Figure 5 shows three different scenarios for the
real-time properties of tasks 1–6. In all three scenarios,
tasks 1–4 have a worst-case execution time (WCET) of
1 ms and a period of 10 ms. In other words, each of tasks
1–4 may be invoked at most once every 10 ms, runs for
at most 1 ms, and must finish within 10 ms after starting
to run.

In scenario 1, tasks 5 and 6 each have WCET 1 ms
and period 10 ms. In this case the overall task set can be
shown to be schedulable with a non-preemptive sched-
uler. Informally, notice that even if all tasks become
ready at the same time (this is the worst case for many
scheduling scenarios) all components finish executing
6 ms later, meeting the 10 ms deadline of each compo-
nent. So scenario 1 does not require a preemptive sched-
uler at all — AvrX could be eliminated from the picture
in order to save memory and reduce processor overhead
that comes from preemptions.

In Scenario 2 of Figure 5, tasks 5 and 6 have a worst-
case execution time of 10 ms and run at most every
100 ms. This task set is not schedulable by a non-
preemptive scheduler. To see this, assume that task 5
is signaled and begins to run, and that task 1 begins to
run a short time later. By the time task 5 finishes exe-
cuting, 10 ms later, task 1 will have missed its deadline.
This task set, however, is schedulable with a preemptive
scheduler: since its utilization is below the rate mono-
tonic bound of 69%, it can be scheduled by a fixed prior-
ity scheduler [18] as long as scheduler FIFO1 is assigned
a higher priority than FIFO2.

Scenario 3 is not schedulable under any scheduling
discipline given the constraint that task 6 cannot be pre-
empted by task 5. The developers of a system containing
this task set have several options. All of the options re-
quire code to be restructured: there is simply no way
around this. First, the run-time of task 6 can be reduced
by optimizing it, or it might be possible to increase the
deadline of task 5 by adding buffering somewhere in the
system. Second, task 6 could be broken up into sev-
eral segments, each with a shorter worst-case execution
time. And finally, the mutual non-preemption relations
between tasks 5 and 6 could be broken — this would re-
quire that developers add locks to protect any resources
that tasks 5 and 6 share.
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Size (bytes) Latency (�s)
TinyOS Version Code Data+BSS Pin – Int Int – Task Task – Task
Original v0.6 5022 232 11.3 22.5 16.0
CEE baseline 5068 234 11.3 22.5 16.0
2-Level 6094 448 11.3 46.7 16.0 / 45.2
Ints in Thrds 6210 896 124 96.7 16.0

Figure 6: Static and dynamic overhead for TinyOS/AvrX configurations of the cntto rfm kernel

6.2 Generating Schedules
When system developers specify the priorities of real-
time tasks instead of specifying requirements such as pe-
riod, deadline, and worst-case execution time, the real-
time correctness of tasks cannot be verified. If priori-
ties are specified in addition to real-time requirements,
then the correctness of the priorities can be checked us-
ing a response time analysis such as the one inSPAK.
However, in this case there is no need to specify the
priorities: they can be generated by a suitable schedul-
ing algorithm. Similarly, when collections of tasks that
are designed to be mutually non-preemptible are given
to SPAK, it can check their schedulability and it can
also attempt to further reduce the number of preemptive
threads used to run the task set.

Performing real-time analysis of an entire system is
burdensome and, indeed, often unnecessary. Without
any special support fromSPAK, it is valid to simply ig-
nore the non-real-time parts of a system as long as the
ignored subsystems meet thenon-interferenceproperty:
they must not prevent the real-time part from meeting
its deadlines. This is the insight behind RTLinux [31],
which achieves non-interference by running at higher
priority than Linux, and by virtualizing Linux’s interrupt
handling subsystem. In practice, non-real-time parts of
the system usually contributeblocking termsto the real-
time analysis because they spend time running with in-
terrupts disabled or otherwise being non-preemptible.
SPAK uses previously developed techniques [24] to sup-
port analysis of systems with blocking terms.

7 Case Study: Applying CEE to TinyOS
TinyOS is easy to use and does a good job of meeting its
design goals. However, as sensor node hardware evolves
and as people attempt to use it in more diverse situations
(for example, the COTS-BOTS project at Berkeley [6]
is using TinyOS motes to control robots) it is likely that
changes will need to be made to its software architec-
ture. The goal of this section is to anticipate some of
these changes and to show that they can be accomplished
within the CEE framework with minimal disruption of
the TinyOS programming model.

