DTOS Mach Kernel
Interfaces

Secure Computing Corporation

Derived from the OSF Mach 3.0 Kernel
Interfaces Document, Edited by Keith Loepere

DTOS-MKO01: December 28, 1993

This work is derived from the Mach 3 Kernel Interfaces book is in the Open Software Foundation Mach 3
series.

Books in the OSF Mach 3 series:
Mach 3 Kernel Principles
Mach 3 Kernel Interfaces
Mach 3 Server Writer's Guide

Mach 3 Server Library Interfaces

Revision History:

Revision 2 MK67: January 7, 1992 OSF / Mach release

Revision 2.2 NORMA-MK12: July 15, 1992

Revision 2.3 NORMA-MK14: November 20, 1992

Revision 1.0 DTOS-MKO1:December 28, 1993

Change bars indicate changes since NORMA-MK14:

Copyright 1992 by the Open Software Foundation, Inc. and Carnegie Mellon University.
Copyright 1997 by Secure Computing Corporation.

All rights reserved.

This document is derived from the OSF Revision 2.3 document. The following notations are provided un-
changed from that OSF baseline.

Permission to reproduce this document without fee is heyebyted, provided that the copies are not made
or distributedfor direct commercial advantage, and the copyright noticdtdagbermission notice appear in
all copies, derivative works or modified versions.

This document is partially derived from earlier Mach documents written by RabBardh, Joseph S. Bar-
rera, David Black, Wiam Bolosky, Jonathan ChewRichard PDraves, Alessandro Forin, David B. Golub,
Richard F. Rashid, Mary R. Thompson, Avadis Tevanian, Jr. and Michael W. Young.

Contents

CHAPTER 1

CHAPTER 2

CHAPTER 3

Introduction 1
Interface Descriptions 1
Interface Types. 2
Special Forms. 3
Parameter Types.o 3
ErrorReturn Values L. 4
SecurityControls.. 5
IPClinterface 7
mach_msg/mach_msg_secure 8
Mach_MSQg _receive. 26
mach_msg send., 27
Port Manipulation Interface 29
do_mach_notify dead name..................... 30
do_mach_notify msg_accepted. 32
do_mach_notify no_senders..................... 34
do_mach_notify port deleted.................... 36
do_mach_notify port_destroyed.................. 38
do_mach_notify send once 40
mach_port_allocate/mach_port_allocate_secure. 41
mach_port_allocate_name/
mach_port_allocate_name_secure................. 44
mach_port _deallocate 47
mach_port destroy. 48
mach_port_extract right 50
mach_port_get receive_status. 52
mach_port get refs........... 54
mach_port get set status 56
mach_port_insert_right 58
mach_port mod refs............... 60
mach_port_move_member 62
mach_port names 64
mach_port rename. 66
mach_port_request_notification. 68
mach_port_set mscount 71
mach_port_set_glimit 73
mach_port_set_ seqno., 75

Mach 3 Kernel Interfaces iii

CHAPTER 4

CHAPTER 5

CHAPTER 6

mach_port_type/mach_port_type secure 77

mach_reply port 79
Virtual Memory Interface 81
vm_allocate/vm_allocate_secure.................. 82
VIN COPY . o« vt e e e e e e e 85
vm_deallocate 87
vm_inherit 89
vm_machine_attribute L. 91
VI _MAP . oo 93
VIN_ProteCt. . . .ot e 97
vm read e 99
vMm_region/vm_region_Secure 101
vm _statistics. 104
VI WITE . o e 105
VI WITE . ..o 107
External Memory Management Interface. 109
memory_object_change_attributes 110
memory_object_change completed 112
memory_Object_COopY.o 114
memory_object data_error 117
memory_object_data provided 119
memory_object data_request 121
memory_object data_return 123
memory_object_data supply.................... 125
memory_object_data_unavailable. 128
memory_object _data_unlock. 130
memory_object data write 132
memory_object_destroy. 134
memory_object_get_attributes. 136
memory_object init. 138
memory_object_lock_completed. 141
memory_object lock request 143
memory_object ready 146
memory_object_set_attributes. 148
memory_object_supply_completed. 151
memory_object_terminate. 153
Thread Interface 155
catch_exception_raise 156

Mach 3 Kernel Interfaces

CHAPTER 7

CHAPTER 8

mach_thread_self. 159

receive_samples. 160
sSwtch ... 161
SWICh_Pri ..o 162
thread _abort............, 164
thread_create/thread_create_secure............... 166
thread_depress _abort. 168
thread_get special port........................ 169
thread_get state........... 171
thread_info........... 173
thread_resume/thread_resume_secure............. 175
thread_sample 176
thread_set special_port........................ 178
thread_set_state/thread_set state secure........... 180
thread_suspend. 182
thread_switch. 183
thread _terminate 185
thread_wire 186
Task Interface. L 189
mach_ports_lookup L 190
mach_ports_register. 191
mach_task self. 193
task change sid.................. 194
task create/task _create secure 195
task_get _emulation_vector 198
task _get special_port.......... 200
task info......... 202
task resume 204
task_sample 205
task set emulation. 207
task_set_emulation_vector. 209
task set special port............ 211
task suspend 213
task terminate 214
task threads 215
HostInterface. 217
host adjust time 218
host_get boot info 219
host_get special port 220

Mach 3 Kernel Interfaces \

CHAPTER 9

CHAPTER 10

host get time............ 222

host info 223
host_kernel version........................... 225
host reboot. L 226
host_set special_ port.......................... 227
host set time.......... 229
mach_host self 230
Processor Management and Scheduling Interface231
host_processor_set priv. 232
host_processor sets.............. 233
host_processors i, 235
PrOCESSOr_asSIgN . ..o v v ittt 236
processor_control. 238
Processor_exit 240
processor_get_assignment. 241
processor_info............... 242
processor set create i 244
processor_set default. 246
processor_set destroy 247
processor set info.......... 248
processor_set_max_priority. 250
processor_set policy disable 252
processor_set policy enable.................... 254
processor_set tasks 255
processor_set threads 256
processor start............ 257
task_assign. 258
task assign default 260
task_get assignment 262
task_priority. 263
thread_assign.......... 265
thread_assign_default 266
thread_get assignment. 267
thread_max_priority. 268
thread_policy 270
thread_priority 271
Kernel Device Interface. 273
device close. 274
device_get status. 275

Vi

Mach 3 Kernel Interfaces

CHAPTER 11

APPENDIX A

APPENDIX B

device_ map 277

device open. 279
device read 282
device read inband................... 285
device _set filter. 288
device_set status 292
device write. 294
device write_inband 297
BVC_Walt. . . .o 300
Security Server Interface 303
avc_cache_control, avc_cache_control_trap........ 304
extract_aid 306
extract mid 307
make Sid ... 308
SSI_compute_access vector o 309
SSI_context to mid. 312
SSI_load_security policy 314
SSl record_name_Server.c.ooviun... 315
SSI _register_caching_server.................... 316
SSI_short_context to mid. 318
SSI_mid_to context. 320
SSI_mid_to_short_context. 322
SSI_transfer_security_server_ports. 324
SSI_transition_domain. 326
MIG Server Routines. 329
device _reply _server. 330
BXC_SEIVEI . ittt e 332
memory_object_default_ server.................. 334
memory_object_server. 336
notify_server 338
pProf_server. 340
segnos_memory_object_default_server............ 341
seqnos_memory_object_server 343
segnos_notify server.............., 345
Default Memory Management Interface. 347
default_pager_info.................. 348
default_pager_object create 350

Mach 3 Kernel Interfaces vii

memory _object create. 352

memory_object_data_initialize 355
vm_set_default_memory_manager 357
APPENDIX C Multicomputer Support. 359
norma_get special port. 360
norma_port_location_hint 363
norma_set special_port........................ 364
norma task clone 367
norma_task create............... 369
task _set child node........................... 371
APPENDIX D Intel 386 Support., 373
i386_get Idt......... 376
1386 io port add............. 378
i386 io port list.............. 379
I386_i0_port_ remove. i 380
1386 _set Idt............. 381
APPENDIX E Data Structures, 383
host basic_info 384
host load info.............. 385
host sched info.............. 386
mach_access vector.ciiiinnn... 387
mach_device services 390
mach_generic_ServiCesouuuuuuuunnn. 391
mach_kernel_reply port_services................ 392
mach_host_priv_services. 393
mach_host_services. 394
mach_mem_obj_services. 396
mach_mem_ctrl_services. 397
mach_msg header............... 399
mach_msg type. 402
mach msg type long 405
mach_port status. 407
Mach_pProC_ServiCes., 409
mach_proc_set servicescoouu.... 410
MAaCh_SEerviCeS e 411
mach_task services.............. 413
mach_thread_services 415
mapped_time_value. 417
viii Mach 3 Kernel Interfaces

APPENDIX F

APPENDIX G

processor_basic info.......................... 418

processor_set basic_info....................... 419
processor_set sched info 420
sampled_pc ... 421
security id t. 422
task basic_info 423
task basic secure info 424
task thread times info 426
thread_basic_info.......... 427
thread_sched info 429
time value 431
vm_statistics. 432
ErrorReturnValues 435
ErrorCode Format. 435
MIG Stub Errors 436
BaseIPCStatus 436
IPCSendErors. ... 437
IPCReceivVe EIrors i 438
GenericKernel Errors oo 439
Port Manipulation Errors. 440
Virtual Memory Manipulation Errors 441
Random Kernel Errors. 441
Kernel Device Errors. 442
Permission Definitions. 445
Device Port Permissions 445
Host Priviledge Port Permissions 446
Host Port Permissions 447
Kernel Reply Port Permissions 449
Memory Object Permissions 449
Memory Control Port Permissions 449
Processor Port Permissions 451
Processor Set Permissions 451
Task Port Permissions 452
Thread Port Permissions 457
IPCPermissions., 459

Mach 3 Kernel Interfaces iX

APPENDIXH ObjectIndex. 463

APPENDIX |

Interface and Structure Index 471

Mach 3 Kernel Interfaces

CHAPTER 1 Introduction

This book documents the various interfaces to th©®Variant of the Mach 3 kernel.

The text generally describes each interface to the kernel in isolation. Entries that have a
special security relevant variant are described together to avoid redunblaacglation-

ship of interfaces to one anothand the way that interfaces are combined to write user
servers is the subject of companion volumes.

The oganization of this book is such that it follows thganization of the kernel into its
major functional areas. Although the kernel interface is itself not object oriented, the divi-
sion of interfaces into areas isdaty done according to the significant object utilized or
manipulated by the interfaces. Each such object receives its own cl@pteurse, the
assignment of interfaces into these chapters isfautifand highly subjective process.

An interface that requires rights for two ports of twdetiént types could be grouped

with the set of interfaces associated with either object type. Each interface, though, ap-
pears only once in this book.

Appendices give a description of the structures and fields used by these interfaces, a list

of possible error return values from the kernel, an alphabetical index by object type and
one by function and data structure name.

Interface Descriptions

Each interface is listed separatebach starting on its own page. For each interface,
some or all of the following features are presented:

The name of the interface
A brief description

Mach 3 Kernel Interfaces 1

Introduction

The pertinent libraryAll functions in this volume are contained libmach_sa.a
(and, by implicationlibmach.a) unless otherwise noted. Also listed is the header file
that provides the function prototype or defines the data structure (ifauit.h).

A synopsis of the interface, in C form
Any macro or special forms of the call
An extended description of the function performed by the call

Identification of the request specific security permissions that must be held to mpke
the request

A description of each parameter to the call
Additional notes on the use of the interface
Cautions relating to the interface use

An explanation of the significant return values
References to related interfaces or data structures

Interface Types

Most of the interfaces in this book are MIG generated interfaces. That is, they are stub
routines generated from MIG interface description files. Calling these interfaces will ac-
tually result in a Mach IPC message being sent to the port that is thegfinsteaat in the

call. This has three important effects. |

These calls may fail for various MIG or IPC related reasons. The list of error returns
for these calls should always be considered to also include the IPC related errors
(MACH_MSG_..., MACH_SEND _... and MACH_RCV_...) and the MIG related er-
rors (MIG_...).

These calls may fail because required security permissions are not held by the reqpest-
ing task. The list of error returns for these calls should always be considered to flso
include the security related error, KERN_INSUFFICIENT_PERMISSION.

These calls only invoke their expectefeef when the acting port is indeed a port of

the specified type. That is, if a call expects a port that names a task (a kernel task
port) and the port is instead a port managed by a task, the MIG stub routine will still
happily generate the appropriate Mach message and send it to that task. What the tar-
get task will do with the message is up to it. Note that it is tiféxtethat allows the

Net Message server to transparently redirect messages.

A few of these interfaces are actually system calls (traps). In general, the system calls
(with the obvious exception of thmach_msgcall) work only on the current task or
thread. (Some functions are a hybrid; they first try the system call, and, failing that, they
try sending a Mach message. This is an optimization for some interfaces for which the
target is usually the invoking task or thread.) Any routine not documented as a system
call is a MIG stub routine.

Most of these interfaces are of the tygunction. This means that there is actually a C
callable function (most likely itibmach_sa.g that has the calling sequence listed and
that when called invokes some kernel or kernel related service. If the interface is a sys-
tem trap instead of a message, it will be listed 8gstem Trap

2 Mach 3 Kernel Interfaces

Special Forms

Some interfaces have the tyPerver Interface. Such a description applies to interfaces

that are called in server tasks on behalf of messages sent from the kernel. That is, it is as-
sumed that some task is listening (probably wiidich_msg_server on a port to which

the kernel is to send messages. A received message will be passed to a MIG generated
server routinegervice server) which will call an appropriate server gat function. It is

these server tget functions, one for each fdifent message that the kernel generates,
that are listed aServer Interfaces. For any given kernel message, there are any number

of possible server interface calling sequences that can be generated, by permuting the or-
der of the data provided in the message, omitting some data elements or including or
omitting various header field elements (such as sequence numbers). In most cases, a sin-
gle server interface calling sequence has been chosen with a given MIG generated server
message de-multiplexing routine that calls these interfaces. In some cases, there are more
than one MIG generated server routines which call upderdift server interfaces asso-
ciated with that MIG service routine. In any event,Sakver Interfacescontain within

their documentation the name of the MIG generated server routine that invokes the inter-
face.

Special Forms

There are various special interface forms defined in this volume.

The Macro form specifies macros (typically definedrivach.h) that provide short-
hand equivalents for some variations of the longer function call.

The Sequence Numberform of aServer Interface defines an additional MIG gener-

ated interface that supplies the sequence number from the message causing the server
interface to be invoked. The existence of such a form implies the existence of an alter-
nate MIG generated message de-multiplexing routine that invokes this special inter-
face form.

The Asynchronous form defines a MIG generated version dfunction that allows

the function to be invoked asynchronoushych a version requires an additional pa-
rameter to specify the reply port to which the reply is sent. The return value from the
asynchronous function is the return status fromnttaeh_msgcall sending the re-
quest, not the resulting status of the kernel operation. The asynchronous interface also
requires a matchin§erver Interface that defines the reply message containing data
that would have been output values from the normal function, as well as the resulting
status from the kernel operation.

Parameter Types

Each interface description supplies the C type of the various parameters. The parameter
descriptions then indicate whether these parameters are input (“in”), output (“out”) or
both (“infout”). This information appears in square brackets before the parameter descrip-
tion. Additional information also appears within these brackets for special or non-obvi-
ous parameter conventions.

Mach 3 Kernel Interfaces 3

Introduction

The most common notation is “scalar”, which means that the parameter somehow de-
rives from anint type. Port types are scalar types but are marked specifically as to the
type of port named by the parameter.

If the notation says “structure”, the parameter is a direct structure type whose layout is
described in APPENDIX E.

The notation “pointer to in array/structure/scalar” means that the caller supplies a pointer
to the data. Arrays always have this property following from C language rules. If not so
noted, input parameters are passed by value.

Output parameters are always passed by reference following C language rules. Hence the
notation “out array/structure/scalar” actually means that the caller must supply a pointer
to the storage to receive the output value. If a parameter is in/out, the notation “pointer to
infout array/structure/scalar” will appe&ince the parameter is also an output parame-

ter, it must be passed by reference, hence it appears as a “pointer to in array/structure/sca-
lar” when used as an input parameter.

In contrast, the notation “out pointer to dynamic array” means that the kernel will allo-
cate space for returned data (as ifvby_allocate and will modify the pointer named by

the output parameter (that is, the parameter to the function is a pointer to a pointer) to
point to this allocated memoryhe task shoulgm_deallocatethis space when done ref-
erencing it.

For a Server Interface, the corresponding version of the above is “in pointer to dynamic
array”. This indicates that the kernel has allocated space for the data (as if by
vm_allocaté and is supplying a pointer to the data as the input parameter to the server
interface routine. It is the job of the server interface routine to arrange for this data to be
vm_deallocatel when the data is no longer needed.

An “unbounded out in-line array” specifies the variable in-line/out-of-line (referred to as
unbounded in-line) array feature of MIG described inSbever Writer's GuideThe call-

er supplies a pointer to a pointer whose value contains the address of an array whose size
is specified in some other parameter (or known implicitly). Upon return, if thgettar
pointer no longer points to the callerarray (most likely because the cdliearray was

not suficiently laige to hold the return data), then the kernel allocated space (as if by
vm_allocaté into which the data was placed; otherwise, the data was placed into the sup-
plied array.

Error Return Values

APPENDIX F documents the various error return values defined by the kernel. However
since the kernel interfaces are actually MIG generated stubs that send IPC messages, the
set of errors that is possible for any given interface is quite extensive although few possi-
bilities are seen in practice.

4 Mach 3 Kernel Interfaces

Security Controls

The various functions described in this volume (with the exception of the system traps)
are MIG generated stub subroutines. As such, if the number of parameters or their sizes
is incorrect, the stub may fail in a machine dependent way as would any other subroutine.

Assuming the correct number and size of the parameters, the MIG stub will simply mar-
shall these values, making no consistency checks. The stub then attempts to send this
message usingnach_msg As such, the various IPC errors (MACH_SEND _...) are possi-

ble. In particular if the destination port is completely bogus, the caller will receive
MACH_SEND_INVALID DEST. Note that most errors involving invalid rights or out-
of-line memory addresses will be detected as IPC errors.

If the destination port is valid but names a port whose receive right is held by a task, the
stub generated message will be sent to that task; what the task will do is up to it. Assum-
ing that the destination port does name a kernel object, the message will go to the kernel.
If the message is not one that object accepts, the caller will get
KERN_INVALID_ARGUMENT. For operations that bind two objects (such as
task_assign, this error is returned if either object is of the wrong type. Howevieen

an additional right is sent for the purposes of asserting privilege, or when the additional
right itself is being manipulated, specific error return values are generated if the “privi-
lege” port is of the wrong type.

Invalid non-port parameter values return the error KERNAND_VALUE if their val-

ue is inherently ill-formed or out of range, but return specific error values if the value is
not permitted at this point in time (such as a port name that is a valid name, but does not
currently name a valid right).

Each kernel subsystem defines its own interesting set of errors which are listed for the
relevant interfaces. Generic messaging and security errors are not listed for each inter-
face, only those specific to that interface’s functioning.

A return value of KERN_SUCCESS (or any other equivalent value) indicates that the re-
guested operation was performed and any return values returned.

Security Controls

All of the MIG generated and the hybrid MIG/system call interfaces are subject the fol-
lowing general control rules.

The requesting task must haae sendpermission to the first port in the parameter
list.

The requesting task must also hawe transfer_senéndav_set_replypermission to
the reply port provided in the MIG generated request message.
All IPC permission checks are applied to MIG generated interfaces. ie if a port is giv-

en as an output paramettre client must havav_hold_sendandav_can_sengber-
missions.

Thus the respective security sections of each interface description, only describes the
control issues specific to that interface.

Mach 3 Kernel Interfaces 5

Introduction

In the case of the “pure” system call interfaces only the interface specific control chedk is
made. In this case the check is made against the implicit task or thread port as is appfopri-
ate for the interface.

6 Mach 3 Kernel Interfaces

CHAPTER 2 IPC Interface

This chapter discusses the specifics of the kermaier’process” communication (IPC)
interfaces. The interfaces discussed are only the interfaces directly involved in sending
and receiving IPC messages.

Mach 3 Kernel Interfaces 7

IPC Interface

mach_msg/mach_msg_secure |
System Trap / Function — Sends and receives a message using the same mes-
sage buffer
SYNOPSIS

mach_msg_return nhach_msg
(mach_msg_header_t* msg,
mach_msg_option_t option,
mach_msg_size_t send_size,
mach_msg_size_t rcv_size,
mach_port_t rcv_name,
mach_msg_timeout_t timeout,
mach_port_t notify);

mach_msg_returnrhach_msg_secure
(mach_msg_header_t* msg
mach_msg_option_t option
mach_msg_size_t send_size
mach_msg_size_t rcv_size,
mach_port_t rcv_name
mach_msg_timeout_t timeout
mach_port_t notify,
security_id_t* rec_subj_sid
security_id_t* sender_subj_sid
int av_buf_size
mach_access_vector_t* av_buj;

DESCRIPTION

The mach_msgand mach_msg_securesystem calls send and receive Mach|
messages. Mach messages contain typed data, which can include port rights and
addresses of large regions of memory.

If the option amgument contains MACH_SEND_MSG, it sends a message. The
send_size agument specifies the size of the message to send. The
msgh_remote_poffield of the message header specifies the destination of the
message.

If the optionargument contains MACH_RCV_MSG, it receives a message. The
rcv_sizeargument specifies the size of the messagéebtiiat will receive the
message; messagesgar thanrcv_sizeare not received. Thev_nameargu-
ment specifies the port or port set from which to receive.

If the option amgument contains both MACH_SEND MSG and
MACH_RCV_MSG, themmach_msgandmach_msg_securelo both send and |
receive operations. If the send operation encounters an error (any return code
other than MACH_MSG_SUCCESS), then the call returns immediately without

8 Mach 3 Kernel Interfaces

mach_msg/mach_msg_secure

attempting the receive operation. Semantically the combined call is equivalent
to separate send and receive calls, but it saves a system call and enables other in-
ternal optimizations.

If the option amgument specifies neither MACH_SEND_MSG nor
MACH_RCV_MSG, thermach_msgandmach_msg_securelo nothing.

Some options, like MACH_SEND_TIMEOUT and MACH_RCV_TIMEOUT
share a supportingg@ument. If these options are used togettiery make inde-
pendent use of the supporting argument’s value.

SECURITY

The DTOS kernel provides controls beyond those of the Mach capability mecha-
nism described in the NOTES section beldWe kernel security mechanisms
enforce the permissions described in thach_access_vector_structure de-
fined in APPENDIX E. In addition to the appropriate rights, the following ac-
cess permissions control message operations.

Sending Message
The sending task must hage_can_sengbermission to the destination
port. If a reply port is used, the sending task must lsaveet_reply
permission to the reply port.

Receiving Message
The receiving task must hae& can_receiv@ermission to the port in-
dicated byrcv_name Messages will be received from a port in a port
set only if the requesting task has_can_receivepermission to the
port. When a task uses a port as a reply port for an RPC type of opera-
tion, the requesting task must also hae can_sendpermission to
that port.

Passing SEND, SEND_ONCE or RECEIVE Right

Passing of rights is done by sending a message to a port P1 where the
body of the message contains a port right to port P2. The task sending
the message must have respectivelyav_transfer_send
av_transfer_send_oncer av_transfer_eceivepermission to port P2,
depending on whether the right is a send, send_once or receive. In addi-
tion the sending task must haag_transfer_rightto the destination

port P1, in order to transfer any right in the body of the message.

Upon receipt of a right the receiving task must have respectively
av_hold_sendav_hold_send_oncer av_hold_eceive permission to
the port associated with the right in the message body.

Passing Out Of Line data
To pass out of line data in a message the sending task must have
av_transfer_oolpermission to the destination port. In addition, if the
out-of-line data contains a port right, the permission requirements

Mach 3 Kernel Interfaces 9

IPC Interface

descibed in the above section d?assing SEND, SEND_ONCE or RE-
CEIVE Right also apply.

The security aspects ofiach_msgand mach_msg_secuw include the follow-
ing additional control issues.

On a receive, the receiving task must haveinterposepermission to re-
ceive messages designated to subject security identifiers other than thg
the receiving task.

The security aspects afach_msg_securénclude the following additional con-
trol issues.

On a send the sending task must havespecifypermission to the destina-
tion port in order to specify the message seisdambject security identifier
to be associated with the message.

t of

On a send the sending task must have av_specify permission to the desfina-

tion port in order to specify any of the values in alvebuf

If the sending task does not specify or does not havepecifypermission to
the destination port the BOS kernel provides the security identifier of the send

ing task. In all cases the @B Kernel associates the access vector describirlg

the sending tasks permission to the destination port with the message.

In-line and out-of-line data are currently handlededéntly with respect to the

security identifier assigned to the data. In-line data is assigned a security iden
er corresponding to the security identifier of the memory region where it
placed. Out-of-line data may retains the security identifier assigned to the mg

ifi-
is
m_

ory region from which the data came if so requested.

PARAMETERS

msg

[pointer to in/out structure containing random and reply ports] A mes-

sage buffer. This should be aligned on a long-word boundary.

option

[in scalar] Message options are bit values, combined with bitwise-or

One or both of MACH_SEND_MSG and MACH_RCV_MSG should
be used. Other options act as modifiers.

send_size

[in scalar] When sending a message, specifies the size of the message

buffer. Otherwise zero should be supplied.

rcv_size

[in scalar] When receiving a message, specifies the size of the message

buffer. Otherwise zero should be supplied.

10

Mach 3 Kernel Interfaces

mach_msg/mach_msg_secure

rcv_name

timeout

[in random port] When receiving a message, specifies the port or port
set. Otherwise MACH_PORT_NULL should be supplied.

[in scalar] When wusing the MACH_SEND_TIMEOUT and
MACH_RCV_TIMEOUT options, specifies the time in milliseconds
to wait before giving up. Otherwise MACH_MSG_TIMEOUT_NONE
should be supplied.

notify
[in notify port] When using the MACH_SEND_NOTIFY
MACH_SEND_CANCEL, and MACH_RCV_NOTIFY options, speci-
fies the port used for the notification. Otherwise MACH_FPORJLL
should be supplied.

rec_subj_sid

[pointer to in/out security id] When sending a message this parameter
specifies the subject security identifier of the tasks that will be allowed
to receive the message. Set to the address of a location that contains
SEC_NULL_SID to indicate that there is no receiver restriction on the
message.

When receiving a message this parameter contains the subject security
identifier which the sender specified as the intended message receiver
Returns the address of a location containing SEC_NULL_SID if no in-
tended recipient was supplied.

sender_subj_sid

[pointer to in/out security idWhen sending a message this parameter
specifies the subject security identifier to be provided as the message’
effectivesenderThe sender must haew_specifyaccess to the port for

the value to be used. Set to the address of a location containing
SEC_NULL_SID to indicate that the sending taskubject security
identifier is to be used. When receiving a message this parameter con-
tains theeffectivesubject security identifier of the message sender.

av_buf_size

av_buf

The size of the subsequent structure av_buf in bytes. If this size is set
to zero, it is assumed that av_buf is not specified.

[pointer to in/out access vector array structure] When receiving a mes-
sage, this parameter points to afeuthat will contain the access vec-
tor describing the &ctive sendés permission to the port providing
the message, the notify vecgttine override vectorand the cache con-
trol vector.

Mach 3 Kernel Interfaces 11

IPC Interface

When sending a message, this parameter points tofer boifthe ac-
cess vectqrthe notify vectarthe override vectorand the cache control
vector that the receiver will receive. The sender must havspecify
access to the port for the value to be used. Set to MACH_NO_LABHL
to indicate that the &fctive sendés permission is to be provided to
the receiver.

NOTES

The Mach kernel provides message-oriented, capability-basedpiotass
communication. The intggrocess communication (IPC) primitivedigéntly
support many diérent styles of interaction, including remote procedure calls,
object-oriented distributed programming, streaming of data, and sending very
large amounts of data.

Major Concepts

The IPC primitives operate on three abstractions: messages, ports, and port sets.
User tasks access all other kernel services and abstractions via the IPC primi-
tives.

The message primitives let tasks send and receive messagiks sénd messag-

es to ports. Messages sent to a port are delivered reliably (messages may not be
lost) and are received in the order in which they were sent. Messages contain a
fixed-size header and a variable amount of typed data following the h€ader
header describes the destination and size of the message.

The IPC implementation makes use of the VM system fioieftly transfer

large amounts of data. The message body can contain an address of a region of
the sendés address space which should be transferred as part of the message.
When a task receives a message containing an out-of-line region of data, the
data appears in an unused portion of the recsiagidress space. This transmis-
sion of out-of-line data is optimized so that sender and receiver share the physi-
cal pages of data copy-on-write, and no actual data copy occurs unless the
pages are written. Regions of memory up to the size of a full address space may
be sent in this manner.

Ports hold a queue of messageasks operate on a port to send and receive
messages by exercising capabilities (rights) for the port. Multiple tasks can hold
send rights for a port.abks can also hold send-once rights, which grant the abil-

ity to send a single message. Only one task can hold the receive capability (re-
ceive right) for a port. Port rights can be transferred between tasks via
messages. The sender of a message can specify in the message body that the
message contains a port right. If a message contains a receive right for a port,
then the receive right is removed from the sender of the message and the right is
transferred to the receiver of the message. While the receive right is in transit,
tasks holding send rights can still send messages to the port, and they are
gueued until a task acquires the receive right and uses it to receive the messages.

12

Mach 3 Kernel Interfaces

mach_msg/mach_msg_secure

Tasks can receive messages from ports and port sets. The port set abstraction al-
lows a single thread to wait for a message from any of several pasts ma-
nipulate port sets with a port set name, which is taken from the same name
space as are the port rights. The port-set name may not be transferred in a mes-
sage. A port set holds receive rights, and a receive operation on a port set blocks
waiting for a message sent to any of the constituent ports. A port may not be-
long to more than one port set, and if a port is a member of a port set, the holder
of the receive right can’t receive directly from the port.

Port rights are a secure, location-independent way of naming ports. The port
gueue is a protected data structure, only accessible via the &ezmpbrted
message primitives. Rights are also protected by the kernel; there is no way for
a malicious user task to guess a pontiternal name and send a message to a
port to which it shouldn’have access. Port rights do not carry any location in-
formation. When a receive right for a port moves from task to task, and even be-
tween tasks on d#rent machines, the send rights for the port remain
unchanged and continue to function.

Port Rights
Each task has its own space of port rights. Port rights are named with positive
integers. Except for the reserved values MACH_POWRJLL (0) and
MACH_PORI_DEAD (-1), this is a full 32-bit name space. When the kernel
chooses a name for a new right, it is free to pick any unused name (one which
denotes no right) in the space.

There are three basic kinds of rights: receive rights, send rights and send-once
rights. A port name can name any of these types of rights, a port-set, be a dead
name, or name nothing. Dead names are not capabilities. They act as place-hold-
ers to prevent a name from being otherwise used.

A port is destroyed, or dies, when its receive right is de-allocated. When a port
dies, send and send-once rights for the port turn into dead names. Any messages
gueued at the port are destroyed, which de-allocates the port rights and out-of-
line memory in the messages.

Tasks may hold multiple useeferences for send rights and dead names. When
a task receives a send right which it already holds, the kernel increments the
right's useireference count. When a task de-allocates a send right, the kernel
decrements its useeference count, and the task only loses the send right when
the count goes to zero.

Send-once rights always have a usgerence count of one, although a port can
have multiple send-once rights, because each send-once right held by a task has
a different name. In contrast, when a task holds send rights or a receive right for
a port, the rights share a single name.

Each send-once right generated guarantees the receipt of a single message, ei-
ther a message sent to that send-once righf tite send-once right is in any
way destroyed, a send-once notification.

Mach 3 Kernel Interfaces 13

IPC Interface

A message body can carry port rights; thegt nam&msgtl_namgfield in a

type descriptor specifies the type of port right and how the port right is to be ex-
tracted from the caller The values MACH_PORNULL and
MACH_PORI_DEAD are always valid in place of a port right in a message
body.

In a sent message, the followingggt namealues denote port rights:

MACH_MSG_TYPE_MAKE_SEND
The message will carry a send right, but the caller must supply a re-
ceive right. The send right is created from the receive right, and the re-
ceive right's make-send count is incremented.

MACH_MSG_TYPE_COPY_SEND
The message will carry a send right, and the caller should supply a
send right. The user reference count for the supplied send right is not
changed. The caller may also supply a dead name and the receiving
task will get MACH_PORT_DEAD.

MACH_MSG_TYPE_MOVE_SEND
The message will carry a send right, and the caller should supply a
send right. The user reference count for the supplied send right is decre-
mented, and the right is destroyed if the count becomes zero. Unless a
receive right remains, the name becomes available for recycling. The
caller may also supply a dead name, which loses a user reference, and
the receiving task will get MACH_PORT_DEAD.

MACH_MSG_TYPE_MAKE_SEND_ONCE
The message will carry a send-once right, but the caller must supply a
receive right. The send-once right is created from the receive right.
Note that send once rights can only be created from the receive right.

MACH_MSG_TYPE_MOVE_SEND_ONCE
The message will carry a send-once right, and the caller should supply
a send-once right. The caller loses the supplied send-once right. The
caller may also supply a dead name, which loses a user reference, and
the receiving task will get MACH_PORT_DEAD.

MACH_MSG_TYPE_MOVE_RECEIVE
The message will carry a receive right, and the caller should supply a
receive right. The caller loses the supplied receive right, but retains
any send rights with the same name.

If a message carries a send or send-once right, and the port dies while the mes-
sage is in transit, then the receiving task will get MACH_PABEAD instead
of a right.

The following msgt_namevalues in a received message indicate that it carries
port rights:

14

Mach 3 Kernel Interfaces

mach_msg/mach_msg_secure

MACH_MSG_TYPE_PORT_SEND
This value is an alias for MACH_MSG_TYPE_MOVE_SEND. The
message carried a send right. If the receiving task already has send and/
or receive rights for the port, then that name for the port will be reused.
Otherwise, the new right will have a negreviously unused, name. If
the task already has send rights, it gains a user reference for the right
(unless this would cause the useference count to overflow). Other-
wise, it acquires send rights, with a user-reference count of one.

MACH_MSG_TYPE_PORT_SEND_ONCE
This value is an alias for
MACH_MSG_TYPE_MOVE_SEND_ONCE. The message carried a
send-once right. The right will have a new, previously unused, name.

MACH_MSG_TYPE_PORT_RECEIVE
This value is an alias for MACH_MSG_TYPE_MOVE_RECEIVE.
The message carried a receive right. If the receiving task already has
send rights for the port, then that name for the port will be reused. Oth-
erwise, the right will have a newreviously unused, name. The make-
send count and sequence number of the receive right are reset to zero,
but the port retains other attributes like queued messages, extant send
and send-once rights, and requests for port-destroyed and no-senders
notifications. (Note: It is currently planned to remove port-destroyed
notifications from the kernel interface and to define no-senders notifica-
tions as being canceled when a receive right is moved.)

Memory
A message body can contain an address of a region of the 'seaddress
space which should be transferred as part of the message. The message carries a
logical copy of the memonput the kernel uses VM techniques to defer any ac-
tual page copies. Unless the sender or the receiver modifies the data, the physi-
cal pages remain shared.

An out-of-line transfer occurs when the dataype descriptor specifies
msgt_inlineas FALSE. The address of the memory region should follow the
type descriptor in the message bodiie type descriptor and the address con-
tribute to the messagesize $§end_sizemsgh_size The out-of-line data does
not contribute to the message’s size.

The name, size, and number fields in the type descriptor describe the type and
length of the out-of-line data, not the address. Out-of-line memory frequently re-
quires long type descriptors mach_msg_type long)t because the
msgt_numbefield is too small to describe a page of 4K bytes.

Out-of-line memory arrives somewhere in the recésvaddress space as new
memory It has the same inheritance and protection attributes as newly
vm_allocatéed memory The receiver has the responsibility of de-allocating
(with vm_deallocatg the memory when it is no longer needed. Security-con-
scious receivers should exercise caution when dealing with out-of-line memory

Mach 3 Kernel Interfaces 15

IPC Interface

from un-trustworthy sources, because the memory may be backed by an unreli-
able memory manager.

Null out-of-line memory is legal. If the out-of-line region size is zero (for exam-
ple, becausensgtl_numbeiis zero), then the regia’specified address is ig-
nored. A received null out-of-line memory region always has a zero address.

Unaligned addresses and region sizes that are not page multiples are legal. A re-
ceived message can also contain regions with unaligned addresses and funny
sizes. In the general case, the first and last pages in the new memory region in
the receiver do not contain data from the senbet are partly zero. The re-
ceived address points into the middle of the first page. This possibility Hoesn’
complicate de-allocation, becaug®_deallocatedoes the right thing, rounding

the start address down and the end address up to de-allocate all arrived pages.

Out-of-line memory has a de-allocate option, controlled byrthgt deallocate

bit. If it is TRUE and the out-of-line memory region is not null, then the region

is implicitly de-allocated from the sendas if byvm_deallocate In particulay

the start and end addresses are rounded so that every page overlapped by the
memory region is de-allocated. The usearsgt deallocateffectively changes

the memory copy into a memory movement. In a received message,
msgt_deallocatés TRUE in type descriptors for out-of-line memory.

Out-of-line memory can carry port rights.

Message Send

The send operation queues a message to a port. The message carries a copy of
the callers data. After the send, the caller can freely modify the messafge buf

or the out-of-line memory regions and the message contents will remain un-
changed.

Message delivery is reliable and sequenced. Messages are not lost, and messag-
es sent to a port from a single thread are received in the order in which they
were sent.

