
Appeared in 2003 IEEE Conference on Open Architectures and Network Programming Proceedings (OPENARCH 2003), pages 97–106, San Francisco, CA,
April 4–5, 2003.

Bees: A Secure, Resource-Controlled, Java-Based
Execution Environment

Tim Stack Eric Eide Jay Lepreau
University of Utah, School of Computing

50 South Central Campus Drive, Room 3190
Salt Lake City, Utah 84112–9205

{stack,eeide,lepreau}@cs.utah.edu http://www.cs.utah.edu/flux/

Abstract— Mobile code makes it possible for users to define
the processing and protocols used to communicate with a remote
node, while still allowing the remote administrator to set the
terms of interaction with that node. However, mobile code cannot
do anything useful without a rich execution environment, and no
administrator would install a rich environment that did not also
provide strict controls over the resources consumed and accessed
by the mobile code.

Based on our experience with ANTS, we have developed Bees,
an execution environment that provides better security, fine-
grained control over capsule propagation, simple composition of
active protocols, and a more flexible mechanism for interacting
with end-user programs. Bees’ security comes from a flexible
authentication and authorization mechanism, capability-based
access to privileged resources, and integration with our custom
virtual machine that provides isolation, termination, and resource
control. The enhancements to the mobile code environment make
it possible to compose a protocol with a number of “helper”
protocols. In addition, mobile code can now interact naturally
with end-user programs, making it possible to communicate with
legacy applications. We believe that these features offer significant
improvements over the ANTS execution environment and create
a more viable platform for active applications.

I. INTRODUCTION

Mobile code opens a door for users to execute custom
programs on remote machines, enabling such technologies
as active networks and mobile agents. In the case of active
networks, an active protocol provides a means for end nodes to
communicate in a customized fashion. For example, an active
multicast protocol can make application-specific decisions
about whether or not to propagate a packet. In the case of
agents, code is distributed to end points in order to digest
and act upon data available at a node. For instance, a stock
monitoring agent could migrate to a well-connected node
that receives market information, wait for a stock to hit a
certain mark, purchase a number of shares, and terminate.
Safely executing these protocols and agents is the job of
an execution environment: the software on a node that most
directly “contains” mobile code. As the stationary basis of a
mobile code system, an execution environment (EE) is tasked

This research was largely supported by the Defense Advanced Research
Projects Agency, monitored by the Air Force Research Laboratory, under
agreement F30602–99–1–0503. The U.S. Government is authorized to repro-
duce and distribute reprints for Governmental purposes notwithstanding any
copyright annotation hereon.

with providing an expressive programming interface to mobile
code, while at the same time protecting itself and other node
resources from accidental or intentional abuse.

One aspect of expressiveness that directly affects protection
is the amount of pressure that mobile code can exert on
a node’s resources. Many active network systems, such as
PLAN [1] and SNAP [2], restrict the resources consumed by a
protocol to those required to forward a single packet. We refer
to these systems as providing “lightweight” environments. This
model is very similar to existing IP networks in which all
the parties and their packets are treated equally. As a result,
accounting and resource control covering all packets in a
flow can be avoided. This simplicity limits the possible set
of protocols, however, since resources can only be consumed
while executing the forwarding loop. At the other end of
the spectrum are the “heavyweight” environments that allow
mobile code to establish long-running programs that perform
tasks independent of packet processing. The heavyweight
option affords a greater amount of flexibility, at the cost
of the added complexity required to perform the necessary
authentication, protection, accounting, and resource control.
Mobile agent environments use this model, and it is also the
target of our work.

Our research in active networking began with Janos [3],
the Java-oriented Active Network Operating System. The goal
of the Janos project was to produce a resource-controlled
operating system that could safely execute untrusted Java
byte code. To leverage existing work, we chose the Active
Network Transport System (ANTS) [4] to provide the execution
environment for mobile code.

ANTS was envisioned as a lightweight environment that
would execute Java code produced by anyone. Unfortunately,
as the Janos project progressed, it became clear to us that the
desires of our users (both internal and external) were not a
good match with the intended uses of ANTS. For example,
many users wanted to give special privileges to their active
protocols. However, even privileges as simple as opening a file
could not be allowed because there was no way to authenticate
the mobile code making a request. The missing security
features of ANTS were especially detrimental in the context of
Janos: they prevented us from taking advantage of the resource
controls that Janos provides. The lack of authentication and

c© 2003 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or
for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be
obtained from the IEEE.

http://www.openarch.org/
mailto:stack@cs.utah.edu
mailto:eeide@cs.utah.edu
mailto:lepreau@cs.utah.edu
http://www.cs.utah.edu/flux/


authorization services meant that there was no way for users
to acquire additional CPU or network resources, resulting in
all network flows being treated equally. Performance was also
an issue; for example, ANTS always added an extra layer of
routing to any packet transmission. Maintaining ANTS “in the
field” exposed problems with the division of responsibilities
between end-user programs and the active protocols. Finally,
some of the applications we wished to deploy required the
extra flexibility inherent in heavyweight execution environ-
ments — support that was missing in ANTS. Ultimately, Janos
with ANTS simply could not meet the requirements of the
applications we wished to deploy.

As a result of our experience, we set a goal to produce a
more flexible Java-based execution environment that provided
the mechanisms needed to deploy a secure and usable system.
Starting with the simple ANTS APIs and programming model,
we addressed the problems we had encountered in authoring
protocols and administering active nodes. Our new system fills
in the missing security features by employing a capability-
based security model. Since Java is a major component of
Janos, its inherent type safety eased the implementation of
such a system. On top of capabilities, a flexible authentication
and authorization methodology was defined, making it pos-
sible for downloaded code to gain access to any number of
capabilities. Cryptography-based protections are not built into
the core of the system: instead, the cryptographic code and
objects are made available to the mobile code to use as needed.
Protocols are able to use a simple form of composition, so
that a primary protocol can easily make use of the services
provided by a “helper.” Finally, end-user applications are able
to interact naturally with an active protocol and not have to
deal with untrusted Java code.

