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Alchemy

 Component language and tools
for low-level systems software

 

{}

 
Not a specific architecture or framework

Example: The OSKit [SOSP97]
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Characteristics of Low-Level Systems

Lack of clear layers among components

Threads

Virtual Memory
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Characteristics of Low-Level Systems

Lack of clear layers among components

Threads Locks

Virtual Memory

Local changes shift global constraints

OneThread

single-threaded
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Characteristics of Low-Level Systems

Lack of clear layers among components

Threads Locks

Virtual Memory

Local changes shift global constraints

Threads

multi-threaded
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Alchemy Outline

Language
define components
link components

Types and constraints
verify linking
infer adaptors

Performance
zero componentization overhead

Applications
The OSKit
Linux, ...

8



Language

 Start with unit model of components [PLDI98]

 

import1  ... importn

definition1

...
definitionm

export1  ... exportk

atomic unit shape
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Language

 Start with unit model of components [PLDI98]

 

lock_t  void lock(lock_t)  ...

void* mmap(long s) { ... }
...

void* mmap(long)  ...

atomic unit example

10



Language

 Start with unit model of components [PLDI98]

 

import1  ... importn

import

...

...

...

...

export

export1  ... exportk

compound unit shape

11



Language

 Start with unit model of components [PLDI98]

 

import1  ... importn

import

...

...

...

...

export

export1  ... exportk

compound unit shape

12



Language

 Start with unit model of components [PLDI98]

 

import1  ... importn

import

...

...

...

...

export

export1  ... exportk

compound unit shape

13



Language

 Start with unit model of components [PLDI98]

 

...

Thread

void* mmap(long)

...

void lock(lock_t)

VM

void lock(lock_t)

...

void* mmap(long)

void lock(lock_t)  ...   void* mmap(long)

compound unit example

14



Language

 

...

Thread

void* mmap(long)

...

void lock(lock_t)

VM

void lock(lock_t)

...

void* mmap(long)

void lock(lock_t)  ...   void* mmap(long)  

well-defined interfaces,
hierarchical,
mutual dependencies,
multiple instances, ...
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Language

 

...

Thread

void* mmap(long)

...

void lock(lock_t)

VM

void lock(lock_t)

...

void* mmap(long)

void lock(lock_t)  ...   void* mmap(long)  

  
... and static!
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Usability

 Unit language for C:

Must be easy for system hackers to use

Must provide a mechanism for deriving configurations
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Types and Constraints

 Unit model provides basic type checking:

...

...

lock_t lock(lock_t) ...

lock_t lock(lock_t) ...

...

...
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Types and Constraints

 For systems software, also need to ensure that

Multi-threaded code doesn’t call single-threaded code

Only one virtual memory manager is active

Components are initialized in the correct order

Components obey resource constraints

and more

 
These are extra constraints, outside "normal" types
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Constraint Checking

 Reject mismatches:

...

...

single f(...)

multi f(...)

...

...
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Constraint Checking

 Reject mismatches:

...

...

single f(...)

multi f(...)

...

...
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Constraint Propagation

 Some components propagate constraints:

...

...

single f(...)

α f(...)
g() { ... f() ... }

α g(...)
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Inferring Adaptor Components

 Automate mismatch repairs:

...

...

single f(...)

multi f(...)

...

...
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Inferring Adaptor Components

 Automate mismatch repairs:

...

...

single f(...)

single f(...) lock(lock_t) ...

...

multi f(...)

multi f(...)

...

...
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Ordering Component Initializations

 Auto-schedule component initialization:

Threads Locks

Virtual Memory

⇒

import1  ... importn

definition1

...
definitionm

export1  ... exportk

init-dep1

 ... 
init-depp
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Memory Management

 

GC Malloc & Free

 

Components used with GC must be GC-friendly

Boundary between GC and malloc/free components may need 
adaptors
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Constraint Challenges

 Summary of constraint challenges:

Extensible

Automatable checking

Automatable adaptation
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Performance

 

 Performance goals:

    +  Make aggressive componentization practical

    -  Speed up existing code
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Linking and Optimization
...

...

lock(lock_t) { }
unlock(lock_t) { }

lock unlock

lock unlock

f() {
  lock(l);
  do work
  unlock(l);
}

...

...
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Linking and Optimization
...

...

lock(lock_t) { }
unlock(lock_t) { }

lock unlock

lock unlock

f() {
  lock(l);
  do work
  unlock(l);
}

...

...

=

...

lock(lock_t) { }
unlock(lock_t) { }
f() {
  lock(l);
  do work
  unlock(l);
}

...
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Linking and Optimization

...

lock(lock_t) { }
unlock(lock_t) { }
f() {
  lock(l);
  do work
  unlock(l);
}

...
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Linking and Optimization

...

lock(lock_t) { }
unlock(lock_t) { }
f() {
  lock(l);
  do work
  unlock(l);
}

...

=

...

f() {
  do work
}

...
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The OSKit

 The OSKit: a set of components for systems software

Extensive use of legacy code (e.g., Linux device drivers)

500 components when transmuted (estimate)

Component sizes vary
Large: TCP/IP from FreeBSD, 18,000 lines
Small: Serial console, 200 lines
Smaller: Simple adaptors
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The OSKit

 The OSKit: a set of components for systems software

ld works, but not well
Especially problematic for a new user

COM works, but not well
Also problematic for a new user
Late discovery of errors
Reference counting difficult to maintain

⇒  Alchemy
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The Transmuted OSKit

 Transmuted OSKit = substrate for further PCES research

Infrastructure for systems builders

Bridge for more powerful analyses on systems code
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Linux

Linux

Current OSKit

Expanded OSKit

Regular Linux

Linux Lite

Linux RT
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Alchemy

Component language and tools for low-level systems:

Static linking makes analysis and optimization tractable

Constraints for global consistency checking

Result: robust components, bridge to further analyses
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