If the destination por’ queue is full, then several things can happen. If the mes-
sage is sent to a send-once righs§h_remote_portarries a send-once right),

then the kernel ignores the queue limit and delivers the message. Otherwise the
caller blocks wuntil there is room in the queue, unless the
MACH_SEND_TIMEOUT or MACH_SEND_NOTIFY options are used. If a

port has several blocked senders, then any of them may queue the next message
when space in the queue becomes available, with the proviso that a blocked
sender will not be indefinitely starved.

These options modify MACH_SEND_MSG. If MACH_SEND_MSG is not
also specified, they are ignored.

16

Mach 3 Kernel Interfaces

mach_msg/mach_msg_secure

MACH_SEND_TIMEOUT
The timeout agument should specify a maximum time (in millisec-
onds) for the call to block before giving up. If the messaget e’
gueued before the timeout interval elapses, then the call returns
MACH_SEND_TIMED_OUT. A zero timeout is legitimate.

MACH_SEND_NOTIFY
The notify agument should specify a receive right for a notify port. If
the send were to block, then instead the message is queued,
MACH_SEND_WILL_NOTIFY is returned, and a msg-accepted noti-
fication is requested. If MACH_SEND_TIMEOUT is also specified,
then MACH_SEND_NOTIFY doeshtake efect until the timeout in-
terval elapses.

Only one message at a time can be forcibly queued to a send right with
MACH_SEND_NOTIFY. A msg-accepted notification is sent to the no-
tify port when another message can be forcibly queued. If an attempt is
made to use MACH_SEND_NOTIFY before then, the call returns a
MACH_SEND_NOTIFY_IN_PROGRESS error.

The msg-accepted notification carries the name of the send right. If the
send right is de-allocated before the msg-accepted notification is gener-
ated, then the msg-accepted notification carries the value
MACH_PORI_NULL. If the destination port is destroyed before the
notification is generated, then a send-once notification is generated in-
stead.

(Note: It is currently planned that this option will be deleted, as well as
the provision of the corresponding notification.)

MACH_SEND_INTERRUPT
If specified, the mach_msg call will return
MACH_SEND_INTERRUPTED if a software interrupt aborts the call.
Otherwise, the send operation will be retried.

MACH_SEND_CANCEL
The notify agument should specify a receive right for a notify port. If
the send operation removes the destination port right from the, caller
and the removed right had a dead-name request registered for it, and
notify is the notify port for the dead-name request, then the dead-name
request may be silently canceled (instead of resulting in what would
have been a port-deleted notification).

This option is typically used to cancel a dead-name request made with
the MACH_RCV_NOTIFY option. It should only be used as an opti-
mization.

Some return codes, like MACH_SEND_TIMED_OUmmply that the message
was almost sent, but could not be queued. In these situations, the kernel tries to

Mach 3 Kernel Interfaces 17

IPC Interface

return the message contents to the caller with a pseudo-receive operation. This
prevents the loss of port rights or memory which only exist in the message. For
example, a receive right which was moved into the message, or out-of-line
memory sent with the de-allocate bit.

The pseudo-receive operation is very similar to a normal receive operation. The
pseudo-receive handles the port rights in the message header as if they were in
the message bodyhey are not reversed (as is the appearance in a normal re-
ceived message). After the pseudo-receive, the message is ready to be resent. If
the message is not resent, note that out-of-line memory regions may have
moved and some port rights may have changed names.

The pseudo-receive operation may encounter resource shortages. This is similar
to a MACH_RCV_BODY_ERROR return code from a receive operation.
When this happens, the normal send return codes are augmented with the
MACH_MSG_IPC_SRCE, MACH_MSG_VM_SRCE,
MACH_MSG_IPC_KERNEL, and MACH_MSG_VM_KERNEL bits to indi-

cate the nature of the resource shortage.

The queueing of a message carrying receive rights may create a circular loop of
receive rights and messages, which can never be received. For example, a mes-
sage carrying a receive right can be sent to that receive right. This situation is
not an errarbut the kernel will garbage-collect such loops, destroying the mes-
sages.

Message Receive

The receive operation de-queues a message from a port. The receiving task ac-
quires the port rights and out-of-line memory regions carried in the message.

The rcv_nameamgument specifies a port or port set from which to receive. If a
port is specified, the caller must possess the receive right for the port and the
port must not be a member of a port set. If no message is present, then the call
blocks, subject to the MACH_RCV_TIMEOUT option.

If a port set is specified, the call will receive a message sent to any of the mem-
ber ports. It is permissible for the port set to have no member ports, and ports
may be added and removed while a receive from the port set is in progress. The
received message can come from any of the member ports which have messag-
es, with the proviso that a member port with messages will not be indefinitely
starved. Themsgh_local_portfield in the received message header specifies
from which port in the port set the message came.

The rcv_sizealgument specifies the size of the callemessage bfdr. The
mach_msgcall will not receive a messagedar thanrcv_size Messages that
are too large are destroyed, unless the MACH_RCV_LARGE option is used.

The destination and reply ports are reversed in a received message Tieader
msgh_local_porfield carries the name of the destination port, from which the
message was received, and thegh_remote portield carries the reply port

18

Mach 3 Kernel Interfaces

mach_msg/mach_msg_secure

right. The bits in msgh_bits are also reversed. The
MACH_MSGH_BITS_LOCAL bits have the value
MACH_MSG_TYPE_POR_SEND if the message was sent to a send right,
and the value MACH_MSG_TYPE_PORSEND_ONCE if was sent to a send-
once right. The MACH_MSGH_BITS_REMOTE bits describe the reply port
right.

Received messages are stamped with a sequence nuakaer from the port

from which the message was received. (Messages received from a port set are
stamped with a sequence number from the appropriate member port.) Newly
created ports start with a zero sequence nunalnerthe sequence number is re-

set to zero whenever the port's receive right moves between tasks. When a mes-
sage is de-queued from the port, it is stamped with the port's sequence number
and the port's sequence number is then incremented. The de-queue and incre-
ment operations are atomic, so that multiple threads receiving messages from a
port can use thensgh_seqndield to reconstruct the original order of the mes-
sages.

A received message can contain port rights and out-of-line meribey
msgh_local_porfield does not carry a port right; the act of receiving the mes-
sage destroys the send or send-once right for the destination port. The
msgh_remote_pofield does carry a port right, and the message body can carry
port rights and memory if MACH_MSGH_BITS_COMPLEX is present in
msgh_bitsReceived port rights and memory should be consumed or de-allocat-
ed in some fashion.

In almost all casesnsgh_local_portvill specify the name of a receive right, ei-
ther rcv_name or, if rcv_nameis a port set, a member ofv_name If other
threads are concurrently manipulating the receive right, the situation is more
complicated. If the receive right is renamed during the call, then
msgh_local_porspecifies the righd’ new name. If the caller loses the receive
right after the message was de-queued from it, mech_msgwill proceed in-
stead of returning MACH_RCV_PQARDIED. If the receive right was de-
stroyed, thermsgh_local_portspecifies MACH_POR _DEAD. If the receive
right still exists, but isn’ held by the callerthen msgh_local_portspecifies
MACH_PORT_NULL.

These options modify MACH_RCV_MSG. If MACH_RCV_MSG is not also
specified, they are ignored.

MACH_RCV_TIMEOUT
The timeout agument should specify a maximum time (in millisec-
onds) for the call to block before giving up. If no message arrives be-
fore the timeout interval elapses, then the call returns
MACH_RCV_TIMED_OUT. A zero timeout is legitimate.

MACH_RCV_NOTIFY
The notify agument should specify a receive right for a notify port. If
receiving the reply port creates a new port right in the calien the

Mach 3 Kernel Interfaces 19

IPC Interface

notify port is used to request a dead-name notification for the new port
right.

MACH_RCV_INTERRUPT
If specified, the mach_msg call will return
MACH_RCV_INTERRUPTED if a software interrupt aborts the call.
Otherwise, the receive operation will be retried.

MACH_RCV_LARGE
If the message is lger thanrcv_size then the message remains
queued instead of being destroyed. The call returns
MACH_RCV_TOO_LARGE and the actual size of the message is re-
turned in themsgh_sizdield of the message head#rthis option is
not specified, messages tooglrwill be de-queued and then de-
stroyed; the caller receives the message's headbrall fields correct,
including the destination port but excepting the reply port, which is
MACH_PORT_NULL.

If a resource shortage prevents the reception of a port right, the port right is de-
stroyed and the caller sees the name MACH_PORIJLL. If a resource short-

age prevents the reception of an out-of-line memory region, the region is
destroyed and the caller sees a zero address. In additionngbe size
(msgtl_sizgfield in the regiors type descriptor is changed to zero. If a resource
shortage prevents the reception of out-of-line memory carrying port rights, then
the port rights are always destroyed if the memory region can not be received.
A task never receives port rights or memory for which it is not told.

The MACH_RCV_HEADER_ERROR return code indicates a resource short-
age in the reception of the messagaéaderThe reply port and all port rights

and memory in the message body are destroyed. The caller receives the mes-
sage’s header, with all fields correct except for the reply port.

The MACH_RCV_BODY_ERROR return code indicates a resource shortage in
the reception of the messagdiody The message headéncluding the reply
port, is correct. The kernel attempts to transfer all port rights and memory re-
gions in the body, and only destroys those that can'’t be transferred.

Atomicity

The mach_msgcall handles port rights in a message header atomidcziist

rights and out-of-line memory in a message body do not enjoy this atomicity
guarantee. The message body may be processed front-to-back, back-to-front,
first out-of-line memory then port rights, in some random ¢mieeven atomi-

cally.

For example, consider sending a message with the destination port specified as
MACH_MSG_TYPE_MOVE_SEND and the reply port specified as
MACH_MSG_TYPE_COPY_SEND. The same send right, with one-nefer-

ence, is supplied for both thasgh_remote_porand msgh_local_portfields.
Becausamach_msgprocesses the message header atomidhls/ succeeds. If

20

Mach 3 Kernel Interfaces

mach_msg/mach_msg_secure

msgh_remote_porvere processed befonasgh_local_port then mach_msg
would return MACH_SEND_INVALID_REPLY in this situation.

On the other hand, suppose the destination and reply port are both specified as
MACH_MSG_TYPE_MOVE_SEND, and again the same send right with one
userreference is supplied for both. Now the send operation fails, but because it
processes the header atomicallymach_msg can return either
MACH_SEND_INVALID_DEST or MACH_SEND_INVALID_REPLY.

For example, consider receiving a message at the same time another thread is
de-allocating the destination receive right. Suppose the reply port field carries a
send right for the destination port. If the de-allocation happens before the de-
gueuing, then the receiver gets MACH_RCV_HORIED. If the de-allocation
happens after the receive, then thegh_local_portand themsgh_remote_port

fields both specify the same right, which becomes a dead name when the re-
ceive right is de-allocated. If the de-allocation happens between the de-queue
and the receive, then thasgh_local_portand msgh_remote_portields both
specify MACH_POR_DEAD. Because the header is processed atomidaity

not possible for just one of the two fields to hold MACH_PORT_DEAD.

The MACH_RCV_NOTIFY option provides a more likely example. Suppose a
message carrying a send-once right reply port is received with
MACH_RCV_NOTIFY at the same time the reply port is destroyed. If the reply
port is destroyed first, themsgh_remote_podpecifies MACH_POR _DEAD

and the kernel does not generate a dead-name notification. If the reply port is de-
stroyed after it is received, thensgh_remote_porspecifies a dead name for
which the kernel generates a dead-name notification. It is not possible to receive
the reply port right and have it turn into a dead name before the dead-name noti-
fication is requested; as part of the message header the reply port is received
atomically.

Implementation
mach_msgand mach_msg_secureare wrappers for system calls. These rou-
tines have the responsibility for repeating the interrupted system call.

CAUTIONS

Sending out-of-line memory with a non-page-aligned address, or a size which is
not a page multiple, works but with a caveat. The extra bytes in the first and last
page of the received memory are not zeroed, so the receiver can peek at more
data than the sender intended to transfars might be a security problem for

the sender.

If MACH_RCV_TIMEOUT is used without MACH_RCV_INTERRURThen

the timeout duration might not be accurate. When the call is interrupted and au-
tomatically retried, the original timeout is used. If interrupts occur frequently
enough, the timeout interval might never expire. MACH_SEND_TIMEOUT
without MACH_SEND_INTERRUPT suffers from the same problem.

Mach 3 Kernel Interfaces 21

IPC Interface

RETURN VALUE

The send operation can generate the following return codes. These return codes
imply that the call did nothing:

MACH_SEND_MSG_TOO_SMALL
The specifiedsend_sizevas smaller than the minimum size for a mes-
sage.

MACH_SEND_NO_BUFFER
A resource shortage prevented the kernel from allocating a message
buffer.

MACH_SEND_INVALID_DATA
The supplied message buffer was not readable.

MACH_SEND_INVALID_HEADER
Themsgh_bitsvalue was invalid.

MACH_SEND_INVALID_DEST
Themsgh_remote_poxtalue was invalid.

MACH_SEND_INVALID_REPLY
Themsgh_local_portvalue was invalid.

MACH_SEND_INVALID_NOTIFY
When using MACH_SEND_CANCEL, theotify agument did not de-
note a valid receive right.

These return codes imply that some or all of the message was destroyed:

MACH_SEND_INVALID_MEMORY
The message body specified out-of-line data that was not readable.

MACH_SEND_INVALID_RIGHT
The message body specified a port right which the caller didn’t possess.

MACH_SEND_INVALID_TYPE
A type descriptor was invalid.

MACH_SEND_MSG_TOO_SMALL
The last data item in the message ran over the end of the message.

These return codes imply that the message was returned to the caller with a
pseudo-receive operation:

MACH_SEND_TIMED_OUT
Thetimeoutinterval expired.

22

Mach 3 Kernel Interfaces

mach_msg/mach_msg_secure

MACH_SEND_INTERRUPTED
A software interrupt occurred.

MACH_SEND_INVALID_NOTIFY
When using MACH_SEND_NOTIFYthe notify agument did not de-
note a valid receive right.

MACH_SEND_NO_NOTIFY
A resource shortage prevented the kernel from setting up a msg-accept-
ed notification.

MACH_SEND_NOTIFY_IN_PROGRESS
A msg-accepted notification was already requested, andthgesin’
been generated.

These return codes imply that the message was queued:

MACH_SEND_WILL_NOTIFY
The message was forcibly queued, and a msg-accepted notification was
requested.

MACH_MSG_SUCCESS
The message was queued.

The receive operation can generate the following return codes. These return
codes imply that the call did not de-queue a message:

MACH_RCV_INVALID_NAME
The specifiedcv_namewas invalid.

MACH_RCV_IN_SET
The specified port was a member of a port set.

MACH_RCV_TIMED_OUT
Thetimeoutinterval expired.

MACH_RCV_INTERRUPTED
A software interrupt occurred.

MACH_RCV_PORT_DIED
The caller lost the rights specified ty_name

MACH_RCV_PORT_CHANGED
rcv_namespecified a receive right which was moved into a port set dur-
ing the call.

Mach 3 Kernel Interfaces 23

IPC Interface

MACH_RCV_TOO_LARGE
When using MACH_RCV_LARGE, and the message wagelathan
rcv_size The message is left queued, and its actual size is returned in
themsgh_sizdield of the message buffer.

These return codes imply that a message was de-queued and destroyed:

MACH_RCV_HEADER_ERROR
A resource shortage prevented the reception of the port rights in the
message header.

MACH_RCV_INVALID_NOTIFY
When using MACH_RCV_NOTIFYthe notify agument did not de-
note a valid receive right.

MACH_RCV_TOO_LARGE
When not using MACH_RCV_LARGE, a messagegéar than
rcv_sizewas de-queued and destroyed.

These return codes imply that a message was received:

MACH_RCV_BODY_ERROR
A resource shortage prevented the reception of a port right or out-of-
line memory region in the message body.

MACH_RCV_INVALID_DATA
The specified message farf was not writable. The calling task did
successfully receive the port rights and out-of-line memory regions in
the message. ‘

MACH_MSG_SUCCESS
A message was received.

Resource shortages can occur after a message is de-queued, while transferring
port rights and out-of-line memory regions to the receiving task. In this situp-
tion, mach_msg and mach_msg_secure return
MACH_RCV_HEADER_ERROR or MACH_RCV_BODY_ERROR. These re-

turn codes always carry extra bits (bitwiséed) that indicate the nature of the
resource shortage:

MACH_MSG_IPC_SPACE
There was no room in the task’s IPC name space for another port name.

MACH_MSG_VM_SPACE
There was no room in the task/M address space for an out-of-line
memory region.

MACH_MSG_IPC_KERNEL
A kernel resource shortage prevented the reception of a port right.

24

Mach 3 Kernel Interfaces

mach_msg/mach_msg_secure

MACH_MSG_VM_KERNEL
A kernel resource shortage prevented the reception of an out-of-line
memory region.

MACH_MSG_INSUFFICIENT_PERMISSION
A permission check failure prevented the reception of a port right.

RELATED INFORMATION
Functionsmach_msg_receivemach_msg_send

Data Structuresmach_msg_headermach_msg_type mach_msg_type_long,
mach_msg_accepted_notificatigmmach_send_once_notification

Mach 3 Kernel Interfaces 25

IPC Interface

mach_msg_receive

Function — Receives a message from a port or port set

LIBRARY
Not declared anywhere.

SYNOPSIS

mach_msg_return mhach_msg_receive
(mach_msg_header_t* header)

DESCRIPTION
Themach_msg_receivdunction is a shorthand for the following call:

mach_msg(headey MACH_RCV_MSG, Oheaders msgh_size
header- msgh_local_portMACH_MSG_TIMEOUT_NONE,
MACH_PORT_NULL);

SECURITY

The receiving task must haww_can_receivgpermission to the port indicated
by rcv_name Messages will be received from a port in a port set only if the rl

guesting task haav_can_receivgermission to the port. When a task uses
port as a reply port for an RPC type of operation, the requesting task must
haveav_can_sengermission to that port.

Iso

PARAMETERS

header
[pointer to in/out structure containing random port] The address of the
buffer that is to receive the message. Timsgh local portand
msgh_sizdields inheadermust be set.

RETURN VALUE
Refer tomach_msgfor a description of the various receive errors.

RELATED INFORMATION
Functionsmach_msg mach_msg_send

Data Structuresnach_msg_heademach_msg_typemach_msg_type long

26 Mach 3 Kernel Interfaces

mach_msg_send

mach_msg_send

Function — Sends a message to a port

LIBRARY
Not declared anywhere.

SYNOPSIS

mach_msg_returnmhach_msg_send
(mach_msg_header_t* headey;

DESCRIPTION
Themach_msg_sendunction is a shorthand for the following call:

mach_msg(headeyf MACH_SEND_MSGheader- msgh_size0,
MACH_PORT_NULL, MACH_MSG_TIMEOUT_NONE,
MACH_PORT_NULL);

SECURITY

The sending task must hase_can_sengbermission to the destination port. If a
reply port is used, the sending task must lmweset_replypermission to the re-

ply port.

PARAMETERS
header

[pointer to in structure containing random and reply ports] The address
of the buffer that contains the message to be sent.

RETURN VALUE

Refer tomach_msgfor a description of the send errors.

RELATED INFORMATION

Functionsmach_msg mach_msg_receive

Data Structureanach_msg_heademach_msg_typemach_msg_type_long

Mach 3 Kernel Interfaces 27

IPC Interface

28 Mach 3 Kernel Interfaces

CHAPTER 3 Port Manipulation
Interface

This chapter discusses the specifics of the kerpelit manipulation interfaces. This in-
cludes port, port set and port right related functions. Also included are interfaces that re-
turn port related status information that applies to a single task.

Mach 3 Kernel Interfaces 29

Port Manipulation Interface

do_mach_notify_dead_name

Server Interface — Handles the occurrence of a dead-name notification

LIBRARY

Not declared anywhere.

SYNOPSIS

kern_return_to_mach_notify_dead name
(notify_port_t notify,
mach_port_name_t name)

do_seqnos_mach_notify_dead name

Sequence Numbeform

kern_return_tlo_seqgnos_mach_notify_dead name

(notify_port_t notify,
mach_port_seqno_t segnoQ
mach_port_name_t name)

DESCRIPTION

A do_mach_notify_dead namédunction is called bynotify _server as the re-

sult of a kernel message indicating that the port name is now dead as the result
of the associated receive right having died. In contrast, a port-deleted notifica-
tion indicates that the port name is no longer usable (that is, it no longer names
a valid right), typically as a result of the right so named being consumed or
moved. notify is the port named vianach_port_request_notification or
mach_msg

SECURITY

There are no security limitations on this kernel outcall.

PARAMETERS

notify
[in notify port] The port to which the notification was sent.

segno
[in scalar] The sequence number of this message relative to the notifica-
tion port.

name
[in scalar] The dead name.

30

Mach 3 Kernel Interfaces

do_mach_notify_dead_name

NOTES

This interface is machine word length specific because of the port name parame-
ter.

RETURN VALUE

Irrelevant.

RELATED INFORMATION

Functions: notify_server, mach_msg mach_port_request_notification,
do_mach_notify_msg_accepted do_mach_notify_no_senders
do_mach_notify_port_deleted do_mach_notify_port_destroyed

do_mach_notify_send_once.

Mach 3 Kernel Interfaces 31

Port Manipulation Interface

do_mach_notify_msg_accepted

Server Interface— Handles the occurrence of a message accepted notification

LIBRARY
Not declared anywhere.

SYNOPSIS
kern_return_tlo_mach_notify_msg_accepted
(notify_port_t notify,
mach_port_name_t name)

do_seqnos_mach_notify_msg_accepted
Sequence Numbeform

kern_return_tlo_seqgnos_mach_notify_msg_accepted

(notify_port_t notify,
mach_port_seqno_t segnoQ
mach_port_name_t name)

DESCRIPTION

A do_mach_notify_msg_acceptedunction is called bynotify_server as the

result of a kernel message indicating that a message forcibly queued to a port
via MACH_NOTIFY_SEND was acceptechotify is the port named via
mach_msg

(Note: This feature is current planned for deletion.)
SECURITY

There are no security limitations on this kernel outcall.
PARAMETERS

notify
[in notify port] The port to which the notification was sent.

segno
[in scalar] The sequence number of this message relative to the notifica-
tion port.

name
[in scalar] The port whose message was accepted.

32 Mach 3 Kernel Interfaces

do_mach_notify_msg_accepted

NOTES

This interface is machine word length specific because of the port name parame-
ter.

RETURN VALUE

Irrelevant.

RELATED INFORMATION

Functions: notify_server, mach_msg mach_port_request_notification,
do_mach_notify_dead_name do_mach_notify_no_senders
do_mach_notify_port_deleted do_mach_notify_port_destroyed

do_mach_notify_send_once.

Mach 3 Kernel Interfaces 33

Port Manipulation Interface

do_mach_notify_no_senders

Server Interface — Handles the occurrence of a no-more-senders notification

LIBRARY
Not declared anywhere.

SYNOPSIS
kern_return_tlo_mach_notify_no_senders
(notify_port_t notify,
mach_port_mscount_t mscount)

do_seqnos_mach_notify_no_senders
Sequence Numbeform

kern_return_tlo_seqgnos_mach_notify_no_senders

(notify_port_t notify,
mach_port_seqno_t segnoQ
mach_port_mscount_t mscount)

DESCRIPTION

A do_mach_notify_no_senderdunction is called bynotify server as the re-
sult of a kernel message indicating that a receive right has no more santlers.
fy is the port named viamach_port_request_notification

SECURITY
There are no security limitations on this kernel outcall.

PARAMETERS

notify
[in notify port] The port to which the notification was sent.

segno
[in scalar] The sequence number of this message relative to the notifica-
tion port.

mscount
[in scalar] The value the postmake-send count had when the notifica-
tion was generated.

RETURN VALUE

Irrelevant.

34 Mach 3 Kernel Interfaces

do_mach_notify_no_senders

RELATED INFORMATION

Functions: notify_server, mach_msg mach_port_request_notification,
do_mach_notify_msg_accepted do_mach_notify_dead_name
do_mach_notify_port_deleted do_mach_notify_port_destroyed
do_mach_notify_send_once.

Mach 3 Kernel Interfaces 35

Port Manipulation Interface

do_mach_notify _port_deleted

Server Interface— Handles the occurrence of a port-deleted notification

LIBRARY

Not declared anywhere.

SYNOPSIS

kern_return_tlo_mach_notify_port_deleted
(notify_port_t notify,
mach_port_name_t name)

do_seqnos_mach_notify _port_deleted

Sequence Numbeform

kern_return_tlo_seqnos_mach_notify_port deleted

(notify_port_t notify,
mach_port_seqno_t segnoQ
mach_port_name_t name)

DESCRIPTION

A do_mach_notify_port_deletedfunction is called byotify _server as the re-

sult of a kernel message indicating that a port name is no longer usable (that is,
it no longer names a valid right), typically as a result of the right so named be-
ing consumed or moved. In contrast, a dead-name notification indicates that the
port name is now dead as the result of the associated receive right having died.
notifyis the port named viaach_port_request_notificationor mach_msg

SECURITY

There are no security limitations on this kernel outcall.

PARAMETERS

notify
[in notify port] The port to which the notification was sent.

segno
[in scalar] The sequence number of this message relative to the notifica-
tion port.

name
[in scalar] The invalid name.

36

Mach 3 Kernel Interfaces

do_mach_notify_port_deleted

NOTES

This interface is machine word length specific because of the port name parame-
ter.

RETURN VALUE

Irrelevant.

RELATED INFORMATION

Functions: notify_server, mach_msg mach_port_request_notification,

do_mach_notify_dead_name do_mach_notify_msg_accepted
do_mach_notify_no_senders do_mach_notify_port_destroyed

do_mach_notify_send_once.

Mach 3 Kernel Interfaces 37

Port Manipulation Interface

do_mach_notify _port_destroyed

Server Interface— Handles the occurrence of a port destroyed notification

LIBRARY
Not declared anywhere.

SYNOPSIS
kern_return_tlo_mach_notify_port_destroyed
(notify_port_t notify,
mach_port_receive_t rights);

do_seqgnos_mach_notify port_destroyed
Sequence Numbeform

kern_return_tlo_seqgnos_mach_notify port_destroyed

(notify_port_t notify,
mach_port_seqno_t segnoQ
mach_port_receive_t rights);

DESCRIPTION

A do_mach_notify_port_destroyedfunction is called bynotify _server as the
result of a kernel message indicating that a receive right would have been de-
stroyed.notify is the port named vimach_port_request_notification

(Note: This feature is currently planned for deletion.)
SECURITY

There are no security limitations on this kernel outcall.
PARAMETERS

notify
[in notify port] The port to which the notification was sent.

segno
[in scalar] The sequence number of this message relative to the notifica-
tion port.

rights
[in random port] The receive right that would have been destroyed.

RETURN VALUE

Irrelevant.

38 Mach 3 Kernel Interfaces

do_mach_notify_port_destroyed

RELATED INFORMATION

Functions: notify_server, mach_msg mach_port_request_notification,
do_mach_notify_msg_accepted do_mach_notify_no_senders
do_mach_notify_dead_name do_mach_notify_port_deleted

do_mach_notify_send_once.

Mach 3 Kernel Interfaces 39

Port Manipulation Interface

do_mach_notify_send_once

Server Interface — Handles the occurrence of a send-once notification

LIBRARY
Not declared anywhere.

SYNOPSIS
kern_return_tlo_mach_notify_send_once
(notify_port_t notify);

do_seqgnos_mach_notify_send_once
Sequence Numbeform

kern_return_tlo_seqgnos_mach_notify_send_once
(notify_port_t notify,
mach_port_seqno _t seqno)

DESCRIPTION

A do_mach_notify_send_oncéunction is called byotify server as the result
of a kernel message indicating that a send-once right was in any way destroyed.
notifyis the port for which a send-once right was destroyed.

SECURITY
There are no security limitations on this kernel outcall.

PARAMETERS

notify
[in notify port] The port to which the notification was sent.

segno
[in scalar] The sequence number of this message relative to the notifica-
tion port.

RETURN VALUE

Irrelevant.

RELATED INFORMATION

Functions: notify_server, mach_msg mach_port_request_notification,
do_mach_notify_msg_accepted do_mach_notify_no_senders
do_mach_notify port_deleted do_mach_notify_port_destroyed
do_mach_notify_dead_name.

40 Mach 3 Kernel Interfaces

mach_port_allocate/mach_port_allocate_secure

mach_port_allocate/mach_port_allocate_secure

Function — Creates a port right and optionally associates an object security
identifier with the port.

SYNOPSIS
kern_return_tnach_port_allocate
(mach_port_t task,
mach_port_right_t right,
mach_port_t* name);

kern_return_tnach_port_allocate_secure

(mach_port_t task,
mach_port_right_t right,
mach_port_t* name,
security_id_t obj_sid);

DESCRIPTION

The mach_port_allocatefunction creates a new right in the specified task. The
new rights name is returned iname The mach_port_allocate securdunc-

tion creates a new right in the specified task with the specified object security
identifier.

SECURITY

The requesting task must hdkl_add_nameermission to the task paask.If
the request results in a new receive right being creatadd®s task, task must
haveav_hold_receivgermission to the newly allocated port.

When usingmach_port_allocate the port is allocated with an object security
identifier derived fromtasKs subject security identifieRefer to the Software
Design Document for further information on how SIDs are derived.

If mach_port_allocate_securas given a SEC_NULL_SID as thabj_sid then
its behavior is essentially the samevesch_port_allocate.

PARAMETERS

task
[in task port] The task acquiring the port right.

right
[in scalar] The kind of entity to be created. This is one of the following:

Mach 3 Kernel Interfaces 41

Port Manipulation Interface

MACH_

MACH_

MACH_

PORT_RIGHT_RECEIVE

mach_port_allocate creates a port. The new port is not a
member of any port set. It doesiiave any extant send or
send-once rights. Its make-send count is zero, its sequence
number is Zero, its queue limit is
MACH_PORT_QLIMIT_DEFAULT, and it has no queued
messagesiamedenotes the receive right for the new port.

task does not hold send rights for the new port, only the re-
ceive right. mach_port_insert_right and
mach_port_extract_right can be used to convert the receive
right into a combined send/receive right.

PORT_RIGHT_PORT_SET

mach_port_allocatecreates a port set. The new port set ha
no members. An object security identifier cannot be associgt-
ed with a port set, hence, if one is specified wit
mach_port_allocate_securgit will be ignored.

PORT_RIGHT _DEAD_NAME

mach_port_allocate creates a dead name. The new dea
name has one user reference. An object security identifier cgn-
not be associated with a dead name, hence, if one is speciffed
with mach_port_allocate _securgit will be ignored.

[out scalar] The tasg’name for the port right. This can be any name
that wasn't in use.

rity id] The object security identifier to be associated with th
port. The interfac®SI_context_to_midcan be used to obtain

a mandatory identifier from the Security Serviére mandatory identi-

the authentication identifier can be combined into a securfy

identifier viamake_sid

name
obj_sid
[in secu
created
fier and
NOTES

This interface is
ter.

RETURN VALUE

machine word length specific because of the port name parame-

KERN_NO_SPACE
There was no room itasks IPC name space for another right.

42

Mach 3 Kernel Interfaces

mach_port_allocate/mach_port_allocate_secure

RELATED INFORMATION

Functions: mach_port_allocate_name mach_port_allocate_name_secure
mach_port_deallocate, mach_port_insert_right, mach_port_extract_right
SSI_context_to_mid, make_sid

Mach 3 Kernel Interfaces 43

Port Manipulation Interface

mach_port_allocate_name/
mach_port_allocate_name_secure

Function — Creates a port right with a given name and optionally associates
object security identifier with the port.

SYNOPSIS
kern_return_tnach_port_allocate_name
(mach_port_t task,
mach_port_right_t right,
mach_port_t name;

kern_return_tnach_port_allocate_name_secure

(mach_port_t task,
mach_port_right_t right,
mach_port_t name,
security_id_t obj_sid;

DESCRIPTION

The mach_port_allocate_namefunction creates a new right in the specified
task, with a specified name for the new rightt Th
mach_port_allocate_name_secur&nction creates a new right in the specified
task, with a specified name and a specified object security identifier.

SECURITY

The requesting task must hdkl_add_nameermission to the task padsk.If
the request results in a new receive right being creatdddks task, task must
haveav_hold_receivg@ermission to the newly allocated port.

When usingmach_port_allocate_namethe port is allocated with an object se-
curity identifier derived frontasks subject security identifier.

If mach_port_allocate_name_secures given a SEC_NULL_SID as the
obj_sid then its behavior is essentially the sameash_port_allocate_name

PARAMETERS

task
[in task port] The task acquiring the port right.

right
[in scalar] The kind of entity to be created. This is one of the following
values:

44 Mach 3 Kernel Interfaces

mach_port_allocate_name/mach_port_allocate_name_secure

name

obj_sid

NOTES

MACH_PORT_RIGHT_RECEIVE
mach_port_allocate_namecreates a port. The new port is
not a member of any port set. It dogdmve any extant send
or send-once rights. Its make-send count is zero, its sequence
number is zero, its queue limit is
MACH_PORT_QLIMIT_DEFAULT, and it has no queued
messagesiamedenotes the receive right for the new port.

task does not hold send rights for the new port, only the re-
ceive right. mach_port_insert_right and
mach_port_extract_right can be used to convert the receive
right into a combined send/receive right.

MACH_PORT_RIGHT_PORT_SET
mach_port_allocate_namecreates a port set. The new port
set has no members. An object security identifier cannot be as-
sociated with a port set, hence, if one is specified with
mach_port_allocate_name_securat will be ignored.

MACH_PORT_RIGHT_DEAD_NAME
mach_port_allocate_namecreates a new dead name. The
new dead name has one user reference. An object security
identifier cannot be associated with dead name, hence, if one
is specified withmach_port_allocate_name_secureit will
be ignored.

[in scalar] The task’' name for the port righhamemust not already be
in use for some right, and it canbe the reserved values
MACH_PORT_NULL and MACH_PORT_DEAD.

[in security id] The object security identifier to be associated with the
allocated port. The interfac8SI_context_to_midcan be used to ob-
tain a mandatory identifier from the Security Servidre mandatory
identifier and the authentication identifier can be combined into a secu-
rity identifier viamake_sid

This interface is machine word length specific because of the port name parame-

ter.

RETURN VALUE

KERN_NAME_EXISTS

namewas already in use for a port right.

Mach 3 Kernel Interfaces 45

Port Manipulation Interface

RELATED INFORMATION

Functions: mach_port_allocate mach_port_allocate_securg
mach_port_deallocatemach_port_rename SSI_context_to_mid make_sid

46 Mach 3 Kernel Interfaces

mach_port_deallocate

mach_port_deallocate

Function — Releases a user reference for a right

SYNOPSIS
kern_return_tnach_port_deallocate
(mach_port_t task,
mach_port_t name);
DESCRIPTION

The mach_port_deallocatefunctionreleases a user reference for a right. It is
an alternate form afmach_port_mod_refsthat allows a task to release a user
reference for a send or send-once right without failing if the port has died and
the right is now actually a dead name.

If namedenotes a dead name, send right, or send-once right, then the right loses
one user reference. If it only had one user reference, then the right is destroyed.

SECURITY

The requesting task must holsiv_remove _nampermission to the task port
task.

PARAMETERS

task
[in task port] The task holding the right.

name
[in scalar] The task’s name for the right.
NOTES
This interface is machine word length specific because of the port name parame-
ter.

RETURN VALUE

KERN_INVALID_RIGHT
namedenoted an invalid right.

RELATED INFORMATION

Functions: mach_port_allocate mach_port_allocate_name,
mach_port_mod_refs

Mach 3 Kernel Interfaces 47

Port Manipulation Interface

mach_port_destroy

Function — Removes a task’s rights for a name

SYNOPSIS
kern_return_tnach_port_destroy
(mach_port_t task
mach_port_t name)
DESCRIPTION

The mach_port_destroy function de-allocates all rights denoted by a name.
The name becomes immediately available for reuse.

For most purposespach_port_mod_refsandmach_port_deallocateare pref-
erable.

If namedenotes a port set, then all members of the port set are implicitly re-
moved from the port set.

If namedenotes a receive right that is a member of a port set, the receive right
is implicitly removed from the port set. If there is a port-destroyed request regis-
tered for the port, then the receive right is not actually destroyed, but instead is
sent in a port-destroyed notification. (Note: Port destroyed notifications are cur-
rently planned for deletion.) If there is no registered port-destroyed request, re-
maining messages queued to the port are destroyed and extant send and send-
once rights turn into dead names. If those send and send-once rights have dead-
name requests registered, then dead-name notifications are generated for them.

If namedenotes a send-once right, then the send-once right is used to produce a
send-once notification for the port.

If namedenotes a send-once, send, and/or receive right, and it has a dead-name
request registered, then the registered send-once right is used to produce a port-
deleted notification for the name.

SECURITY

The requesting task must holslv_remove_nampermission to the task port
task.

PARAMETERS

task
[in task port] The task holding the right.

48 Mach 3 Kernel Interfaces

mach_port_destroy

name
[in scalar] The task’s name for the right.
NOTES
This interface is machine word length specific because of the port name parame-
ter.

RETURN VALUE

KERN_INVALID_NAME
namedid not denote a right.