We called the resulting system Bees. Overall, Bees foregoes
built-in functionality in order to create a dynamic and recon-
figurable environment. Atop the basic core, Bees provides
services that an administrator can install to facilitate node
discovery, authentication, and authorization. The design of
the Bees-enabled Janos system builds on concepts previously
explored by others, including the ALIEN architecture [5] and
SANE environment [6] for structuring secure active networking
systems in layers, the RCANE environment [7] for resource
control, and the KaffeOS system [8] for managing multiple
process-like entities within the context of a single virtual
machine. A primary contribution of Bees is to implement
these concepts in the context of an ANTS-like execution
environment and make them available to users in combination
with strong security (Section III) and novel features for the
propagation (Section IV), assembly (Section V), and endpoint
connection (Section VI) of Java-based active protocols. We
demonstrate Bees with an example application (Section VII)
and present initial performance results (Section VIII). In sum,
Bees offers significant improvements over the ANTS execution
environment by providing new and necessary features to
users and administrators while also retaining much of ANTS’
programming model and simplicity.

II. BACKGROUND AND DESIGN OVERVIEW

In this section we give some background followed by a high-
level overview of the major components of the Bees runtime.

A. ANTS

Bees is closely related to the Active Network Transport
System (ANTS) [4]. ANTS was developed as a “lightweight”
environment for active protocol code written in Java and found
great success in the active network community. The runtime
introduced the notion of an active packet, or capsule. A capsule
is made up of user data and a unique identifier that refers
to a class that must be used to process the capsule. When
a node receives a capsule with an unknown identifier, ANTS

downloads the appropriate bundle of capsule classes, called a
protocol, from the previous hop. Once a capsule and its code
have reached a node, the protocol can place node-resident state
in a cache and perform whatever basic computation is needed
to forward the packet. Security is limited to a simple access
control list for locally started protocols, restricted access to
Java classes, and the general assurance that Java code is too
slow to saturate a network link.

However, it could be argued that ANTS presents an envi-
ronment to mobile code that might be classified as a “mid-
dleweight.” The system shares many of the traits of lightweight
architectures, but also allows for node-resident state as seen in
a heavyweight architecture. Unfortunately, this configuration
seems vulnerable to an effect similar to thrashing in virtual
memory systems, which we refer to as “protocol thrashing.” A
node experiences thrashing whenever the number of protocols
being used exceeds the number of protocols it can support at
any one time. While this does not adversely affect the node
itself, any legitimate protocols experience a severe degradation
of performance. This problem could be avoided by correlating
resource usage to a single packet. As a result, the resources
in use at the node by the protocol are the same before
and after processing. This problem could be addressed by
reworking ANTS towards one end of the spectrum or the
other. Creating a lightweight ANTS would involve eliminating
any possibilities for node-resident state being created, such
as objects referenced by static fields. With these changes, the
node would only have to pay the constant price of caching
protocol code. However, except for offering a familiar Java-
based environment to the programmer, there would be no
real benefit over the PLAN and SNAP systems [1], [2]. The
alternative is an environment that follows the heavyweight
model, which is the approach we have taken with Bees.

B. Janos

Controlling the resources consumed by mobile code is a
challenge faced by all execution environments. In a lightweight
environment, resources are only consumed while forwarding
a packet. The forwarding loop is dynamically limited or
statically analyzed to control CPU usage. Memory is limited
to the buffer holding the packet and some scratch space. In
contrast, a heavyweight environment allows mobile code to
consume resources at an unknown rate for an unknown length

2



of time. As a result, the environment must isolate the effects
of an active protocol’s resource usage and provide a method
for terminating uncooperative protocols.

In the case of Bees, resource controls and asynchronous
termination are built upon the facilities provided by Janos [3],
the Java-oriented Active Network Operating System. Janos, in
particular the JanosVM [9], provides a means to create isolated
Java processes that coexist within a single virtual machine.
The JanosVM accomplishes this by leveraging the type safety
inherent in the Java language to prevent one process from
gaining unauthorized access to objects in another. Thus, the
virtual machine can support multiple processes without the
need for hardware enforcement. Furthermore, each process
maintains separate garbage collection and finalizer threads
to properly account for the use of these language services.
Finally, a combination of the OSKit [10], Moab [11] (our
NodeOS implementation), and the JanosVM provides controls
over the amount memory, CPU, and network bandwidth con-
sumed by each Java process.

In addition to its roles in process isolation and resource con-
trol, the JanosVM provides the ability to share Java classes and
asynchronously terminate Java processes. The class sharing
ability is derived from Tullmann’s Alta [12] Java operating
system and allows for well-formed groups of classes to be
exported from one process and imported into several others.
Thus, Bees is able to reduce its total memory footprint by
sharing its core classes with the processes housing the mobile
code. In the JanosVM, process termination follows the rules
laid down by Back’s “red line” paper [13] and its use in
KaffeOS [8], from which the JanosVM is derived. The “red
line” is needed because the combination of class sharing and
type safety makes it possible for user threads to execute
system code that subsequently accesses shared system objects.
Because of this possibility, system code must communicate to
the virtual machine that asynchronous termination of a thread
must be delayed until it has finished manipulating the shared
object(s). Without this communication, the termination of an
active protocol executing system code could result in critical
objects being left in a damaged state, thus undermining the
integrity of the entire system. Therefore, a “red line” is drawn
between user processes and the kernel, and the crossing of this
line serves as the signal to the JanosVM to delay termination
of a protocol thread.

Bees receives an active protocol by starting a new Java
process. After this point, any operations performed by or
on behalf of the protocol are executed within the process
and be properly accounted. In addition, to enforce resource
management or security policies, Bees can reliably and asyn-
chronously terminate protocols, and reclaim their resources.