We use a variety of metrics to evaluate the results.
Some, such as code and data size, time to respond to an
externally triggered interrupt, time to post a task from
an interrupt, and time to post a task from a task, are

shown in Figure 6. We discuss these numbers in sub-
sequent sections. Although the latency numbers in Fig-
ure 6 are averages over at least 100 measurements, we do
not report confidence intervals because the results were
extremely predictable: the variation between measure-
ments was below 100 ns in all cases.

All experiments for this section were run on “mica”
motes, based on the Atmel ATmega103 CPU [3], run-
ning at 4 MHz and with 4 KB of SRAM and 128 KB
of flash memory. These motes have a radio capable of
sending up to 50 Kbps. We used TinyOS version 0.6 and
AvrX version 2.6. Timing measurements were taken by
setting output pins on the AVR and observing the re-
sults using a Tektronics TDS784D digital oscilloscope
and an HP 16500A logic analyzer with an HP 16510B
module. While taking measurements we set sampling
rates to 25 MHz.

7.1 Reconstructing TinyOS
This experiment is the control, and it evaluates our abil-
ity to reconstruct a version of TinyOS that is essentially
identical to the one from Berkeley. We used CEE to gen-
erate thecnt to rfm kernel, which periodically sends
packets over the radio containing three-bit counter val-
ues. Its scheduling hierarchy is the one shown in Fig-
ure 2.

The results of this experiment can be seen by com-
paring the “original v0.6” and “CEE baseline” lines in
Figure 6. The kernel generated by CEE is slightly larger
because the CEE linker generates a few extra functions
that are not inlined away. There is no significant differ-
ence in the time taken by these two kernels to respond
to an externally triggered interrupt (Pin-Int), the time to
post a task from an interrupt (Int-Task), and the time to
post a task from a task (Task-Task). In fact, although
the code is arranged slightly differently, the instructions
generated for the schedulers of both kernels are exactly
the same.

7.2 Adding a Second Level of Deferred Pro-
cessing

Since tasks — the deferred processing mechanism
within TinyOS — are not preemptible, care must be
taken to avoid letting them run for too long. Specifically,
any tasks with response time requirements shorter than
the execution time of the longest-running task will not
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Figure 7: A CPU-intensive task run every 250 ms degrades net-
work throughput of a standard TinyOS kernel; a kernel with a
second level of deferred processing is not affected

always meet their deadlines. This kind of problem will
become more common as mote hardware becomes ca-
pable, for example, of running sophisticated algorithms
such as Fourier transforms and public key cryptography.
Our solution is to run the TinyOS task scheduler in an
AvrX thread, and to run a second instance of the TinyOS
task scheduler in a second, lower priority thread. This
is the environment hierarchy depicted in Figure 3. The
low-priority scheduler runsbackground tasksthat cannot
interfere with the response times of foreground tasks.

To evaluate the utility of this modified TinyOS envi-
ronment structure, we used existing TinyOS components
to create a “ping responder” kernel that replies to pack-
ets that it receives over the radio. To measure the perfor-
mance of the ping responder we had it ping-pong packets
with another mote. If the ping responder took more than
500 ms to reply, the sending node considered a packet
loss to have occurred and resent a packet. The average
baseline performance of this setup, with TinyOS kernels
created by the Berkeley toolchain, is 15.4 round-trips per
second.

We modeled a CPU-intensive task on the ping respon-
der by using a timer interrupt to post a task four times
per second. The experimental procedure was to vary
the run-time of the CPU-intensive task while measur-
ing ping throughput on a TinyOS kernel compiled by
the Berkeley toolchain, and a TinyOS/AvrX kernel with
a two-level scheduler created by CEE. Figure 7 shows
the results of this experiment: the CPU-intensive task
interferes with throughput when run by the foreground
scheduler, but not when run by a background sched-
uler. Confidence intervals are computed at 95%. We
do not have data points for standard TinyOS for 10 and
25 ms because the network subsystem crashed inexpli-
cably (we hope to have traced the cause of this problem
by the time of the final paper), or at 200 ms because no
packets were reliably returned at this point.

virtual

calc_crc
packet_sent
packet_received

AM_send_task

background1
background2

task cluster

sched

Figure 8: Scheduling hierarchy before schedulability analysis

The “2-Level” line of Figure 6 shows that including
AvrX adds about a kilobyte of code and 224 bytes of
data to TinyOS; this represents less than 1% of the flash
memory and less than 3% of the SRAM on the AT-
mega103. Posting a task from an interrupt takes about
24�s longer than in the standard TinyOS kernel since it
involves signaling a semaphore and switching to a thread
context. The two task-task numbers respectively indi-
cate the cost to post a task within the same scheduler,
and to post a task to the other scheduler.