RELATED INFORMATION

Functions: mach_port_allocate mach_port_allocate_name,
mach_port_mod_refs mach_port_deallocate
mach_port_request_notification

Mach 3 Kernel Interfaces 49

Port Manipulation Interface

mach_port_extract_right

Function — Extracts a port right from a task

SYNOPSIS
kern_return_tnach_port_extract_right

(mach_port_t task,
mach_port_t name,
mach_msg_type _name_t desired_type,
mach_port_t* right,
mach_msg_type_name_t* acquired_type)

DESCRIPTION

The mach_port_extract_right function extracts a port right from the dat
task and returns it to the caller as if the task sent the right voluntasilyg
desired_typeas the value aihsgt_nameSeemach_msg

The returned value of acquired_type will be

MACH_MSG_TYPE_POR_SEND if a send right is extracted,
MACH_MSG_TYPE_POR_RECEIVE if a receive right is extracted, and
MACH_MSG_TYPE_PORT_SEND_ONCE if a send-once right is extracted.

SECURITY

The requesting task must hd&l/_extract_righpermission to the task pdesk.
The requesting task must also have permission to hold the port right extracteq.

PARAMETERS

task
[in task port] The task holding the port right.

name
[in scalar] The task’s name for the port right.

desired_type
[in scalar] IPC type, specifying how the right should be extracted.

right
[out random port] The extracted right.

acquired_type
[out scalar] The type of the extracted right.

50 Mach 3 Kernel Interfaces

mach_port_extract_right

NOTES

This interface is machine word length specific because of the port name parame-
ter.

RETURN VALUE

KERN_INVALID_NAME
namedid not denote a right.

KERN_INVALID_RIGHT
namedenoted an invalid right.

RELATED INFORMATION
Functionsmach_port_insert_right, mach_msg

Mach 3 Kernel Interfaces 51

Port Manipulation Interface

mach_port_get_receive_status

Function — Returns the status of a receive right

SYNOPSIS
kern_return_tnach_port_get_receive_status
(mach_port_t task,
mach_port_t name,
mach_port_status_t* status)
DESCRIPTION

The mach_port_get_receive_statugunction returns the current status of the
specified receive right.

SECURITY
The requesting task must hdkl/_observe_pns_infeermission to the task port
task.
PARAMETERS
task
[in task port] The task holding the receive right.
name
[in scalar] The task’s name for the receive right.
status
[out structure] The status information for the receive right.
NOTES
This interface is machine word length specific because of the port name parame-
ter.

RETURN VALUE

KERN_INVALID_NAME
namedid not denote a right.

KERN_INVALID_RIGHT
namedenoted a right, but not a receive right.

52 Mach 3 Kernel Interfaces

mach_port_get_receive_status

RELATED INFORMATION

Functions: mach_port_set_glimit, mach_port_set_mscount
mach_port_set_seqno

Data Structuresnach_port_status

Mach 3 Kernel Interfaces 53

Port Manipulation Interface

mach_port_get_refs

Function — Retrieves the number of user references for a right

SYNOPSIS

kern_return_tnach_port_get_refs

(mach_port_t task,
mach_port_t name,
mach_port_right_t right,
mach_port_urefs_t* refs),

DESCRIPTION

Themach_port_get_refsfunction returns the number of user references a task
has for a right.

If namedenotes a right, but not the type of right specified, then zero is returned.
Otherwise a positive number of user references is returned. Note a name may si-
multaneously denote send and receive rights.

SECURITY
The requesting task must hdkl/_observe_pns_infeermission to the task port
task.
PARAMETERS
task
[in task port] The task holding the right.
name
[in scalar] The task’s name for the right.
right
[in scalar] The type of right / entity being examined:
MACH_PORI_RIGHT_SEND, MACH_POR_RIGHT_RECEIVE,
MACH_PORT_RIGHT_SEND_ONCE,
MACH_PORT_RIGHT_POR_SET or
MACH_PORT_RIGHT_DEAD_NAME.
refs
[out scalar] Number of user references.
NOTES

This interface is machine word length specific because of the port name parame-

ter.

54

Mach 3 Kernel Interfaces

mach_port_get_refs

RETURN VALUE

KERN_INVALID_NAME

namedid not denote a right.

RELATED INFORMATION
Functionsmach_port_mod_refs

Mach 3 Kernel Interfaces

55

Port Manipulation Interface

mach_port_get_set_status

Function — Returns the members of a port set

SYNOPSIS
kern_return_tnach_port_get_set_status
(mach_port_t task,
mach_port_t name,
mach_port_array_t* members,
mach_msg_type_number_t* count)
DESCRIPTION

The mach_port_get_set_statusfunction returns the members of a port set.
membergs an array that is automatically allocated when the reply message is re-
ceived.

SECURITY

The requesting task must hdkl/_observe_pns_infeermission to the task port
task.

PARAMETERS

task
[in task port] The task holding the port set.

name
[in scalar] The task’s name for the port set.
members
[out pointer to dynamic array ofiach_port tThe tasks names for the
port set's members.
count
[out scalar] The number of member names returned.
NOTES
This interface is machine word length specific because of the port name parame-
ter.

RETURN VALUE

KERN_INVALID_NAME
namedid not denote a right.

56 Mach 3 Kernel Interfaces

mach_port_get_set_status

KERN_INVALID_RIGHT
namedenoted a right, but not a port set.

RELATED INFORMATION
Functionsmach_port_move_membervm_deallocate

Mach 3 Kernel Interfaces

57

Port Manipulation Interface

mach_port_insert_right

Function — Inserts a port right into a task

SYNOPSIS

kern_return_mach_port_insert_right
(mach_port_t task,
mach_port_t name,
mach_port_t right,
mach_msg_type _name_t right_type)

DESCRIPTION

The mach_port_insert_right function inserts intdask the callets right for a
port, using a specified name for the right in the target task.

The specifiechamecant be one of the reserved values MACH_HRORULL
or MACH_POR_DEAD. The right cant be MACH_POR_NULL or
MACH_PORT_DEAD.

The agumentright_type specifies a right to be inserted and how that right
should be extracted from the calldt should be a value appropriate for
msgt_nameseemach_msg

If right_type is MACH_MSG_TYPE_MAKE_SEND,
MACH_MSG_TYPE_MOVE_SEND, or MACH_MSG_TYPE_COPY_SEND,
then a send right is inserted. If thegitralready holds send or receive rights for
the port, themameshould denote those rights in thegetr Otherwisename
should be unused in the get. If the taget already has send rights, then those
send rights gain an additional user reference. Otherwise, tet tains a send
right, with a user reference count of one.

If right_type is MACH_MSG_TYPE_MAKE_SEND_ONCE or
MACH_MSG_TYPE_MOVE_SEND_ONCE, then a send-once right is insert-
ed. Thenameshould be unused in the target. The target gains a send-once right.

If right_typeis MACH_MSG_TYPE_MOVE_RECEIVE, then a receive right is
inserted. If the target already holds send rights for the portnrmeshould de-
note those rights in the get. Otherwisenameshould be unused in the gat.
The receive right is moved into the target task.

SECURITY

The requesting task must hdlsh_add_nameermission to the task potask.
The task havingtask as its task port must also hold the appropriat
av_hold_receiveav_hold_senarav_hold_send_ongeermission to the port as-
sociatedwith name

58

Mach 3 Kernel Interfaces

mach_port_insert_right

PARAMETERS

task
[in task port] The task which gets the caller’s right.

name
[in scalar] The name by whighskwill know the right.
right
[in random port] The port right.
right_type
[in scalar] IPC type of the sent right; e.g,
MACH_MSG_TYPE_COPY_SEND or
MACH_MSG_TYPE_MOVE_RECEIVE.
NOTES

This interface is machine word length specific because of the port name parame-
ter.

RETURN VALUE

KERN_NAME_EXISTS
namealready denoted a right.

KERN_INVALID_CAPABILITY
right was null or dead.

KERN_UREFS_OVERFLOW
Inserting the right would overflowames user-reference count.

KERN_RIGHT_EXISTS
taskalready had rights for the port, with a different name.

RELATED INFORMATION

Functionsmach_port_extract_right, mach_msg

Mach 3 Kernel Interfaces 59

Port Manipulation Interface

mach_port_mod_refs

Function — Changes the number of user refs for a right

SYNOPSIS

kern_return_tnach_port_mod_refs
(mach_port_t task,
mach_port_t name,
mach_port_right_t right,
mach_port_delta_t delta)

DESCRIPTION

Themach_port_mod_refsfunction requests that the number of user references
a task has for a right be changed. This results in the right being destroyed, if the
number of user references is changed to zero.

The nameshould denote the specified right. The number of user references for
the right is changed by the amouwddlta subject to the following restrictions:

port sets, receive rights, and send-once rights may only have one user reference.
The resulting number of user references ttha’negative. If the resulting num-

ber of user references is zero, théeef is to de-allocate the right. For dead
names and send rights, there is an implementation-defined maximum number of
user references.

If the call destroys the right, then thefeet is as described for
mach_port_destroy with the exception thahach_port_destroysimultaneous-

ly destroys all the rights denoted by a name, winilch_port_mod_refscan

only destroy one right. The name will be available for reuse if it only denoted
the one right.

SECURITY

If the port is destroyed as a result of this request, the requesting task must hold
tsv_remove_nanygermission to the task pdesk.

PARAMETERS

task
[in task port] The task holding the right.

name
[in scalar] The task’s name for the right.

right
[in scalar] The type of right / entity being modified:
MACH_PORT_RIGHT_SEND, MACH_POR_RIGHT_RECEIVE,

60

Mach 3 Kernel Interfaces

mach_port_mod_refs

MACH_PORT_RIGHT_SEND_ONCE,
MACH_PORT_RIGHT_POR_SET or
MACH_PORT_RIGHT_DEAD_NAME.

delta

[in scalar] Signed change to the number of user references.

NOTES

This interface is machine word length specific because of the port name parame-
ter.

RETURN VALUE

KERN_INVALID_NAME
namedid not denote a right.

KERN_INVALID_RIGHT
namedenoted a right, but not the specified right.

KERN_INVALID_VALUE
The user-reference count would become negative.

KERN_UREFS OVERFLOW
The user-reference count would overflow.

RELATED INFORMATION

Functionsmach_port_destroy mach_port_get_refs

Mach 3 Kernel Interfaces 61

Port Manipulation Interface

mach_port_move_member

Function — Moves a receive right into/out of a port set

SYNOPSIS
kern_return_tnach_port_move_member
(mach_port_t task,
mach_port_t member,
mach_port_t after);
DESCRIPTION

The mach_port_move_memberfunction moves a receive right into a port set.

If the receive right is already a member of another port set, it is removed from
that set first. If the port set is MACH_PORNULL, then the receive right is

not put into a port set, but removed from its current port set.

SECURITY
The requesting task must hdisl_manipulate_port_segtermission to the task
porttask.
PARAMETERS
task
[in task port] The task holding the port set and receive right.
member
[in scalar] The task’s name for the receive right.
after
[in scalar] The task’s name for the port set.
NOTES

This interface is machine word length specific because of the port name parame-
ter.

RETURN VALUE

KERN_INVALID_NAME
memberor after did not denote a right.

KERN_INVALID_RIGHT
memberdenoted a right, but not a receive right, after denoted a
right, but not a port set.

62 Mach 3 Kernel Interfaces

mach_port_move_member

KERN_NOT_IN_SET
after was MACH_POR_NULL, but memberwasnt currently in a
port set.

RELATED INFORMATION
Functionsmach_port_get_set_statusmach_port_get_receive_status

Mach 3 Kernel Interfaces 63

Port Manipulation Interface

mach_port_names

Function — Return information about a task’s port name space

SYNOPSIS
kern_return_tnach_port_names

(mach_port_t task,
mach_port_array_t* names,
mach_msg_type_number_t* ncount,
mach_port_type_array_t* types,
mach_msg_type_number_t* tcount)

DESCRIPTION

Themach_port_namesreturns information abouasks port name space. It re-
turnstasKs currently active names, which represent some port, port set, or dead
name right. For each name, it also returns what type of righksholds (the
same information returned loyach_port_type).

SECURITY
The requesting task must hdkl/_observe_pns_infeermission to the task port
task.
PARAMETERS
task
[in task port] The task whose port name space is queried.
names
[out pointer to dynamic array ohach_port_}t The names of the ports,
port sets, and dead names in the &glkdrt name space, in no particu-
lar order.
ncount
[out scalar] The number of names returned.
types
[out pointer to dynamic array ahach_port_type]tThe type of each
corresponding name. Indicates what kind of rights the task holds with
that name.
tcount

[out scalar] Should be the samenasunt

64 Mach 3 Kernel Interfaces

mach_port_names

NOTES

This interface is machine word length specific because of the port name parame-
ter.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functionsmach_port_type, vm_deallocate

Mach 3 Kernel Interfaces 65

Port Manipulation Interface

mach_port_rename

Function — Change a task’s name for a right

SYNOPSIS
kern_return_tnach_port_rename
(mach_port_t task,
mach_port_t old_name,
mach_port_t new_name)
DESCRIPTION

The mach_port_renamefunction changes the name by which a port, port set,
or dead name is known task new_nameanust not already be in use, and it
cant be the distinguished values MACH_PORIULL and
MACH_PORT_DEAD.

SECURITY

The requesting task must hakV_port_renameermission to the task pdesk.

PARAMETERS

task
[in task port] The task holding the port right.

old_name
[in scalar] The original name of the port right.

new_name
[in scalar] The new name for the port right.

NOTES

This interface is machine word length specific because of the port name parame-
ter.

RETURN VALUE

KERN_INVALID_NAME
old_namedid not denote a right.

KERN_NAME_EXISTS
new_namelready denoted a right.

66 Mach 3 Kernel Interfaces

mach_port_rename

RELATED INFORMATION
Functionsmach_port_names

Mach 3 Kernel Interfaces

67

Port Manipulation Interface

mach_port_request_notification

Function — Request a notification of a port event

SYNOPSIS

kern_return_mach_port_request_notification

(mach_port_t task,
mach_port_t name,
mach_msg_id_t variant,
mach_port_mscount_t sync,
mach_port_t notify,
mach_msg_type _name_t notify_type,
mach_port_t* previous)

DESCRIPTION

Themach_port_request_notificationfunction registers a request for a notifica-
tion and supplies a send-once right that the notification will use. It is an atomic

swap,

returning the previously registered send-once right (or

MACH_PORI_NULL for none). A notification request may be cancelled by
providing MACH_PORT_NULL.

Thevariant argument takes the following values:

MACH_NOTIFY_PORT_DESTROYED

syncmust be zero. Theamemust specify a receive right, and the call
requests a port-destroyed notification for the receive right. If the re-
ceive right were to have been destroyed, saynbgh_port_destroy

then instead the receive right will be sent in a port-destroyed notifica-
tion to the registered send-once right.

(Note: This feature is currently planned for deletion.)

MACH_NOTIFY_DEAD_NAME

The call requests a dead-name notificatioame specifies send, re-
ceive, or send-once rights for a port. If the port is destroyed (and the
right remains, becoming a dead name), then a dead-name notification
which carries the name of the right will be sent to the registered send-
once right. Ifsyncis non-zero, th@amemay specify a dead name, and

a dead-name notification is immediately generated.

Whenever a dead-name notification is generated, the user reference
count of the dead name is incremented. For example, a send right with
two user refs has a registered dead-name request. If the port is de-
stroyed, the send right turns into a dead name with three user refs (in-
stead of two), and a dead-name notification is generated.

68

Mach 3 Kernel Interfaces

mach_port_request_notification

If the name is made available for reuse, perhaps because of
mach_port_destroy or mach_port_mod_refs or the name denotes a
send-once right which has a message sent to it, then the registered send-
once right is used to generate a port-deleted notification instead.

MACH_NOTIFY_NO_SENDERS
The call requests a no-senders notificatiomme must specify a re-
ceive right. If the receive rigl#’ make-send count is greater than or
equal to the sync value, and it has no extant send rights, than an imme-
diate no-senders notification is generated. Otherwise the notification is
generated when the receive right next loses its last extant send right. In
either case, any previously registered send-once right is returned.

The no-senders notification carries the value the goarthke-send
count had when it was generated. The make-send count is incremented
whenever MACH_MSG_TYPE_MAKE_SEND is used to create a
new send right from the receive right. The make-send count is reset to
zero when the receive right is carried in a message.

(Note: Currentlymoving a receive right does nofeaft any extant no-
senders notifications. It is currently planned to change this so that no-
senders notifications are canceled, with a send-once notification sent to
indicate the cancelation.)

SECURITY
The requesting task must hdisl_register_notificatiorpermission to the task
porttask.
PARAMETERS
task
[in task port] The task holding the specified right.
name
[in scalar] The task’s name for the right.
variant
[in scalar] The type of notification.
sync
[in scalar] Some variants use this value to overcome race conditions.
notify

[in notify port] A send-once right, to which the notification will be sent.

Mach 3 Kernel Interfaces 69

Port Manipulation Interface

notify _type
[in scalar] IPC type of the sent right; either
MACH_MSG_TYPE_MAKE_SEND_ONCE or

MACH_MSG_TYPE_MOVE_SEND_ONCE.

previous
[out notify port] The previously registered send-once right.

NOTES

This interface is machine word length specific because of the port name parame-
ter.

RETURN VALUE

KERN_INVALID_NAME
namedid not denote a right.

KERN_INVALID_RIGHT
namedenoted an invalid right.

KERN_INVALID_CAPABILITY
notify was invalid.

When using MACH_NOTIFY_DEAD_NAME:
KERN_UREFS_OVERFLOW

namedenotes a dead name, but generating an immediate dead-name
notification would overflow the name’s user-reference count.

RELATED INFORMATION
Functionsmach_port_get_receive_status

70 Mach 3 Kernel Interfaces

mach_port_set_mscount

mach_port_set _mscount

Function — Changes the make-send count of a port

SYNOPSIS
kern_return_tnach_port_set_mscount
(mach_port_t task,
mach_port_t name,
mach_port_mscount t mscount)
DESCRIPTION

The mach_port_set_mscountfunction changes the make-send countasKs
receive right namedame All values formscountare valid.

SECURITY
The requesting task must haislv_alter_pns_infgermission to the task port
task.
PARAMETERS
task
[in task port] The task owning the receive right.
name
[in scalar]tasks name for the receive right.
mscount
[in scalar] New value for the make-send count for the receive right.
NOTES
This interface is machine word length specific because of the port name parame-
ter.

RETURN VALUE

KERN_INVALID_NAME
namedid not denote a right.

KERN_INVALID_RIGHT
namedenoted a right, but not a receive right.

Mach 3 Kernel Interfaces 71

Port Manipulation Interface

RELATED INFORMATION
Functionsmach_port_get receive_statysnach_port_set_glimit

72 Mach 3 Kernel Interfaces

mach_port_set_glimit

mach_port_set glimit

Function — Changes the queue limit of a port

SYNOPSIS
kern_return_tnach_port_set_glimit
(mach_port_t task,
mach_port_t name,
mach_port_msgcount_t glimit);
DESCRIPTION

The mach_port_set_glimit function changes the queue limit @fsKs receive
right named name Valid values for glimit are between zero and
MACH_PORT_QLIMIT_MAX (defined inmach.h), inclusive.

SECURITY

The requesting task must haislv_alter_pns_infgermission to the task port
task.

PARAMETERS

task
[in task port] The task owning the receive right.

name
[in scalar]tasks name for the receive right.
glimit
[in scalar] The number of messages which may be queued to this port
without causing the sender to block.
NOTES
This interface is machine word length specific because of the port name parame-
ter.

RETURN VALUE

KERN_INVALID_NAME
namedid not denote a right.

KERN_INVALID_RIGHT
namedenoted a right, but not a receive right.

Mach 3 Kernel Interfaces 73

Port Manipulation Interface

RELATED INFORMATION
Functionsmach_port_get receive_statusnach_port_set_mscount

74 Mach 3 Kernel Interfaces

mach_port_set_seqgno

mach_port_set_segno

Function — Changes the sequence number of a port

SYNOPSIS
kern_return_tnach_port_set_seqno
(mach_port_t task,
mach_port_t name,
mach_port_seqno _t seqno)
DESCRIPTION

The mach_port_set_seqgndunction changes the sequence numbensKs re-
ceive right namedame

SECURITY
The requesting task must haislv_alter_pns_infgermission to the task port
task.
PARAMETERS
task
[in task port] The task owning the receive right.
name
[in scalar]tasks name for the receive right.
segno
[in scalar] The sequence number that the next message received from
the port will have.
NOTES
This interface is machine word length specific because of the port name parame-
ter.

RETURN VALUE

KERN_INVALID_NAME
namedid not denote a right.

KERN_INVALID_RIGHT
namedenoted a right, but not a receive right.

Mach 3 Kernel Interfaces 75

Port Manipulation Interface

RELATED INFORMATION
Functionsmach_port_get_receive_status

76 Mach 3 Kernel Interfaces

mach_port_type/mach_port_type_secure

mach_port_type/mach_port_type_secure

Function — Return information about a task’s port name

SYNOPSIS

kern_return_tnach_port_type
(mach_port_t task,
mach_port_t name,
mach_port_type t* ptype)

kern_return_tnach_port_type_secure
(mach_port_t task,
mach_port_t name,
mach_port_type t* ptype,
security_id_t obj_sid,
mach_access_vector_t av);

DESCRIPTION

The mach_port_type function returns information abotasKs rights for a spe-
cific name in its port name space. Timach_port_type securefunction re-
turns information aboutasKs rights,tasks access, and the security id for the
port associated with a specific name in its port name space. The rgityped
is a bit-mask indicating what rightask holds with this name. The bit-mask is
composed of the following bits:

MACH_PORT_TYPE_SEND
The name denotes a send right.

MACH_PORT_TYPE_RECEIVE
The name denotes a receive right.

MACH_PORT_TYPE_SEND_ONCE
The name denotes a send-once right.

MACH_PORT_TYPE_PORT_SET
The name denotes a port set.

MACH_PORT_TYPE_DEAD_NAME
The name is a dead name.

MACH_PORT_TYPE_DNREQUEST
A dead-name request has been registered for the right.

MACH_PORT_TYPE_MAREQUEST
A msg-accepted request for the right is pending. (Note: This feature is
planned for deletion.)

Mach 3 Kernel Interfaces 77

Port Manipulation Interface

MACH_PORT_TYPE_COMPAT
The port right was created in the compatibility mode.

SECURITY
The requesting task must hotgv_observe_pns_infpermissions to the task
porttask
PARAMETERS
task
[in task port] The task whose port name space is queried.
name
[in scalar] The name being queried.
ptype
[out scalar] The type of the name. Indicates what kind of right the task
holds for the port, port set, or dead name.
obj_sid
[out security id] The security identifier of the port associated with th
port right. SEC_NULL_SID ihameis a port set or a dead name.
av
[out access vector] The access vector indicatisgs allowed access-
es toname
NOTES
This interface is machine word length specific because of the port name parame-
ter.

RETURN VALUE

KERN_INVALID_NAME
namedid not denote a right.

RELATED INFORMATION

Functions: mach_port_names mach_port_get_receive_status
mach_port_get_set_status

78 Mach 3 Kernel Interfaces

mach_reply_port

mach_reply port

System Trap— Creates a port for the task

LIBRARY
#include smach/mach_traps.t»

SYNOPSIS

mach_port_tnach_reply_port
0;

DESCRIPTION

The mach_reply_port function creates a new port for the current task and re-
turns the name assigned by the kernel. The kernel records the name in the task’
port name space and grants the task receive rights for the port. The new port is
not a member of any port set.

This function is an optimized version ofach_port_allocatethat uses no port
references. Its main purpose is to allocate a reply port for the task when the task
is starting— namelybefore it has any ports to use as reply ports for any IPC
based system functions.

SECURITY

The requesting task must hasgy _add _nampermission to its own task port.

PARAMETERS
None

CAUTIONS

Although the created port can be used for any purpose, the implementation may
optimize its use as a reply port.

RETURN VALUE

MACH_PORT_NULL
No port was allocated.

[reply port]
Any other value indicates success.

Mach 3 Kernel Interfaces 79

Port Manipulation Interface

RELATED INFORMATION
Functionsmach_port_allocate

80 Mach 3 Kernel Interfaces

CHAPTER 4 Virtual Memory Interface

This chapter discusses the specifics of the kernéttual memory interfaces. This in-
cludes memory status related functions associated with a single task. Functions that are

related to, or used bgxternal memory managers (pagers) are described in the next chap-
ter.

Mach 3 Kernel Interfaces 81

Virtual Memory Interface

vm_allocate/vm_allocate secure |

Function — Allocates a region of virtual memory

SYNOPSIS
kern_return_vm_allocate
(mach_port_t target_task,
vm_address_t* address,
vm_size_t size,
boolean_t anywhere)

kern_return_tvm_allocate_secure

(mach_port_t target_task,
vm_address_t* address,
vm_size_t size,
boolean_t anywhere,
security_id_t obj_sid;

DESCRIPTION

Thevm_allocateandvm_allocate_securefunctions allocate a region of virtual |
memory in the specified task'address space. A new region is always zero
filled. The physical memory is not allocated until an executing thread references
the new virtual memoryin addition to allocating a region of virtual memory
vm_allocate_secureassociates a specific object security identifier with th
memory region.

If anywhereis true, the returnedddresswill be at a page boundary; otherwise,

the region starts at the beginning of the virtual page contaaddgesssizeis
always rounded up to an integral number of pages. Because of this rounding to
virtual page boundaries, the amount of memory allocated may be greater than
size Usevm_statisticsto find the current virtual page size.

Use themach_task_selffunction to return the calley value fortarget task
This macro returns the task kernel port for the caller.

Initially, there are no access restrictions on any of the pages of the newly allocat-
ed region. Child tasks inherit the new region as a copy.

SECURITY

The requesting task must holdsv_allocate_vm_regionpermission to
target_taskand mosv_map_vmegionto the object port of the memory object
backing the region for thaddressspecified Permissions to the memory are de-
termined by the permissions thatget taskhas to the memory object associat-
ed with the allocated memory.

82 Mach 3 Kernel Interfaces

vm_allocate/vm_allocate_secure

If no object security identifier is provided, the memory is allocated with an ob-
ject security identifier derived frotarget_tasks subject security identifier.

PARAMETERS

target_task
[in task port] The port for the task in whose address space the region is
to be allocated.

address
[pointer to in/out scalar] The starting address for the region. If there is
not enough room following the address, the kernel does not allocate
the region. The kernel returns the starting address actually used for the
allocated region.

size
[in scalar] The number of bytes to allocate.

anywhere
[in scalar] Placement indicatdf false, the kernel allocates the region
starting ataddress If true, the kernel allocates the region wherever
enough space is available within the address space. The kernel returns
the starting address actually use@duress

obj_sid
[in security id] The security identifier to be associated with the region
to be allocated.

NOTES

For languages other than C, use tme_statistics and mach_task_selffunc-
tions to return the task’s kernel port (target_task

To establish dferent protections for the new region, use ¥in@ protect and
vm_inherit functions.

A task’s address space can contain both explicitly allocated memory and auto-
matically allocated memoryThe vm_allocate function explicitly allocates
memory The kernel automatically allocates memory to hold out-of-line data
passed in a message (and received miglsh_msg. The kernel allocates mem-

ory for the passed data as an integral number of pages.

This interface is machine word length specific because of the virtual address pa-
rameter.

Mach 3 Kernel Interfaces 83

Virtual Memory Interface

RETURN VALUE

KERN_INVALID_ADDRESS
The specified address is illegal.

KERN_NO_SPACE

There is not enough space in the taskildress space to allocate the
new region.

RELATED INFORMATION

Functions: task_get_special_port vm_deallocate vm_inherit, vm_protect,
vm_region, vm_statistics

84

Mach 3 Kernel Interfaces

vm_copy

vm_copy

Function — Copies a region in a task’s virtual memory

SYNOPSIS
kern_return_vm_copy
(mach_port_t target_task,
vm_address_t source_address
vm_size t count,
vm_address_t dest_address)
DESCRIPTION

Thevm_copy function copies a source region to a destination region within the
same tasls virtual memorylt is semantically equivalent tam_read followed
by vm_write. The destination region can overlap the source region.

The destination region must already be allocated. The source region must be
readable, and the destination region must be writable.

SECURITY

The requesting task must ha&V_copy_vnpermission tdarget_task.

In the current implementation the data copied retains the security identifier as-
signed to the memory region from which the data came.

PARAMETERS

target_task
[in task port] The port for the task whose memory is to be copied.

source_address
[in scalar] The starting address for the source region. The address must
be on a page boundary.

count
[in scalar] The number of bytes in the source region. The number of
bytes must convert to an integral number of virtual pages.

dest_address
[in scalar] The starting address for the destination region. The address
must be on a page boundary.

Mach 3 Kernel Interfaces 85

Virtual Memory Interface

NOTES

This interface is machine word length specific because of the virtual address pa-
rameter.

RETURN VALUE

KERN_PROTECTION_FAILURE
The source region is protected against reading, or the destination re-
gion is protected against writing.

KERN_INVALID_ADDRESS
An address is illegal or specifies a non-allocated region, or there is not
enough memory following one of the addresses.

RELATED INFORMATION
Functionsvm_protect, vm_read, vm_write, vm_statistics

86 Mach 3 Kernel Interfaces

vm_deallocate

vm_deallocate

Function — De-allocates a region of virtual memory

SYNOPSIS
kern_return_vm_deallocate
(mach_port_t target_task,
vm_address_t address,
vm_size t size)
DESCRIPTION

The vm_deallocate function de-allocates a region of virtual memory in the
specified task’s address space.

The region starts at the beginning of the virtual page contaauldessit ends

at the end of the virtual page containiaddress+ size- 1. Because of this
rounding to virtual page boundaries, the amount of memory de-allocated may
be greater thasize Usevm_ statisticsto find the current virtual page size.

vm_deallocateaffects onlytarget task Other tasks that have access to the de-
allocated memory can continue to reference it.

SECURITY

The requesting task must holtbv_deallocate_vm_regiorpermission to
target_task.

PARAMETERS

target_task

[in task port] The port for the task in whose address space the region is
to be de-allocated.

address
[in scalar] The starting address for the region.

size

[in scalar] The number of bytes to de-allocate.

NOTES

vm_deallocatecan be used to de-allocate memory passed as out-of-line data in
a message.

Mach 3 Kernel Interfaces 87

Virtual Memory Interface

This interface is machine word length specific because of the virtual address pa-
rameter.

RETURN VALUE

KERN_INVALID_ADDRESS
The address is illegal or specifies a non-allocated region.

RELATED INFORMATION
Functionsmach_msgvm_allocate vm_ statistics

88 Mach 3 Kernel Interfaces

vm_inherit

vm_inherit

Function — Sets the inheritance attribute for a region of virtual memory

SYNOPSIS
kern_return_tvm_inherit
(mach_port_t target_task,
vm_address_t address,
vm_size t size,
vm_inherit_t new_inheritance)
DESCRIPTION

The vm_inherit function sets the inheritance attribute for a region within the
specified tasls address space. The inheritance attribute determines the type of
access established for child tasks at task creation.

Because inheritance applies to virtual pages, the spealdiédssandsizeare
rounded to page boundaries, as follows: the region starts at the beginning of the
virtual page containingddressit ends at the end of the virtual page containing
address+ size- 1. Because of this rounding to virtual page boundaries, the
amount of memory &cted may be greater thaize Usevm_statisticsto find

the current virtual page size.

A parent and a child task can share the same physical memory only if the inher-
itance for the memory is set to VM_INHERIT_SHARE before the child task is
created. This is the only way that two tasks can share memory (other than
through the use of an external memory managenrseenap).

Note that all the threads within a task share the task’'s memory.

SECURITY

The requesting task must holtbv_set_vm_region_inheripermission to
target_task.

PARAMETERS

target_task
[in task port] The port for the task whose address space contains the re-
gion.

address
[in scalar] The starting address for the region.

Mach 3 Kernel Interfaces 89

Virtual Memory Interface

size
[in scalar] The number of bytes in the region.

new_inheritance
[in scalar] The new inheritance attribute for the regioalidvvalues
are:

VM_INHERIT_SHARE
Allows child tasks to share the region.

VM_INHERIT_COPY
Gives child tasks a copy of the region.

VM_INHERIT_NONE
Provides no access to the region for child tasks.

NOTES

This interface is machine word length specific because of the virtual address pa-
rameter.

RETURN VALUE

KERN_INVALID_ADDRESS
The address is illegal or specifies a non-allocated region.

RELATED INFORMATION
Functionstask create vm_map, vm_region, norma_task_clone

90 Mach 3 Kernel Interfaces

vm_machine_attribute

vm_machine_attribute

Function — Sets and gets special attributes of a memory region

SYNOPSIS
kern_return_vm_machine_attribute

(mach_port_t target_task,
vm_address_t address,
vm_size t size,
vm_machine_attribute t attribute,
vm_machine_attribute_val_t* value)

DESCRIPTION

The vm_machine_attribute function gets and sets special attributes of the
memory region implemented by the implementasomhderlyingpmap mod-
ule. These attributes are properties such as cachahiiigyability and replica-
bility. The behavior of this function is machine dependent.

SECURITY

The requesting task must holdv_access_machine_attribufgermission to
target_task.

PARAMETERS

target_task
[in task port] The port for the task in whose address space the memory
object is to be manipulated.

address
[in scalar] The starting address for the memory region. The granularity
of rounding of this value to page boundaries is implementation depen-

dent.
size
[in scalar] The number of bytes in the region. The granularity of round-
ing of this value to page boundaries is implementation dependent.
attribute

[in scalar] The name of the attribute to be get/set. Possible values are:

MATTR_CACHE
Cachability

Mach 3 Kernel Interfaces 91

Virtual Memory Interface

MATTR_MIGRATE
Migratability

MATTR_REPLICATE
Replicability

value
[pointer to in/out scalar] The new value for the attribute. The old value
is also returned in this variable.

MATTR_VAL_OFF
(generic) turn attribute off

MATTR_VAL_ON
(generic) turn attribute on

MATTR_VAL GET
(generic) return current value

MATTR_VAL_CACHE_FLUSH
flush from all caches

MATTR_VAL DCACHE_FLUSH
flush from data caches

MATTR_VAL_ICACHE_FLUSH
flush from instruction caches

NOTES

This interface is machine word length specific because of the virtual address pa-
rameter.

RETURN VALUE

KERN_INVALID_ADDRESS
The address is illegal or specifies a non-allocated region.

RELATED INFORMATION

Functionsvm_wire.

92 Mach 3 Kernel Interfaces

vm_map

vm_map

Function — Maps a memory object to a task’s address space

SYNOPSIS
kern_return_vm_map

(mach_port_t target_task,
vm_address_t* address,
vm_size t size,
vm_address_t mask,
boolean_t anywhere,
mach_port_t memory_obiject,
vm_offset_t offset,
boolean_t copy,
vm_prot_t cur_protection,
vm_prot_t max_protection,
vm_inherit_t inheritance);

DESCRIPTION

The vm_map function maps a portion of the specified memory object into the
virtual address space belongingdoget task The taget task can be the calling
task or another task, identified by its task kernel port.

The portion of the memory object mapped is determinedfisgtandsize The
kernel mapsaddressto the ofset, so that an access to the memory starts at the
offset in the object.

The maskparameter specifies additional alignment restrictions on the kernel’
selection of the starting address. Uses for this mask include:

Forcing the memory address alignment for a mapping to be the same as the
alignment within the memory object.

Quickly finding the beginning of an allocated region by performing bit arith-
metic on an address known to be in the region.

Emulating a larger virtual page size.

The cur_protection max_protectionandinheritanceparameters set the protec-

tion and inheritance attributes for the mapped object. As a rule, at least the maxi-
mum protection should be specified so that a server can make a restricted (for
example, read-only) mapping in a client atomicallize current protection and
inheritance parameters are provided for convenience so that the caller does not
have to calvm_inherit andvm_protect separately.

The same memory object can be mapped in more than once and by more than
one task. If an object is mapped by multiple tasks, the kernel maintains consis-
tency for all the mappings if they use the same page alignmeoftf§etand are

on the same host. In this case, the virtual memory to which the object is mapped

Mach 3 Kernel Interfaces 93

Virtual Memory Interface

is shared by all the tasks. Changes made by one task in its address space are visi-
ble to all the other tasks.

SECURITY

The requesting task must holdsv_allocate_vm_regionpermission to
target_taskand mosv_map_vmegion to the memoryobjects object port
target_tasks access to the mapped memory is determined by its permission| to
memory_object

PARAMETERS

target_task
[in task port] The port for the task to whose address space the memory
object is to be mapped.

address
[pointer to in/out scalar] The starting address for the mapped object.
The mapped object will start at the beginning of the page containing
address If there is not enough room following the address, the kernel
does not map the object. The kernel returns the starting address actual-
ly used for the mapped object.

size
[in scalar] The number of bytes to allocate for the object. The kernel
rounds this number up to an integral number of virtual pages.

mask
[in scalar] Alignment restrictions for starting address. Bits turned on in
the mask will not be turned on in the starting address.

anywhere

[in scalar] Placement indicatdf false, the kernel allocates the objsct’
region starting atddress If true, the kernel allocates the region any-
where at or followingaddresgshat there is enough space available with-

in the address space. The kernel returns the starting address actually
used inaddress

memory_object
[in abstract-memory-object port] The port naming the abstract memory
object. If MEMORY_OBJECT_NULL is specified, the kernel allo-
cates zero-filled memory, as witm_allocate

offset
[in scalar] An ofset within the memory object, in bytes. The kernel
mapsaddresgo the specified offset.

94 Mach 3 Kernel Interfaces

vm_map

copy
[in scalar] Copy indicatorif true, the kernel copies the region for the
memory object to the specified taskiddress space. If false, the region
is mapped read-write.

cur_protection
[in scalar] The initial current protection for the regiomlif values are
obtained by or’ing together the following values:

VM_PROT_READ
Allows read access.

VM_PROT_WRITE
Allows write access.

VM_PROT_EXECUTE
Allows execute access.

max_protection
[in scalar] The maximum protection for the regiomal)és are the same
as forcur_protection

inheritance
[in scalar] The initial inheritance attribute for the regioalid/ values
are:

VM_INHERIT_SHARE
Allows child tasks to share the region.