C. Bees Overview

A Bees-based active node consists of end-user applications
at the top, services that provide basic assistance when inter-
acting with neighboring nodes, the Bees runtime, and finally
the JanosVM. The application is any end-user program that
wishes to use an active protocol to perform some task. For

Companion
IPC

Application

Protocol
Session
Capsule

Fig. 1

A BEES PROTOCOL

example, wget could use “active HTTP” to retrieve a file.
Bees services provide facilities that are not a fixed part of the
Bees runtime: example services are node discovery and the
mobile code authentication and authorization agent, or “Auth
Agent.” Underlying the services, the Bees runtime provides
the common ground on which the mobile code and the above
systems interact. Finally, the JanosVM is used to isolate
the instances of active protocols and control their resource
consumption.

The active protocols that a Bees node can execute are
made up of the Java class files and any extra data needed
by the implementation. The structure of the active protocols
is shown in Figure 1 and is very similar to the ANTS design. A
capsule is a network packet that is bound to a capsule class.
A protocol is used to define the set of capsule classes, any
support classes, and any extra data used by the protocol. Unlike
ANTS, however, a protocol can contain two other elements.
First, the protocol may add multiple helper protocols, called
companions, which provide services for the main protocol. An
example companion would be the system-provided protocol
used to download active protocols from neighboring nodes.
Next, the protocol can add a session class that acts as
an adapter for translating end-user application requests into
protocol activity. These extra elements and their benefits are
described in detail in later sections.

As an example, we describe the components of a ping proto-
col that functions over a single hop. The LivenessProtocol

is a service provided by Bees that is used to probe neighbor-
ing nodes to ensure they are still responsive. The protocol
defines one capsule type, PokeCapsule, which is used to
ping a neighbor. The packet handling code for this capsule
simply checks a boolean value in the payload and takes one
of two actions. If the boolean indicates a probe request,
it is flipped and the capsule is sent back to the source.
Otherwise, the capsule is a reply to a probe, indicating that
the neighbor is still functioning and its timeout should be
refreshed. In case a neighbor times out, the protocol will use its
LivenessSession object to send a message to any registered
applications informing them of the death of the neighbor.

3



Flow Tuple

HealthSession

HealthProtocol

NodeHealthCapsule

PathfinderProtocol

ConfigurationCapsule

PathfinderSession

<<auth−data>>

User=Joe

Sig=fhsd078vafh

package=kaffe.sensors

<<companion>> <<companion>>

DLProtocol

CodeRequestCapsule

CodeResponseCapsule

DLProtocolSession

<<primary−protocol>>

Fig. 2

A FLOW TUPLE

The LivenessProtocol also adds a configuration file and
an extra class used to process this file. However, it does not
contain any companions since it is expected to be pre-installed
on the nodes. Hence, it does not make use of the built-in
download protocol.

Active protocols by themselves do not constitute a mobile
unit of code. The hierarchy of protocols must be combined
with authentication data — typically, a digital signature —
and serialized to form a flow tuple. The flow tuple can then
be used by Bees to uniquely describe a flow of capsules in
the network. For example, when a node receives an unknown
capsule it will query the previous hop to map the unknown
capsule identifier to the appropriate flow tuple. The Auth
Agent can then use the authentication data to perform various
checks before downloading the protocol. Because the tuple is
basically a free-form collection of byte arrays, it can be used
in a number of ways to communicate with the Auth Agent.
For instance, a tuple could describe a set of privileges that
should be given to the protocol when it is started on the node.

As an example, Figure 2 shows the structure of a tuple that
describes the “HealthProtocol” as deployed by “Joe.” The left
side of the tree shows the hierarchy of protocols and their
internal structure. This hierarchy is encoded in the tuple as
the MD5 hashes of the class files or data chunks; the actual
classes and data are not included. On the right side is Joe’s
authentication and authorization data. In this example, Joe
identifies himself, requests that the protocol have access to
the classes in the kaffe.sensors package, and provides a
signature covering this data and the protocols. Now, when the
tuple is presented to an Auth Agent on a node, it will check
to see if Joe is a known principal and use the public key to
verify the signature. If the signature is valid, the agent will
check if Joe has access to the kaffe.sensors package, and
if so, subsequently pass the capability to the protocol.

III. SECURITY

The security of a Bees node depends on a properly written
Authentication and Authorization Agent, or Auth Agent. The
Auth Agent is a node’s first line of defense: it decides what

protocols will and will not be started on the node. In addition,
it will also make the decisions about what privileges the
protocol will have while it is running on the node. Because
much of this work is policy-specific and could involve any
number of custom protocols, the agent is not a fixed part of the
Bees infrastructure. However, we do provide a base for writing
such applications, as well as two simple authenticators. The
more interesting of the two is the “source based” agent that
only allows flow tuples that match a known user and public
key. In addition, the agent can grant any subset of the user’s
privileges to flows that have a valid signature.

Starting a new active protocol and its companions on a
node is an operation carried out by Bees using the JanosVM.
The hierarchy of protocols will be mapped to a JanosVM
team: a process-like entity within the virtual machine, with
its own heap, name space, garbage collector threads, and other
resources. This mapping isolates the mobile code’s name space
to its own classes and those shared Bees and Java system
classes. The mapping also serves to control and account for
the resource usage of the protocols and defines the unit at
which termination can occur.

Privileges in Bees are based on capabilities [14]. A capabil-
ity is a Java object that provides access to a resource. There-
fore, all who possess a reference to the object have access to
the resource. For example, if the Auth Agent passes a capa-
bility to a file to an active protocol, it could read the contents
of the file. Because Java offers type safety and fine grained
control over what methods and fields in an object are visible, it
is trivial to implement such a mechanism. Unfortunately, the
standard Java runtime does not follow the capability-based
security model. Thus, any classes that can create privileged
objects, such as java.io.FileInputStream, need to be
hidden and Bees alternative versions introduced.

Transferring capabilities between entities on a node is done
using envelopes. These envelopes provide a means for wrap-
ping, and optionally sealing, a capability for transfer to another
JanosVM process running on the node. Sealing an envelope
makes it impossible to open unless the code also possesses the
appropriate unsealer. For example, instead of passing all the
user’s capabilities to an Auth Agent, the administrator could
pass sealed envelopes that could only be opened by a signature
separately sent to the newly created team in a capsule. As a
result, the Auth Agent has less authority and requires less trust
from the users and administrator.