7.3 Automatic Schedule Generation
The approach in the previous section uses manual pri-
ority assignment: developers must specify which sched-
uler each task runs on. This complicates the program-
ming model and is probably a poor design in the long
run because developers will often want to reuse existing
TinyOS components, and may not know how long tasks
specified in these components run at each priority.

An alternative solution to creating a background
scheduler is to useSPAK to generate a mapping of tasks
to schedulers. We accomplish this by using EDL to spec-
ify that TinyOS tasks are scheduled by a “virtual sched-
uler” as depicted in Figure 8. Tasks scheduled by a vir-
tual scheduler can belong to task clusters and have real-
time properties such as periods and worst-case execu-
tion times. The linking specification containing virtual
schedulers is run throughSPAK, which converts the vir-
tual scheduler into a number of non-preemptive sched-
ulers, each of which runs in a preemptive thread.SPAK’s
goal is to instantiate as few threads as possible. Ideally,
only a single thread is required in which case the pre-
emptive scheduler can be omitted.

Assigning real-time parameters to TinyOS tasks is
not always straightforward: the predominant scheduling
models, including the one we use, are based onperiodic
tasks that recur after a fixed time interval. However, the
periodic task model can be used to analyze non-periodic
tasks as long as a minimum time between arrivals of
the tasks can be found. Since the ping responder kernel
from the previous section attains at most about 15 pack-
ets per second, and because all of the tasks in that ker-
nel are related to packet processing, we assume that the
tasks have a 7 ms period. In this kernel task execution
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Figure 9: Effect of varying task requirements on the number of
threads required to permit all deadlines to be met

times are very deterministic, with AMsendtask run-
ning for about 150�s, calccrc running for 3160�s, and
packetsent running for 17�s. Since these tasks share
packet buffers, we put them into a task cluster to ensure
that they will not preempt each other in the generated
system.

To evaluate the automatic schedule generation, we
assume that the radio tasks will be running alongside
two CPU-intensive tasks with periods of 250 ms and
50 ms. We then vary the execution time requirement of
the CPU-intensive tasks. Figure 9 shows, for a variety
of task parameters, the smallest number of threads that
SPAK could instantiate while still guaranteeing that all
deadlines will be met. Blank space in the figure indi-
cates the region where no feasible schedule exists.

No lines exist in Figure 6 to describe the performance
of TinyOS kernels with schedules generated bySPAK.
This is because their performance is the same as the per-
formance of the two-level scheduler. The difference be-
tween the two approaches is in the programming model,
not in the generated code.

7.4 Making TinyOS Interrupts Preemptible
The motivation for our final TinyOS execution environ-
ment modification is a high-frequency pulse-width mod-
ulation (PWM) application. PWM is used to perform
fine-grained software control of power sent to devices
such as motors and speakers. The ATmega103 chips are
capable of running a hand-written interrupt handler up
to about 100 KHz, or every 10�s.

We found that interrupt handlers in common
TinyOS kernels sometimes disable interrupts for up to
about 80�s, preventing reliable PWM over 12.5 KHz
(1=80�s). Since AvrX disables interrupts for at most
about 15�s, we reasoned that running the TinyOS inter-
rupt handling code in high-priority AvrX threads would

low
calc_crc
packet_sent
packet_received

AM_send_task

FIFO1

AvrX

irq18
irq21

irq16

stub21
stub18

stub16

AVR
low

high

IRQs

high

Figure 10: Running TinyOS interrupt handlers in threads

be a good way to keep hardware interrupt latency low,
permitting PWM interrupts up to 66 KHz. In the mod-
ified kernels, an AvrX semaphore is used to provide
the atomicity properties between interrupt handlers that
were previously achieved by running with interrupts dis-
abled.