VM_INHERIT_COPY
Gives child tasks a copy of the region.

VM_INHERIT_NONE
Provides no access to the region for child tasks.

NOTES

vm_map allocates a region in a taskaddress space and maps the specified
memory object to this regiomm_allocate allocates a zero-filled temporary re-
gion in a task’s address space.

Before a memory object can be mapped, a port naming it must be acquired from
the memory manager serving it.

This interface is machine word length specific because of the virtual address pa-
rameter.

Mach 3 Kernel Interfaces 95

Virtual Memory Interface

CAUTIONS

Do not attempt to map a memory object unless it has been provided by a memo-
ry manager that implements the memory object interface. If another type of port
is specified, a thread that accesses the mapped virtual memory may become per-
manently hung or may receive a memory exception.

RETURN VALUE

KERN_NO_SPACE

There is not enough space in the taskildress space to allocate the
new region for the memory object.

RELATED INFORMATION
Functionsmemory_object_init, vm_allocate

96 Mach 3 Kernel Interfaces

vm_protect

vm_protect

Function — Sets access privileges for a region of virtual memory

SYNOPSIS
kern_return_tm_protect

(mach_port_t target_task,
vm_address_t address,
vm_size t size,
boolean_t set_maximum,
vm_prot_t new_protection)

DESCRIPTION

Thevm_protect function sets access privileges for a region within the specified
tasks address spaceew_protectiorspecifies a combination of read, write, and
execute accesses that are allowed (rather than prohibited).

The region starts at the beginning of the virtual page contaauidgessit ends

at the end of the virtual page containiagdess+ size- 1. Because of this
rounding to virtual page boundaries, the amount of memory protected may be
greater tharsize Usevm_statisticsto find the current virtual page size.

The enforcement of virtual memory protection is machine-dependent. Nominal-
ly, read access requires VM_PROT_READ permission, write access requires
VM_PROT_WRITE permission, and execute access requires
VM_PROT_EXECUTE permission. Howeyvesome combinations of access
rights may not be supported. In particutdre kernel interface allows write ac-
cess to require VM_PROT_READ and VM_PROT_WRITE permission and ex-
ecute access to require VM_PROT_READ permission.

SECURITY

The requesting task must holtsv_chg_vm_region_protpermission to
target_task.

PARAMETERS

target_task
[in task port] The port for the task whose address space contains the re-
gion.

address
[in scalar] The starting address for the region.

Mach 3 Kernel Interfaces 97

Virtual Memory Interface

size
[in scalar] The number of bytes in the region.

set_maximum
[in scalar] Maximum/current indicatolf true, the new protection sets

the maximum protection for the region. If false, the new protection sets
the current protection for the region. If the maximum protection is set
below the current protection, the current protection is reset to the new
maximum.

new_protection
[in scalar] The new protection for the regioralid values are obtained

by or’ing together the following values:

VM_PROT_READ
Allows read access.

VM_PROT_WRITE
Allows write access.

VM_PROT_EXECUTE
Allows execute access.

NOTES
This interface is machine word length specific because of the virtual address pa-
rameter.

RETURN VALUE

KERN_PROTECTION_FAILURE
The new protection increased the current or maximum protection be-

yond the existing maximum protection.

KERN_INVALID_ADDRESS
The address is illegal or specifies a non-allocated region.

RELATED INFORMATION
Functionsvm_inherit, vm_region.

98 Mach 3 Kernel Interfaces

vm_read

vm_read

Function — Reads a task’s virtual memory

SYNOPSIS
kern_return_vm_read

(mach_port_t target_task,
vm_address_t address,
vm_size t size,
vm_offset_t* data,
mach_msg_type _number_t* data_count)

DESCRIPTION

Thevm_read function reads a portion of a taski/irtual memorylt allows one
task to read another task’s memory.

SECURITY
The requesting task must hakV_read_vm_regiopermission tdarget_task

In the current implementation the data read retains the security identifier as-
signed to the memory region from which the data came.

PARAMETERS

target_task
[in task port] The port for the task whose memory is to be read.

address
[in scalar] The address at which to start the read. This address must

name a page boundary.

size
[in scalar] The number of bytes to read.

data
[out pointer to dynamic array of bytes] The array of data returned by
the read.

data_count

[out scalar] The number of bytes in the returned affag count con-
verts to an integral number of pages.

Mach 3 Kernel Interfaces 99

Virtual Memory Interface

NOTES

This interface is machine word length specific because of the virtual address pa-
rameter.

RETURN VALUE

KERN_NO_SPACE

There is not enough room in the calling taskdldress space to allocate
the region for the returned data.

KERN_PROTECTION_FAILURE
The specified region in the target task is protected against reading.

KERN_INVALID_ADDRESS

The address is illegal or specifies a non-allocated region, or there are
less tharsizebytes of data following the address.

RELATED INFORMATION

Functionsvm_copy, vm_deallocate vm_write.

100

Mach 3 Kernel Interfaces

vm_region/vm_region_secure

| vm_region/vm_region_secure

Function — Returns information on a region of virtual memory

SYNOPSIS

kern_return_tvm_region

DESCRIPTION

(mach_port_t
vm_address_t*
vm_size t*
vm_prot_t*
vm_prot_t*
vm_inherit_t*
boolean_t*
mach_port_t*
vm_offset_t*

kern_return_vm_region_secure

(mach_port_t
vm_address_t*
vm_size_t*
vm_prot_t*
vm_prot_t*
vm_prot_t*
vm_inherit_t*
boolean_t*
mach_port_t*
vm_offset_t*
security _id_t

mach_access_vector_t

target_task,
address,

size,
mach_protection,
max_protection,
inheritance,
shared,
object_name,

offset)

target_task,
address,

size,
mach_protection
protection,
max_protection,
inheritance,
shared,
object_name,
offset,

obj_sid,

av);

The vm_region and vm_region_securefunctions return information on a re-
gion within the specified tasik'address spacem_region_securealso returns
protection which incorporatesnach_protectionand the memory protections
from the access vectanpj_sid the security identifier for the region containing
the address; aral, target_task access vector for the region.

The function begins looking addressand continues until it finds an allocated

region. If the input address is within a region, the function uses the start of that

region. The starting address for the located region is returrattiness

SECURITY

The

requesting task must
target_task.

holdsv_get_vm_region_infopermission to

Mach 3 Kernel Interfaces

101

Virtual Memory Interface

PARAMETERS

target_task
[in task port] The port for the task whose address space contains the re-
gion.

address
[pointer to in/out scalar] The address at which to start looking for a re-
gion. The function returns the starting address actually used.

size
[out scalar] The number of bytes in the located region. The number
converts to an integral number of virtual pages.

mach_protection
[out scalar] The current Mach protection for the region (i.e., the orig
nal protectionvalue).

protection
[out scalar] The current protection for the region which incorporate
mach_protectiorand the memory protections from the access vectof
av.

(2]

max_protection
[out scalar] The maximum protection allowed for the region.

inheritance
[out scalar] The inheritance attribute for the region.

shared
[out scalar] Shared indicatolf true, the region is shared by another
task. If false, the region is not shared.

object_name
[out memory-cache-name port] The name of a send right to the name
port for the memory object associated with the region. See
memory_object_init.

offset
[out scalar] The regior’offset into the memory object. The region be-
gins at this offset.

obj_sid
[out security id] The security identifier for the memory object associa}-
ed with the memory region containiagdress

av
[out access vector] The access vector indicatimget_tasks allowed
access to the region containiaddress

102

Mach 3 Kernel Interfaces

vm_region/vm_region_secure

NOTES

This interface is machine word length specific because of the virtual address pa-
rameter.

RETURN VALUE

KERN_NO_SPACE
There is no region at or beyond the specified starting address.

RELATED INFORMATION

Functions: vm_allocate vm_deallocate vm_inherit, = vm_protect,
memory_object_init, et al.

Mach 3 Kernel Interfaces 103

Virtual Memory Interface

vm_ statistics

Function — Returns statistics on the kernel’s use of virtual memory

SYNOPSIS
kern_return_vm_statistics
(mach_port_t target_task,
vm_statistics_data_t* vm_stats)
DESCRIPTION

Thevm_statisticsfunction returns statistics on the kernel's use of virtual memo-
ry from the time the kernel was booted.

Seevm_statisticsfor a description of the structure used.

For related information for a specific task, tesk_info.

SECURITY

The requesting task must hay_get vm_statistigeermission tdarget_task.

PARAMETERS

target_task
[in task port] The task that is requesting the statistics.

vm_stats
[out structure] The structure in which the statistics will be returned.

NOTES

This interface is machine word length specific because of the virtual address pa-
rameter.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION

Functionstask_info.

Data Structuresim_statistics

104 Mach 3 Kernel Interfaces

vm_wire

vm_wire

Function — Specifies the pageability of a region of virtual memory

LIBRARY
#include smach/mach_host.k

SYNOPSIS
kern_return_vm_wire

(mach_port_t host_priy
mach_port_t target_task,
vm_address_t address,
vm_size t size,
vm_prot_t wired_access)

DESCRIPTION

The vm_wire function sets the pageability privileges for a region within the
specified tasls address spacwired accessspecifies the types of accesses to
the memory region which must not frffrom (internal) faults of any kind after
this call returns. A page is wired into physical memory if any task accessing it
has a non-nullvired_acceswalue for the page.

The region starts at the beginning of the virtual page contaauidgessit ends

at the end of the virtual page containiagdess+ size- 1. Because of this
rounding to virtual page boundaries, the amount of memdectafl may be
greater tharsize Usevm_statisticsto find the current virtual page size.

SECURITY

The requesting task must hasly_wire_vm_for_taskermission taarget_task
andhpsv_wire_vnpermission tdhost_priv

PARAMETERS

host_priv
[in host-control port] The host control port for the host on which
target_taskexecutes.

target_task
[in task port] The port for the task whose address space contains the re-
gion.

address
[in scalar] The starting address for the region.

Mach 3 Kernel Interfaces 105

Virtual Memory Interface

size
[in scalar] The number of bytes in the region.

wired_access
[in scalar] The pageability of the region. Valid values are:

VM_PROT_NONE
Un-wire (allow to be paged) the region of memory.

Any other value specifies that the region is to be wired and that the tar-
get task must have at least the specified amount of access to the region.

NOTES

This call requires the privileged host port on whtalget taskexecutes be-
cause of the privileged nature of committing physical memory.

This interface is machine word length specific because of the virtual address pa-
rameter.

RETURN VALUE

KERN_INVALID_HOST
The privileged host port was not specified

KERN_INVALID_ADDRESS
The address is illegal or specifies a non-allocated region.

RELATED INFORMATION
Functionsthread_wire.

106 Mach 3 Kernel Interfaces

vm_write

vm_write

Function — Writes data to a task’s virtual memory

SYNOPSIS
kern_return_vm_write
(mach_port_t target_task,
vm_address_t address,
vm_offset_t data,
mach_msg_type_number _t data_count)
DESCRIPTION

Thevm_write function writes an array of data to a taskirtual memorylt al-
lows one task to write to another task’'s memory.

The result ofvm_write is as iftarget_taskhad directly written into the set of
pages. Hencearget_taskmust have write permission to the pages.

SECURITY

The requesting task must hagV_write_vm_regiopermission tdarget_task.

The SID of memory region to which the data is written, is festdd. If the
write results in creation of a new memory region, the SID assigned to that re-
gion will be the default memory object sid for thheget task.

PARAMETERS

target_task
[in task port] The port for the task whose memory is to be written.

address
[in scalar] The address at which to start the write. The starting address
must be on a page boundary.

data
[in pointer to page aligned array of bytes] An array of data to be writ-
ten.

data_count

[in scalar] The number of bytes in the arréiie size of the array must
convert to an integral number of pages.

Mach 3 Kernel Interfaces 107

Virtual Memory Interface

NOTES

This interface is machine word length specific because of the virtual address pa-
rameter.

RETURN VALUE

KERN_PROTECTION_FAILURE
The specified region in the target task is protected against writing.

KERN_INVALID_ADDRESS
The address is illegal or specifies a non-allocated region, or there are
less thardata_countytes available following the address.

RELATED INFORMATION
Functionsvm_copy, vm_protect, vm_read, vm_statistics

108 Mach 3 Kernel Interfaces

CHAPTER 5 External Memory
Management Interface

This chapter discusses the specifics of the kermatternal memory management inter-
faces. Interfaces that relate to the basic use of virtual memory for a task appear in the pre-
vious chapter.

Mach 3 Kernel Interfaces 109

External Memory Management Interface

memory_object_change_attributes

Function — Changes various performance related attributes

SYNOPSIS
kern_return_tnemory_object_change_attributes
(mach_port_t memory_control,
boolean_t may_cache_object,
memory_object_copy_strategy _t copy_strategy,
mach_port_t reply_por;
DESCRIPTION

The memory_object_change_attributesfunction sets various performance-re-
lated attributes for the specified memory object, so as to:

Retain data from a memory object even after all address space mappings
have been de-allocatechgy cache_objeqtarameter).

Perform optimizations for virtual memory copy operationspf/_strategy
parameter).

SECURITY

The requesting task must holdncsv_set attributes permission to
memory_control.

PARAMETERS

memory_control
[in memory-cache-control port] The memory cache control port to be
used by the memory manager for cache management requests. This
port is provided by the kernel innaemory_object_init call.

may_cache_object
[in scalar] Cache indicatolf true, the kernel can cache data associated
with the memory object, even if virtual memory references to it are re-
moved.

copy_strategy
[in scalar] How the kernel should handle copying of regions associated
with the memory object. Valid values are:

MEMORY_OBJECT_COPY_NONE
Use normal procedure when copying the memory olsjezt*
ta. Normally the kernel requests each page with read access,
copies the data, and then (optionally) flushes the data.

110 Mach 3 Kernel Interfaces

memory_object_change_attributes

MEMORY_OBJECT_COPY_CALL
Notify the memory manager (vimemory_object_copy be-
fore copying any data.

MEMORY_OBJECT_COPY_DELAY
Use copy-on-write technique. This strategy allows the kernel
to eficiently copy lage amounts of data and guarantees that
the memory manager will not externally modify the data. It is
the most commonly used copy strategy.

MEMORY_OBJECT_COPY_TEMPORARY
Mark the object as temporaryhis has the samefeft as the
MEMORY_OBJECT_COPY_DELX strategy and has the
additional attribute that when the last mapping of the memory
object is removed, the object is destroyed without returning
any in-memory pages.

reply_port
[in reply port] A port to which a reply
(memory_object_change_completéds to be sent indicating the com-
pletion of the attribute change. Such a reply would be useful if the
cache attribute is turnedfpsince such a change, if the memory object
is no longer mapped, may result in the object being terminated, or if
the copy strategy is changed, which may result in additional page re-
guests.

NOTES

Sharing cached data among all the clients of a memory object can have a major
impact on performance, especially if it can be extended across successive, as
well as concurrent, uses. For example, the memory objects that represent pro-
gram images can be used regularly byedént programs. By retaining the data

for these memory objects in cache, the number of secondary storage accesses
can be reduced significantly.

RETURN VALUE

Since this function does not receive a reply message, it has no return value.
Only message transmission errors apply.

RELATED INFORMATION

Functions: memory_object_change_completed memory_object_copy
memory_object_get_attributes memory_object_ready
memory_object_set_attributes(old form).

Mach 3 Kernel Interfaces 111

External Memory Management Interface

memory_object_change completed

Server Interface — Indicates completion of an attribute change call

LIBRARY

Not declared anywhere.

SYNOPSIS

kern_return_tnemory_object_change_completed
(mach_port_t reply_port,
boolean_t may_cache_object,
memory_object_copy_strategy_t copy_strategy

segnos_memory_object_change_completed

Sequence Numbeform

kern_return_seqnos_memory_object change completed

(mach_port_t reply_port,
mach_port_seqno_t segnoQ
boolean_t may_cache_object,
memory_object_copy_strategy t copy_strategy

DESCRIPTION

A memory_object_change_completeflunction is called as the result of a ker-
nel message confirming the Kkersel’action in response to a
memory_object_change_attributesall from the memory manager. |

When the kernel completes the requested changes, it calls
memory_object_change_completedasynchronously) using the port explicitly
provided in thememory_object_change_attributescall. A response is generat-

ed so that the manager can synchronize with changes to the copy strategy
(which afects the manner in which pages will be requested) and a termination
message possibly resulting from un-cacheing a not-mapped object.

PARAMETERS

reply_port
[in reply port] The port named in the corresponding
memory_object_change_attributesall.

segno
[in scalar] The sequence number of this message relative to the port
named in thenemory_object_change_attributescall.

may_cache_object
[in scalar] The new cache attribute.

112

Mach 3 Kernel Interfaces

memory_object_change_completed

copy_strategy
[in scalar] The new copy strategy.

NOTES

No memory cache control port is supplied in this call because the attribute
change may cause termination of the object leading to what would be an invalid
cache port.

RETURN VALUE
Irrelevant.

RELATED INFORMATION

Functions: memory_object_change_attributes memory_object_server
seqnos_memory_object_server

Mach 3 Kernel Interfaces 113

External Memory Management Interface

memory_object_copy

Server Interface — Indicates that a memory object has been copied

LIBRARY

Not declared anywhere.

SYNOPSIS

kern_return_tnemory_object_copy

(mach_port_t
memory_object_control_t

old_memory_object,
old_memory_control,

vm_offset_t offset,
vm_size_t length,
mach_port_t new_memory_objext

segnos_memory_object_copy

Sequence Numbeform

kern_return_steqnos_memory_object_copy

(mach_port_t old_memory_object,

mach_port_seqno_t segnoQ
memory_object_control_t old_memory_control,
vm_offset t offset,
vm_size t length,
mach_port_t new_memory_objegt

DESCRIPTION

A memory_object_copyfunction is called as the result of a message from the
kernel indicating that the kernel has copied the specified region within the old
memory object.

This call includes only the new abstract memory object port itself. The kernel
will subsequently issuermemory_object_init call on the new abstract memory
object after it has prepared the currently cached pages of the old object. When
the memory manager receives themory_object_init call, it is expected to re-

ply with the memory_object ready call. The kernel uses the new abstract
memory object, memory cache control, and memory cache name ports to refer
to the new copy.

The kernel makes thmemory_object_copycall only if:

The memory manager had previously set the old objecipy strategy at-
tribute to MEMOR_OBJECT_COPY_CALL (using
memory_object_change_attributesor memory_object_ready).

A user of the old object has asked the kernel to copy it.

114

Mach 3 Kernel Interfaces

memory_object_copy

Cached pages from the old memory object at the time of the copy are handled
as follows:

Readable pages may be copied to the new object without notification and
with all access permissions.

Pages not copied are locked to prevent write access.

The memory manager should treat the new memory object as temporatty-

er words, the memory manager should not change the new shjentents or
allow it to be mapped in another client. The memory manager can use the
memory_object_data_unavailablecall to indicate that the appropriate pages
of the old object can be used to fulfill a data request.

PARAMETERS

old_memory_object
[in abstract-memory-object port] The port that represents the old (cop-
ied from) abstract memory object.

segno
[in scalar] The sequence number of this message relative to the ab-
stract memory object port.

old_memory_control
[in memory-cache-control port] The kernel memory cache control port
for the old memory object.

offset
[in scalar] The offset within the old memory object.

length
[in scalar] The number of bytes copied, startingffget The number
converts to an integral number of virtual pages.

new_memory_object
[in abstract-memory-object port] The new abstract memory object cre-
ated by the kernel. The kernel provides all port rights (including the re-
ceive right) for the new memory object.

NOTES

It is possible for a memory manager to receiveeanory_object _data_return
message for a page of the new memory object before receiving any other re-
quests for that data.

Mach 3 Kernel Interfaces 115

External Memory Management Interface

RETURN VALUE

Any return value other than KERN_SUCCESS or MIG_NO_RERIll cause
mach_msg_servetto remove the old and new memory cache control port refer-
ences.

RELATED INFORMATION

Functions: memory_object_change_attributes
memory_object_data_unavailable memory_object_init,
memory_object_ready memory_object_server

seqnos_memory_object_server

116 Mach 3 Kernel Interfaces

memory_object_data_error

memory_object_data_error

Function — Indicates no data for a memory object

SYNOPSIS
kern_return_tmemory_object _data_error
(mach_port_t memory_control,
vm_offset_t offset,
vm_size t size,
kern_return_t reasor;
DESCRIPTION

The memory_object_data_error function indicates that the memory manager
cannot provide the kernel with the data requested for the given region, specify-
ing a reason for the error.

When the kernel issuesn@emory_object_data_requestall, the memory man-

ager can respond with raemory_object data_error call to indicate that the

page cannot be retrieved, and that a memory failure exception should be raised
in any client threads that are waiting for the page. Clients are permitted to catch
these exceptions and retry their page faults. As a result, this call can be used to
report transient errors as well as permanent ones. A memory manager can use
this call for both hardware errors (for example, disk failures) and software er-
rors (for example, accessing data that does not exist or is protected).

SECURITY

The requesting task must holdmcsv_provide data permission to
memory_control.

PARAMETERS

memory_control
[in memory-cache-control port] The memory cache control port to be
used by the memory manager for cache management requests. This
port is provided by the kernel innmeemory_object_init call.

offset
[in scalar] The offset within the memory object, in bytes.

size
[in scalar] The number of bytes of data (startingftge). The number
must convert to an integral number of memory object pages.

Mach 3 Kernel Interfaces 117

External Memory Management Interface

reason
[in scalar] Reason for the errdrhe value could be a POSIX error code
for a hardware error.

NOTES

If reasonhas a system code of err_kern, the kernel will substitute an error value
of KERN_MEMORY_ERROR.

RETURN VALUE

Since this function does not receive a reply message, it has no return value.
Only message transmission errors apply.

RELATED INFORMATION

Functions: memory_object_data_request memory_object _data supply
memory_object_data unavailable

118 Mach 3 Kernel Interfaces

memory_object_data_provided

memory_object_data provided

Function — Supplies data for a region of a memory object (old form)

SYNOPSIS
kern_return_tnemory_object _data_provided

(mach_port_t memory_control,
vm_offset_t offset,
vm_offset_t data,
vm_size t data_count,
vm_prot_t lock_valug;

DESCRIPTION

The memory_object_data_providedfunction supplies the kernel with a range

of data for the specified memory object. A memory manager can only provide
data that was requested byn@mory_object data requestcall from the ker-

nel.

SECURITY

The requesting task must holdmcsv_provide data permission to
memory_control.

PARAMETERS

memory_control
[in memory-cache-control port] The memory cache control port to be
used by the memory manager for cache management requests. This
port is provided by the kernel innaemory_object_init call.

offset
[in scalar] The offset within the memory object, in bytes.

data
[pointer to page aligned in array of bytes] The address of the data be-
ing provided to the kernel.

data_count
[in scalar] The amount of data to be provided. The number must be an
integral number of memory object pages.

lock_value

[in scalar] One or more forms of accesx permitted for the specified
data. Valid values are:

Mach 3 Kernel Interfaces 119

External Memory Management Interface

VM_PROT_NONE
Prohibits no access (that is, all forms of access are permittedy].

VM_PROT_READ
Prohibits read access. |

VM_PROT_WRITE
Prohibits write access. |

VM_PROT_EXECUTE
Prohibits execute access. |

VM_PROT_ALL
Prohibits all forms of access. |

NOTES

The kernel accepts only integral numbers of pages. It discards any partial pages
without notification.

memory_object_data_provided is the old form of
memory_object_data_supply

CAUTIONS

A memory manager must be careful that it not attempt to provide data that has
not been explicitly requested. In particularmemory manager must ensure that

it does not provide writable data again before it receives back modifications
from the kernel. This may require that the memory manager remember which
pages it has provided, or that it exercise other cache control functions (via
memory_object_lock_request before proceeding. The kernel prohibits the
overwriting of live data pages and will not accept pages it has not requested

RETURN VALUE

Since this function does not receive a reply message, it has no return value.
Only message transmission errors apply.

RELATED INFORMATION

Functions: memory_object _data_erro, memory_object data request
memory_object_data_supply memory_object_data_unavailable
memory_object_lock_request

120 Mach 3 Kernel Interfaces

memory_object_data_request

memory_object_data_request

Server Interface — Requests data from a memory object

LIBRARY
Not declared anywhere.

SYNOPSIS
kern_return_tmemory_object _data_request
(mach_port_t memory_obiject,
mach_port_t memory_control,
vm_offset_t offset,
vm_size t length,
vm_prot_t desired_acce$s

seqnos_memory_object_data_request
Sequence Numbeform

kern_return_t seqnos_memory_object_data_request

(mach_port_t memory_obiject,
mach_port_seqno_t seqno
mach_port_t memory_control,
vm_offset_t offset,
vm_size t length,
vm_prot_t desired_acce$s

DESCRIPTION

A memory_object_data_requestfunction is called as the result of a kernel
message requesting data from the specified memory object, for at least the ac-
cess specified.

The kernel issues this call after a cache miss (that is, a page fault for which the
kernel does not have the data). The kernel requests only amounts of data that
are multiples of the page size included inrtiemory_object_init call.

The memory manager is expected to ossmory_object_data_supplyto re-

turn at least the specified data, with as much access as it canlfaff@umemo-

ry manager cannot provide the data (for example, because of a hardware error),
it can use thenemory_object_data_error call. The memory manager can also
usememory_object_data_unavailableto tell the kernel to supply zero-filled
memory for the region.

Mach 3 Kernel Interfaces 121

External Memory Management Interface

PARAMETERS

memory_object
[in abstract-memory-object port] The abstract memory object port that
represents the memory object data, as supplied to the kernel in a
vm_map call.

segno
[in scalar] The sequence number of this message relative to the ab-
stract memory object port.

memory_control
[in memory-cache-control port] The memory cache control port to be
used for a response by the memory mandfére memory object has
been supplied to more than one kernel, this parameter identifies the ker-
nel that is making the call.

offset
[in scalar] The offset within the memory object.

length
[in scalar] The number of bytes requested, startingffaet The num-
ber converts to an integral number of virtual pages.

desired_access
[in scalar] The memory access modes to be allowed for the cached da-
ta. Possible values are obtained by or’ing together the following values:

VM_PROT_READ
Allows read access.

VM_PROT_WRITE
Allows write access.

VM_PROT_EXECUTE
Allows execute access.

RETURN VALUE

Any return value other than KERN_SUCCESS or MIG_NO_RERIll cause
mach_msg_serveto remove the memory cache control port reference.

RELATED INFORMATION

Functions: memory_object_data_error, memory_object_data_supply
memory_object_data unavailable memory_object_server
seqnos_memory_object_server

122 Mach 3 Kernel Interfaces

memory_object_data_return

memory_object_data_return

Server Interface — Writes data back to a memory object

LIBRARY
Not declared anywhere.

SYNOPSIS
kern_return_tnemory_object_data_return

(mach_port_t memory_obiject,
mach_port_t memory_control,
vm_offset_t offset,
vm_offset _t data,
vm_size t data_count
boolean_t dirty,
boolean_t kernel_copy;

seqgnos_memory_object_data_return
Sequence Numbeform

kern_return_seqnos_memory_object_data_return

(mach_port_t memory_obiject,
mach_port_seqno_t seqno
mach_port_t memory_control,
vm_offset_t offset,
vm_offset_t data,
vm_size t data_count
boolean_t dirty,
boolean_t kernel_copy,

DESCRIPTION

A memory_object_data_returnfunction is called as the result of a kernel mes-
sage providing the memory manager with data that has been evicted from the
physical memory cache.

The kernel writes back only data that has been modified or is precious. When
the memory manager no longer needs the data (for example, after the data has
been written to permanent storage), it shouldwmsedeallocateto release the
memory resources.

PARAMETERS

memory_object
[in abstract-memory-object port] The abstract memory object port that
represents the memory object data, as supplied to the kernel in a
vm_map call.

Mach 3 Kernel Interfaces 123

External Memory Management Interface

seqno
[in scalar] The sequence number of this message relative to the ab-
stract memory object port.

memory_control
[in memory-cache-control port] The memory cache control port to be
used for a response by the memory mandfére memory object has
been supplied to more than one kernel, this parameter identifies the ker-
nel that is making the call.

offset
[in scalar] The offset within the memory object.
data
[in pointer to dynamic array of bytes] The data that has been evicted
from the physical memory cache.
data_count
[in scalar] The number of bytes to be written, startingféget The
number converts to an integral number of memory object pages.
dirty
[in scalar] If TRUE, the pages returned have been modified.
kernel_copy
[in scalar] If TRUE, the kernel has kept a copy of the page.
NOTES

The kernel can flush clean (that is, un-modified) non-precious pages at its own
discretion. As a result, the memory manager cannot rely on the kernel to keep a
copy of its data or even to provide notification that its data has been discarded.

RETURN VALUE

Any return value other than KERN_SUCCESS or MIG_NO_RERIll cause
mach_msg_serverto remove the memory cache control port reference and to
de-allocate the returned data.

RELATED INFORMATION

Functions: memory_object_data supply memory_object _data_write (old
form), vm_deallocate memory_object_servey
seqnos_memory_object_server

124 Mach 3 Kernel Interfaces

memory_object_data_supply

memory_object_data_supply

Function — Supplies data for a region of a memaory object

SYNOPSIS
kern_return_tmemory_object _data_supply

(mach_port_t memory_control,
vm_offset_t offset,
vm_offset_t data,
mach_msg_type _number _t data_count,
boolean_t deallocate
vm_prot_t lock_value,
boolean_t precious
mach_port_t reply_por;

DESCRIPTION

The memory_object_data_supplyfunction supplies the kernel with a range of
data for the specified memory object. A memory manager can only provide data
that was requested byn@emory_object_data_requestall from the kernel.

SECURITY

The requesting task must hold mcsv_change_page_locks,
mcsv_make_page_precious and mcsv_povide_data permission to
memory_control.

PARAMETERS

memory_control
[in memory-cache-control port] The memory cache control port to be
used by the memory manager for cache management requests. This
port is provided by the kernel innaemory_object_init call.

offset
[in scalar] The offset within the memory object, in bytes.

data
[pointer to page aligned in array of bytes] The address of the data be-
ing provided to the kernel.

data_count

[in scalar] The amount of data to be provided. The number must be an
integral number of memory object pages.

Mach 3 Kernel Interfaces 125

External Memory Management Interface

deallocate
[in scalar] If TRUE, the pages to be copied (startingead) will be de-
allocated from the memory manageaddress space as a result of be-
ing copied into the message, allowing the pages to be moved into the
kernel instead of being physically copied.

lock_value
[in scalar] One or more forms of accesx permitted for the specified
data. Valid values are:

VM_PROT_NONE
Prohibits no access (that is, all forms of access are permittedy].

VM_PROT_READ
Prohibits read access. |

VM_PROT_WRITE
Prohibits write access. |

VM_PROT_EXECUTE
Prohibits execute access. |

VM_PROT_ALL
Prohibits all forms of access. |

precious
[in scalar] If TRUE, the pages being supplied are “precious”, that is,
the memory manager is not (necessarily) retaining its own ddmmse
pages must be returned to the manager when evicted from memory
even if not modified.

reply_port
[in reply port] A port to which the kernel should send a
memory_object_supply_completedto indicate the status of the ac-
cepted data. MACH_POR NULL is allowed. The reply message indi-
cates which pages have been accepted.

NOTES

The kernel accepts only integral numbers of pages. It discards any partial pages
without notification.

CAUTIONS

A memory manager must be careful that it not attempt to provide data that has
not been explicitly requested. In particularmemory manager must ensure that

it does not provide writable data again before it receives back modifications
from the kernel. This may require that the memory manager remember which
pages it has provided, or that it exercise other cache control functions (via

126 Mach 3 Kernel Interfaces

memory_object_data_supply

memory_object_lock_request before proceeding. The kernel prohibits the
overwriting of live data pages and will not accept pages it has not requested

RETURN VALUE

Since this function does not receive a reply message, it has no return value.
Only message transmission errors apply.

RELATED INFORMATION

Functions:memory_object_data_error, memory_object_data_provided (old
form), memory_object_data_request memory_object_data_unavailable
memory_object_lock_requestmemory_object_supply _completed

Mach 3 Kernel Interfaces 127

External Memory Management Interface

memory_object_data_unavailable

Function — Indicates no data for a memory object

SYNOPSIS
kern_return_tnemory_object_data_unavailable
(mach_port_t memory_control,
vm_offset_t offset,
vm_size_t siz8;
DESCRIPTION

The memory_object_data_unavailable function indicates that the memory
manager cannot provide the kernel with the data requested for the given region.
Instead, the kernel should provide the data for this region.

A memory manager can use this call in any of the following situations:

When the object was created by the kernel (w@mory_object creat¢

and the kernel has not yet provided data for the region (via either
memory_object_data_initialize or memory_object_data_returr). In this

case, the object is a temporary memory object; the memory manager is the
default memory manager; and the kernel should provide zero-filled pages for
the object.

When the object was created bym@mory_object_copy In this case, the
kernel should copy the region from the original memory object.

When the object is a normal usgeated memory object. In this case, the
kernel should provide unlocked zero-filled pages for the region.

SECURITY

The requesting task must holdmcsv_provide data permission to
memory_control.

PARAMETERS

memory_control
[in memory-cache-control port] The memory cache control port to be
used by the memory manager for cache management requests. This
port is provided by the kernel in aemory_object_init or a
memory_object_createcall.

offset
[in scalar] The offset within the memory object, in bytes.

128 Mach 3 Kernel Interfaces

memory_object_data_unavailable

size
[in scalar] The number of bytes of data (startingfége). The number
must convert to an integral number of memory object pages.

RETURN VALUE

Since this function does not receive a reply message, it has no return value.
Only message transmission errors apply.

RELATED INFORMATION

Functions: memory_object_copy memory_object_create
memory_object_data_error, memory_object_data_request
memory_object_data_supply

Mach 3 Kernel Interfaces 129

External Memory Management Interface

memory_object_data_unlock

Server Interface — Requests access to a memory object

LIBRARY
Not declared anywhere.

SYNOPSIS
kern_return_tnemory_object_data_unlock
(mach_port_t memory_object,
mach_port_t memory_control,
vm_offset_t offset,
vm_size_t length,
vm_prot_t desired_acce$s

segnos_memory_object_data_unlock
Sequence Numbeform

kern_return_teqnos_memory_object data_unlock

(mach_port_t memory_obiject,
mach_port_seqno_t segnoQ
mach_port_t memory_control,
vm_offset t offset,
vm_size t length,
vm_prot_t desired_acce3$s

DESCRIPTION

A memory_object_data_unlockfunction is called as the result of a kernel mes-
sage requesting the memory manager to permit at least the desired access to the
specified data cached by the kernel. The memory manager is expected to use the
memory_object_lock requestall in response.

PARAMETERS

memory_object
[in abstract-memory-object port] The abstract memory object port that
represents the memory object data, as supplied to the kernel in a
vm_map call.

segno
[in scalar] The sequence number of this message relative to the ab-
stract memory object port.

memory_control
[in memory-cache-control port] The memory cache control port to be
used for a response by the memory mandfére memory object has

130 Mach 3 Kernel Interfaces

memory_object_data_unlock

been supplied to more than one kernel, this parameter identifies the ker-
nel that is making the call.

offset
[in scalar] The offset within the memaory object.

length
[in scalar] The number of bytes to which the access applies, starting at
offset The number converts to an integral number of memory object
pages.

desired_access
[in scalar] The memory access modes requested for the cached data.
Possible values are obtained by or’ing together the following values:

VM_PROT_READ
Allows read access.

VM_PROT_WRITE
Allows write access.

VM_PROT_EXECUTE
Allows execute access.

RETURN VALUE

Any return value other than KERN_SUCCESS or MIG_NO_RERIll cause
mach_msg_serveto remove the memory cache control port reference.

RELATED INFORMATION

Functions: memory_object_lock_completed memory_object_lock_request
memory_object_serverseqnos_memory_object_server

Mach 3 Kernel Interfaces 131

External Memory Management Interface

memory_object_data_write

Server Interface — Writes changed data back to a memory object (old form)

LIBRARY
Not declared anywhere.

SYNOPSIS
kern_return_tnemory_object_data_write
(mach_port_t memory_object,
mach_port_t memory_control,
vm_offset_t offset,
vm_offset_t data,
vm_size_t data_coun,

segnos_memory_object_data_write
Sequence Numbeform

kern_return_teqnos_memory_object data write

(mach_port_t memory_obiject,
mach_port_seqno_t segnoQ
mach_port_t memory_control,
vm_offset t offset,
vm_offset t data,
vm_size t data_coung

DESCRIPTION

A memory_object_data_writefunction is called as the result of a kernel mes-
sage providing the memory manager with data that has been modified while

cached in physical memonyhis old form is used if the memory manager
makes the object ready via the gttemory_object_set_attributesinstead of
memory_object_ready

The kernel writes back only data that has been modified. When the memory
manager no longer needs the data (for example, after the data has been written

to permanent storage), it should wse_deallocateto release the memory re-
sources.

PARAMETERS

memory_object

[in abstract-memory-object port] The abstract memory object port that
represents the memory object data, as supplied to the kernel in a

vm_map call.

132 Mach 3 Kernel Interfaces

memory_object_data_write

segno
[in scalar] The sequence number of this message relative to the ab-
stract memory object port.

memory_control
[in memory-cache-control port] The memory cache control port to be
used for a response by the memory mandfére memory object has
been supplied to more than one kernel, this parameter identifies the ker-
nel that is making the call.

offset
[in scalar] The offset within the memaory object.

data
[in pointer to dynamic array of bytes] The data that has been modified
while cached in physical memory.

data_count
[in scalar] The number of bytes to be written, startingfédet The
number converts to an integral number of memory object pages.