Cryptographic mechanisms play a small role in the core
of the Bees environment. As stated earlier, this is done to
avoid creating dependencies on support protocols that should
be easily replaceable. The system makes use of MD5 hashes
to verify that downloaded code matches the hashes presented
in the flow tuple. In addition, mobile code can request hop-
by-hop integrity checks be performed for a given neighbor
node and symmetric key. Otherwise, the active protocol has
the choice of whether or not to use the cryptographic primitives
available in the Java Cryptography Extension (JCE) [15]. For
example, a protocol could sign capsule data generated at a
node using the node’s private key capability. Of course, the

4



key capability is designed to not leak the key material and the
signer object will automatically prepend a hash of the flow
tuple to any signed data to bind the signature to that tuple.

IV. CAPSULE PROPAGATION

Communication between nodes in a Bees-based active net-
work is done by the active protocol propagating capsules
from the source to the destination node or nodes. Unbounded
propagation of capsules by malicious or buggy code could
unnecessarily burden the network; on the other hand, placing
arbitrary limits on what operations an active protocol can
perform merely shifts the burden onto the protocol author.
Therefore, we must first define what constitutes a valid se-
quence of events for propagating a capsule before deciding
where and when to draw the line.

Because Bees follows the “heavyweight” model, mobile
code expects to be able to perform whatever operations it
wants with the resources it was given by the Auth Agent.
However, using network bandwidth affects not only the local
node, but also the destination node and the network infras-
tructure in between. Therefore, the use of this resource must
be dependent on some external stimulus, such as the receipt
of a capsule or a timer event. Once this “authorization event”
has been received, the active protocol is then free to use a
bounded amount of network bandwidth.

ANTS implemented the above semantics through a Time-
To-Live (TTL) field in the header of every packet. The receipt
of a capsule authorized a protocol to reuse the capsule by
sending it to a neighbor or transforming it into another capsule
type. When one of these operations is performed, the capsule’s
TTL field is decremented and checked for a value greater than
zero. Unfortunately, this method does not convey the actual
propagation characteristics of the capsule type, and requires
the system to believe a value in the header that is hard to
verify. In [16], Wetherall makes the argument that the TTL

is an insufficient means of bounding resource consumption in
an active network: in ANTS, a malicious protocol can use a
capsule with a high TTL to generate and forward a very large
number of “child” capsules. Finally, the simple TTL method
complicates mobile code that does not follow the typical
routing protocol model; such “atypical” applications include
those based on token rings and agents that send capsules based
on timer events.

The Bees system maintains the “decrement until zero”
style of the TTL; however, it explicitly enumerates the set of
operations in which a type of capsule can be used and the set
of “authorization events” that refresh the limits. Unlike a per-
packet TTL, the limits attached to a capsule are defined in the
protocol description by the protocol author and are not taken
from the packet. These limits are then bounded by a node’s
Auth Agent since they are part of the flow tuple. For example,
a user with the appropriate privileges could install a protocol
that generated thousands of capsules from a single one.

The current set of authorization events are:

• Protocol Initialization: the system generates a “boot” cap-
sule that is evaluated after a protocol has been installed.

• Timer: a periodic timer event refreshes the capsule’s
limits. The minimum interval is specified in the protocol
description. The description also specifies the global
number of capsules that can be refreshed at any time.

• Capsule Receipt: a capsule was received from another
node in the network. This event also sets the “source
neighbor” value in the capsule so the system can differ-
entiate between forwarding to a new node or back to the
source.

• Application Request: the protocol session received a
request for some action.

These events make the capsule available for use in one of
the following operations:

• Initial: the capsule object is being forwarded to a neigh-
bor node and was not originally received from a neighbor.

• Forward: the capsule object is being forwarded to a
neighbor node that is different from the original source
of the capsule.

• Return: the capsule object is being forwarded to the
original source of the capsule.

• Neighborhood: the capsule object is being forwarded to a
set of neighbors. This value is used when implementing
a multicast protocol.

• Group: the capsule object is being added to a group of
capsules that can then be sent to a neighbor.

• Transform: the capsule object is being transformed into
another capsule type. Any source neighbor attached to
this capsule will be passed on to the other capsule object.
The limits for other transformations are also passed,
thereby disallowing unbounded cycles.

As an example, a ping protocol would set the “return”
limit of its PingCapsule type to one. When the protocol
receives a ping capsule, the capsule object’s limits will be
refreshed. Upon forwarding of the capsule back to the source,
the “return” limit will be decremented. Any additional attempts
to send the capsule would be disallowed since all of its limits
are at zero.

Access to the above operations are mediated through neigh-
bor capabilities. A neighbor is used to send and receive
capsules from a directly connected node. Furthermore, neigh-
bors can be grouped together into a neighborhood, making it
possible to limit operations like multicast, regardless of the
number of destination neighbors.

Currently, all of the limits are reset when a capsule is
refreshed from an event. However, this model could be made
more explicit by resetting individual limits based on the type of
event, thus providing an even clearer picture of the protocol’s
intentions.

Capsule propagation can also be limited by simply not
allowing a protocol to send capsules to a neighbor. Because
neighbors are capabilities in Bees, restricting the spread of
capsules and their mobile code is a trivial matter. For example,
the Auth Agent on an edge router can contain a protocol to
the internal network by denying it neighbors on the outside. In
addition, the agent could decide to revoke a neighbor from a

5



misbehaving or buggy protocol, perhaps through some secure
communication with that neighbor’s Auth Agent.

V. COMPANION PROTOCOLS

End-user programs use active protocols to accomplish their
tasks and, in turn, active protocols need to use other protocols
to accomplish their tasks. For example, an active protocol uses
the system-provided DLProtocol to transfer itself between
nodes. This form of composition is similar to groups of non-
active network protocols, like IP, ARP, and BGP. In Bees, these
helper or companion protocols are defined by the system or
protocol authors. Protocols are then paired with companions
to take advantage of their services.

