
Alchemy:
Transmuting Raw Code into Reusable Components

Jay Lepreau (PI)

Matthew Flatt (co-PI)

Wilson Hsieh
Jeanette Wing CMU

Alastair Reid
Leigh Stoller

Eric Eide
Mike Hibler

University of Utah

http://www.cs.utah.edu/flux/alchemy/

1

Alchemy

 Component language and tools
for low-level systems software

{}

Not a specific architecture or framework

Example: The OSKit [SOSP97]
2

Characteristics of Low-Level Systems

Lack of clear layers among components

Threads

Virtual Memory

3

Characteristics of Low-Level Systems

Lack of clear layers among components

Threads Locks

Virtual Memory

4

Characteristics of Low-Level Systems

Lack of clear layers among components

Threads Locks

Virtual Memory

5

Characteristics of Low-Level Systems

Lack of clear layers among components

Threads Locks

Virtual Memory

Local changes shift global constraints

OneThread

single-threaded

6

Characteristics of Low-Level Systems

Lack of clear layers among components

Threads Locks

Virtual Memory

Local changes shift global constraints

Threads

multi-threaded

7

Alchemy Outline

Language
define components
link components

Types and constraints
verify linking
infer adaptors

Performance
zero componentization overhead

Applications
The OSKit
Linux, ...

8

Language

 Start with unit model of components [PLDI98]

import1 ... importn

definition1

...
definitionm

export1 ... exportk

atomic unit shape

9

Language

 Start with unit model of components [PLDI98]

lock_t void lock(lock_t) ...

void* mmap(long s) { ... }
...

void* mmap(long) ...

atomic unit example

10

Language

 Start with unit model of components [PLDI98]

import1 ... importn

import

...

...

...

...

export

export1 ... exportk

compound unit shape

11

Language

 Start with unit model of components [PLDI98]

import1 ... importn

import

...

...

...

...

export

export1 ... exportk

compound unit shape

12

Language

 Start with unit model of components [PLDI98]

import1 ... importn

import

...

...

...

...

export

export1 ... exportk

compound unit shape

13

Language

 Start with unit model of components [PLDI98]

...

Thread

void* mmap(long)

...

void lock(lock_t)

VM

void lock(lock_t)

...

void* mmap(long)

void lock(lock_t) ... void* mmap(long)

compound unit example

14

Language

...

Thread

void* mmap(long)

...

void lock(lock_t)

VM

void lock(lock_t)

...

void* mmap(long)

void lock(lock_t) ... void* mmap(long)

well-defined interfaces,
hierarchical,
mutual dependencies,
multiple instances, ...

15

Language

...

Thread

void* mmap(long)

...

void lock(lock_t)

VM

void lock(lock_t)

...

void* mmap(long)

void lock(lock_t) ... void* mmap(long)

... and static!

16

Usability

 Unit language for C:

Must be easy for system hackers to use

Must provide a mechanism for deriving configurations

17

Alchemy Outline

Language
define components
link components

Types and constraints
verify linking
infer adaptors

Performance
zero componentization overhead

Applications
The OSKit
Linux, ...

18

Types and Constraints

 Unit model provides basic type checking:

...

...

lock_t lock(lock_t) ...

lock_t lock(lock_t) ...

...

...

19

Types and Constraints

 For systems software, also need to ensure that

Multi-threaded code doesn’t call single-threaded code

Only one virtual memory manager is active

Components are initialized in the correct order

Components obey resource constraints

and more

These are extra constraints, outside "normal" types

20

Constraint Checking

 Reject mismatches:

...

...

single f(...)

multi f(...)

...

...

21

Constraint Checking

 Reject mismatches:

...

...

single f(...)

multi f(...)

...

...

22

Constraint Propagation

 Some components propagate constraints:

...

...

single f(...)

α f(...)
g() { ... f() ... }

α g(...)

23

Inferring Adaptor Components

 Automate mismatch repairs:

...

...

single f(...)

multi f(...)

...

...

24

Inferring Adaptor Components

 Automate mismatch repairs:

...

...

single f(...)

single f(...) lock(lock_t) ...

...

multi f(...)

multi f(...)

...

...

25

Ordering Component Initializations

 Auto-schedule component initialization:

Threads Locks

Virtual Memory

⇒

import1 ... importn

definition1

...
definitionm

export1 ... exportk

init-dep1

 ...
init-depp

26

Memory Management

GC Malloc & Free

Components used with GC must be GC-friendly

Boundary between GC and malloc/free components may need
adaptors

27

Constraint Challenges

 Summary of constraint challenges:

Extensible

Automatable checking

Automatable adaptation

28

Alchemy Outline

Language
define components
link components

Types and constraints
verify linking
infer adaptors

Performance
zero componentization overhead

Applications
The OSKit
Linux, ...

29

Performance

 Performance goals:

 + Make aggressive componentization practical

 - Speed up existing code

30

Linking and Optimization
...

...

lock(lock_t) { }
unlock(lock_t) { }

lock unlock

lock unlock

f() {
 lock(l);
 do work
 unlock(l);
}

...

...

31

Linking and Optimization
...

...

lock(lock_t) { }
unlock(lock_t) { }

lock unlock

lock unlock

f() {
 lock(l);
 do work
 unlock(l);
}

...

...

=

...

lock(lock_t) { }
unlock(lock_t) { }
f() {
 lock(l);
 do work
 unlock(l);
}

...

32

Linking and Optimization

...

lock(lock_t) { }
unlock(lock_t) { }
f() {
 lock(l);
 do work
 unlock(l);
}

...

33

Linking and Optimization

...

lock(lock_t) { }
unlock(lock_t) { }
f() {
 lock(l);
 do work
 unlock(l);
}

...

=

...

f() {
 do work
}

...

34

Alchemy Outline

Language
define components
link components

Types and constraints
verify linking
infer adaptors

Performance
zero componentization overhead

Applications
The OSKit
Linux, ...

35

The OSKit

 The OSKit: a set of components for systems software

Extensive use of legacy code (e.g., Linux device drivers)

500 components when transmuted (estimate)

Component sizes vary
Large: TCP/IP from FreeBSD, 18,000 lines
Small: Serial console, 200 lines
Smaller: Simple adaptors

36

The OSKit

 The OSKit: a set of components for systems software

ld works, but not well
Especially problematic for a new user

COM works, but not well
Also problematic for a new user
Late discovery of errors
Reference counting difficult to maintain

⇒ Alchemy

37

The Transmuted OSKit

 Transmuted OSKit = substrate for further PCES research

Infrastructure for systems builders

Bridge for more powerful analyses on systems code

38

Linux

Linux

Current OSKit

Expanded OSKit

Regular Linux

Linux Lite

Linux RT

39

Alchemy

Component language and tools for low-level systems:

Static linking makes analysis and optimization tractable

Constraints for global consistency checking

Result: robust components, bridge to further analyses

40