NOTES

The kernel can flush clean (that is, un-modified) pages at its own discretion. As
a result, the memory manager cannot rely on the kernel to keep a copy of its
data or even to provide notification that its data has been discarded.

RETURN VALUE

Any return value other than KERN_SUCCESS or MIG_NO_RERIll cause
mach_msg_serverto remove the memory cache control port reference and to
de-allocate the returned data.

RELATED INFORMATION

Functions: memory_object_data return memory_object_set_attributes
vm_deallocate memory_object_serverseqnos_memory_object_server

Mach 3 Kernel Interfaces 133

External Memory Management Interface

memory_object_destroy

Function — Shuts down a memory object

SYNOPSIS
kern_return_tnemory_object_destroy
(mach_port_t memory_control,
kern_return_t reason;
DESCRIPTION

The memory_object_destroyfunction tells the kernel to shut down the speci-
fied memory object. As a result of this call, the kernel no longer supports pag-
ing activity or any memory object calls on the memory object. The kernel issues
a memory_object_terminate call to pass to the memory manager all rights to
the memory object port, the memory control port, and the memory name port.

To ensure that any modified cached data is returned before the object is terminat-
ed, the memory manager should callemory object lock request with
should_flushset and a lock value of VM_PROT_WRITE before it makes the
memory_object_destroycall.

SECURITY

The requesting task must holdncsv_destroy objectpermission to
memory_control.

PARAMETERS

memory_control
[in memory-cache-control port] The memory cache control port to be
used by the memory manager for cache management requests. This
port is provided by the kernel innaemory_object_init call.

reason
[in scalar] An error code indicating when the object must be destroyed.

NOTES
Thereasoncode is currently ignored by the kernel.

RETURN VALUE

Since this function does not receive a reply message, it has no return value.
Only message transmission errors apply.

134 Mach 3 Kernel Interfaces

memory_object_destroy

RELATED INFORMATION
Functionsmemory_object_lock_requestmemory_object_terminate

Mach 3 Kernel Interfaces 135

External Memory Management Interface

memory_object_get_attributes

Function — Returns current attributes for a memory object

SYNOPSIS

kern_return_tnemory_object_get_attributes
(mach_port_t memory_control,
boolean_t* object_ready,
boolean_t* may_cache_object,
memory_object_copy_strategy_t* copy_strategy

DESCRIPTION

Thememory_object_get_attributesfunction retrieves the current attributes for
the specified memory object.

SECURITY

The requesting task must holdncsv_get attributes permission to
memory_control.

PARAMETERS

memory_control
[in memory-cache-control port] The memory cache control port to be
used by the memory manager for cache management requests. This
port is provided by the kernel innaemory_object_init call.

object_ready
[out scalar] Ready indicatolf true, the kernel can issue new data and
unlock requests on the memory object.

may_cache_object
[out scalar] Cache indicataif true, the kernel can cache data associat-
ed with the memory object, even if virtual memory references to it are
removed.

copy_strategy
[out scalar] How the kernel should handle copying of regions associat-
ed with the memory object. Possible values are:

MEMORY_OBJECT_COPY_NONE
Use normal procedure when copying the memory olsjelzt*
ta. Normally the kernel requests each page with read access,
copies the data, and then (optionally) flushes the data.

136

Mach 3 Kernel Interfaces

memory_object_get_attributes

MEMORY_OBJECT_COPY_CALL
Notify the memory manager (vimemory_object_copy be-
fore copying any data.

MEMORY_OBJECT_COPY_DELAY
Use copy-on-write technique. This strategy allows the kernel
to eficiently copy lage amounts of data and guarantees that
the memory manager will not externally modify the data. It is
the most commonly used copy strategy.

MEMORY_OBJECT_COPY_TEMPORARY
Mark the object as temporaryhis had the samefett as the
MEMORY_OBJECT_COPY_DELX strategy and has the
additional attribute that when the last mapping of the memory
object is removed, the object is destroyed without returning
any in-memory pages.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION

Functions: memory_object_change_attributes = memory_object_copy
memory_object_ready

Mach 3 Kernel Interfaces 137

External Memory Management Interface

memory_object_init

Server Interface — Initializes a memory object

LIBRARY
Not declared anywhere.

SYNOPSIS
kern_return_tnemory_object_init
(mach_port_t memory_object,
mach_port_t memory_control,
mach_port_t memory_object_name,
vm_size_t memory_object_page_sjze

segnos_memory_object_init
Sequence Numbeform

kern_return_steqnos_memory_object_init

(mach_port_t memory_obiject,
mach_port_seqno_t segnoQ
mach_port_t memory_control,
mach_port_t memory_object_name,
vm_size t memory_object_page_sjze

DESCRIPTION

A memory_object_init function is called as the result of a kernel message noti-
fying a memory manager that the kernel has been asked to map the specified

memory object into a task’s virtual address space.

When asked to map a memory object for the first time, the kernel responds by

making amemory_object_init call on the abstract memory object. This call is
provided as a convenience to the memory managelow it to initialize data
structures and prepare to receive other requests.

In addition to the abstract memory object port itself, the call provides the follow-

ing two ports:

A memory cache control port that the memory manager can use to control
use of its data by the kernel. The memory manager gets send rights for this

port.

A memory cache name port that the kernel will use to identify the memory

object to other tasks.

The kernel holds send rights for the abstract memory object port, and both send

and receive rights for the memory cache control and name ports.

138 Mach 3 Kernel Interfaces

memory_object_init

The call also supplies the virtual page size to be used for the memory mapping.
The memory manager can use this size to detect mappings that fasentdif
data structures at initialization time, or to allocate buffers for use in reading data.

If a memory object is mapped into the address space of more than one task on
different hosts (with independent kernels), the memory manager will receive a
memory_object_init call from each kernel, containing a unique set of control
and name ports. Note that each kernel may also use a different page size.

PARAMETERS

memory_object
[in abstract-memory-object port] The abstract memory object port that
represents the memory object data, as supplied to the kernel in a
vm_map call.

seqno
[in scalar] The sequence number of this message relative to the ab-
stract memory object port.

memory_control
[in memory-cache-control port] The memory cache control port to be
used by the memory manag#rthe memory object has been supplied
to more than one kernel, this parameter identifies the kernel that is
making the call.

memory_object_name
[in memory-cache-name port] The memory cache name port used by
the kernel to refer to the memory object data in responge toegion
calls.

memory_object_page_size
[in scalar] The page size used by the kernel. All calls involving this
kernel must use data sizes that are integral multiples of this page size.

NOTES

When the memory manager is ready to accept data requests for this memory ob-
ject, it must callmemory_object_ready Otherwise, the kernel will not process
requests on this object.

RETURN VALUE

Any return value other than KERN_SUCCESS or MIG_NO_RERIll cause
mach_msg_serverto remove the memory cache control and name port refer-
ences.

Mach 3 Kernel Interfaces 139

External Memory Management Interface

RELATED INFORMATION

Functions: memory_object_ready memory_object_terminate
memory_object_serverseqnos_memory_object_server

140 Mach 3 Kernel Interfaces

memory_object_lock_completed

memory_object_lock _completed

Server Interface — Indicates completion of a consistency control call

LIBRARY
Not declared anywhere.

SYNOPSIS
kern_return_tnemory_object _lock_completed
(mach_port_t reply_port,
mach_port_t memory_control,
vm_offset_t offset,
vm_size t length);

seqgnos_memory_object_lock_completed
Sequence Numbeform

kern_return_seqnos_memory_object_lock_completed

(mach_port_t reply_port,
mach_port_seqno_t seqno
mach_port_t memory_control,
vm_offset_t offset,
vm_size_t length);

DESCRIPTION

A memory_object_lock_completedfunction is called as the result of a kernel
message confirming the kerreel’ action in response to
memory_object_lock_requestcall from the memory managefhe memory
manager can use theemory_object_lock_requestall to:

Alter access restrictions specified in timemory_object_data_supplycall
or a previousnemory_object_lock_requestall.

Write back modifications made in memory.

Invalidate its cached data.

When the kernel completes the requested actions, it
memory_object_lock_completed (asynchronously) using the port explicitly
provided in thememory_object_lock_requestcall. Because the memory man-

calls

ager cannot know which pages have been modified, or even which pages remain
in the cache, it cannot know how many pages will be written back in response

to a memory_object_lock_request call. Receiving the

memory_object_lock_completeccall is the only sure means of detecting com-

pletion. The completion call includes thdsaft and length values from the con-
sistency request to distinguish it from other consistency requests.

Mach 3 Kernel Interfaces 141

External Memory Management Interface

PARAMETERS

reply_port
[in reply port] The port named in the corresponding

memory_object_lock requestall.

segno
[in scalar] The sequence number of this message relative to the port
named in thenemory_object_lock requesimessage.

memory_control
[in memory-cache-control port] The memory cache control port to be
used for a response by the memory mandfére memory object has
been supplied to more than one kernel, this parameter identifies the ker-
nel that is making the call.

offset
[in scalar] The offset within the memory object.

length
[in scalar] The number of bytes to which the call refers, startingf-at
set The number converts to an integral number of memory object pag-
es.

RETURN VALUE

Any return value other than KERN_SUCCESS or MIG_NO_RERIll cause
mach_msg_serveto remove the memory cache control port reference.

RELATED INFORMATION

Functions: memory_object_lock_request memory_object_server
seqnos_memory_object_server

142 Mach 3 Kernel Interfaces

memory_object_lock_request

memory_object_lock request

Function — Restricts access to memory object data

SYNOPSIS
kern_return_tnemory_object_lock_request

(mach_port_t memory_control,
vm_offset_t offset,
vm_size t size,
memory_object_return_t should_return,
boolean_t should_flush,
vm_prot_t lock_value,
mach_port_t reply_por;

DESCRIPTION

The memory_object_lock_requestfunction allows the memory manager to
make the following requests of the kernel:

Clean the pages within the specified range by writing back all changed (that
is, dirty) and precious pages. The kernel wuses the
memory_object_data_return call to write back the data. The
should_returrparameter must be set to non-zero.

Flush all cached data within the specified range. The kernel invalidates the
range of data and revokes all uses of that data.sibeld_flushparameter
must be set to true.

Alter access restrictions specified in timemory_object data_supplycall

or a previousnemory_object_lock_requestcall. Thelock valueparameter

must specify the new access restrictions. Note that this parameter can be
used to unlock previously locked data.

Once the kernel performs all of the actions requested by this call, it issues a
memory_object_lock completectall using thaeply_portport.

SECURITY

The requesting task must hotdcsv_emove_page, mcsv_change_page_locks,
andmcsv_invoke_lock_requestrmission tanemory_control.

PARAMETERS

memory_control
[in memory-cache-control port] The memory cache control port to be
used by the memory manager for cache management requests. This
port is provided by the kernel innaemory_object_init call.

Mach 3 Kernel Interfaces 143

External Memory Management Interface

offset

size

[in scalar] The offset within the memory object, in bytes.

[in scalar] The number of bytes of data (startingfége} to be afect-
ed. The number must convert to an integral number of memory object
pages.

should_return

[in scalar] Clean indicator. Values are:

MEMORY_OBJECT RETURN_NONE
Don't return any pages. Bhould_flushs TRUE, pages will
be discarded.

MEMORY_OBJECT_RETURN_DIRTY
Return only dirty (modified) pages. $hould_flushis TRUE,
precious pages will be discarded; otherwise, the kernel main-
tains responsibility for precious pages.

MEMORY_OBJECT RETURN_ALL
Both dirty and precious pages are returnedghtuld_flushs
FALSE, the kernel maintains responsibility for the precious
pages.

should_flush

[in scalar] Flush indicatoif true, the kernel flushes all pages within
the range.

lock_value

[in scalar] One or more forms of accesx permitted for the specified
data. Valid values are:

VM_PROT_NO_CHANGE
Do not change the protection of any pages.

VM_PROT_NONE
Prohibits no access (that is, all forms of access are permitted].

VM_PROT_READ
Prohibits read access.

VM_PROT_WRITE
Prohibits write access. |

VM_PROT_EXECUTE
Prohibits execute access. |

144

Mach 3 Kernel Interfaces

memory_object_lock_request

VM_PROT_ALL
Allows all forms of access.

reply_port
[in reply port] The response port to be used by the kernel on a call to
memory_object_lock_completed or MACH_POR _NULL if no re-
sponse is required.

NOTES

The memory_object_lock_requestcall afects only data that is cached at the
time of the call. Access restrictions cannot be applied to pages for which data
has not been provided.

When a running thread requires an access that is currently prohibited, the kernel
issues anemory_object_data_unlockcall specifying the access required. The
memory manager can then usemory_object_lock_requestto relax its ac-

cess restrictions on the data.

To indicate that an unlock request is invalid (that is, requires permission that
can never be granted), the memory manager must first flush the page. When the
kernel requests the data again with the higher permission, the memory manager
can indicate the error by responding with a catheemory_object_data_error.

RETURN VALUE

Since this function does not receive a reply message, it has no return value.
Only message transmission errors apply.

RELATED INFORMATION

Functions: memory_object_data_supply memory_object_data_unlock
memory_object_lock_completed

Mach 3 Kernel Interfaces 145

External Memory Management Interface

memory_object_ready

Function — Marks a memory object is ready to receive paging operations

SYNOPSIS
kern_return_tnemory_object_ready
(mach_port_t memory_control,
boolean_t may_cache_object,
memory_object_copy_strategy_t copy_strategy
DESCRIPTION

The memory_object_ready function informs the kernel that the manager is
ready to receive data or unlock requests on behalf of clients. Performance-relat-
ed attributes for the specified memory object can also be set at this time. These
attributes control whether the kernel is permitted to:

Retain data from a memory object even after all address space mappings
have been de-allocatechgy cache_objeqtarameter).

Perform optimizations for virtual memory copy operationspf/_strategy
parameter).

SECURITY

The requesting task must holdncsv_set attributes permission to
memory_control.

PARAMETERS

memory_control
[in memory-cache-control port] The memory cache control port to be
used by the memory manager for cache management requests. This
port is provided by the kernel innaemory_object_init call.

may_cache_object
[in scalar] Cache indicatolf true, the kernel can cache data associated
with the memory object, even if virtual memory references to it are re-
moved.

copy_strategy
[in scalar] How the kernel should handle copying of regions associated
with the memory object. Valid values are:

MEMORY_OBJECT_COPY_NONE
Use normal procedure when copying the memory olsjezt*
ta. Normally the kernel requests each page with read access,
copies the data, and then (optionally) flushes the data.

146 Mach 3 Kernel Interfaces

memory_object_ready

MEMORY_OBJECT_COPY_CALL
Notify the memory manager (vimemory_object_copy be-
fore copying any data.

MEMORY_OBJECT_COPY_DELAY
Use copy-on-write technique. This strategy allows the kernel
to eficiently copy lage amounts of data and guarantees that
the memory manager will not externally modify the data. It is
the most commonly used copy strategy.

MEMORY_OBJECT_COPY_TEMPORARY
Mark the object as temporaryhis had the samefett as the
MEMORY_OBJECT_COPY_DELX strategy and has the
additional attribute that when the last mapping of the memory
object is removed, the object is destroyed without returning
any in-memory pages.

NOTES

Sharing cached data among all the clients of a memory object can have a major

impact on performance, especially if it can be extended across successive, as
well as concurrent, uses. For example, the memory objects that represent pro-

gram images can be used regularly byedént programs. By retaining the data

for these memory objects in cache, the number of secondary storage accesses
can be reduced significantly.

RETURN VALUE

Since this function does not receive a reply message, it has no return value.
Only message transmission errors apply.

RELATED INFORMATION

Functions: memory_object_change_attributes = memory_object_copy
memory_object_get_attributes memory_object_init,
memory_object_set_attributes(old form).

Mach 3 Kernel Interfaces 147

External Memory Management Interface

memory_object_set_attributes

Function — Sets attributes for a memory object (old form)

SYNOPSIS
kern_return_tnemory_object_set_attributes
(mach_port_t memory_control,
boolean_t object_ready,
boolean_t may_cache_object,
memory_object_copy_strategy_t copy_strategy
DESCRIPTION

The memory_object_set_attributesfunction allows the memory manager to
set performance-related attributes for the specified memory object. These at-
tributes control whether the kernel is permitted to:

Make data or unlock requests on behalf of clieoltgect_readyparameter).

Retain data from a memory object even after all address space mappings
have been de-allocatechgy cache_objeqarameter).

Perform optimizations for virtual memory copy operationspf/_strategy
parameter).

SECURITY

The requesting task must holdncsv_set attributes permission to
memory_control.

PARAMETERS

memory_control
[in memory-cache-control port] The memory cache control port to be
used by the memory manager for cache management requests. This
port is provided by the kernel innaemory_object_init call.

object_ready
[in scalar] Ready indicatotf true, the kernel can issue new data and
unlock requests on the memory object.

may_cache_object
[in scalar] Cache indicatolf true, the kernel can cache data associated
with the memory object, even if virtual memory references to it are re-
moved.

copy_strategy
[in scalar] How the kernel should handle copying of regions associated
with the memory object. Valid values are:

148 Mach 3 Kernel Interfaces

memory_object_set_attributes

MEMORY_OBJECT_COPY_NONE
Use normal procedure when copying the memory olsjez*
ta. Normally the kernel requests each page with read access,
copies the data, and then (optionally) flushes the data.

MEMORY_OBJECT_COPY_CALL
Notify the memory manager (vimemory_object_copy be-
fore copying any data.

MEMORY_OBJECT_COPY_DELAY
Use copy-on-write technique. This strategy allows the kernel
to efiiciently copy lage amounts of data and guarantees that
the memory manager will not externally modify the data. It is
the most commonly used copy strategy.

MEMORY_OBJECT_COPY_TEMPORARY
Mark the object as temporaryhis had the samefett as the
MEMORY_OBJECT_COPY_DELX strategy and has the
additional attribute that when the last mapping of the memory
object is removed, the object is destroyed without returning
any in-memory pages.

NOTES

memory_object_set_attributes is the old form of
memory_object_change_attributes When used to change the cache or copy
strategy attributes, it has the samiedf (with the omission of a possible reply)
asmemory_object_change_attributes The diference between these two calls
is thereadyattribute. The use of this old call with treadyattribute set has the
same basic &ct as the newnemory_object_readycall. However the use of
this old call informs the kernel that this is an old form memory manager that ex-
pects memory_object_data_write messages instead of the new
memory_object_data_return messages implied bynemory_object_ready
Changing a memory object to be not ready does rfiettaflata and unlock re-
guests already in progress. Such requests will not be aborted or reissued.

Sharing cached data among all the clients of a memory object can have a major
impact on performance, especially if it can be extended across successive, as
well as concurrent, uses. For example, the memory objects that represent pro-
gram images can be used regularly byedént programs. By retaining the data

for these memory objects in cache, the number of secondary storage accesses
can be reduced significantly.

RETURN VALUE

Since this function does not receive a reply message, it has no return value.
Only message transmission errors apply.

Mach 3 Kernel Interfaces 149

External Memory Management Interface

RELATED INFORMATION

Functions: memory_object _change_attributes
memory_object_get_attributes
memory_object_ready

memory_object_copy
memory_object _init,

150 Mach 3 Kernel Interfaces

memory_object_supply_completed

memory_object_supply _completed

Server Interface — Indicates completion of a data supply call

LIBRARY
Not declared anywhere.

SYNOPSIS
kern_return_tnemory_object_supply_completed
(mach_port_t reply_port,
mach_port_t memory_control,
vm_offset_t offset,
vm_size t length
kern_return_t result
vm_offset_t error_offse};

seqnos_memory_object_supply_completed
Sequence Numbeform

kern_return_segnos_memory_object_supply_completed

(mach_port_t reply_port,
mach_port_seqno_t seqno
mach_port_t memory_control,
vm_offset_t offset,
vm_size t length
kern_return_t result
vm_offset_t error_offse};

DESCRIPTION

A memory_object_supply_completedunction is called as the result of a ker-
nel message confirming the Kkersel action in response to
memory_object_data_supplycall from the memory manager.

When the kernel accepts the pages, it callsnory_object_supply_completed
(asynchronously) using the port explicitty provided in the

memory_object_data_supplycall. Because the data supply call can provide
multiple pages, not all of which the kernel may necessarily accept and some of
which the kernel may have to return to the manager (if precious), the kernel pro-
vides this response. If the kernel does not accept all of the pages in the data sup-
ply message, it will indicate so in the completion response. If the pages not

accepted are precious, they will be returnednfemory_object_data_return

messages) before it sends this completion message. The completion call in-
cludes the déet and length values from the supply request to distinguish it

from other supply requests.

Mach 3 Kernel Interfaces 151

External Memory Management Interface

PARAMETERS

reply_port
[in reply port] The port specified to the corresponding

memory_object_data_supplycall.

segno
[in scalar] The sequence number of this message relative to the port
named in thenemory_object_data_supplycall.

memory_control
[in memory-cache-control port] The memory cache control port to be
used for a response by the memory mandfére memory object has
been supplied to more than one kernel, this parameter identifies the ker-
nel that is making the call.

offset
[in scalar] The dket within the memory object from the corresponding
data supply call

length
[in scalar] The number of bytes accepted. The number converts to an
integral number of memory object pages.

result

[in scalar] A kernel return code indicating the result of the supply oper-
ation, possibly KERN_SUCCESS. KERN_MEM®RPRESENT is
currently the only error returned; other errors (invaliguanents, for
example) abort the data supply operation.

error_offset
[in scalar] The dset within the memory object where the first error oc-
curred.

RETURN VALUE

Any return value other than KERN_SUCCESS or MIG_NO_RERIll cause
mach_msg_serveto remove the memory cache control port reference.

RELATED INFORMATION

Functions: memory_object _data_supply memory_object_server
seqnos_memory_object_server

152 Mach 3 Kernel Interfaces

memory_object_terminate

memory_object_terminate

Server Interface — Relinquishes access to a memory object

LIBRARY
Not declared anywhere.

SYNOPSIS
kern_return_tnemory_object_terminate
(mach_port_t memory_obiject,
mach_port_t memory_control,
mach_port_t memory_object_nare

seqnos_memory_object_terminate
Sequence Numbeform

kern_return_seqnos_memory_object_terminate

(mach_port_t memory_obiject,
mach_port_seqno_t seqgno,
mach_port_t memory_control,
mach_port_t memory_object_nane

DESCRIPTION

A memory_object_terminate function is called as the result of a kernel mes-
sage notifying a memory manager that no mappings of the specified memory ob-
ject remain. The kernel makes this call to allow the memory manager to clean
up data structures associated with the de-allocated mappings. The call provides
receive rights to the memory cache control and name ports so that the memory

manager can destroy the ports (wiach_port_deallocatg. The kernel also re-
linquishes its send rights for all three ports.

The kernel terminates a memory object only after all address space mappings of
the object have been de-allocated, or upon explicit request by the memory man-

ager.

PARAMETERS

memory_object

[in abstract-memory-object port] The abstract memory object port that
represents the memory object data, as supplied to the kernel in a

vm_map call.

seqno

[in scalar] The sequence number of this message relative to the ab-

stract memory object port.

Mach 3 Kernel Interfaces 153

External Memory Management Interface

memory_control
[in memory-cache-control port] The memory cache control port to be
used for a response by the memory mandfére memory object has
been supplied to more than one kernel, this parameter identifies the ker-
nel that is making the call.

memory_object_name
[in memory-cache-name port] The memory cache name port used by
the kernel to refer to the memory object data in respongs toegion
calls.

NOTES

If a client thread callsm_map to map a memory object while the kernel is call-

ing memory_object_terminate for the same memory object, the
memory_object_init call may appear before thememory_object_terminate

call. This sequence is indistinguishable from the case where another kernel is is-
suing amemory_object _init call. In other words, the control and name ports in-
cluded in the initialization will be dérent from those included in the
termination. A memory manager must be aware that this sequence can occur
even when all mappings of a memory object take place on the same host.

RETURN VALUE
Any return value other than KERN_SUCCESS or MIG_NO_RERIll cause
mach_msg_serverto remove the memory cache control and name port refer-
ences.

RELATED INFORMATION

Functions: memory_object_destroy memory_object _init,
mach_port_deallocate memory_object_servey
seqnos_memory_object_server

154 Mach 3 Kernel Interfaces

CHAPTER 6 Thread Interface

This chapter discusses the specifics of the karttlead interfaces. This includes status
functions related to threads. Properties associated with threads, such as special ports, are
included here as well. Functions that apply to more than one thread appear in the task in-
terface chapter.

Mach 3 Kernel Interfaces 155

Thread Interface

catch_exception_raise

Server Interface— Handles the occurrence of an exception within a thread

LIBRARY
Not declared anywhere.

SYNOPSIS
kern_return_tatch_exception_raise

(mach_port_t exception_port,
mach_port_t thread,
mach_port_t task,
int exception,
int code,
int subcodg

DESCRIPTION

A catch_exception_raisdunction is called byexc_serveras the result of a ker-

nel message indicating that an exception occurred within a thread.
exception_port is the port named viathread_set_special_port or
task_set_special_ports the port that responds when the thread takes an excep-
tion.

SECURITY

There are no security limitations on this kernel outcall.

PARAMETERS

exception_port
[in exception port] The port to which the exception natification was
sent.

thread
[in thread port] The port to the thread taking the exception.

task
[in task port] The port to the task containing the thread taking the ex-
ception.

exception

[in scalar] The type of the exception, as defined<mach/excep-
tion.h>. The machine independent values raised by all implementa-
tions are:

156 Mach 3 Kernel Interfaces

catch_exception_raise

EXC_BAD_ACCESS
Could not access memorgode containskern_return_tde-
scribing errorsubcodecontains bad memory address.

EXC_BAD_INSTRUCTION
Instruction failed. Illegal or undefined instruction or operand.

EXC_ARITHMETIC
Arithmetic exception; exact nature of exception iscide
field.

EXC_EMULATION
Emulation instruction. Emulation support instruction encoun-
tered. Details irtodeandsubcodsdields.

EXC_SOFTWARE
Software generated exception; exact exception ixdde
field. Codes 0 - OXFFFF reserved to hardware; codes 0x10000
- OX1FFFF reserved for OS emulation (Unix).

EXC_BREAKPOINT
Trace, breakpoint, etc. Detailsdndefield.

code
[in scalar] A code indicating a particular instancexdeption
subcode
[in scalar] A specific type afode
NOTES

When an exception occurs in a thread, the thread sends an exception message to
its exception port, blocking in the kernel waiting for the receipt of a .répiy
assumed that some task is listening (most likely witth_msg_serverto this

port, using theexc_serverfunction to decode the messages and then call the
linked in catch_exception_raiselt is the job ofcatch_exception_raisdo han-

dle the exception and decide the course of actiorihimad The state of the
blocked thread can be examined vilihead_get_state

If the thread should continue from the point of exception,
catch_exception_raisewould return KERN_SUCCESS. This causes a reply
message to be sent to the kernel, which will allow the thread to continue from
the point of the exception.

If some other action should be takenthyead the following actions should be
performed bycatch_exception_raise

thread_suspend This keeps the thread from proceeding after the next step.

Mach 3 Kernel Interfaces 157

Thread Interface

thread_abort. This aborts the message receive operation currently blocking
the thread.

thread_set_state Set the thread’state so that it continues doing something
else.

thread_resume Let the thread start running from its new state.

Return a value other than KERN_SUCCESS so that no reply message is
sent. (Actually the kernel uses a send once right to send the exception mes-
sage, whiclihread_abort destroys, so replying to the message is harmless.)

The thread can always be destroyed whtlead_terminate.

A thread can have two exception ports active for it: its thread exception port
and the task exception port. If an exception message is sent to the thread excep-
tion port (if it exists), and a reply message contains a return value other than
KERN_SUCCESS, the kernel will then send the exception message to the task
exception port. If that exception message receives a reply message with other
than a return value of KERN_SUCCESS, the thread is terminated. Note that
this behavior cannot be obtained by using datch_exception_raisdnterface

called byexc_serverandmach_msg_serversince those functions will either
return a reply message with a KERN_SUCCESS value, or none at all.

RETURN VALUE

A return value of KERN_SUCCESS indicates that the thread is to continue
from the point of exception. A return value of MIG_NO_RFHhdicates that

the exception was handled directly and the thread was restarted or terminated
by the exception handleA return value of MIG_DESTROY_REQUEST caus-

es the kernel to try another exception handler (or terminate the thread). Any oth-
er value will causemach_msg_serverto remove the task and thread port
references.

RELATED INFORMATION

Functions: exc_server thread_abort, task_get_special_port
thread_get_special_port thread_get_state thread_resume
task_set_special_port, thead_set_special_port thread_set_state
thread_suspendthread_terminate. |

158

Mach 3 Kernel Interfaces

mach_thread_self

mach_thread_self

System Trap— Returns the thread self port

LIBRARY
#include smach/mach_traps.t»

SYNOPSIS

mach_port_tnach_thread_self

0;

DESCRIPTION

The mach_thread_selffunction returns send rights to the threadivn kernel
port.

SECURITY

The requesting task must holdsv_get_thread_kernel_popermission to its
own thread port.

PARAMETERS

None

RETURN VALUE
[thread-self port] Send rights to the thread’s port.

RELATED INFORMATION

Functionsthread_info, thread_set_special_port

Mach 3 Kernel Interfaces 159

Thread Interface

receive_samples

Server Interface— Handles the occurrence of a PC sampling message

LIBRARY
Not declared anywhere.

SYNOPSIS
kern_return_teceive_samples
(mach_port_t sample_port,
sample_array_t samples
mach_msg_type_number_t samplesCnt
DESCRIPTION

A receive_sampledunction is called byprof_server as the result of a kernel
message indicating that a set of program counter samples has been gath
sample_ports the port named vi@sk_sampleor thread_sample

SECURITY
There are no security limitations on this kernel outcall.

PARAMETERS

sample_port
[in sample port] The port to which the sample message was sent.

sample
[pointer to in array ofm_address]tAn array of PC sample values.

sampleCnt
[in scalar] The number of valuessample

NOTES

This interface is machine word length specific because of the virtual addres
in thesamplegparameter.

RETURN VALUE

Irrelevant.

RELATED INFORMATION
Functionstask _samplethread_sample prof_server.

bred.

ses

160 Mach 3 Kernel Interfaces

swtch

swtch

System Trap— Attempt a context switch

LIBRARY
Not declared anywhere.

SYNOPSIS

boolean_swtch
0;

DESCRIPTION

The swtch function attempts to context switch the current thre&dhef proces-
sor.

This function is useful in user level lock management routines. If the current
thread cannot make progress because of some lock, it would execsiedhe
function. When this returns, the thread should once again try to make progress
by attempting to obtain its lock.

This function returns a flag indicating whether there is anything else for the pro-

cessor to do. If there is nothing else, the thread can spin waiting for its lock, in-
stead of continuing to cadwtch.

SECURITY

The requesting task must halgsv_can_swtcpermission to its own thread port

PARAMETERS

None

RETURN VALUE

TRUE
There are other threads that the processor could run.

FALSE
The processor has nothing better to do.

RELATED INFORMATION
Functionsswtch_pri, thread_abort, thread_switch.

Mach 3 Kernel Interfaces 161

Thread Interface

swtch_pri

System Trap— Attempt a context switch to low priority

LIBRARY
Not declared anywhere.

SYNOPSIS

boolean_swtch_pri
(int priority);

DESCRIPTION

The swtch_pri function attempts to context switch the current threddhef
processarThe thread priority is lowered to the minimum possible value dur-
ing this time. The priority of the thread will be restored when it is awakened.

This function is useful in user level lock management routines. If the current
thread cannot make progress because of some lock, it would execute the
swtch_pri function. When this returns, the thread should once again try to
make progress by attempting to obtain its lock.

This function returns a flag indicating whether there is anything else for the pro-

cessor to do. If there is nothing else, the thread can spin waiting for its lock, in-
stead of continuing to cawtch_pri.

SECURITY

The requesting task must hdlisv_can_swtch_ppermission to its own thread
port.

PARAMETERS

priority
[in scalar] Currently not used.

RETURN VALUE

TRUE
There are other threads that the processor could run.

FALSE
The processor has nothing better to do.

162 Mach 3 Kernel Interfaces

swtch_pri

RELATED INFORMATION
Functionssswtch, thread_abort, thread_depress_abortthread_switch.

Mach 3 Kernel Interfaces 163

Thread Interface

thread _abort

Function — Aborts a thread

SYNOPSIS

kern_return_thread_abort
(mach_port_t target_thread)

DESCRIPTION

The thread_abort function aborts page faults and any message primitive calls
(mach_msg mach_msg_receive and mach_msg _send in use by
target_thread (Note, though, that the message calls retry interrupted message
operations unless MACH_SEND_INTERRUPT and
MACH_RCV_INTERRUPT are specified.) Priority depressions are also abort-
ed. The call returns a code indicating that it was interrupted. The call is inter-
rupted even if the thread (or the task containing it) is suspended. If it is
suspended, the thread receives the interrupt when it resumes.

If its state is not modified before it resumes, the thread will retry an aborted
page fault. The Mach message trap returns either
MACH_SEND_INTERRUPTED or MACH_RCV_INTERRUPTED, depend-

ing on whether the send or the receive side was interrupted. Note, though, that
the Mach message trap is contained within th&ch_msg library routine,
which, by default, retries interrupted message calls.

The basic purpose dhread_abort is to let one thread cleanly stop another
thread {arget_threadl. The taget thread is stopped in such a manner that its fu-
ture execution can be controlled in a predictable way.

SECURITY

The requesting task must hdlisv_abort_threagiermission tdarget_thread

PARAMETERS

target_thread
[in thread port] The thread to be aborted.

NOTES

By way of comparison, théread_suspendfunction keeps the tget thread
from executing any further instructions at the user level, including the return
from a system call. Théhread_get_statefunction returns the thread'user
state, whileghread_set_stateallows modification of the user state.

164

Mach 3 Kernel Interfaces

thread_abort

A problem occurs if a suspended thread had been executing within a system

call. In this case, the thread has, not only a user state, but an associated kernel
state. (The kernel state cannot be changed thittad_set_state) As a result,

when the thread resumes, the system call can return, producing a change in the
user state and, possibly, user memory.

For a thread executing within a system dalfead_abort aborts the kernel call

from the thread point of view Specifically it resets the kernel state so that the
thread will resume execution at the system call return, with the return code val-
ue set to one of the interrupted codes. The system call itself may be completed
entirely, aborted entirely or be partially completed, depending on when the
abort is received. As a result, if the threadser state has been modified by
thread_set_state it will not be altered un-predictably by any unexpected sys-
tem call side effects.

For example, to simulate a POSIX signal, use the following sequence of calls:

thread_suspend— To stop the thread.

thread_abort — To interrupt any system call in progress and set the return
value to “interrupted”. Because the thread is already stopped, it will not re-
turn to user code.

thread_set_state— To modify the thread user state to simulate a proce-
dure call to the signal handler.

thread_resume— To resume execution at the signal handfethe threads

stack is set up correctlyhe thread can return to the interrupted system call.
Note that the code to push an extra stack frame and change the registers is
highly machine dependent.

CAUTIONS

As a rule, do not usthread_abort on a non-suspended thread. This operation
is very risky because it is fifult to know which system trap, if anig execut-

ing and whether an interrupt return will result in some useful action by the
thread.

thread_abort will abort any non-atomic operation (such as a multi-page
memory_object_data_supply at an arbitrary point in a non-restartable way
Such problems can be avoided by ughmgad_abort_safely

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION

Functions: mach_msg thread_get state thread_info, thread_set_state
thread_suspendthread_terminate, thread_abort_safely

Mach 3 Kernel Interfaces 165

Thread Interface

thread_create/thread_create secure |

Function — Creates a thread within a task

SYNOPSIS

kern_return_thread_create
(mach_port_t parent_task,
mach_port_t* child_thread;
kern_return_thread_create_secure
(mach_port_t parent_task,
mach_port_t* child_thread;

DESCRIPTION

SECURITY

The thread_create function creates a new thread withgarent_task The new
thread has a suspend count of one and no processor state.

The new thread holds a send right for its thread kernel port. A send right for the
threads kernel port is also returned to the calling task or threadliid_thread
The new thread’s exception port is set to MACH_PORT_NULL.

The thread_create_securefunction creates a new thread withparent_task
only if the task had been created gk create_secureand theparent_tasls
task structure is in an EMPTY state. The statehilfl _threads task structure is
changed from EMPTY to THREAD_CREATED.

For thethread_createfunction, the requesting task must hase add_thread
permission tgarent_task For thethread_create_securegunction, the request-
ing task must havesv_add_thread_secupermission tgarent_task

PARAMETERS

parent_task
[in task port] The port for the task that is to contain the new thread.

child_thread
[out thread port] The kernel-assigned name for the new thread.

NOTES

To get a new thread running, first ubeead_set stateto set a processor state
for the thread. Then, uskread_resumeto schedule the thread for execution.

166

Mach 3 Kernel Interfaces

thread_create/thread_create_secure

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION

Functions: task_create task_create_securge task threads
thread_get_special_port thread_get_state thread_resume
thread_resume_securg thread_set_special_port thread_set_state
thread_set_state_securdghread_suspendthread_terminate.

Mach 3 Kernel Interfaces 167

Thread Interface

thread_depress_abort

Function — Cancel thread priority depression

SYNOPSIS
kern_return_thread_depress_abort
(mach_port_t thread;
DESCRIPTION

The thread_depress_abortfunction cancels any priority depressiorieefive
for threadcaused by awtch_pri orthread_switch call.

SECURITY

The requesting task must halisv_abort_thread deprepgrmission tdahread.

PARAMETERS

thread
[in thread port] Thread whose priority depression is canceled.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functionssswtch, swtch_pri, thread_abort, thread_switch.