Pairing a companion with a protocol results in the protocol
gaining access to the companion’s session object. The protocol
can then use the session to make requests of the protocol
or simply query it for information the companion generated
independently. For example, Bees includes a user-level rout-
ing companion, called Pathfinder. This protocol continually
updates routing information that can then be used by the main
protocol when routing its capsules. This separation of tasks
also makes it simple to select what companion protocols will
and will not communicate with a neighbor. For instance, a
protocol could tell its code-downloading companion not to
communicate with a specific neighbor, thereby preventing the
protocol itself from being downloaded to that neighboring
node. In addition, this separation also makes it simple to
use different companions implementing a common interface
depending on which implementation is more appropriate for a
given situation.

From the companion’s point of view, pairing with a protocol
results in the companion’s capsules being coupled with the
capsules or the byte arrays that make up the other protocol.
This part of the pairing process also decides what extra hashes
will be used to compute the companion capsule’s identifier so
it will be unique in the network. In the case of the system
downloader, it will pair off with the byte arrays so that its
request and response capsules match a particular flow and the
bits to be transferred.

However, our experience with ANTS showed that mixing
the identifiers is not always desirable and using two separate
identifiers has some useful properties. When a capsule with
an unknown identifier is received by an ANTS or Bees system,
it must send back a request to map the capsule identifier to
a flow tuple. This process is implemented by a system flow
that sends a mapping request capsule with the identifier of the
unknown capsule. The request is then dispatched to the user
flow on the destination node. Finally, the reply is received by
the requesting node and used to download more information
about the flow. Because the identifier for the mapping request
capsule and the unknown capsule were kept separate, the reply
was handled naturally by the system flow. In addition, by
dispatching the request directly to the user flow, the resources
used in processing the request were properly accounted for.
The most striking part of these events is that two distinct
flows were able to exchange capsules, an operation normally

denied by the Bees model. In this case, however, the cross-
flow communication is allowed because the capsules are from
the same protocol. The difference is that the protocol is a
companion in one flow and is the top protocol in the other.
Clearly, the ability to cross flow boundaries with a companion
is a powerful and dangerous abstraction. Therefore, these flow-
independent companions are currently restricted to system
flows and companions.

Because a companion is also a protocol, it can have its own
set of companions. For instance, the Pathfinder companion
uses the system downloader since it is a user protocol and
also needs to be transferred.

Besides pairing with a protocol, a companion can also be
associated with a flow tuple. In this case the capsules are paired
with the description’s hash. Currently, this pairing is only used
by Auth Agents to download an unknown flow tuple.

VI. PROTOCOL SESSION

Instances of active protocols communicate with each other
using capsules; however, there is also a need to communicate
with end-user programs. Since Bees considers all mobile code
to be hostile, there is a strict separation between end-user
programs and the protocols they employ. Therefore, simply
loading the mobile code into the application is not an option.
In addition, applications not written in Java should not be
excluded from interacting with mobile code. Our solution to
this problem is to introduce a protocol session object that
exchanges plain packets with any interested applications. For
example, a Web browser that uses “active HTTP” would send
a GET request to the session object, which would cause the
active protocol to generate zero or more capsules to satisfy
the request. Notice that the protocol does not present the
application with an interface for sending and receiving specific
capsules. Instead, the protocol presents an abstract interface
suitable for use by end-user programs. This approach is similar
to socket interfaces where a single write call can cause
several TCP segments to be sent.

The protocol session also presents an opportunity for appli-
cations to download active protocols from a protocol server.
This approach has the effect of insulating applications from
changes to the internals of the mobile code since they must
only understand the less volatile session interface. For exam-
ple, a freshly booted node can download some active config-
uration protocol from the local router instead of requiring the
latest protocol be installed on the node.

VII. EXAMPLE APPLICATION

As a demonstration of the Bees system, we have imple-
mented a hardware health monitoring agent. The goal of this
agent is to spread across a network of PCs, continually read
the motherboards’ sensor information (e.g., temperature, fan
speed, and power supply voltage), and report this data back
to a central server. This application was chosen because it
takes advantage of many of the facilities provided by Bees, has
an existing counterpart in legacy style systems (healthd [17]),

6



and is more substantial than the standard ping and multicast
protocols.

A health agent starts its life on a server node that wishes to
receive the health reports. Determining information for routing
capsules and spreading the agent to the surrounding nodes
is performed by the Pathfinder companion protocol described
previously (Section V). Pathfinder executes a spanning tree
algorithm using the server as the root of the tree. As a con-
sequence of Pathfinder’s periodic broadcasts of configuration
capsules to discover the tree, the other nodes on the network
download and install the health agent. Once installed on a
node, the agent begins sampling the sensors and sending
report capsules toward the server. The use of a companion
protocol here relieves the health agent from the burden of
determining a route to the server for report packets generated
at the edge nodes. In addition, separating out the Pathfinder
protocol makes it trivial to reuse for agents that have a similar
traffic model.

Because the agent must gain access to a privileged operation
— reading the motherboard sensors — the agent must have
a flow tuple with the appropriate credentials. In this case, the
tuple would be used to request the following capabilities from
each node’s Auth Agent:

• the kaffe.sensors package and the classes within;
• the node’s private key, used to sign health reports; and
• a clock to timestamp health reports.
These capabilities are passed to the agent when it is first

started on a node. However, it is possible for an agent to
spawn onto a node where it does not have these privileges, in
which case it will simply act as a router for any other nodes.
Fortunately, the inherent dynamic linking properties of Java
make it trivial for the agent to continue despite the missing
kaffe.sensors classes.

Agent termination in the network is designed to work from
the inside out. Terminating the agent on the server node will
cause the other health agents in the network to time out and
self-terminate. This self-destruct mechanism works because
Pathfinder can directly interact with the system-provided com-
panion protocol used to deal with unknown capsules. In this
case, Pathfinder tells the companion to ignore requests from
the node representing the next hop to the server. Therefore,
the agent will not continually respawn onto other nodes in the
network, and the existing agents will time out since they have
nowhere to send their reports.