This arrangement of execution environments,
shown in Figure 10, is analogous to architectures
such as MERT [5], RTLinux [31], and TimeSys
Linux/GPL [27]. We expected it to just work, and in
fact it does work in TinyOS kernels that do not use the
radio. There were two problems running radio interrupt
handlers in threads. First, the radio on the motes is
software-driven at the bit level, and an interrupt handler
polls the radio every 50�s. However, the context switch
to and from an AvrX thread takes longer than 50�s.
Polling the radio less often would solve this problem
but prevents the motes from receiving radio packets
(they can still send). The second obstacle is that the
serial peripheral interface (SPI) interrupt for the radio
must be serviced within a handful of microseconds after
being asserted. Bits and, hence, packets are lost if this
deadline is missed. The time that it takes to dispatch an
AvrX thread is considerably longer than the deadline for
servicing this interrupt. This too can be worked around
by running the time-critical part of the interrupt handler,
which is only a handful of instructions, in the “real”
interrupt handler, and the rest in a thread.

The lesson to be learned from this example is that sys-
tems software can sometimes be too sensitive for func-
tionally transparent changes to execution environments
to produce a working system. Had we known about
the extremely short deadline of the SPI interrupt, and if
SPAK contained comprehensive support for system over-
heads like interrupt dispatch times and preemptive vs.
non-preemptive context switch times, it could have told
us that a naive application of the architecture in Fig-
ure 10 would not work.

The “ints in thrds” line of Figure 6 shows that it
takes 124�s to start running the TinyOS interrupt han-
dling code once an interrupt is asserted, and that it takes
96.7�s to start running a task from an interrupt. These
numbers are long because of a known problem in AvrX:
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in some circumstances it initiates a wasteful context
switch in the code to signal a semaphore.

8 Related Work
Ousterhout [20] claimed that threads are fundamentally
the wrong programming abstraction for most systems.
Burns and Wellings [7] advocate allowing developers to
pick from a variety of restricted scheduling models for
real-time ADA that have different levels of generality
and analyzability. Adya et al. [1] describe the conflict
between thread- and event-based programming within
their programming team and have developed a program-
ming style that allows the two styles to interact safely.
These works, and many others, provide arguments for
choosing one execution environment over another as
well as some techniques to let multiple environments co-
exist. However, they provide little help in building sys-
tems out of generic environments or in changing the set
of environments and their relationships to each other.

Many research systems have component-based soft-
ware and explicit software architectures, such as
Click [14], TinyOS [11], Koala [29], Ptolemy [17],
VEST [25], SEDA [30], and our own Knit [22]. Most of
these systems can also analyze properties of component
compositions and a few of them allow heterogeneous
component languages to be embedded inside them. Our
work differs in that we focus on reasoning about the hi-
erarchical scheduling relationships created by composi-
tions of environments, and on providing tools and tech-
niques that make it as easy as possible to create new
compositions of environments.

Concurrency languages/logics such as temporal
logic [15], CSP [12], and the pi-calculus [19] address
concurrency issues in a more general way than does
TSL. By limiting the domain of applicability and the ex-
pressive power of TSL, we hope to make it simpler for
systems programmers to use. It is difficult to imagine
typical systems programmers routinely writing temporal
logic specifications of their systems.

Needham and Lauer’s result about the duality of
process- and message-based operating systems [16] sug-
gests that TSL could have been based on resources
rather than on schedulers. In our experience, however,
a scheduler-centric view of systems software gets to the
heart of the concurrency and atomicity issues that we are
interested in.

Meta-compilation [9] is an extensible framework for
developing state-based checkers, and ESC [8] looks
for common programming errors such as null pointer
dereferences and out-of-bounds accesses. Flanagan and
Abadi [10] use types to detect race conditions and
Aldrich et al. [2] show how to eliminate synchronization
from Java programs when doing so does not affect cor-
rectness. These are all examples of lightweight formal

methods that use annotation and analysis to detect incor-
rect programs. Our TSL checker is similar in intent but,
because it focuses on analyzing scheduler hierarchies in-
stead of code, is complementary to these tools.

9 Conclusion
An important difference between systems software and
application code is that systems software executes in a
wider variety of execution environments. These envi-
ronments are both a source of difficulty when develop-
ing software and a source of opportunities for systems
software to meet its requirements. We have shown that
the composable execution environment model can help
tame the complexity of interacting environments. First,
we have described EDL: a language for specifying hi-
erarchical compositions of execution environments. We
have shown that EDL can include existing execution en-
vironments such as TinyOS. Second, we have described
TSL, the task / scheduler logic, which makes it possible
to reason about safety properties of environment hier-
archies specified in EDL. Third, we have shown how
to analyze the schedulability of environment hierarchies
that use a mix of preemptive and non-preemptive fixed
priority scheduling. And finally, we have shown that
CEE can be used to change the execution environment
structure of TinyOS kernels in useful ways.
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