168 Mach 3 Kernel Interfaces

thread_get_special_port

thread _get_special_port

Function — Returns a send right to a special port

SYNOPSIS
kern_return_thread_get_special_port
(mach_port_t thread,
int which_port,
mach_port_t* special_pory;
thread_get_exception_port
Macro form
kern_return_thread_get_exception_port
(mach_port_t thread,
mach_port_t* special_port)
O thread_get_special_portthread THREAD_EXCEPTION_PORT,
special_port

thread_get_kernel_port

Macro form

kern_return_thread _get kernel_port
(mach_port_t thread,
mach_port_t* special_port)

O thread_get_special_portithread THREAD_KERNEL_PORT,
special_port

DESCRIPTION

Thethread_get_special_portfunction returns a send right for a special port be-
longing tothread

The thread kernel port is a port for which the kernel holds the receive right. The
kernel uses this port to identify the thread.

If one thread has a send right for the kernel port of another thread, it can use the
port to perform kernel operations for the other thread. Send rights for a kernel
port normally are held only by the thread to which the port belongs, or by the
task that contains the thread. Using thach_msg function, however any
thread can pass a send right for its kernel port to another thread.

SECURITY

The requesting task must holdthsv_get thread_exception_portor
thsv_get thread_kernel_popermission tothread to get, respectivelythe ex-
ception port or the kernel port.

Mach 3 Kernel Interfaces 169

Thread Interface

PARAMETERS

thread
[in thread port] The thread for which to return the port’s send right.

which_port
[in scalar] The special port for which the send right is requestdil V
values are:

THREAD_EXCEPTION_PORT
[exception port] The threasl’exception port. Used to receive
exception messages from the kernel.

THREAD_KERNEL_PORT
[thread-self port] The port used to name the thread. Used to in-
voke operations thatfeftct the thread. This is the port returned
by mach_thread_self

special_port
[out thread-special port] The returned value for the port.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION

Functions:mach_thread_self task_get _special_port task_set special_port
thread_create thread_set_special_port

170 Mach 3 Kernel Interfaces

thread_get_state

thread get_state

Function — Returns the execution state for a thread

SYNOPSIS
kern_return_thread get state
(mach_port_t target_thread,
int flavor,
thread_state t old_state,
mach_msg_type number_t* old_stateCnt
DESCRIPTION

Thethread_get_statefunction returns the execution state (for example, the ma-
chine registers) fotarget_thread flavor specifies the type of state information
returned.

The format of the data returned is machine specific; it is definednicky
thread_status.hv.

SECURITY

The requesting task must holdhsv_get thread_statepermission to
target_thread

PARAMETERS

target_thread
[in thread port] The thread for which the execution state is to be re-
turned. The calling thread cannot specify itself.

flavor
[in scalar] The type of execution state to be returnatidWalues cor-
respond to supported machined architectures.

old_state

[out array ofint] Array of state information for the specified thread.

old_stateCnt
[pointer to in/out scalar] On input, the maximum size of the state array;
on output, the returned size of the state array (in units of sid}f (
The maximum size is defined by THREAD_STATE_MAX.

RETURN VALUE
Only generic errors apply.

Mach 3 Kernel Interfaces 171

Thread Interface

RELATED INFORMATION
Functionstask _info, thread_info, thread_set_state

172 Mach 3 Kernel Interfaces

thread_info

thread_info

Function — Returns information about a thread

SYNOPSIS
kern_return_thread_info
(mach_port_t target_thread,
int flavor,
thread_info_t thread_info,
mach_msg_type _number_t* thread_infoCn,
DESCRIPTION

Thethread_info function returns an information array of tyfbevor.

SECURITY

The requesting task must haltsv_get_thread_infpermission tdarget_thread

PARAMETERS

target_thread
[in thread port] The thread for which the information is to be returned.

flavor
[in scalar] The type of information to be returned. Valid values are:

THREAD_BASIC_INFO
Returns basic information about the thread, such as the
threads run state and suspend count. The returned structure is
thread_basic_info of size
THREAD_BASIC_INFO_COUNT.

THREAD_SCHED_INFO
Returns scheduling information about the thread, such as pri-
ority and scheduling policy The returned structure is
thread_sched_infoof size THREAD_SCHED_INFO_SIZE.

thread_info
[out array ofint] Information about the specified thread.

thread_infoCnt
[pointer to in/out scalar] On input, the size of the infoféfon out-
put, the returned size of the information structure (in units of sizeof
(int)). The maximum size is defined by THREAD_INFO_MAX.

Mach 3 Kernel Interfaces 173

Thread Interface

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION

Functions: task_info, task_threads thread_get_special_port
thread_get_statethread_set special_portthread_set_state

Data Structureghread_basic_infq thread_sched_info

174 Mach 3 Kernel Interfaces

thread_resume/thread_resume_secure

thread_resume/thread_resume_secure

Function — Resumes a thread

SYNOPSIS

kern_return_thread _resume
(mach_port_t target_thread)

kern_return_thread_resume_secure
(mach_port_t target_thread)

DESCRIPTION

The thread_resume function decrements the suspend counttéoget thread

by one. The thread is resumed if its suspend count goes to zero. If the suspend
count is still positivethread_resumemust be repeated until the count reaches
zero.

The thread_resume_securefunction decrements the suspend count for
target_threadby one. The state dfrget threats associated task structure is
changed from THREAD_STATE_SET to TASK_READY state.

SECURITY

The thread _resume function requires that the requesting task hold
thsv_resume_threagdermission totarget thread The thread resume_secure
function requires that the requesting task haldv_resume_threacand
thsv_initiate_secur@ermission taarget threadandtarget threats associated
thread structure must be in the THREAD_STATE_SET state.

PARAMETERS

target_thread
[in thread port] The thread to be resumed.

RETURN VALUE

Only generic errors apply.

RELATED INFORMATION

Functions: task_resume task_suspend thread_create
thread_create_securethread_info, thread_suspendthread_terminate.

Mach 3 Kernel Interfaces 175

Thread Interface

thread_sample

Function — Perform periodic PC sampling for a thread

SYNOPSIS

kern_return_thread_enable_pc_sampling
(mach_port_t thread
int *ticks
sampled_pc_flavor_t flavor);

kern_return_thread_disable_pc_sampling
(mach_port_t thread
int *sample_cnt
sampled_pc_flavor_t flavor);

kern_return_thread_get _sampled_pcs
(mach_port_t thread
unsigned seqno
sampled_pc_t sampled_pcs][],
int *sample_cnx

DESCRIPTION

These functions cause the program counter (PC) of the spetbifezdi to be |
sampled periodically (whenever the thread happens to be running at the time of
the kernebk “hardclock” interrupt). The set of PC sample values obtained are
saved in buffers.

SECURITY

These functions require that the requesting task tild_sample_threager-
mission tothread

PARAMETERS

thread
[in thread port] Thread whose PC is to be sampled.

ticks
[out scalar] The kerned’idea of clock granularity (ticks per second).
Don't trust this.

flavor
[in structure] The sampling flavowhich can be any of the following
flavors defined in pc_sample.h.

SAMPLED_PC_PERIODIC,
SAMPLED_PC_VM_ZFILL_FAULTS,

176 Mach 3 Kernel Interfaces

thread_sample

SAMPLED_PC_VM_REACTIVATION_FAULTS,
SAMPLED_PC_VM_PAGIN_FAULTS,
SAMPLED_PC_VM_COM_FAULTS,
SAMPLED_PC_VM_FAUTLS_ANY,
SAMPLED_PC_VM_FAULTS

segno
[out scalar] The sequence number of the sampled.Pis is useful
for determining when a collector thread has missed a sample.

sampled_pcs
[out structure] The sampled PCs fitiread A sample contains three
fields: a thread-specific unique identifiar PC value and the type of
sample as per flavor.

sample_cnt
[out scaler] The number of sample elements in the kernel for the
named task or thread.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION

Functions: task_enable_pc_sampling task_disable_pc_sampling
task_get_sampled_pcs

Mach 3 Kernel Interfaces 177

Thread Interface

thread_set_special_port

Function — Sets a special port for a thread

SYNOPSIS
kern_return_thread_set_special_port
(mach_port_t thread,
int which_port,
mach_port_t special_por};
thread_set_exception_port
Macro form
kern_return_thread_set_exception_port
(mach_port_t thread,
mach_port_t special_port)
O thread_set_special_pori{thread THREAD_EXCEPTION_PORT,
special_por}
thread_set_kernel_port
Macro form
kern_return_thread_set_kernel_port
(mach_port_t thread,
mach_port_t special_port)

O thread_set_special_por{thread THREAD_KERNEL_PORTspecial_por}

DESCRIPTION
Thethread_set_special_porfunction sets a special port belongingfroead

SECURITY
The requesting task must holdthsv_set thread_exception_portor

thsv_set_thread_kernel_pomermission tothread to set, respectivelythe
thread’s exception port or kernel port.

PARAMETERS

thread
[in thread port] The thread for which to set the port.

which_port
[in scalar] The special port to be set. Valid values are:

178 Mach 3 Kernel Interfaces

thread_set_special_port

THREAD_EXCEPTION_PORT
[exception port] The threasl’exception port. Used to receive
exception messages from the kernel.

THREAD_KERNEL_PORT
[thread-self port] The threaglkernel port. Used by the kernel
to receive messages from the thread.

special_port
[in thread-special port] The value for the port.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION

Functions:mach_thread_self task_get_special_port task_set special_port
thread_create thread_get_special_port

Mach 3 Kernel Interfaces 179

Thread Interface

thread set state/thread set state secure |

Function — Sets the execution state for a thread

SYNOPSIS

kern_return_thread_set_state
(mach_port_t target_thread,
int flavor,
thread_state_t new_state,
mach_msg_type_number_t new_stateCnf

kern_return_thread_set_state_secure
(mach_port_t target_thread,
int flavor,
thread_state_t new_state,
mach_msg_type_number_t new_stateCnf

DESCRIPTION

The thread_set_statefunction sets the execution state (for example, the ma-
chine registers) fotarget_thread flavor specifies the type of state to set. The|
thread_set_state_securéunction changes the statetafget_threats associat-
ed task structure from THREAD_CREATED to THREAD_STATE_SET

The format of the state to set is machine specific; it is definedmiacky
thread_status.h». Forthread_set_state secur¢he state may be limited to en-
sure that the new child task is started at a valid entry point.

SECURITY

For thread_set_statethe requesting task must hdlusv_set_thread_stajger-
mission totarget_thread Forthread_set_state_securéhe requesting task must
hold thsv_set_thread_statendtsv_initiate_securgermission tatarget_thread
and target threats associated thread structure must be in the
THREAD_CREATED state.

174

PARAMETERS

target_thread
[in thread port] The thread for which to set the execution state. The
calling thread cannot specify itself.

flavor
[in scalar] The type of state to setlM values correspond to support-
ed machine architecture features.

180 Mach 3 Kernel Interfaces

thread_set_state/thread_set_state_secure

new_state
[pointer to in array ofnt] Array of state information for the specified
thread.

new_stateCnt
[in scalar] The size of the state array (in units of sizef)(The maxi-
mum size is defined by THREAD_STATE_MAX.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functionstask_info, thread_get_statethread_info.

Mach 3 Kernel Interfaces 181

Thread Interface

thread_suspend

Function — Suspends a thread

SYNOPSIS
kern_return_thread_suspend
(mach_port_t target_thread)
DESCRIPTION

The thread_suspendfunction increments the suspend counttioget_thread
and prevents the thread from executing any more user-level instructions.

In this context, a usdevel instruction can be either a machine instruction exe-
cuted in user mode or a system trap instruction, including a page fault. If a
thread is currently executing within a system trap, the kernel code may continue
to execute until it reaches the system return code or it may suspend within the
kernel code. In either case, the system trap returns when the thread resumes.

To resume a suspended thread, tlweead_resume If the suspend count is
greater than ong¢hread_resumemust be repeated that number of times.

SECURITY

The requesting task must hdlisv_suspend_threagbrmission tdarget thread

PARAMETERS

target_thread
[in thread port] The thread to be suspended.

CAUTIONS

Unpredictable results may occur if a program suspends a thread and alters its
user state so that its direction is changed upon resuming. Note that the
thread_abort function allows a system call to be aborted only if it is progress-
ing in a predictable way.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION

Functions: task_resume task_suspend thread_abort, thread get state
thread_info, thread _resume thread_set statethread_terminate.

182 Mach 3 Kernel Interfaces

thread_switch

thread_switch

System Trap— Cause context switch with options

LIBRARY
Not declared anywhere.

SYNOPSIS
kern_return_thread_switch
(mach_port_t new_thread,
int option,
int time);
DESCRIPTION

The thread_switch function provides low-level access to the schedsileon-

text switching codenew_threads a hint that implements handfsicheduling.

The operating system will attempt to switch directly to the new thread (bypass-
ing the normal logic that selects the next thread to run) if possible. Since this is
a hint, it may be incorrect; it is ignored if it dogsspecify a thread on the same
host as the current thread or if the scheduler cannot switch to that thread (i.e.,
not runable or already running on another processor). In this case, the normal
logic to select the next thread to run is used; the current thread may continue
running if there is no other appropriate thread to run.

The option agument specifies the interpretation and uséno& The possible
values (from<mach/thread_switch.h> are:

SWITCH_OPTION_NONE
Thetimeargument is ignored.

SWITCH_OPTION_WAIT
The thread is blocked for the specifi@me This wait cannot be can-
celed bythread_resume only thread_abort can terminate this wait.

SWITCH_OPTION_DEPRESS
The threads priority is depressed to the lowest possible valudirfox
The priority depression is aborted whéme has passed, when the cur-
rent thread is next run (either via hand-e¢heduling or because the
processor set has nothing better to do), or wtheaad abort or
thread_depress_abortis applied to the current thread. Changing the
thread’s priority (vighread_priority) will not affect this depression.

The minimum time and units of time can be obtained asnihetimeoutvalue
from the HOST_SCHED_INFO flavor bdbst_info.

Mach 3 Kernel Interfaces 183

Thread Interface

SECURITY

The requesting task must hdlikv_switch_threadndthsv_depress_ppermis-
sion tonew_thread

PARAMETERS

new_thread
[in thread port] Thread to which the processor should switch context.

option
[in scalar] Options applicable to the context switch.
time
[in scalar] Tme duration during which the thread should Heaéd by
option
NOTES

thread_switch is often called when the current thread can proceed no further
for some reason; the various options anguarents allow information about

this reason to be transmitted to the kernel. fi&e_threadagument (hand-éf
scheduling) is useful when the identity of the thread that must make progress be-
fore the current thread runs again is known. The SWITCH_OPTIONT \&p-

tion is used when the amount of time that the current thread must wait before it
can do anything useful can be estimated and is fairly short, especially when the
identity of the thread for which this thread must wait is not known.

CAUTIONS

Users should beware of callinthread_switch with an invalid hint (e.g.,
THREAD_NULL) and no option. Because the time-sharing scheduler varies the
priority of threads based on usage, this may result in a waste of CPU time if the
thread that must be run is of lower priorityThe use of the
SWITCH_OPTION_DEPRESS option in this situation is highly recommended.

thread_switch ignores policies. Users relying on the preemption semantics of a
fixed time policy should be aware ththtead_switch ignores these semantics;

it will run the specifiechew_threadindependent of its priority and the priority

of any threads that could run instead.

RETURN VALUE

Only generic errors apply.

RELATED INFORMATION

Functionssswtch, swtch_pri, thread_abort, thread_depress_abort

184 Mach 3 Kernel Interfaces

thread_terminate

thread_terminate

Function — Destroys a thread

SYNOPSIS
kern_return_thread_terminate
(mach_port_t target_thread)
DESCRIPTION

Thethread_terminate function kills createtarget_thread

SECURITY

The requesting task must holdhsv_terminate_thread permission to
target_thread

PARAMETERS

target_thread
[in thread port] The thread to be destroyed.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION

Functions: task_terminate, task threads thread_create thread_resume
thread_suspend

Mach 3 Kernel Interfaces 185

Thread Interface

thread_wire

Function — Marks the thread as privileged with respect to kernel resources

LIBRARY
#include smach/mach_host.b

SYNOPSIS
kern_return_thread_wire
(mach_port_t host_priv
mach_port_t thread,
boolean_t wired);
DESCRIPTION

Thethread_wire function marks the thread as “wired”. A “wired” thread is al-
ways eligible to be scheduled and can consume physical memory even when
free memory is scarce. This property should be assigned to threads in the de-
fault page-out path. Threads not in the default page-out path should not have
this property to prevent the kernel’s free list of pages from being exhausted.

SECURITY

The requesting task must hahgbsv_wire_threadgermission tohost privand
thsv_wire_thread_into_memory thread

PARAMETERS

host_priv
[in host-control port] The privileged control port for the host on which
the thread executes.

thread
[in thread port] The thread to be wired.

wired
[in scalar] TRUE if the thread is to be wired.

RETURN VALUE

KERN_INVALID_HOST
host_privis not the control port for the host on whitineadexecutes.

186 Mach 3 Kernel Interfaces

thread_wire

RELATED INFORMATION

Functionsvm_wire.

Mach 3 Kernel Interfaces 187

Thread Interface

188 Mach 3 Kernel Interfaces

CHAPTER 7 Task Interface

This chapter discusses the specifics of the kerniatk interfaces. This includes func-
tions that return status information for a task. Also included are functions that operate
upon all or a set of threads within a task.

Mach 3 Kernel Interfaces 189

Task Interface

mach_ports_lookup

Function — Returns an array of well-known system ports.

SYNOPSIS
kern_return_tnach_ports_lookup
(mach_port_t target_task,
mach_port_array_t* init_port_set,
mach_msg_type_number_t* init_port_count)
DESCRIPTION

The mach_ports_lookup function returns an array of the well-known system
ports that are currently registered for the specified task. Note that the task holds
only send rights for the ports.

Registered ports are those ports that are used by the run-time system to initialize
a task. © register system ports for a task, usertaeh_ports_registerfunc-
tion.

SECURITY
The requesting task must hdkV_lookup_po# permission téarget_task

PARAMETERS

target_task

[in task port] The task whose currently registered ports are to be re-
turned.

init_port_set
[out pointer to dynamic array of registered ports] The returned array of
ports.

init_port_count
[out scalar] The number of returned port rights.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functionsmach_ports_register

190 Mach 3 Kernel Interfaces

mach_ports_register

mach_ports_register

Function — Registers an array of well-known system ports

SYNOPSIS
kern_return_tnach_ports_register
(mach_port_t target_task,
mach_port_array t init_port_set,
mach_msg_type_number _t init_port_array_count)
DESCRIPTION

The mach_ports_register function registers an array of well-known system
ports for the specified task. The task holds only send rights for the registered
ports. The valid well-known system ports are:

The port for the Network Name Server.

The port for the Environment Manager.

The port for the Service server.

Each port must be placed in a specific slot in the afilag slot numbers are de-
fined (in mach.h) by the global constants NAME_SEKRR_SLOT,
ENVIRONMENT_SLOT, and SERVICE_SLOT.

A task can retrieve the currently registered ports by using the
mach_ports_lookupfunction.

SECURITY
The requesting task must hdkl/_register_portpermission tdarget_task

PARAMETERS

target_task
[in task port] The task for which the ports are to be registered.

init_port_set
[in pointer to array of registered ports] The array of ports to register.

init_port_array_count
[in scalar] The number of ports in the atrdlote that while this is a
variable, the kernel accepts only a limited nhumber of ports. The maxi-
mum number of ports is defined by the global constant
TASK_PORT_REGISTER_MAX.

Mach 3 Kernel Interfaces 191

Task Interface

NOTES

When a new task is created (witlsk_creatd, the child task can inherit the par-
ent’s registered ports. Note that child tasks do not automatically acquire rights
to these ports. They must usech_ports_lookupto get them. It is intended
that port registration be used only for task initialization, and then only by run-
time support modules.

A parent task has three choices when passing registered ports to child tasks:
The parent task can do nothing. In this case, all child tasks inherit access to
the same ports that the parent has.

The parent task can usgach_ports_registerto modify its set of registered

ports before creating child tasks. In this case, the child tasks get access to the
modified set of ports. After creating its child tasks, the parent can upe
mach_ports_registeragain to reset its registered ports.

The parent task can first create a specific child task and then use
mach_ports_register to modify the childs inherited set of ports, before
starting the child thread(s). The parent must specify the chitdsk port,
rather than its own, on the calltmach_ports_register

Tasks other than the Network Name Server and the Environment Manager
should not need access to the Service port. The Network Name Server port is
the same for all tasks on a given machine. The Environment port is the only
port likely to have different values for different tasks.

Registered ports are restricted to those ports that are used by the run-time sys-
tem to initialize a task. A parent task can pass other ports to its child tasks
through:

An initial message (se@ach_msg.
The Network Name Server, for public ports.
The Environment Manager, for private ports.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functionsmach_msg mach_ports_lookup

192 Mach 3 Kernel Interfaces

mach_task_self

mach_task_self

System Trap— Returns the task self port

LIBRARY
#include smach/mach_traps.t»

SYNOPSIS

mach_port_tnach_task_self

0;

DESCRIPTION
Themach_task_selffunction returns send rights to the task’s kernel port.

SECURITY

The requesting task must holslv_get task kernel _popermission to the re-
guesting task’s task port.

PARAMETERS
None

NOTES

The include file<mach_init.h> included by<mach.h> redefines this function
call to simply return the valumach_task_self, cached by the Mach run-time.

RETURN VALUE
[task-self port] Send rights to the task’s port.

RELATED INFORMATION
Functionstask _info.

Mach 3 Kernel Interfaces 193

Task Interface

task _change_sid

Function — Changes the SID of a task

SYNOPSIS
kern_return_task _change_sid
(mach_port_t target_task,
security_id_t new_sid);
DESCRIPTION

The task change_sidfunction changes the security identifier (SID) of
target_taskto new_sid Currently only the authentication identifier (AID) por-
tion of the SID is allowed to change. Hence the mandatory identifier (MIQ
field of new_sid must be either 0 or the same as the MID field of the
target_tasls SID.

SECURITY
The following permissions are required:

the requesting task must hotgv_change_sicpermission totarget_tasls
task port

the requesting task must hakV_make_sigermission tmew_sid
Thetarget_taskmust holdsv_transition_sido new_sid

PARAMETERS

target_task
[in task port] The port for the task whose SID is being changed.

new_sid
[in security id] The new SID with whictarget_taskwill be labeled.

RETURN VALUE
Generic errors apply.

RELATED INFORMATION
Functions: None

194 Mach 3 Kernel Interfaces

~

task_create/task_create_secure

task_create/task_create_secure

Function — Creates a task

SYNOPSIS
kern_return_task create
(mach_port_t parent_task,
boolean_t inherit_memory,
mach_port_t* child_task;

kern_return_task create_secure

(mach_port_t parent_task,
boolean_t inherit_memory,
mach_port_t* child_task
security_id_t subj_sid;

DESCRIPTION

The task_create and task _create_securefunctions create a new task from
parent_taskand return the name of the new taskthid_task The child task ac-
quires shared or copied parts of the paseatidress space (sem_inherit).
The child task initially contains no threads.

The child task receives the three following special ports, which are created or
copied for it at task creation:

task_kernel_port — The port by which the kernel knows the new child
task. The child task holds a send right for this port. The port name is also re-
turned to the calling task.

task_bootstrap_port — The port to which the child task can send a mes-
sage requesting return of any system service ports that it needs (for example,
a port to the Network Name Server or the Environment Manager). The child
task inherits a send right for this port from the parent task. The child task
can usdask_set special_porto change this port.

task_exception_port— A default exception port for the child task, inherit-

ed from the parent task. The exception port is the port to which the kernel
sends exception messages. Exceptions are synchronous interruptions to the
normal flow of program control caused by the program itself. Some excep-
tions are handled transparently by the kernel, but others must be reported to
the program. The child task, or any one of its threads, can change the default
exception port to take an active role in exception handling (see
task_set special_porbrthread_set special_porx

The child task also inherits the following ports:

[sample port] The port to which PC sampling messages are to be sent.
[registered ports] Ports to system services.

Mach 3 Kernel Interfaces 195

Task Interface

SECURITY

PARAMETERS

In addition to creatin@ new tasktask_create secureassigns the specified se—L
curity identifier to the new task. Because of the necessity to control what te
parent task may do to the child task grdld_taskthe newly created task struc-
ture state is set to EMPTY to ensure ttheead create thread_set stateand
thread_resume sequence uses the secure variants of these requests. This|as-
sures the proper start up sequence upon a cross context task creafion.
task_createsets the created task structure stateASKI READY and does not
require special permissions to or processing sequences for the parent task tq ini-
tiate processing in the child task.

For task_create the requesting task must holgv_ceate_taskpermission to
parent_taskFortask create_securghe following permissions are required:

the requesting task must holtbv_create task secur@ermission to
parent_tasls task port and

the requesting task must halsl_cross_context_create child_tasks task
port.

The parent_taskmust holdtsv_cross_context_inherio child_tasks task |
port.

The permission to inherited memory in tasks created with the use [of
task _create_securds as determined by the systansecurity policylt will be
based on the relationship between the new task’s security identity and the sequri-
ty identifier associated with the memory.

Fortask createand for the case where no subject security identifier is providgd
on atask_create_securgthe child task is created with a subject security identi}
fier that is the same @arent_tasls subject security identifier.

parent_task
[in task port] The port for the task from which to draw the child task’
port rights, resource limits, and address space.

inherit_memory
[in scalar] Address space inheritance indicafarue, the child task in-
herits the address space of the parent task. If false, the kernel assigns
the child task an empty address space.

child_task
[out task port] The kernel-assigned port name for the new task.

[in security id] The security identifier to be associated with the chil

subj_sid
task.

196

Mach 3 Kernel Interfaces

task_create/task_create_secure

RETURN VALUE
Generic errors apply.

RELATED INFORMATION

Functions: task_get special_port task resume task_set special_port
task_suspend task_terminate, task_threads thread_create
thread_create_secue, thread_resume thread_resume_secure,
thread_set state, thead_set state secar vm_inherit, task_sample
norma_task_create

Mach 3 Kernel Interfaces 197

Task Interface

task_get_emulation_vector

Function — Return user-level handlers for system calls.

SYNOPSIS
kern_return_task _get_emulation_vector
(mach_port_t task,
int* vector_start
emulation_vector_t* emulation_vector,
mach_msg_type_number_t* emulation_vector_coupt
DESCRIPTION

The task_get_emulation_vectorfunction returns the uséevel syscall handler
entrypoint addresses.

SECURITY
The requesting task must hakl/_get_emulatiopermission tdask

PARAMETERS

task
[in task port] The port for the task for which the system call handler ad-
dresses are desired.

vector_start
[out scalar] The syscall number corresponding to the first element of
emulation_vector

emulation_vector
[out pointer to dynamic array @fm_offset JtPointer to the returned ar-
ray of routine entrypoints for the system calls starting with syscall
numbervector_start

emulation_vector_count
[out scalar] The number of entries filled by the kernel.

NOTES

This interface is machine word length specific because of the virtual addresses
in theemulation_vectoparameter

RETURN VALUE
Only generic errors apply.

198 Mach 3 Kernel Interfaces

task_get_emulation_vector

RELATED INFORMATION
Functionstask_set _emulationtask_set_emulation_vectar

Mach 3 Kernel Interfaces 199

Task Interface

task _get special_port

Function — Returns a send right to a special port

SYNOPSIS

kern_return_task _get_special_port
(mach_port_t task,
int which_port,
mach_port_t* special_por};

task_get bootstrap_port

Macro form

kern_return_task_get_bootstrap_port
(mach_port_t task,
mach_port_t* special_port)

O task get special_por{task TASK_BOOTSTRAP_PORTpecial_por}

task _get_exception_port

Macro form

kern_return_task_get_exception_port
(mach_port_t task,
mach_port_t* special_port)

O task_get_special_poritask TASK_EXCEPTION_PORTspecial_por}

task get kernel_port

Macro form

kern_return_task_get_kernel_port
(mach_port_t task,
mach_port_t* special_port)

O task _get_special_por{task TASK_KERNEL_PORTspecial_por}

DESCRIPTION

The task_get_special_portfunction returns a send right for a special port be-
longing totask

If one task has a send right for the kernel port of another task, it can use the port
to perform kernel operations for the other task. Send rights for a kernel port nor-
mally are held only by the task to which the port belongs, or by thes faatent

task. Using thenach_msgfunction, howeverany task can pass a send right for

its kernel port to another task.

200

Mach 3 Kernel Interfaces

task_get_special_port

SECURITY

The requesting task must hold tsv_get task_boot port,
tsv_get_task_exception_pat tsv_get_task_kernel_popermission totask to
get, respectively, the target task’s boot port, exception port or kernel port.

PARAMETERS
task
[in task port] The port for the task for which to return the pasénd
right.
which_port
[in scalar] The special port for which the send right is requestdil V
values are:

TASK_KERNEL_PORT
[task-self port] The port used to control this task. Used to
send messages thafeaft the task. This is the port returned by
mach_task_self

TASK_BOOTSTRAP_PORT
[bootstrap port] The task’bootstrap port. Used to send mes-
sages requesting return of other system service ports.

TASK_EXCEPTION_PORT
[exception port] The tas&’exception port. Used to receive ex-
ception messages from the kernel.

special_port
[out task-special port] The returned value for the port.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION

Functions: mach_task_self task_create task_set_special_port
thread_get_special_portthread_set_special_portmach_task_self

Mach 3 Kernel Interfaces 201

Task Interface

task_info

Function — Returns information about a task

SYNOPSIS
kern_return_task_info
(mach_port_t target_task,
int flavor,
task_info_t task_info,
mach_msg_type_number_t* task_infoCn;
DESCRIPTION

Thetask_info function returns an information array of tyfevor.

SECURITY
The requesting task must hagy _get_task_infpermission tdarget_task

PARAMETERS

target_task
[in task port] The port for the task for which the information is to be re-
turned.

flavor
[in scalar] The type of information to be returned. Valid values are:

TASK_BASIC_INFO
Returns basic information about the task, such as thestask’
suspend count and number of resident pages. The structure re-
turned is task_basic_infq whose size is given by
TASK_BASIC_INFO_COUNT.

TASK_SECURE_INFO
Returns basic information about the task, such as thestas
suspend count, number of resident pages and security identffi-
er. The structure returned task basic_secure_infowhose
size is given by TASK_BASIC_SECURE_INFO_COUNT.

TASK_THREAD_TIMES_INFO
Returns system and user space run-times for live threads. The
structure returned itask_thread_times_infq whose size is
given by TASK_THREAD_TIMES_INFO_COUNT.

task_info
[out array ofint] Information about the specified task.

202 Mach 3 Kernel Interfaces

task_info

task_infoCnt
[pointer to in/out scalar] On input, the maximum size of the infd-buf
er; on output, the returned size of the information structure (in units of
sizeof (nt)). The maximum size is defined by TASK_INFO_MAX.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION

Functions: task_get special_port task set special_port task_threads
thread_info, thread_get_statethread_set_state

Data Structuredask_basic_infq task thread_times_info

Mach 3 Kernel Interfaces 203

Task Interface

task_resume

Function — Resume a task

SYNOPSIS
kern_return_task_resume
(mach_port_t task);
DESCRIPTION

The task_resumefunction decrements the suspend counttdisk If the tasks
suspend count goes to zero, the function resumes any suspended threads within
the task. @ resume a given thread, the threamivn suspend count must also be
zero.

SECURITY
The requesting task must hagy _resume_tagkermission tdaask

PARAMETERS

task
[in task port] The port for the task to be resumed.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION

Functions: task create task info, task suspend task terminate,
thread_info, thread_resume thread_suspend

204 Mach 3 Kernel Interfaces

task_sample

task_sample

Function — Perform periodic PC sampling for a task

SYNOPSIS

kern_return_task enable_pc_sampling
(mach_port_t task
int *ticks
sampled_pc_flavor_t flavor);

kern_return_task disable_pc_sampling
(mach_port_t task
int *sample_cnt
sampled_pc_flavor_t flavor);

kern_return_task get sampled_pcs
(mach_port_t task
unsigned seqno
sampled_pc_t sampled_pcs],
int *sample_cng

DESCRIPTION

These functions cause the program counter (PC) of the spdaslcd be sam-
pled periodically (whenever one of the taskireads happens to be running at
the time of the kerned’“hardclock” interrupt). The set of PC sample values ob-
tained are saved in buffers.

SECURITY

These functions require that the requesting task tasldsample_tasgermis-
sion totask

PARAMETERS

thread
[in thread port] Thread whose PC is to be sampled

ticks
[out scalar] the kerned’idea of clock granularity (ticks per second).
Don't trust this.

flavor
[in structure] The sampling flavowhich can be any of the following
flavors defined in pc_sample.h.

SAMPLED_PC_PERIODIC,
SAMPLED_PC_VM_ZFILL_FAULTS,

Mach 3 Kernel Interfaces 205

Task Interface

SAMPLED_PC_VM_REACTIVATION_FAULTS,
SAMPLED_PC_VM_PAGIN_FAULTS,
SAMPLED_PC_VM_COM_FAULTS,
SAMPLED_PC_VM_FAUTLS_ANY,
SAMPLED_PC_VM_FAULTS.

segno
[out scalar] The sequence number of the sampled. P®is is useful
for determining when a collector thread has missed a sample.

sampled_pcs
[out structure] The sampled PCs for threadtagk A sample contains
three fields: a thread-specific unique identifePC value and the type
of sample as per flavor.

sample_cnt
[out scaler] The number of sample elements in the kernel for tk
named task or thread.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION

Functions: thread_enable_pc_sampling thread_disable_pc_sampling
thread_get sampled_pcs

206 Mach 3 Kernel Interfaces

task_set_emulation

task_set emulation

Function — Establish a user-level handler for a system call.

SYNOPSIS
kern_return_task set emulation
(mach_port_t task,
vm_address_t routine_entry_pt,
int syscall_numbeér
DESCRIPTION

Thetask set_emulationfunction establishes a handler within the task for a par-
ticular system call. When a thread executes a system call with this particular
number the system call will be redirected to the specified routine within the
tasks address space. This is expected to be an address within the transparent
emulation library.

These emulation handler addresses are inherited by child processes.

SECURITY
The requesting task must haky_set_emulatiopermission tdask

PARAMETERS

task
[in task port] The port for the task for which to establish the system
call handler.

routine_entry_pt
[in scalar] The address within the task of the handler for this particular
system call.

syscall_number
[in scalar] The number of the system call to be handled by this handler.

NOTES

This interface is machine word length specific because of the virtual address pa-
rameter.

RETURN VALUE

Only generic errors apply.

Mach 3 Kernel Interfaces 207

Task Interface

RELATED INFORMATION
Functionstask set _emulation_vectqartask_get_emulation_vector

208 Mach 3 Kernel Interfaces

task_set_emulation_vector

task_set emulation_vector

Function — Establishes user-level handlers for system calls.

SYNOPSIS
kern_return_task set emulation_vector
(mach_port_t task,
int vector_start
emulation_vector_t emulation_vector,
mach_msg_type_number _t emulation_vector_coupt
DESCRIPTION

The task_set_emulation_vectorfunction establishes a handler within the task

for a set of system calls. When a thread executes a system call with one of these
numbers, the system call will be redirected to the corresponding routine within
the tasks address space. This is expected to be an address within the transparent
emulation library.

These emulation handler addresses are inherited by child processes.

SECURITY
The requesting task must haky_set_emulatiopermission tdaask

PARAMETERS

task
[in task port] The port for the task for which to establish the system
call handler.

vector_start
[in scalar] The syscall number corresponding to the first element of
emulation_vector

emulation_vector
[in pointer to array ofym_offset JtAn array of routine entrypoints for
the system calls starting with syscall numbector_start

emulation_vector_count
[in scalar] The number of elementsemulation_vector

NOTES

This interface is machine word length specific because of the virtual addresses
in theemulation_vectoparameter.

Mach 3 Kernel Interfaces 209

Task Interface

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functionstask set emulationtask_get emulation_vector

210 Mach 3 Kernel Interfaces

task_set_special_port

task_set special_port

Function — Sets a special port for a task

SYNOPSIS
kern_return_task_set_special_port
(mach_port_t task,
int which_port,
mach_port_t special_pory;

task_set_bootstrap_port
Macro form

kern_return_task_set bootstrap_port
(mach_port_t task,
mach_port_t special_port)

O task_set_special_por{task TASK_BOOTSTRAP_PORBpecial_por}
task _set_exception_port

Macro form

kern_return_task set _exception_port
(mach_port_t task,
mach_port_t special_port

O task _set special_por{task TASK_EXCEPTION_PORTspecial_por}.
task_set_kernel_port

Macro form

kern_return_task_set kernel_port
(mach_port_t task,
mach_port_t special_port)

O task set special por{task TASK_KERNEL_PORTspecial_por}

DESCRIPTION
Thetask_set_special_porfunction sets a special port belongingask

SECURITY

The requesting task must hold tsv_set task boot port,
tsv_set task exception_pat tsv_set task kernel_popermission totask to
set, respectivelyasks boot port, exception port or kernel port.

PARAMETERS

task
[in task port] The task for which to set the port.

Mach 3 Kernel Interfaces 211

Task Interface

which_port
[in scalar] The special port to be set. Valid values are:

TASK_BOOTSTRAP_PORT
[bootstrap port] The task’bootstrap port. Used to send mes-
sages requesting return of other system service ports.

TASK_EXCEPTION_PORT
[exception port] The tas&’exception port. Used to receive ex-
ception messages from the kernel.