As stated earlier, one of the reasons for developing a health
monitoring agent was the ability to compare it against a non-
active counterpart, the FreeBSD Healthd daemon [17]. Healthd
is a good example of the issues that come up with a non-active
system:

• A node’s sensor data is only available to other machines
on the network via a specific protocol.

• Changes to the protocol’s behavior must be redistributed
manually, requiring the intervention of a system admin-
istrator.

• The daemon and protocol are extremely simple, yet it has
been exploited through a buffer overflow [17].

TABLE I

ZERO-BYTE PAYLOAD RELAYING USING UDP

Implementation Packets/Second
C 48255
Java 24882
Java NodeOS 16164
Bees 11018
ANTS 6761

• The daemon generally runs with more privileges than it
requires to perform its function.

• Access to the protocol can only be restricted to certain
hosts in the network using TCP wrappers [18]. There is
no authentication of requesting entities.

Another reason for choosing this application is that it takes
advantage of Bees features that are not found in ANTS. The
ability to leave mobile code running for weeks and months at
a time, like a typical daemon, is a benefit of the “heavyweight”
model. Bees’ changes to capsule propagation limits makes it
possible to generate packets based on timer events, instead
of just packet receipt. Furthermore, since the propagation
behavior is visible to the Auth Agent, it can set the upper and
lower bounds for system parameters such as timer intervals.
As already stated, the agent makes use of the companion
protocols, such as Pathfinder, to separate concerns and gain
control over the behavior of the system-provided downloader
protocols. The addition of capabilities and the Auth Agent
make it possible to gain access to a privileged resource, i.e.,
the sensors. Finally, the core health agent protocol is abstracted
away by the protocol session, reducing the complexity of
end-user programs that generate reports from the information
gathered by the agent.

VIII. PERFORMANCE

We measured the performance of Bees using the Utah
Emulab [19] facility. The test application was a simple packet
relayer implemented for each layer of abstraction provided
by the overall Janos system architecture. To enable direct
comparison with the current release of ANTS [20], which relies
on an underlying network stack for packet routing, we ran our
tests atop Linux rather than atop a “bare hardware” configu-
ration (that would include Moab [11], our C implementation
of the NodeOS). The implementations of our test application
included a C program using Linux system calls, a Java
program running within the JanosVM and using the standard
Java socket APIs, a program using our Java implementation
of the NodeOS [21], a protocol written for Bees, and a
protocol written for ANTS. The test setup was three nodes:
a packet source, the relayer, and the destination. Each node
consists of an 850 MHz Pentium III processor running RedHat
Linux 7.1, JanosVM version 0.9.0, and Bees version 0.5.0 or
ANTS version 2.0.4.

Table I presents the relay rate for an empty UDP packet
or capsule in the five configurations. The difference between

7



the Java NodeOS and the regular Java client is the handoff
needed to pass the packet to a user thread. This handoff is
used to properly account for any packet processing time and,
unfortunately, contributes to the slowdown in Java. Because
ANTS and Bees do not set upper limits on the time taken to
forward a packet, they must use the handoff to prevent proto-
cols from denying service to other protocols. The difference
between ANTS and Bees is partially due to the removal of the
default routing lookup performed by ANTS. The rest is due to
Bees allowing capsule classes to recycle their capsule objects,
resulting in less garbage collection.

IX. RELATED WORK

As described earlier, the design and development of Bees
was motivated by our experiences in using ANTS, the Active
Network Transport System by Wetherall et al. [4], as the
execution environment for mobile code in our Janos active
networking project [3]. Bees improves upon the widely used
ANTS model in the particular areas of flexible protocol as-
sembly and cooperation, security, and resource management.
Other researchers have explored these concerns as well, both
inside and outside the ANTS framework.

For instance, the focus of the CANEs system by Bhattachar-
jee [22] is on the modular assembly of network services
such as active reliable multicast [23]. In CANEs, a service
is composed by adding customized code (called “injected
programs”) at predetermined points in a underlying generic
service. Depending on the node policy, the set of under-
lying programs may be fixed or variable. The underlying
and injected programs communicate via shared variables. The
model for protocol composition in Bees is similar, but perhaps
more flexible: a Bees protocol attaches (arbitrary) companion
protocols to itself dynamically, and communication takes place
through protocol session Java objects. Bees protocol assembly
is therefore less structured than that in CANEs — there is
no fixed, two-level notion of an “underlying” program being
extended at well-defined points by “injected” programs. On
the other hand, Bees protocol communication can be more
structured, through the use of OO abstractions.

In the area of security, Murphy et al. created SANTS [24],
a version of ANTS that incorporates additional features for
strong security. Like SANTS, our Bees system is careful to
protect itself from mobile code; Bees further constrains mobile
code through the use of capabilities and capability envelopes.
Like SANTS, Bees offers cryptographic services to applications
via the Java Cryptographic Extension [15]. Unlike SANTS,
however, Bees does not provide authentication as a core
service. Instead, authentication and authorization decisions in
Bees are made by a separate agent. This software organization
makes it easier for node administrators to tailor their systems
to their needs, e.g., to favor ease of use in “friendly” settings,
or to enforce strict policies in production systems. The default
Bees Auth Agent does not use X.509v3 certificates or DNSSEC

storage of credentials, but we may add these features in the
future.

Security is also the primary focus of SANE, a non-ANTS-
based execution environment developed by Alexander et al. [6]
as part of the SwitchWare project. SANE addresses safety and
security “from the ground up”: based on a minimal set of
assumptions, SANE can securely bootstrap an active node,
establish trusted relationships with network peers, and load
the higher-level parts of its execution environment for mobile
code. Secure bootstrapping of Bees is outside the scope of
our work, but the higher-level attributes of SANE are similar
to parts of Bees. SANE uses a type-safe language and “module
thinning” to control the functions that are made available to
mobile code; Bees uses Java’s type safety and name space
controls to achieve similar results. (When finer-grain control
is required, Bees manages specific resources such as handles to
network neighbors using capabilities.) SANE and Bees are also
similar in that both focus on ensuring the safety and security
of individual nodes through controlled access to resources
(“node safety”), but do not guarantee the safe and secure use
of network resources as a whole (“network safety”) [25].

Active networking systems that focus on language-based
resource control include PLAN [1], SNAP [2], and PLAN-P [26].
By restricting the language for expressing mobile programs,
these systems can enforce strong resource controls over mobile
code; these guarantees, however, may come at a cost in
expressivity (some useful programs cannot be written) and pro-
grammer productivity (the need to learn special languages). In
contrast to these systems, Bees allows mobile programs to be
written in Java. Memory, CPU, and network resource controls
in Bees are provided with the help of the JanosVM [9], which
provides multiple process-like entities within the context of a
single virtual machine. (The JanosVM can in turn utilize the
resource management features of the Janos NodeOS, called
Moab [11].) The JanosVM is derived from KaffeOS [8],
developed by Back et al., but tailored for use in an active
network setting.

The lower layers of Janos are comparable to those of the
RCANE system developed earlier by Menage [7]. They share
many of the same design traits with the differences lying
primarily in the location of components and their implemen-
tation. Instead of Java, RCANE uses the O’Caml language
to provide portability and isolation of processes in a single
address space. The RCANE loader, which is derived from the
ALIEN [5] architecture, is similar to the Java class loader used
by Bees to restrict the name spaces available to mobile code.
The functionality of the “Core Switchlet” in ALIEN is split
across the NodeOS and the Auth Agent in a Janos-based Bees
system. The NodeOS provides the mechanisms for sending and
receiving packets while the Auth Agent implements the policy
using capabilities to the NodeOS services. Resource controls
for RCANE are provided by the Nemesis operating system,
while Janos uses a combination of the OSKit, the Moab
NodeOS, and the JanosVM. Bees complements these lower
layers by providing a higher level and coherent framework that
is suitable for exposure to untrusted code. A “heavyweight”
execution environment for handling mobile O’Caml code in
RCANE might follow a design similar to that of Bees.

8



Outside the domain of active networking, there is contin-
uing interest in using Java to deploy network-based services:
existing platforms for this include Sun’s Jini architecture [27],
Gribble et al.’s MultiSpace system [28], and IBM’s Aglets
for mobile agents [29]. We believe that Bees can support the
development of these kinds of middleware. For instance, the
MultiSpace system requires that its underlying JVM “behave
and perform like a miniature operating system” [28] to protect
and isolate the various components of the system; Bees
does this, and offers additional network infrastructure besides.
Concerning Aglets, the Aglet programming model allows a
Java mobile agent to package up its current state and transfer
itself to another host in the system. Although this model of
shipping code and dynamic state together differs from the Bees
model, it would be straightforward to implement an Aglet-like
system with the help of a companion protocol that serializes
dynamic state and sends it to any nodes that an agent chooses
to visit. Bees can also help to ensure the correct behavior of
mobile agents. With Aglets, communication between agents
on separate machines is accomplished by sending message
objects, much as Bees flows communicate using capsules.
However, these message objects lack the automatic dispatch
based on type provided by Bees and, more importantly, their
propagation is not bounded by the system. Bees’ security and
resource control features would be useful for mediating inter-
agent communication, and for otherwise protecting systems
against buggy or malicious agents.

X. CONCLUSION

Mobile code presents an opportunity to build flexible net-
works. Unfortunately, these properties are limited by the
execution environments provided to run the mobile code. On
the one hand, an environment must be able to perform a wide
variety of functions, or it will not be used. On the other, the
environment must be able to make strong guarantees to the
node’s administrator, else it will not be installed onto a node.

We have presented Bees, a safe and flexible execution
environment for running mobile Java code. Originally based
on the Active Network Transport System (ANTS), the Bees
execution environment adds a number of enhancements that
address many of the needs of mobile code authors and node
administrators. These enhancements include better security,
composable protocols, and flexibility when interacting with
end-user applications. Security comes from capabilities that
can be distributed to protocols through a flexible authentication
and authorization mechanism. The system is aware of the
JanosVM and can take advantage of the isolation and resource
controls that it provides. “Companion” protocols make it
possible to decompose services into separate protocols that can
then be reused in protocol compositions. Capsule propagation
can be controlled in a fine-grained manner. “Protocol sessions”
provide a flexible adapter between the untrusted mobile code
and any end-user applications. In conclusion, we believe that
these improvements make great strides toward providing a
rich and flexible environment for mobile Java code without
sacrificing the security needed by a node administrator.

AVAILABILITY

Complete Bees source code and documentation are available
at http://www.cs.utah.edu/flux/janos/.

ACKNOWLEDGMENTS

We thank Patrick Tullmann, John Regehr, the anonymous
reviewers, and our shepherd, Jonathan M. Smith, for providing
many comments and suggestions that helped us to improve this
paper.

REFERENCES

[1] M. Hicks, P. Kakkar, J. T. Moore, C. A. Gunter, and S. Nettles,
“PLAN: A packet language for active networks,” in Proc. of the Third
ACM SIGPLAN International Conference on Functional Programming
(ICFP ’98), Baltimore, MD, Sept. 1998, pp. 86–93.

[2] J. T. Moore, M. Hicks, and S. Nettles, “Practical programmable packets,”
in Proc. of IEEE INFOCOM 2001, Anchorage, AK, Apr. 2001, pp. 41–
50.

[3] P. Tullmann, M. Hibler, and J. Lepreau, “Janos: A Java-oriented OS for
active network nodes,” IEEE Journal on Selected Areas in Communica-
tions, vol. 19, no. 3, pp. 501–510, Mar. 2001.

[4] D. J. Wetherall, J. V. Guttag, and D. L. Tennenhouse, “ANTS: A toolkit
for building and dynamically deploying network protocols,” in Proc. of
the First IEEE Conf. on Open Architectures and Network Programming
(OPENARCH ’98), San Francisco, CA, Apr. 1998, pp. 117–129.