TASK_KERNEL_PORT
[task-self port] The task’kernel port. Used by the kernel to
receive messages from the task. This is the port returned by
mach_task_self

special_port
[in task-special port] The value for the port.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION

Functions: task create task_get_special_port exception_raise
mach_task_selfthread_get_special_portthread_set special_port

212 Mach 3 Kernel Interfaces

task_suspend

task_suspend

Function — Suspends a task

SYNOPSIS
kern_return_task_suspend
(mach_port_t task;
DESCRIPTION

The task_suspendfunction increments the suspend counttémkand stops all
threads within the task. As long as the suspend count is positive, no newly-creat-
ed threads can execute. The function does not return until all of the task’
threads have been suspended.

SECURITY
The requesting task must hay_suspend_taglermission tdask

PARAMETERS

task
[in task port] The port for the task to be suspended.

NOTES

To resume a suspended task and its threadstaskeresume If the suspend
count is greater than one, you must issis#_resumethat number of times.

RETURN VALUE

Only generic errors apply.

RELATED INFORMATION

Functions: task create task info, task resume task terminate,
thread_suspend

Mach 3 Kernel Interfaces 213

Task Interface

task_terminate

Function — Destroys a task

SYNOPSIS
kern_return_task_terminate
(mach_port_t task);
DESCRIPTION

The task_terminate function kills task and all its threads, if anyrhe kernel
frees all resources that are in use by the task. The kernel destroys any port for
which the task holds the receive right.

SECURITY

The requesting task must haky_terminate_tasgermission tdask

PARAMETERS

task
[in task port] The port for the task to be destroyed.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION

Functions: task create task suspend task resume thread_terminate,
thread_suspend

214 Mach 3 Kernel Interfaces

task_threads

task threads

Function — Returns a list of the threads within a task

SYNOPSIS
kern_return_task_threads
(mach_port_t task,
thread_array_t* thread_list,
mach_msg_type _number_t* thread_count
DESCRIPTION

The task_threadsfunction returns a list of the threads withask The calling
task or thread also receives a send right to the kernel port for each listed thread.

SECURITY
The requesting task must hay _get_task threagsermission tdask

PARAMETERS

task
[in task port] The port for the task for which the thread list is to be re-
turned.

thread_list
[out pointer to dynamic array of thread ports] The returned list of
threads withirtask in no particular order.

thread_count
[out scalar] The returned count of threadshiread_list

RETURN VALUE

Only generic errors apply.

RELATED INFORMATION

Functionsthread_create thread_terminate, thread_suspend

Mach 3 Kernel Interfaces 215

Task Interface

216 Mach 3 Kernel Interfaces

chapter s HoOSt Interface

This chapter discusses the specifics of the kerhelst interfaces. Included are functions
that return status information for a host, such as kernel statistics.

Note that hosts are named both by a name port, which allows the holder to request infor-
mation about the host, and a control port, which provides full control access. The control
port for a host is provided to the bootstrap task for that host.

Mach 3 Kernel Interfaces 217

Host Interface

host_adjust_time

Function —Gradually change the time

LIBRARY
#include smach/mach_host.b

SYNOPSIS
kern_return_tost_adjust_time
(mach_port_t host_priv,
time_value_t new_adjustment,
time_value_t* old_adjustment
DESCRIPTION

The host_adjust_timefunction arranges for the time on a specified host to be
gradually changed by an adjustment value.

SECURITY
The requesting task must hdidsv_set_timpermission tdost_priv

PARAMETERS

host_priv
[in host-control port] The control port the host for which the time is to
be set.

new_adjustment
[in structure] New adjustment value.

old_adjustment
[out structure] Old adjustment value.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functionshost_get time host_set _time

Data Structuregime_value

218 Mach 3 Kernel Interfaces

host_get_boot_info

host_get_boot_info

Function — Return operator boot information

LIBRARY
#include smach/mach_host.k

SYNOPSIS
kern_return_host_get boot_info
(mach_port_t priv_host,
kernel_boot_info_t boot _infg;
DESCRIPTION

The host_get_boot_infofunction returns the boot-time information string sup-
plied by the operator wherpriv_host was initialized. The constant
KERNEL_BOOT_INFO_MAX (in mach/host_info.)) should be used to di-
mension storage for the returned string.

SECURITY
The requesting task must hdidsv_get _boot_infpermission tgriv_host

PARAMETERS
priv_host
[in host-control port] The control port for the host for which informa-

tion is to be obtained.

boot_info
[out array ofchar] Character string providing the operator boot info

RETURN VALUE

Only generic errors apply.

RELATED INFORMATION

Functionshost_info.

Mach 3 Kernel Interfaces 219

Host Interface

host_get special_port

Function — Return a send right to a special port

LIBRARY
#include €nach.h>

SYNOPSIS
kern_return_tost_get _special_port
(mach_port_t host,
int port_label,
mach_port_t* special_por};
DESCRIPTION

The host_get_special_porfunction returns a send right special_portas re-
guested irport_label.

SECURITY

The requesting task must halev_get_special_potb host Depending on the
value ofport_label the requesting task must also hold one of the following pe
missions tdhost

hsv_get_audit_port

hsv_get_authentication_port

hsv_get_crypto_port

hsv_get_host_control_port

hsv_get_negotiation_server_port

hsv_get _network_server_port

hsv_get_security_master_port

hsv_get_security_client_port

hsv_get_host_control_pois also used to control access to the master devide

port.

PARAMETERS

host_name_port
[in host-name port] The host name port to which the request is sent.

port_label
[in scalar] Specifies which special port the function should return. Th
parameter can take on one of the following values:

220 Mach 3 Kernel Interfaces

host_get_special_port

AUDIT_SERVER_PORT
AUTHENTICATION_SERVER_PORT
CRYPTO_SERVER_PORT
HOST_CONTROL_PORT
MASTER_DEVICE_PORT
NEGOTIATION_SERVER_PORT
NETWORK_SECURITY_SERVER_PORT
SECURITY_SERVER_CLIENT_PORT
SECURITY_SERVER_MASTER_PORT

special_port
[out port] A send right to the requested port.

RETURN VALUE

Only generic errors apply.

RELATED INFORMATION
Functionshost_set_special_port

Mach 3 Kernel Interfaces 221

Host Interface

host_get time

Function —Return the current time.

LIBRARY
#include smach/mach_host.b

SYNOPSIS
kern_return_tost_get_time
(mach_port_t host,
time_value_t* current_timé;
DESCRIPTION

Thehost_get_timefunction returns the current time as seen by that host.

SECURITY
The requesting task must hdidv_get_timgermission tdost

PARAMETERS

host
[in host-name port] The name port of the host from which the time
to be obtained.

current_time
[out structure] Returned time value.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functionshost_adjust_time host_set_time

Data Structuregime_value

222 Mach 3 Kernel Interfaces

host_info

host_info

Function — Returns information about a host

LIBRARY
#include smach/mach_host.k

SYNOPSIS
kern_return_host_info
(mach_port_t host,
int flavor,
host_info_t host_info,
mach_msg_type _number_t* host_infoCn;
DESCRIPTION
The host_info function returns selected information about a host, as specified
by flavor.
SECURITY

The requesting task must hdldv_get _host_infpermission tdost

PARAMETERS

host
[in host-name port] The name port for the host for which information
is to be obtained.

flavor
[in scalar] The type of statistics desired.

HOST_BASIC_INFO
Basic information (number of processors, amount of memo-
ry). The returned structure idost _basic_info of size
HOST_BASIC_INFO_COUNT.

HOST_LOAD_INFO
Scheduling statistics. The returned structure is
host_load_infoof size HOST_LOAD_INFO_COUNT.

HOST_PROCESSOR_SLOTS
An array of the processor slot numbers (natural-sized units)
for active processors.

Mach 3 Kernel Interfaces 223

Host Interface

HOST_SCHED_INFO
Basic restrictions of the kernglscheduling, minimum quan-
tum and time-out value. The returned structure is
host_sched_infoof size HOST_SCHED_INFO_COUNT

host_info
[out array ofint] Statistics about the specified host.

host_infoCnt
[pointer to in/out scalar] On input, the maximum size of the infd-buf
er; on output, the size of the information structure (in units of sizeof

(int)).

NOTES

This interface is machine word length specific because of the memory size re-
turned by HOST_BASIC_INFO.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION

Functions: host_get boot info host_kernel _version, host pocessors,
processor_infa

Data Structureshost_basic_info, host_load_info, host_sched_info

224 Mach 3 Kernel Interfaces

host_kernel_version

host_kernel_version

Function — Returns kernel version information for a host

LIBRARY
#include smach/mach_host.k

SYNOPSIS
kern_return_host_kernel_version
(mach_port_t host,
kernel_version_t versior);
DESCRIPTION

The host_kernel_versionfunction returns the version string compiled into the
kernel executing omostat the time it was built. This describes the version of
the kernel. The constant KERNEL_VERSION_MAX (mach/host_info.h
should be used to dimension storage for the returned string if the
kernel_version_teclaration is not used.

SECURITY
The requesting task must hdidv_get_host_versigrermission tdost

PARAMETERS

host
[in host-name port] The name port for the host for which information
is to be obtained.

version
[out array ofchar] Character string describing the kernel version exe-
cuting onhost

RETURN VALUE

Only generic errors apply.

RELATED INFORMATION

Functionshost_info.

Mach 3 Kernel Interfaces 225

Host Interface

host_reboot

Function — Reboot this host

LIBRARY
#include smach/mach_host.b

SYNOPSIS
kern_return_tost_reboot
(mach_port_t host_priv,
int options;
DESCRIPTION

Thehost_rebootfunction reboots the specified host.

SECURITY
The requesting task must hdidsv_reboot _hogiermission tdost_priv

PARAMETERS

host_priv
[in host-control port] The control port the host to be re-booted.

options
[in scalar] Reboot options. Sesys/reboot.h>for details.

NOTES
If successful, this call will not return.

RETURN VALUE
Only generic errors apply.

226 Mach 3 Kernel Interfaces

host_set_special_port

host_set special_port

Function — Sets special kernel ports

LIBRARY
#include @nach.h>

SYNOPSIS
kern_return_host_set_special_port
(mach_port_t host,
int port_labe|
mach_port_t port_valug;
DESCRIPTION

The host_set_special_porfunction supplies a port to the specified host for use
as the port selected by thert_label

SECURITY

The requesting task must hakiev_set_special_potb host Depending on the
value ofport_label the requesting task must also hold one of the following per-
missions tchost

hsv_set_audit_port

hsv_set_authentication_port

hsv_set_crypto_port

hsv_set_negotiation_port

hsv_set_network_ss_port

hsv_set_security _master_port

hsv_set_security client_port

PARAMETERS

host
[in host-name port] The name port for the host for which the specified
port will be set.

port_label
[in scalar] A label for which the special port will be set. This parameter
can take on one of the following values:
AUDIT_SERVER_PORT
AUTHENTICATION_SERVER_PORT
CRYPTO_SERVER_PORT

Mach 3 Kernel Interfaces 227

Host Interface

NEGOTIATION_SERVER_PORT
NETWORK_SECURITY_SERVER_PORT
SECURITY_SERVER_MASTER_PORT
SECURITY_SERVER_CLIENT_PORT

port_value
[in port] A port for the kernel to use for the selected operation.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functionsthost_get_special_port

228 Mach 3 Kernel Interfaces

host_set_time

host_set_time

Function — Sets the time

LIBRARY
#include smach/mach_host.k

SYNOPSIS
kern_return_host_set_time
(mach_port_t host_priv,
time_value_t new_time;
DESCRIPTION

Thehost_set_timefunction establishes the time on the specified host.

SECURITY
The requesting task must hdidsv_set_timpermission tdost_priv

PARAMETERS
host_priv
[in host-control port] The control port for the host for which the time is

to be set.

new_time
[in structure] Time to be set.

RETURN VALUE

Only generic errors apply.

RELATED INFORMATION

Functionsthost_adjust_time host_get_time

Data Structuregime_value

Mach 3 Kernel Interfaces 229

Host Interface

mach_host_self

System Trap— Returns the host self port

LIBRARY
#include smach/mach_traps.h»

SYNOPSIS

mach_port_tnach_host_self

0;

SECURITY

The requesting task must hdidv_get _host_nanpermission to the processor
host name port.

DESCRIPTION
Themach_host_selfunction returns send rights to the current host's name port.

PARAMETERS
None

RETURN VALUE
[host-name port] Send rights to the host's name port.

RELATED INFORMATION
Functionshost_info.

230 Mach 3 Kernel Interfaces

cHapTER 9 Processor Management
and Scheduling Interface

This chapter discusses the specifics of the karpeticessor and processor set interfaces.
This includes functions to control processors, change their assignments, assign tasks and
threads to processors, and processor status returning functions.

Note that processor sets have two ports that name them: a name port which allows infor-
mation to be requested about them, and a control port which allows full access. The con-
trol port for a processor set is provided to the creator of the set.

Processors have only a single port that names them. The host control port is needed to ob-
tain these processor ports.

Mach 3 Kernel Interfaces 231

Processor Management and Scheduling Interface

host_processor_set_priv

Function — Translates a processor set hame port into a processor set control
port

LIBRARY
#include smach/mach_host.b

SYNOPSIS
kern_return_tost_processor_set_priv
(mach_port_t host_priv,
mach_port_t set_name,
mach_port_t* processor_sgt
DESCRIPTION

The host_processor_set_privfunction returns send rights for the control port
for a specified processor set currently existindpost_priv

SECURITY
The requesting task must hdidsv_pset_ctrl_pogpermission tdost_priv

PARAMETERS

host_priv
[in host-control port] The control port for the host for which the proces-
sor set is desired.

set_name
[in processosset-name port] The name port for the processor set de-
sired.

processor_set
[out processor-set-control port] The returned processor set control port.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION

Functions: host_processor_sets, mcessor_set_@ate, plocessor_set_tasks,
processor_set_threads

232 Mach 3 Kernel Interfaces

host_processor_sets

host_processor_sets

Function — Returns processor set ports for a host

LIBRARY
#include smach/mach_host.k

SYNOPSIS
kern_return_host_processor_sets
(mach_port_t host,
processor_set_name_array_t* processor_set_list,
mach_msg_type _number_t* processor_set_count
DESCRIPTION

The host_processor_setgunction returns send rights for the name ports for
each processor set currently existinghosst

SECURITY
The requesting task must hdidv_pset _namegmermission tdost

PARAMETERS

host
[in host-name port] The name port for the host for which the processor
sets are desired.

processor_set_list
[out pointer to dynamic array of processet-name ports] The set of
processor set name ports for those currently existirtgpenno partic-
ular order is guaranteed.

processor_set_count
[out scalar] The number of processor set names returned.

NOTES

If control ports to the processor sets are needediagteprocessor_set_priv

processor_set_listis automatically allocated by the kernel, as if by
vm_allocate It is good practice tsm_deallocatethis space when it is no long-
er needed.

Mach 3 Kernel Interfaces 233

Processor Management and Scheduling Interface

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION

Functions: host_processor_set_priy processor_set_create,
processor_set tasks, processor_set_threads

234 Mach 3 Kernel Interfaces

host_processors

host_processors

Function — Gets processor ports for a host

LIBRARY
#include smach/mach_host.k

SYNOPSIS
kern_return_host_processors
(mach_port_t host_priv,
processor_array_t* processor_list,
mach_msg_type _number_t* processor_cout
DESCRIPTION

The host_processordunction returns an array of send right ports for each pro-
cessor existing ohost_priv

SECURITY

The requesting task must holdpsv_get host processorgermission to
host_priv

PARAMETERS

host_priv
[in host-control port] The control port for the desired host.

processor_list
[out pointer to dynamic array of processor ports] The set of processors
existing onhost_priy no particular order is guaranteed.

processor_count
[out scalar] The number of ports returnegbincessor_list

RETURN VALUE

Only generic errors apply.

RELATED INFORMATION

Functions: processor_start, pocessor_exit, pocessor_info,
processor_control

Mach 3 Kernel Interfaces 235

Processor Management and Scheduling Interface

processor_assign

Function — Assign a processor to a processor set

LIBRARY

#include smach/mach_host.b

SYNOPSIS

kern_return_processor_assign
(mach_port_t processor,
mach_port_t new_set,
boolean_t wait);

DESCRIPTION

The processor_assigrfunction assignprocessorto the senew_set After the
assignment is completed, the processor only executes threads that are assigned
to that processor set. Any previous assignment of the processor is nullified. The
master processor cannot be reassigned.

The wait agument indicates whether the caller should wait for the assignment
to be completed or should return immediatddedicated kernel threads are
used to perform processor assignment, so settaigto FALSE allows assign-
ment requests to be queued and performed quiiekpecially if the kernel has
more than one dedicated internal thread for processor assignment.

All processors take clock interrupts at all times. Redirection of other device in-
terrupts away from processors assigned to other than the default processor set is
machine dependent.

SECURITY

The requesting task must hghdv_assign_processor_to_getrmission tgoro-
cessorandpssv_assign_processtornew_set

PARAMETERS

processor
[in processor port] The processor to be assigned.

new_set
[in processosset-control port] The control port for the processor set
into which the processor is to be assigned.

236

Mach 3 Kernel Interfaces

processor_assign

wait
[in scalar] Tue if the call should wait for the completion of the assign-
ment.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION

Functions processor_set @ate, piocessor_set_info, task_assign
thread_assign

Mach 3 Kernel Interfaces 237

Processor Management and Scheduling Interface

pI‘OCGSSOI’_COI’]tI’O|

Function — Do something to a processor

LIBRARY
#include smach/mach_host.b

SYNOPSIS
kern_return_processor_control
(mach_port_t processor,
processor_info_t cmd,
mach_msg_type_number_t couny;
DESCRIPTION

The processor_controlfunction allows privileged software to control a proces-
sor in a multi-processor that so allows it. The interpretatiocmafis machine
dependent.

SECURITY

The requesting task must hgbdv_may_control_processg@ermission topro-
cessor

PARAMETERS

processor
[in processor port] The processor to be controlled.

cmd
[pointer to in array ofnt] An array containing the command to be ap-
plied to the processor.
count
[in scalar] The size of themdarray.
NOTES

These operations are machine dependent. They may do nothing.

RETURN VALUE

KERN_FAILURE
The operation was not performed. A likely reason is that it is not sup-
ported on this processor.

238 Mach 3 Kernel Interfaces

processor_control

RELATED INFORMATION
Functions processor_start, processor_exit, processor_info, host_processors

Mach 3 Kernel Interfaces 239

Processor Management and Scheduling Interface

processor_exit

Function — Exit a processor

LIBRARY
#include smach/mach_host.b

SYNOPSIS
kern_return_processor_exit
(mach_port_t processoy;
DESCRIPTION

The processor_exitfunction allows privileged software to exit a processor in a
multi-processor that so allows it. An exited processor is removed from the pro-
cessor set to which it was assigned and ceases to be active. The interpretation of
this operation is machine dependent.

SECURITY

The requesting task must hgbdv_may_control_processg@ermission topro-
cessor

PARAMETERS

processor
[in processor port] The processor to be controlled.

NOTES
This operation is machine dependent. It may do nothing.

CAUTIONS
The ability to restart an exited processor is machine dependent.

RETURN VALUE

KERN_FAILURE
The operation was not performed. A likely reason is that it is not sup-
ported on this processor.

RELATED INFORMATION

Functions processor_contol, processor_start, pocessor_info,
host_processors

240 Mach 3 Kernel Interfaces

processor_get_assignment

processor_get_assignment

Function — Get current assignment for a processor

LIBRARY
#include smach/mach_host.k

SYNOPSIS
kern_return_processor_get_assignment
(mach_port_t processor,
mach_port_t* assigned_ st
DESCRIPTION

The processor_get_assignmerfunction returns the name port for the proces-
sor set to which a desired processor is currently assigned.

SECURITY

The requesting task must hgddv_get_processor_assignmpetmission tgro-
cessor

PARAMETERS

processor
[in processor port] The processor whose assignment is desired.

new_set
[out processeset-name port] The name port for the processor set to
which processoiis currently assigned.

RETURN VALUE

KERN_FAILURE
processotis either shut down or off-line.

RELATED INFORMATION

Functions processor_assign, mrtessor_set @ate, pocessor_info,
task_assignthread_assign

Mach 3 Kernel Interfaces 241

Processor Management and Scheduling Interface

processor_info

Function — Returns information about a processor.

LIBRARY
#include smach/mach_host.b

SYNOPSIS
kern_return_processor_info

(mach_port_t processor,
int flavor,
mach_port_t* host,
processor_info_t processor_info,
mach_msg_type_number_t* processor_infoCit

DESCRIPTION

The processor_infofunction returns selected information for a processor as an
array, as specified diavor.

SECURITY
The requesting task must hqidv_get_processor_infeermission tgrocessar

PARAMETERS

processor
[in processor port] A processor port for which information is desired.

flavor
[in scalar] The type of information requested.
PROCESSOR_BASIC_INFO
Basic information, slot numberunning status, etc. The re-
turned structure is processor_basic_info of size
PROCESSOR_BASIC_INFO_COUNT.
host

[out host-name port] The host on which the processor resides. This is
the host name port.

processor_info
[out array ofint] Information about the processor.

242 Mach 3 Kernel Interfaces

processor_info

processor_infoCnt
[pointer to in/out scalar] On input, the maximum size of the infd-buf
er; on output, the returned size of the info structure (in units of sizeof

@int)).

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION

Functions processor_start, pocessor_exit, pocessor_control,
host_processors

Data Structuregrocessor_basic_info.

Mach 3 Kernel Interfaces 243

Processor Management and Scheduling Interface

processor_set create

Function — Creates a new processor set

LIBRARY
#include smach/mach_host.b

SYNOPSIS
kern_return_processor_set_create
(mach_port_t host_name,
mach_port_t* new_set,
mach_port_t* new_namg
DESCRIPTION

The processor_set_creatéunction creates a new processor set and returns the
two ports associated with it. The port returnedémw_seis the control port rep-
resenting the set. It is used to perform operations such as assignhing processors,
tasks or threads. The port returnecheéw_names the name port which identi-

fies the set, and is used to obtain information about the set.

SECURITY
The requesting task must hdidv_create psetermission tdhost_name

PARAMETERS

host_name
[in host-name port] The name port for the host on which the set is to be
created.

new_set
[out processoset-control port] Control port used for performing opera-
tions on the new set.

new_name
[out processeset-name port] Name port used to identify the new set
and obtain information about it.

RETURN VALUE
Only generic errors apply.

244 Mach 3 Kernel Interfaces

processor_set_create

RELATED INFORMATION

Functions processor_set_destrQy processor_set_info, prcessor_assign,
task_assignthread_assign

Mach 3 Kernel Interfaces 245

Processor Management and Scheduling Interface

processor_set default

Function — Returns the default processor set

LIBRARY
#include smach/mach_host.b

SYNOPSIS
kern_return_processor_set_default
(mach_port_t host,
mach_port_t* default_set_nanme
DESCRIPTION

The processor_set_defaulfunction returns the name port for the default pro-
cessor set for the specified host. The default processor set is used by all threads,
tasks and processors that are not explicitly assigned to other sets.

SECURITY
The requesting task must hqidv_get_default_pset _namermission tdost

PARAMETERS

host
[in host-name port] The name port for the host for which the default
processor set is desired.

default_set_name
[out processeset-name port] The returned name port for the default
processor set.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions processor_set_info, thread_assign, task_assign

246 Mach 3 Kernel Interfaces

processor_set_destroy

processor_set_destroy

Function — Destroys a processor set

LIBRARY
#include smach/mach_host.k

SYNOPSIS
kern_return_processor_set_destroy
(mach_port_t processor_segt
DESCRIPTION

The processor_set_destroyunction destroys the specified processor set. Any
assigned processors, tasks or threads are re-assigned to the default set. The ob-
ject port (not the name port) for the processor set is required.

SECURITY
The requesting task must hgldsv_destroy pspermission tgrocessor_set

PARAMETERS

processor_set
[in processosset-control port] The control port for the processor set to
be destroyed.

RETURN VALUE

KERN_FAILURE
An attempt was made to destroy the default processor set.

RELATED INFORMATION

Functions processor_set @ate, piocessor_assign, task_assign
thread_assign

Mach 3 Kernel Interfaces 247

Processor Management and Scheduling Interface

processor_set_info

Function — Returns information about a processor set.

LIBRARY

#include smach/mach_host.b

SYNOPSIS

kern_return_processor_set_info
(mach_port_t processor_set_name,
int flavor,
mach_port_t* host,
processor_set_info_t processor_set_info,
mach_msg_type_number_t* infoCn;

DESCRIPTION

The processor_set_infofunction returns selected information for a processor
set as an array, as specifiedfliayor.

SECURITY
The

processor_set_name

PARAMETERS

processor_set_name

flavor

requesting task must holdpssv_get pset info permission to

[in processoiset-control port] A processor set control port for which
information is desired.

[in scalar] The type of information requested.

PROCESSOR_SET_BASIC_INFO
Basic information concerning the processor set. The returned
structure is defined bprocessor_set basic_infowhose size
is defined by PROCESSOR_SET_BASIC_INFO_COUNT.

PROCESSOR_SET_SCHED_INFO
Scheduling information. The returned structure is defined by
processor_set sched_info whose size is defined by
PROCESSOR_SET_SCHED_INFO_COUNT.

248

Mach 3 Kernel Interfaces

processor_set_info

host
[out host-name port] The name port for the host on which the proces-
sor resides.

processor_set_info
[out array ofint] Information about the processor set.

infoCnt
[pointer to in/out scalar] On input, the maximum size of the infd-buf
er; on output, the returned size of the info structure (in units of sizeof

@int)).

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION

Functions processor_set _@ate, processor_set default, mcessor_assign,
task_assignthread_assign

Data Structuregrocessor_set_basic_infgrocessor_set_sched_info.

Mach 3 Kernel Interfaces 249

Processor Management and Scheduling Interface

processor_set_max_priority

Function — Sets the maximum scheduling priority for a processor set

LIBRARY
#include smach/mach_host.b

SYNOPSIS
kern_return_processor_set_max_priority
(mach_port_t processor_set,
int priority,
boolean_t change_threads
DESCRIPTION

Theprocessor_set_max_priorityfunction sets the maximum scheduling priori-

ty for processor_setThe maximum priority of a processor set is used only
when creating new threads. A new threattaximum priority is set to that of its
assigned processor set. When assigned to a processor set, & timaddium
priority is reduced, if necessary that of its new processor set; its current prior-

ity is also reduced, as needed. Changing the maximum priority of a processor
set does not #&ct the priority of the currently assigned threads unless
change_threadss TRUE. If this priority change violates the maximum priority

of some threads, their maximum priorities will be reduced to match.

SECURITY

The requesting task must holgssv_chg pset max_prpermission to
processor set.

PARAMETERS

processor_set
[in processosset-control port] The control port for the processor set
whose maximum scheduling priority is to be set.

priority
[in scalar] The new priority for the processor set.

change_threads
[in scalar] Tue if the maximum priority of existing threads assigned to
this processor set should also be changed.

RETURN VALUE
Only generic errors apply.

250 Mach 3 Kernel Interfaces

processor_set_max_priority

RELATED INFORMATION
Functionsthread_max_priority, thread_priority, thread_assign.

Mach 3 Kernel Interfaces 251

Processor Management and Scheduling Interface

processor_set policy disable

Function — Disables a scheduling policy for a processor set

LIBRARY
#include smach/mach_host.b

SYNOPSIS
kern_return_processor_set_policy disable
(mach_port_t processor_set,
int policy,
boolean_t change_threads
DESCRIPTION

The processor_set_policy disabléunction restricts the set of scheduling poli-

cies allowed foprocessor_sefThe set of scheduling policies allowed for a pro-
cessor set is the set of policies allowed to be set for threads assigned to that
processor set. The current set of permitted policies can be obtained from
processor_set_info Timesharing may not be forbidden for any processor set.
This is a compromise to reduce the complexity of the assign operation; any
thread whose policy is forbidden by itsgat processor set has its policy reset

to timesharing. Disabling a scheduling policy for a processor set haseab ef

on threads currently assigned to that processor set witesge threadss

TRUE, in which case their policies will be reset to timesharing.

SECURITY

The requesting task must hgddsv_invalidate_scheduling_polipgrmission to
processor set.

PARAMETERS

processor_set
[in processoiset-control port] The control port for the processor set for
which a scheduling policy is to be disabled.

policy
[in scalar] Policy to be disabled. The values currently defined are
POLICY_TIMESHARE and POLICY_FIXEDPRI.

change_threads
[in scalar] If true, causes the scheduling policy for all threads currently
running withpolicy to POLICY_TIMESHARE.

252 Mach 3 Kernel Interfaces

processor_set_policy_disable

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions;processor_set_policy_enable, thread_policy

Mach 3 Kernel Interfaces 253

Processor Management and Scheduling Interface

processor_set policy enable

Function — Enables a scheduling policy for a processor set

LIBRARY
#include smach/mach_host.b

SYNOPSIS
kern_return_processor_set_policy_enable
(mach_port_t processor_set,
int policy);
DESCRIPTION

The processor_set_policy_enabléunction extends the set of scheduling poli-
cies allowed foprocessor_sefThe set of scheduling policies allowed for a pro-
cessor set is the set of policies allowed to be set for threads assigned to that
processor set. The current set of permitted policies can be obtained from
processor_set_info

SECURITY

The requesting task must hotdsv_define_new_scheduling_polmgrmission
to processor set.

PARAMETERS

processor_set
[in processoiset-control port] The control port for the processor set for
which a scheduling policy is to be enabled.

policy
[in scalar] Policy to be enabled. The values currently defined are
POLICY_TIMESHARE and POLICY_FIXEDPRI.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions;processor_set_policy_disable, thread_policy

254 Mach 3 Kernel Interfaces

processor_set_tasks

processor_set tasks

Function — Returns a list of tasks assigned to a processor set

LIBRARY
#include smach/mach_host.k

SYNOPSIS
kern_return_processor_set_tasks
(mach_port_t processor_set,
task_array_t* task_list,
mach_msg_type _number_t* task_couny
DESCRIPTION

The processor_set_taskgunction returns send rights to the kernel ports for
each task currently assignedaimcessor_set

SECURITY

The requesting task must holgssv_observe pset procesggsrmission to
processor set.

PARAMETERS

processor_set
[in processosset-control port] A processor set control port for which
information is desired.

task_list
[out pointer to dynamic array of task ports] The returned set of port
rights naming the tasks currently assignedrtxessor_set

task _count
[out scalar] The number of tasks returnetbisk_list

RETURN VALUE

Only generic errors apply.

RELATED INFORMATION

Functions processor_set_threads, task_assigthread_assign

Mach 3 Kernel Interfaces 255

Processor Management and Scheduling Interface

processor_set threads

Function — Returns a list of threads assigned to a processor set

LIBRARY
#include smach/mach_host.b

SYNOPSIS
kern_return_processor_set_threads
(mach_port_t processor_set,
thread_array_t* thread_list,
mach_msg_type_number_t* thread_count
DESCRIPTION

The processor_set_threadsunction returns send rights to the kernel ports for
each thread currently assignegtocessor_set

SECURITY

The requesting task must holgssv_observe pset procesggrmission to
processor set.

PARAMETERS

processor_set
[in processoiset-control port] A processor set control port for which
information is desired.

thread_list
[out pointer to dynamic array of thread ports] The returned set of ports
naming the threads currently assigne@racessor_set

thread_count
[out scalar] The number of threads returnethiead_list

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions processor_set_tasks, task_assigtinread_assign

256 Mach 3 Kernel Interfaces

processor_start

processor_start

Function — Start a processor

LIBRARY
#include smach/mach_host.k

SYNOPSIS
kern_return_processor_start
(mach_port_t processoy;
DESCRIPTION

The processor_startfunction allows privileged software to start a processor in
a multi-processor that so allows it. A newly started processor is assigned to the
default processor set. The interpretation of this operation is machine dependent.

SECURITY

The requesting task must hgbdv_may_control_process@ermission topro-
cessor

PARAMETERS

processor
[in processor port] The processor to be controlled.

NOTES

This operation is machine dependent. It may do nothing.

CAUTIONS

The ability to restart an exited processor is machine dependent.

RETURN VALUE

KERN_FAILURE
The operation was not performed. A likely reason is that it is not sup-
ported on this processor.

RELATED INFORMATION

Functions processor_contol, processor_exit, pocessor_info,
host_processors

Mach 3 Kernel Interfaces 257

Processor Management and Scheduling Interface

task_assign

Function — Assign a task to a processor set

LIBRARY
#include smach/mach_host.b

SYNOPSIS
kern_return_task_assign
(mach_port_t task,
mach_port_t processor_set,
boolean_t assign_threads
DESCRIPTION

Thetask_assignfunction assignsaskto the seprocessor_setAfter the assign-
ment is completed, newly created threads within this task will be assigned to
this processor set. Any previous assignment of the task is nullified.

If assign_threadss TRUE, existing threads within the task will also be as-
signed to the processor set.

SECURITY

The requesting task must hdigv_assign_task to_pspérmission tatask and
pssv_assign_tagk processor_set

PARAMETERS

task
[in task port] The port for the task to be assigned.

processor_set
[in processosset-control port] The control port for the processor set
into which the task is to be assigned.

assign_threads
[in scalar] Tue if this assignment should apply as well to the threads
within the task.

RETURN VALUE
Only generic errors apply.

258 Mach 3 Kernel Interfaces

task_assign

RELATED INFORMATION

Functions task_assign_default, task_get_assignment, @ressor_set_create,
processor_set_infoprocessor_assignthread_assign

Mach 3 Kernel Interfaces 259

Processor Management and Scheduling Interface

task assign_default

Function — Assign a task to the default processor set

LIBRARY
#include smach/mach_host.b

SYNOPSIS
kern_return_task_assign_default
(mach_port_t task,
boolean_t assign_threads
DESCRIPTION

The task_assign_defaultfunction assignsaskto the default processor set. Af-
ter the assignment is completed, newly created threads within this task will be
assigned to this processor set. Any previous assignment of the task is nullified.

If assign_threadss TRUE, existing threads within the task will also be as-
signed to the processor set.

SECURITY

The requesting task must hold tsv_assign_task_to_pset permission to taskjand

pssv_assign_task permission to the default processor set.

PARAMETERS

task
[in task port] The port for the task to be assigned.

assign_threads
[in scalar] Tue if this assignment should apply as well to the threads
within the task.

NOTES

This variant oftask_assignexists because the control port for the default pro-
cessor set is privileged, and therefore not available to most tasks.

RETURN VALUE
Only generic errors apply.

260 Mach 3 Kernel Interfaces

task_assign_default

RELATED INFORMATION

Functions task_assign, task get_assignment, @cessor_set create,
processor_set_info, thread_assigmprocessor_assign

Mach 3 Kernel Interfaces 261

Processor Management and Scheduling Interface

task _get_assignment

Function — Returns the processor set to which a task is assigned

LIBRARY
#include smach/mach_host.b

SYNOPSIS
kern_return_task_get_assignment
(mach_port_t task,
mach_port_t* processor_sgt
DESCRIPTION

Thetask_get_assignmentunction returns the name port to the processor set to
which taskis currently assigned. This port can only be used to obtain informa-
tion about the processor set.

SECURITY
The requesting task must hagy _get _task assignmrgrmission tdask

PARAMETERS

task
[in task port] The port for the task whose assignment is desired.

processor_set
[out processeset-name port] The name port for the processor set into
which the task is assigned.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION

Functions task assign, task assign_default, pcessor_set_create,
processor_set_info, thread_assigmrocessor_assign

262 Mach 3 Kernel Interfaces

task_priority

task_priority

Function — Sets the scheduling priority for a task

LIBRARY
#include smach/mach_host.k

SYNOPSIS
kern_return_task_priority
(mach_port_t task,
int priority,
boolean_t change_threads
DESCRIPTION

Thetask_priority function sets the scheduling priority ftask The priority of

a task is used only when creating new threads. A new tlrpadtity is set to

that of the enclosing taskpriority. Changing the priority of a task does not af-
fect the priority of the enclosed threads unlglsange_threadss TRUE. If this
priority change violates the maximum priority of some threads, as many threads
as possible will be changed and an error code will be returned.

SECURITY
The requesting task must hasy _chg_task_prioritpermission tdask

PARAMETERS

task
[in task port] The task whose scheduling priority is to be set.

priority
[in scalar] The new priority for the task.

change_threads
[in scalar] Tue if priority of existing threads within the task should
also be changed.

RETURN VALUE

KERN_FAILURE
change_threadsvas TRUE and the attempt to change the priority of
some existing thread within the task failed because the new priority
would violate that thread’s maximum priority.

Mach 3 Kernel Interfaces 263

Processor Management and Scheduling Interface

RELATED INFORMATION

Functions: thread_max_priority, thread_priority,
processor_set_max_priority

264 Mach 3 Kernel Interfaces

thread_assign

thread_assign

Function — Assign a thread to a processor set

LIBRARY
#include smach/mach_host.k

SYNOPSIS
kern_return_thread_assign
(mach_port_t thread,
mach_port_t processor_segt
DESCRIPTION

The thread_assignfunction assignshreadto the setprocessor_setAfter the
assignment is completed, the thread executes only on processors that are as-
signed to that processor set. Any previous assignment of the thread is nullified.

SECURITY

The requesting task must hdlisv_assign_thread_to_pgmtrmission ta¢hread
andpssv_assign_threa processor_set

PARAMETERS

thread
[in thread port] The thread to be assigned.

processor_set
[in processosset-control port] The control port for the processor set
into which the thread is to be assigned.

RETURN VALUE

Only generic errors apply.