[5] D. S. Alexander and J. M. Smith, “The architecture of ALIEN,” in
Active Networks: First International Working Conference, IWAN ’99,
ser. Lecture Notes in Computer Science, S. Covaci, Ed. Springer,
June–July 1999, vol. 1653, pp. 1–12.

[6] D. S. Alexander, W. A. Arbaugh, A. D. Keromytis, and J. M. Smith, “A
secure active network environment architecture: Realization in Switch-
Ware,” IEEE Network, vol. 12, no. 3, pp. 37–45, May/June 1998.

[7] P. B. Menage, “Resource control of untrusted code in an open pro-
grammable network,” Ph.D. dissertation, University of Cambridge, June
2000.

[8] G. Back, W. C. Hsieh, and J. Lepreau, “Processes in KaffeOS: Isolation,
resource management, and sharing in Java,” in Proc. of the Fourth Sym-
posium on Operating Systems Design and Implementation (OSDI 2000),
San Diego, CA, Oct. 2000, pp. 333–346.

[9] Flux Research Group, “JanosVM user’s manual and tutorial,” July 2002,
University of Utah. Part of the JanosVM 0.8.0 software distribution,
available at http://www.cs.utah.edu/flux/janos/ .

[10] B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, and O. Shivers, “The
Flux OSKit: A substrate for OS and language research,” in Proc. of the
16th ACM Symposium on Operating Systems Principles (SOSP ’97), St.
Malo, France, Oct. 1997, pp. 38–51.

[11] L. Peterson, Y. Gottlieb, M. Hibler, P. Tullmann, J. Lepreau, S. Schwab,
H. Dandekar, A. Purtell, and J. Hartman, “An OS interface for active
routers,” IEEE Journal on Selected Areas in Communications, vol. 19,
no. 3, pp. 473–487, Mar. 2001.

[12] P. A. Tullmann, “The Alta operating system,” Master’s thesis, University
of Utah, Dec. 1999.

[13] G. V. Back and W. C. Hsieh, “Drawing the red line in Java,” in Proc. of
the Seventh Workshop on Hot Topics in Operating Systems (HotOS-VII),
Rio Rico, AZ, Mar. 1999, pp. 116–121.

[14] H. M. Levy, Capability Based Computer Systems. Digital Press, 1984.
[15] Sun Microsystems, Inc., “Java Cryptography Extension (JCE),”

http://java.sun.com/products/jce/.
[16] D. J. Wetherall, “Active network vision and reality: lessons from

a capsule-based system,” in Proc. of the 17th ACM Symposium on
Operating Systems Principles (SOSP ’99), Kiawah Island, SC, Dec.
1999, pp. 64–79.

[17] J. E. Housley, “FreeBSD HEALTHD daemon software home page,”
http://healthd.thehousleys.net/.

[18] W. Venema, “TCP WRAPPER: Network monitoring, access control, and
booby traps,” in Proc. of the Third UNIX Security Symposium, Baltimore,
MD, Sept. 1992, pp. 85–92.

9

http://www.cs.utah.edu/flux/janos/
http://www.cs.utah.edu/flux/janos/
http://java.sun.com/products/jce/
http://healthd.thehousleys.net/


[19] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar, “An integrated experimental
environment for distributed systems and networks,” in Proc. of the
Fifth Symposium on Operating Systems Design and Implementation
(OSDI ’02), Boston, MA, Dec. 2002, pp. 255–270.

[20] Flux Research Group, “ANTS, version 2.0.4,”
http://www.cs.utah.edu/flux/janos/ants.html .

[21] ——, “Janos Java NodeOS, version 1.2.0,”
http://www.cs.utah.edu/flux/janos/jnodeos.html .

[22] S. Bhattacharjee, “Active networks: Architectures, composition, and
applications,” Ph.D. dissertation, Georgia Institute of Technology, July
1999.

[23] M. Sanders, M. Keaton, S. Bhattacharjee, K. Calvert, S. Zabele, and
E. Zegura, “Active reliable multicast on CANEs: A case study,” in
Proc. of the Fourth IEEE Conf. on Open Architectures and Network
Programming (OPENARCH 2001), Anchorage, AK, Apr. 2001, pp. 49–
60.

[24] S. Murphy, E. Lewis, R. Puga, R. Watson, and R. Yee, “Strong
security for active networks,” in Proc. of the Fourth IEEE Conf. on
Open Architectures and Network Programming (OPENARCH 2001),
Anchorage, AK, Apr. 2001, pp. 63–70.

[25] D. S. Alexander, W. A. Arbaugh, A. D. Keromytis, and J. M. Smith,
“Safety and security of programmable network infrastrucutres,” IEEE
Communications Magazine, vol. 36, no. 10, pp. 84–92, Oct. 1998.

[26] S. Thibault, C. Consel, and G. Muller, “Safe and efficient active network
programming,” in Proc. of the 17th IEEE Symposium on Reliable
Distributed Systems (SRDS ’98), West Lafayette, IN, Oct. 1998, pp.
135–143.

[27] J. Waldo and the Jini Technology Team, The Jini Specifications, 2nd ed.,
ser. The Jini Technology Series. Addison-Wesley, 2000.

[28] S. D. Gribble, M. Welsh, E. A. Brewer, and D. Culler, “The MultiSpace:
An evolutionary platform for infrastructural services,” in Proc. of the
1999 USENIX Annual Technical Conf., Monterey, CA, June 1999, pp.
157–170.

[29] D. B. Lange and M. Oshima, Programming and Deploying Java Mobile
Agents with Aglets, 1st ed. Addison-Wesley, 1998.

10

http://www.cs.utah.edu/flux/janos/ants.html
http://www.cs.utah.edu/flux/janos/jnodeos.html

	Abstract
	Introduction
	Background and Design Overview
	ANTS
	Janos
	Bees Overview

	Security
	Capsule Propagation
	Companion Protocols
	Protocol Session
	Example Application
	Performance
	Related Work
	Conclusion
	Availability
	Acknowledgments
	References