RELATED INFORMATION

Functions thread_assign_default, thead_get_assignment,
processor_set_create, processor_set_info, task_assigrocessor_assign

Mach 3 Kernel Interfaces 265

Processor Management and Scheduling Interface

thread_assign_default

Function — Assign a thread to the default processor set

LIBRARY
#include smach/mach_host.b

SYNOPSIS
kern_return_thread_assign_default
(mach_port_t thread;
DESCRIPTION

Thethread_assign_defaultfunction assignshreadto the default processor set.
After the assignment is completed, the thread executes only on processors that
are assigned to that processor set. Any previous assignment of the thread is nul-
lified.

SECURITY

The requesting task must hdltsv_assign_thread_to_pgmtrmission tahread
andpssv_assign_thregokermission to the default processor set.

PARAMETERS

thread
[in thread port] The thread to be assigned.

NOTES

This variant ofthread_assignexists because the control port for the default pro-
cessor set is privileged, and therefore not available to most tasks.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION

Functions thread_assign, thead_get assignment, mressor_set create,
processor_set_info, task_assigmprocessor_assign

266 Mach 3 Kernel Interfaces

thread_get_assignment

thread _get_assignment

Function — Returns the processor set to which a thread is assigned

LIBRARY
#include smach/mach_host.k

SYNOPSIS
kern_return_thread get assignment
(mach_port_t thread,
mach_port_t* processor_segt
DESCRIPTION

Thethread_get_assignmenfunction returns the name port to the processor set
to whichthreadis currently assigned. This port can only be used to obtain infor-
mation about the processor set.

SECURITY

The requesting task must holithsv_get thread_assignmempermission to
thread

PARAMETERS

thread
[in thread port] The thread whose assignment is desired.

processor_set
[out processeset-name port] The name port for the processor set into
which the thread is assigned.

RETURN VALUE

Only generic errors apply.

RELATED INFORMATION

Functions thread_assign, thead_assign_default, pscessor_set_create,
processor_set_info, task_assigprocessor_assign

Mach 3 Kernel Interfaces 267

Processor Management and Scheduling Interface

thread_max_priority

Function — Sets the maximum scheduling priority for a thread

LIBRARY
#include smach/mach_host.b

SYNOPSIS
kern_return_thread_max_priority
(mach_port_t thread,
mach_port_t processor_set,
int priority);
DESCRIPTION
The thread_max_priority function sets the maximum scheduling priority for
thread

Threads have three priorities associated with them by the system:

A priority value which can be set by the thread to any value up to a maxi-
mum priority. Newly created threads obtain their priority from their task.

A maximum priority value which can be raised only via privileged operation
so that users may not unfairly compete with other users in their processor
set. Newly created threads obtain their maximum priority from that of their
assigned processor set.

A scheduled priority value which is used to make scheduling decisions for
the thread. This value is determined on the basis of the user priority value by
the scheduling policy (for timesharing, this means adding an increment de-
rived from CPU usage).

This function changes the maximum priority for the thread. Because this func-
tion requires the presentation of the corresponding processor set control port,
this call can reset the maximum priority to any legal value.

SECURITY

The requesting task must holtisv_set max_thread_prioritpermission to
thread

PARAMETERS

thread
[in thread port] The thread whose maximum scheduling priority is to
be set.

268 Mach 3 Kernel Interfaces

thread_max_priority

processor_set
[in processosset-control port] The control port for the processor set to
which the thread is currently assigned.

priority
[in scalar] The new maximum priority for the thread.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION

Functions: thread_priority , thread_policy task_priority,
processor_set_max_priority

Mach 3 Kernel Interfaces 269

Processor Management and Scheduling Interface

thread_policy

Function — Sets the scheduling policy to apply to a thread

LIBRARY
#include smach/mach_host.b

SYNOPSIS
kern_return_thread_policy
(mach_port_t thread,
int policy,
int data);
DESCRIPTION

Thethread_policy function sets the scheduling policy to be appliethtead

SECURITY
The requesting task must hdttsv_set_thread_poligyermission tdahread

PARAMETERS

thread
[in thread port] The thread scheduling policy is to be set.

policy

[in scalar] Policy to be set. The values currently defined are

POLICY_TIMESHARE and POLICY_FIXEDPRI.

data
[in scalar] Policy specific data. Currentipis value is used only for

POLICY_FIXEDPRI, in which case it is the quantum to be used (in
milliseconds); to be meaningful, this value must be a multiple of the

basic system quantum (which can be obtained frost_info).

RETURN VALUE

KERN_FAILURE
The processor set to whithreadis currently assigned does not permit

policy.

RELATED INFORMATION
Functions;processor_set_policy_enable, processor_set_policy disable

270 Mach 3 Kernel Interfaces

thread_priority

thread_priority

Function — Sets the scheduling priority for a thread

LIBRARY
#include smach/mach_host.k

SYNOPSIS
kern_return_thread_priority
(mach_port_t thread,
int priority,
boolean_t set_may
DESCRIPTION

Thethread_priority function sets the scheduling priority filwead

SECURITY

The requesting task must hdlisv_set_thread priogtto thread.If set_ maxs
true, the requesting task must also htbklr_set _max_thread_prioritg thread

PARAMETERS

thread
[in thread port] The thread whose scheduling priority is to be set.

priority
[in scalar] The new priority for the thread.

set_max
[in scalar] True if the thread’s maximum priority should also be set.

NOTES
Threads have three priorities associated with them by the system:

A priority value which can be set by the thread to any value up to a maxi-
mum priority. Newly created threads obtain their priority from their task.

A maximum priority value which can be raised only via privileged operation
so that users may not unfairly compete with other users in their processor
set. Newly created threads obtain their maximum priority from that of their
assigned processor set.

A scheduled priority value which is used to make scheduling decisions for
the thread. This value is determined on the basis of the user priority value by

Mach 3 Kernel Interfaces 271

Processor Management and Scheduling Interface

the scheduling policy (for timesharing, this means adding an increment de-
rived from CPU usage).

This function changes the priority and optionally the maximum priority (if
set_maxis TRUE) forthread Priorities range from 0 to 31, where lower num-
bers denote higher priorities. If the new priority is higher than the priority of the
current thread, preemption may occur as a result of this call. This call will fail if
priority is greater than the current maximum priority of the thread. As a result,
this call can only lower the value of a thread’s maximum priority.

RETURN VALUE

KERN_FAILURE
The requested operation would violate the thread’s maximum priority.

RELATED INFORMATION

Functions: thread_max_priority, thread_policy task_priority,
processor_set_max_priority

272 Mach 3 Kernel Interfaces

chapter 10 Kernel Device Interface

This chapter discusses the specifics of the device interfaces to in-kernel device drivers.
These interfaces provide read, write and status interfaces to devices.

Mach 3 Kernel Interfaces 273

Kernel Device Interface

device_close

Function — De-establish a connection to a device.

LIBRARY
#include <device/device.b

SYNOPSIS
kern_return_tlevice_close
(mach_port_t devicé;
DESCRIPTION

The device_closdunction decrements the open count for the named device. If
this count reaches zero, the close operation of the device driver is invoked, clos-
ing the device.

SECURITY
The requesting task must haldv_close_devigeermission talevice

PARAMETERS

device
[in device port] A device port to the device to be closed.

RETURN VALUE

D_NO_SUCH_DEVICE
No device with that name, or the device is not operational.

RELATED INFORMATION

Functionsdevice_open

274 Mach 3 Kernel Interfaces

device_get_status

device_get_status

Function — Return the current device status

LIBRARY
#include <device/device.k

SYNOPSIS
kern_return_tlevice get status
(mach_port_t device,
int flavor,
dev_status t status,
mach_msg_type _number_t* status_count
DESCRIPTION

Thedevice_get_statugunction returns status information pertaining to an open
device. The possible values ftavor as well as the meaning of the returned sta-
tus information is device dependent.

SECURITY
The requesting task must haldv_get_device_statpermission talevice

PARAMETERS

device
[in device port] A device port to the device to be interrogated.

flavor
[in scalar] The type of status information requested.

status
[out array ofint] The returned device status.

status_count

[pointer to infout scalar] On input, the reserved sizstafus on out-
put, the size of the returned device status.

RETURN VALUE

D_DEVICE_DOWN
Device has been shut down

Mach 3 Kernel Interfaces 275

Kernel Device Interface

D_NO_SUCH_DEVICE
No device with that name, or the device is not operational.

D_OUT_OF BAND
Out-of-band condition occurred on device (such as typing control-C)

RELATED INFORMATION
Functionsdevice_set_status

276 Mach 3 Kernel Interfaces

device_map

device_map

Function — Establish a memory manager representing a device

LIBRARY
#include <device/device.k

SYNOPSIS
kern_return_tlevice_map

(mach_port_t device,
vm_prot_t prot,
vm_offset_t offset,
vm_size t size,
mach_port_t* pager,
int unmap;

DESCRIPTION

Thedevice_mapfunction establishes a memory manager that presents a memo-
ry object representing a device. The resulting port is suitable for use as the mem-
ory manager port inam_map call. This call is device dependent.

SECURITY
The requesting task must haldv_map_devicpermission talevice

PARAMETERS

device
[in device port] A device port to the device to be mapped.

prot
[in scalar] Protection for the device memory.

offset
[in scalar] An offset within the device memory object, in bytes.

size
[in scalar] The size of the device memory object.

pager
[out abstract-memory-object port] The returned abstract memory ob-
ject port to a memory manager that represents the device.

unmap
[in scalar] Unused.

Mach 3 Kernel Interfaces 277

Kernel Device Interface

NOTES
Port rights are maintained as follows:

Abstract memory object port:
The device pager has all rights.

Memory cache control port:
The device pager has only send rights.

Memory cache name port:
The device pager has only send rights. The name port is not even re-
corded.

Regardless of how the object is created, the control and name ports are crejated
by the kernel and passed through the memory management interface.

CAUTIONS

The device memory manager assumes that access to its memory objects will not
be propagated to more that one host, and therefore provides no consistency guar-
antees beyond those made by the kernel.

In the event that more than one host attempts to use a device memory object,
the device pager will only record the last set of port names. [This can happen
with only one host if a new mapping is being established while termination of
all previous mappings is taking place.] Currenthe device pager assumes that

its clients adhere to the initialization and termination protocols in the memory
management interface; otherwise, port rights or out-of-line memory from erro-
neous messages may be allowed to accumulate.

RETURN VALUE

D_DEVICE_DOWN
Device has been shut down

D_NO_SUCH_DEVICE
No device with that name, or the device is not operational.

D_READ_ONLY
Data cannot be written to this device.

RELATED INFORMATION

Functionsvm_map, evc_wait

278 Mach 3 Kernel Interfaces

device_open

device_open

Function — Establish a connection to a device.
LIBRARY

#include <device/device.br (device_open

#include <device/device_requesth (device_open_reque$t

#include <device/device_reply.b (ds_device_open_reply

SYNOPSIS
kern_return_tlevice_open
(mach_port_t master_port,
dev_mode_t mode,
dev_name_t name,
mach_port_t* device);

device_open_request
Asynchronous Functionform — Asynchronously request a connection to a de-
vice

kern_return_tlevice_open_request

(mach_port_t master_port,
mach_port_t reply_port,
dev_mode t mode,
dev_name _t name;

ds_device_open_reply
Asynchronous Server Interfaceform — Receive the reply from an asynchro-

nous open
kern_return_tls_device_open_reply
(mach_port_t reply_port,
kern_return_t return_code,
mach_port_t device);

DESCRIPTION

The device_openfunction opens a device object. The open operation of the de-
vice is invoked, if the device is not already open. The open count for the device
is incremented.

SECURITY
The requesting task must haldv_open_deviggermission tanaster_port

Mach 3 Kernel Interfaces 279

Kernel Device Interface

PARAMETERS

master_port
[in device-master port] The master device port. This port is provided to
the bootstrap task.

reply_port
[in reply port] The port to which a reply is to be sent when the device
is open.

mode
[in scalar] Opening mode. This is the bit-wise OR of the following val-
ues:

D_READ
Read access

D_WRITE
Write access

D_NODELAY
Do not delay on open

name
[pointer to in array o€har] Name of the device to open.

return_code
[in scalar] Status of the open.

device
[out device port] The returned device port.

RETURN VALUE

device_open_requesteturns only message transmission errors. The return val-
ue supplied tads_device_open_replyis irrelevant. Thereturn_codereturned

by ds_device_open_replyor the error return frondevice_openis one of the
following:

D_WOULD_BLOCK
The device is busy, but D_NOWAIT was specifiedniade

D_ALREADY_OPEN
The device is already open in a mode incompatible mibe

D_NO_SUCH_DEVICE
No device with that name, or the device is not operational.

280 Mach 3 Kernel Interfaces

device_open

D_DEVICE_DOWN
The device has been shut down.

D_READ_ONLY

Data cannot be written to this device.

RELATED INFORMATION
Functionsdevice_closedevice_reply_server

Mach 3 Kernel Interfaces

281

Kernel Device Interface

device_read

Function — Read a sequence of bytes from a device object.
LIBRARY

#include <device/device.b (device_read

#include <device/device_requesth (device_read_request

#include <device/device_reply.b (ds_device_read_reply

SYNOPSIS
kern_return_tlevice_read

(mach_port_t device,
dev_mode_t mode,
recnum_t recnum,
int bytes_wanted,
io_buf ptr_t* data,
mach_msg_type_number_t* data_coun

device_read_request
Asynchronous Functionform — Asynchronously read data

kern_return_tlevice_read_request

(mach_port_t device,
mach_port_t reply_port,
dev_mode_t mode,
recnum_t recnum,
int bytes wantex

ds_device_read_reply
Asynchronous Server Interfaceform — Receive the reply from an asynchro-
nous read

kern_return_tls_device_read_reply

(mach_port_t reply_port,
kern_return_t return_code,
io_buf ptr_t data,
mach_msg_type_number_t data_coun

DESCRIPTION

The device_readfunction reads a sequence of bytes from a device object. The
meaning ofrecnumas well as the specific operation performed is device depen-
dent.

SECURITY
The requesting task must haldv_read_devicpermission talevice

282 Mach 3 Kernel Interfaces

device_read

PARAMETERS

device
[in device port] A device port to the device to be read.

reply_port
[in reply port] The port to which the reply message is to be sent.

mode
[in scalar] I/O mode value. Meaningful options are:

D_NOWAIT
Do not wait if data is unavailable.

recnum
[in scalar] Record number to be read.

bytes wanted
[in scalar] Size of data transfer.

return_code
[in scalar] The return status code from the read.

data
[out pointer to dynamic array of bytes] Returned data bytes.

data_count
[out scalar] Number of returned data bytes.

RETURN VALUE

device_read_requesteturns only message transmission errors. A return value
supplied to ds_device_read_reply other than KERN_SUCCESS or
MIG_NO_REPLY will causemach_msg_servetto de-allocate the returned da-
ta. Thereturn_codereturned byds_device_read_replyor the error return from
device_readis one of the following:

D_DEVICE_DOWN
Device has been shut down.

D_INVALID_RECNUM
Invalid record (block) number.

D_INVALID_SIZE
Invalid 1O size.

D 10 _ERROR
Hardware 1O error.

Mach 3 Kernel Interfaces 283

Kernel Device Interface

D_NO_SUCH_DEVICE
No device with that name, or the device is not operational.

D_OUT_OF BAND
Out-of-band condition occurred on device (such as typing control-C). |

D_WOULD_BLOCK
Operation would block, but D_NOWAIT set. |

RELATED INFORMATION
Functionsdevice_read_inbanddevice_reply_server

284 Mach 3 Kernel Interfaces

device_read_inband

device_read_inband

Function — Read a sequence of bytes “inband” from a device object.
LIBRARY

#include <device/device.br (device_read_inband

#include <device/device _requesth (device_read request_inbany

#include <device/device_reply.br (ds_device_read_reply_inbanyl

SYNOPSIS
kern_return_tlevice read_inband

(mach_port_t device,
dev_mode_t mode,
recnum_t recnum,
int bytes wanted,
io_buf _ptr_inband_t* data,
mach_msg_type number_t* data_coung

device_read_request_inband
Asynchronous Functionform — Asynchronously read data

kern_return_tlevice_read_request_inband

(mach_port_t device,
mach_port_t reply_port,
dev_mode t mode,
recnum_t recnum,
int bytes wantex]

ds_device read_reply_inband
Asynchronous Server Interfaceform — Receive the reply from an asynchro-
nous read

kern_return_tls_device_read_reply_inband

(mach_port_t reply_port,
kern_return_t return_code,
io_buf_ptr_inband_t data,
mach_msg_type_number_t data_coun

DESCRIPTION

The device_readfunction reads a sequence of bytes from a device object. The
meaning ofrecnumas well as the specific operation performed is device depen-
dent. This call diers fromdevice_readin that the returned bytes are returned
“inband” in the reply IPC message.

Mach 3 Kernel Interfaces 285

Kernel Device Interface

SECURITY
The requesting task must haldv_read_devicpermission talevice

PARAMETERS

device
[in device port] A device port to the device to be read.

reply_port
[in reply port] The port to which the reply message is to be sent.

mode
[in scalar] I/O mode value. Meaningful options are:

D_NOWAIT
Do not wait if data is unavailable.

recnum
[in scalar] Record number to be read.

bytes wanted
[in scalar] Size of data transfer.

return_code
[in scalar] The return status code from the read.

data
[out array of bytes] Returned data bytes.

data_count
[out scalar] Number of returned data bytes.

RETURN VALUE

device_read_request_inbandeturns only message transmission errors. The re-
turn value supplied tods_device read reply inbandis irrelevant. The
return_codereturned byds device read_reply inbandor the error return
from device_read_inbandis one of the following:

D_DEVICE_DOWN
Device has been shut down

D_INVALID_RECNUM
Invalid record (block) number

D_INVALID_SIZE
Invalid 10 size

286 Mach 3 Kernel Interfaces

device_read_inband

D_IO_ERROR
Hardware 10O error

D_NO_SUCH_DEVICE
No device with that name, or the device is not operational.

D_OUT_OF_BAND
Out-of-band condition occurred on device (such as typing control-C)

D_WOULD_BLOCK
Operation would block, but D_NOWAIT set

RELATED INFORMATION
Functionsdevice_read, device_reply_server

Mach 3 Kernel Interfaces 287

Kernel Device Interface

device_set filter

Function — Names an input filter for a device

LIBRARY

#include <device/device.b

#include <device/net_status.h

SYNOPSIS

kern_return_tlevice_set _filter
(mach_port_t device,
mach_port_t receive_port,
mach_msg_type _name_t receive_port_type,
int priority,
filter_array_t filter,
mach_msg_type_number_t filter_couny;

DESCRIPTION

Thedevice_set _filterfunction provides a means by which selected data appear-
ing at a device interface can be selected and routed to a port.

The filter command list consists of an array of up to NET_MAXTHR (16-
bit) values to be applied to incoming messages to determine if those messages
should be given to a particular input filter.

Each filter command list specifies a sequences of actions which leave a boolean
value on the top of an internal stack. Each 16-bit value of the command list
specifies a data (push) operation (high order NETF_NBPO bits) as well as a bi-
nary operator (low order NETF_NBPA bits).

The value to be pushed onto the stack is chosen as follows.

NETF_PUSHLIT
Use the next 16-bit value of the filter as the value.

NETF_PUSHZERO
Use 0 as the value.

NETF_PUSHWORD®N
Use 16-bit valué\ of the “data” portion of the message as the value.

NETF_PUSHHDRN
Use 16-bit valué\ of the “header” portion of the message as the value.

288

Mach 3 Kernel Interfaces

device_set _filter

NETF_PUSHIND
Pops the top 32-bit value from the stack and then uses it as an index to
the 16-bit value of the “data” portion of the message to be used as the
value.

NETF_PUSHHDRIND
Pops the top 32-bit value from the stack and then uses it as an index to
the 16-bit value of the “header” portion of the message to be used as
the value.

NETF_PUSHSTKN
Use 32-bit valueN of the stack (where the top of stack is value 0) as
the value.

NETF_NOPUSH
Don't push a value.

The unsigned value so chosen is promoted to a 32-bit value before being pushed.

Once a value is pushed (except for the case of NETF_NOPUSH), the top two
32-bit values of the stack are popped and a binary operator applied to them
(with the old top of stack as the second operand). The result of the operator is
pushed on the stack. These operators are:

NETF_NOP
Don't pop off any values and do no operation.

NETF_EQ
Perform an equal comparison.

NETF_LT
Perform a less than comparison.

NETF_LE
Perform a less than or equal comparison.

NETF_GT
Perform a greater than comparison.

NETF_GE
Perform a greater than or equal comparison.

NETF_AND
Perform a bit-wise boolean AND operation.

NETF_OR
Perform a bit-wise boolean inclusive OR operation.

Mach 3 Kernel Interfaces 289

Kernel Device Interface

NETF_XOR
Perform a bit-wise boolean exclusive OR operation.

NETF_NEQ
Perform a not equal comparison.

NETF_LSH
Perform a left shift operation.

NETF_RSH
Perform a right shift operation.

NETF_ADD
Perform an addition.

NETF_SUB
Perform a subtraction.

NETF_COR
Perform an equal comparison. If the comparison is TRUE, terminate
the filter list. Otherwise, pop the result of the comparison off the stack.

NETF_CAND
Perform an equal comparison. If the comparisonAKSE, terminate
the filter list. Otherwise, pop the result of the comparison off the stack.

NETF_CNOR
Perform a not equal comparison. If the comparisonAlsSE, termi-
nate the filter list. Otherwise, pop the result of the comparisothef
stack.

NETF_CNAND
Perform a not equal comparison. If the comparison is TRUE, terminate
the filter list. Otherwise, pop the result of the comparison off the stack.

The scan of the filter list terminates when the filter list is emptied, or a

NETF_C... operation terminates the list. At this time, if the final value of the top
of the stack is TRUE, then the message is accepted for the filter.

SECURITY
The requesting task must haldv_set_device_filtgrermission talevice

PARAMETERS

device
[in device port] A device port

290 Mach 3 Kernel Interfaces

device_set _filter

receive_port

[in filter port] The port to receive the input data that is selected by the
filter.

receive_port_type
[in scalar] IPC type of the send right provided to the device; either
MACH_MSG_TYPE_MAKE_SEND,
MACH_MSG_TYPE_MOVE_SEND or
MACH_MSG_TYPE_COPY_SEND.

priority
[in scalar] Used to order multiple receivers.

filter
[pointer to in array ofilter_t] The address of an array of filter values.

filter_count
[in scalar] The size of thidter array (in 16-bit values).

RETURN VALUE

D_DEVICE_DOWN
Device has been shut down

D_INVALID_OPERATION
No filter port was supplied.

D_NO_SUCH_DEVICE
No device with that name, or the device is not operational.

Mach 3 Kernel Interfaces 291

Kernel Device Interface

device_set_status

Function — Sets device status.

LIBRARY
#include <device/device.b

SYNOPSIS
kern_return_tlevice_set_status
(mach_port_t device,
int flavor,
dev_status t status,
mach_msg_type_number_t status_count
DESCRIPTION

Thedevice_set_statugunction sets device status. The possible valudswdr
as well as the corresponding meanings are device dependent.

SECURITY
The requesting task must haldv_set_device_statpsrmission talevice

PARAMETERS

device
[in device port] A device port to the device to be manipulated.

flavor
[in scalar] The type of status information to set.

status
[pointer to in array oint] The status information to set.

status_count
[in scalar] The size of the status information.

RETURN VALUE

D_DEVICE_DOWN
Device has been shut down

D _IO0_ERROR
Hardware 1O error

292 Mach 3 Kernel Interfaces

device_set_status

D_NO_SUCH_DEVICE
No device with that name, or the device is not operational.

D_OUT_OF_BAND
Out-of-band condition occurred on device (such as typing control-C)

D_READ_ONLY
Data cannot be written to this device.

RELATED INFORMATION
Functionsdevice_get_status

Mach 3 Kernel Interfaces 293

Kernel Device Interface

device write

Function — Write a sequence of bytes to a device object.
LIBRARY

#include <device/device.b (device_write)

#include <device/device_requesth (device_write_requesy

#include device/device_reply.br (ds_device_write_reply

SYNOPSIS
kern_return_tevice_write
(mach_port_t device,
dev_mode_t mode,
recnum_t recnum,
io_buf ptr_t data,
mach_msg_type_number_t data_count,
int* bytes_writteiy

device_write_request
Asynchronous Functionform — Asynchronously write data

kern_return_tlevice write_request

(mach_port_t device,
mach_port_t reply_port,
dev_mode_t mode,
recnum_t recnum,
io_buf ptr_t data,
mach_msg_type number _t data_coung

ds_device_write_reply
Asynchronous Server Interfaceform — Receive the reply from an asynchro-

nous write

kern_return_tls_device_write_reply
(mach_port_t reply_port,
kern_return_t return_code,
int bytes_writteiy

DESCRIPTION

The device_write function writes a sequence of bytes to a device object. The
meaning ofrecnumas well as the specific operation performed is device depen-
dent.

SECURITY
The requesting task must haldv_write_devicpermission talevice

294 Mach 3 Kernel Interfaces

device_write

PARAMETERS

device
[in device port] A device port to the device to be written.

reply_port

[in reply port] The port to which the reply message is to be sent.
mode

[in scalar] I/O mode value. Meaningful options are:

D_NOWAIT

Do not wait for I/O completion.

recnum

[in scalar] Record number to be written.
data

[pointer to in array of bytes] Data bytes to be written.
data_count

[in scalar] Number of data bytes to be written.

return_code
[in scalar] The return status code from the write.

bytes written
[out scalar] Size of data transfer.

RETURN VALUE

device_write_requestreturns only message transmission errors. The return val-
ue supplied tads_device write_replyis irrelevant. Theeturn_codereturned

by ds_device_write_replyor the error return frondevice write is one of the
following:

D_DEVICE_DOWN
Device has been shut down

D_INVALID_RECNUM
Invalid record (block) number

D_INVALID_SIZE
Invalid 10 size

D 10 _ ERROR
Hardware 1O error

Mach 3 Kernel Interfaces 295

Kernel Device Interface

D_NO_SUCH_DEVICE
No device with that name, or the device is not operational.

D_OUT_OF BAND
Out-of-band condition occurred on device (such as typing control-C)

D_READ_ONLY
Data cannot be written to this device.

D_WOULD_BLOCK
Operation would block, but D_NOWAIT set

RELATED INFORMATION
Functionsdevice_write_inband device_reply_server

296 Mach 3 Kernel Interfaces

device_write_inband

device_write_inband

Function — Write a sequence of bytes “inband” to a device object.
LIBRARY

#include <device/device.br (device write_inband

#include <device/device _requesti (device write_request_inbangl

#include <device/device_reply.b (ds_device_write_reply_inband

SYNOPSIS
kern_return_tlevice write_inband
(mach_port_t device,
dev_mode_t mode,
recnum_t recnum,
io_buf _ptr_inband_t data,
mach_msg_type_number _t data_count,
int* bytes_writteiy

device_write_request_inband
Asynchronous Functionform — Asynchronously write data

kern_return_tlevice_write_request_inband

(mach_port_t device,
mach_port_t reply_port,
dev_mode t mode,
recnum_t recnum,
io_buf_ptr_inband_t data,
mach_msg_type_number_t data_coun

ds_device_write_reply_inband
Asynchronous Server Interfaceform — Receive the reply from an asynchro-
nous write

kern_return_tls_device_write_reply_inband

(mach_port_t reply_port,
kern_return_t return_code,
int bytes writteiy

DESCRIPTION

The device_write_inband function writes a sequence of bytes to a device ob-
ject. The meaning alechumas well as the specific operation performed is de-
vice dependent. This call &fs from device write in that the bytes to be
written are sent “inband” in the request IPC message.

Mach 3 Kernel Interfaces 297

Kernel Device Interface

SECURITY

The requesting task must haldv_write_deviceermission talevice

PARAMETERS

device
[in device port] A device port to the device to be written.

reply_port

[in reply port] The port to which the reply message is to be sent.
mode

[in scalar] I/O mode value. Meaningful options are:

D_NOWAIT

Do not wait for I/O completion.

recnum

[in scalar] Record number to be written.
data

[pointer to in array of bytes] Data bytes to be written.
data_count

[in scalar] Number of data bytes to be written.

return_code
[in scalar] The return status code from the write.

bytes written
[out scalar] Size of data transfer.

RETURN VALUE

device_write_request_inbandreturns only message transmission errors. The
return value supplied tals device write_reply inbandis irrelevant. The
return_codereturned byds_device_write_reply inbandor the error return
from device_write_inbandis one of the following:

D_DEVICE_DOWN
Device has been shut down

D_INVALID_RECNUM
Invalid record (block) number

D_INVALID_SIZE
Invalid 10 size

298

Mach 3 Kernel Interfaces

device_write_inband

D_IO_ERROR
Hardware 10O error

D_NO_SUCH_DEVICE
No device with that name, or the device is not operational.

D_OUT_OF_BAND
Out-of-band condition occurred on device (such as typing control-C)

D_READ_ONLY
Data cannot be written to this device.

D_WOULD_BLOCK
Operation would block, but D_NOWAIT set

RELATED INFORMATION
Functionsdevice_write, device_reply_server

Mach 3 Kernel Interfaces 299

Kernel Device Interface

evc_wait

System Trap— Wait for a kernel (device) signalled event

LIBRARY

Not declared anywhere.

SYNOPSIS

kern_return_tvc_wait
(unsigned int eveny;

DESCRIPTION

Theevc_waitfunction causes the invoking thread to wait until the specified ker-
nel (device) generated event occurs. Device drivers (typically mapped devices
intended to be supported by user space drivers) may supply an event service.

The event service defines one or more event objects, named by task local event
IDs. Each of these event objects has an associated event count, initially zero.
Whenever the associated event occurs (typically a device interrupt), the event
count is incremented. If this count is zero whese_wait is called, the calling
thread waits for the next event to ocadnly one thread may be waiting for the
event to occurlf the count is non-zero whesvc_wait is called, the count is
simply decremented without causing the thread to wait. The event count guaran-
tees that no events are lost.

SECURITY

No restrictions defined.

PARAMETERS

event
[in scalar] The task local event ID of the kernel event object.

NOTES

The typical use of this service is within user space device drivers. When a de-
vice interrupt occurs, the (in this case, simple) kernel device driver would place
device status in a shared (with the user device driver) memory window (estab-
lished bydevice_mayp and signal the associated event. The user space device
driver would normally be waiting witlevc_wait The user thread then wakes,
processes the device status, typically interacting with the device via its shared
memory window, then waits for the next interrupt.

300

Mach 3 Kernel Interfaces

evc_wait

RETURN VALUE

KERN_NO_SPACE
There is already a thread waiting for this event.

RELATED INFORMATION

Functionsdevice_map

Mach 3 Kernel Interfaces 301

Kernel Device Interface

302 Mach 3 Kernel Interfaces

cuapTER 1 SECUIty Server Interface

This chapter discusses the specifics of the interface between @® K¥rnel and the Se-
curity Server Interfaces labeled d@sunction are kernel interfaces, where interfaces la-
beled asServer Interface are interfaces to the security server.

Mach 3 Kernel Interfaces 303

Security Server Interface

avc_cache_control, avc_cache_control_trap

Function — provides interface to the kernel access vector cache for flushi

and preloading the cache.

LIBRARY
#include smach/mach_interface.l»

#include sys/security.h»

SYNOPSIS

kern_return_twvc_cache_control

(mach_port_t

vector_table_t

aid_relevance_table t

kern_return_taivc_cache_control_trap

DESCRIPTION

The avc_cache_contol function is called by the Security Server whenever i
needs to flush the access vector cache or to load required permissions intd
access vector cache. One example is when the Security Server switches

cies. Theavc_cache_control_trapfunction is a system call version of the
avc_cache_controlfunction. It is used to circumvent some limitations in the

vector_table_t

aid_relevance_table t

HostName
ControlWord
PolicyID,
VectorTable

\VectorTableSize
AidvTable
AidvTableSizg

ControlWord
PolicyID,
VectorTable
\ectorTableSize,
AidvTable,
AidvTableSizg

the
boli-

MIG messaging scheme with regards to in-line data of greater than 1 (4k) pgge

in length.

SECURITY

The client must holflush_permissiopermission to thélostNameport.

PARAMETERS

HostName

[in mach_port_t] The host name port.

304

Mach 3 Kernel Interfaces

avc_cache_control, avc_cache_control_trap

ControlWord
[in int] The control word that describes the operations to be performed
by this invocation ofavc_cache_contral The control word format is
defined in sys/security.h It is a bit mask with the following functions:

AVC_FLUSH_CACHE: to flush the avc vector cache.
AVC_CLEAR_CACHE: to remove all cache entries (including wired)

AVC_RELOAD_INITIAL_STATE: reinitialize cache to initial state
values.

AVC_VECTOR_TABLE: the vector table is present.
AVC_AIDV_TABLE: the aid relevance table is present.

Policyld
[in int] The new policy ID. ThePolicyld will be incremented with
each flush or clear of the avc cache. It may be used to verify that securi-
ty computations apply to the current policy.

VectorTable
[in vector_table_t] The table that contains an array of pairs with associ-
ated access vectors to load into, or flush from, the cache.

VectorTableSize
[in int] The size (in int’s) of th&/ectorTable

AidvTable
[in aid_relevance_table_t] The aid relevance table that the kernel will
use.

AidvTableSize

[in int] The size of the aid relevance table specified byAddeTable
parameter.

RETURN VALUE
0 - The operation was successful.

1 - The operation was not successful.

RELATED INFORMATION

none

Mach 3 Kernel Interfaces 305

Security Server Interface

extract_aid

Macro—Returns the authentication identifier field of the security identifier.

LIBRARY
#include sys/security.h»

SYNOPSIS

authentication_id_extract_aid
(security_id_t sid);

DESCRIPTION

The extract_aid macro returns the authentication identifier field of the securit
identifiersid.

SECURITY
None.

PARAMETERS

sid
[in security_id] The input security identifier.

RETURN VALUE
Authentication identifier.

RELATED INFORMATION
Functionsextract_mid, make_sid

306 Mach 3 Kernel Interfaces

extract_mid

extract_mid

Macro—Returns the mandatory identifier field of the security identifier.

LIBRARY
#include ssys/security.h»

SYNOPSIS

authentication_id_éxtract_ mid
(security_id_t sid);

DESCRIPTION

The extract_mid macro returns the mandatory identifier field of the security
identifiersid.

SECURITY
None.

PARAMETERS
sid

[in security_id] The input security identifier.

RETURN VALUE

Mandatory identifier.

RELATED INFORMATION

Functionsextract_aid, make_sid

Mach 3 Kernel Interfaces 307

Security Server Interface

make_sid

Macro—Builds a security identifier using a mandatory identifier and an authe
tication identifier.

LIBRARY
#include sys/security.h»

SYNOPSIS
security_id_tmake_sid
(mandatory_id_t mid,
authentication_id_t aid);
DESCRIPTION

The make_sid macro returns a security identifier whose MID and AID fieldd
have the values given mid andaid.

SECURITY
None.
PARAMETERS
mid
[in mandatory_id] The input mandatory identifier.
aid

[in authentication_id] The input authentication identifier.

RETURN VALUE
Security identifier.

RELATED INFORMATION

Functionsextract_mid, extract_aid.

308 Mach 3 Kernel Interfaces

SSI_compute_access_vector

SSI_compute_access_vector

Server Interface— Requests an access vector for a source sid to a target sid

LIBRARY
#include ssys/security.h»

SYNOPSIS
kern_return_8SSI_compute access vector

(mach_port_t SSPort
security_id_t SourceSID,
security _id_t TargetSID,
int Permission
int * RequestID
mach_access_vector_data_t* Access\Vector
mach_access_vector_data_t* CacheControlVector
mach_access_vector_data_t* NotificationVector,
mach_access_vector_data_t* AlIDRelevanceVector,
unsigned int * Timeout,
unsigned int * Policyld,
int * Status);

DESCRIPTION

The SSI_compute_access_vectdunction is called by a client (possibly the
Kernel), when a security fault has occurred. The Security Server uses the provid-
ed security identifiers to compute the associated permission information. The re-
guest may also be made by any task that has access to the Securitis Server
general service port.

The decision logic used to compute the permissions bet&eeneSIDto Tar-
getSIDis determined by the system’s specific security policy.

SECURITY

The client must hold the service permissi@s_kern_compute_awor
ss_gen_compute_aespectively tdSSPortdepending on whether it is the client
or master Security Server port. The Security Server must have
krpsv_provide_permissidao the reply port of this request.

PARAMETERS

SSPort
[in port] The port from which the Security Server accepts service re-
quests. This is either the client or master Security Server port.

Mach 3 Kernel Interfaces 309

Security Server Interface

SourceSID
[in security_id_t] The security identifier of the subject which is at
tempting to make an access.

Target_SID
[in security_id_t] The security identifier of the object to which the ac
cess is being made.

Permission
[in int] The permission to be checked.

RequestID
[in/out int *] A request identifier returned by the Security Seriat
used.

AccessVector

[out mach_access_vector_data t *] The access vector which describes

the permissions of thBourceSID <-> TargetSIpair.

CacheControlVector

[out mach_access vector _data_t *] An access vector describing the

way the access vector cache is to be controlled. Each non-zero bit
the CacheControlVectorindicates that the corresponding permission
bit in theAccessVectotan be cached.

NotificationVector

n

[out mach_access_vector _data t *] An access vector used to congol

generation of audit information. Each non-zero bit indicates that whe
ever the corresponding permission bit in weessVectois used, a au-
dit event will be generated.

AIDRelevanceVector
[out mach_access_vector_data_t *] An access vector describing wh
permission bits require authentication identifier (AID) verification
Each non-zero bit in this vector indicates that the corresponding p{
mission bit in theAccessVectorequires cross-AlD checks. This output
parameter is used by the Kernel to update its internal AID relevance
ble and keep it consistent with the security policy.

Timeout
[out unsigned int *] The absolute clock value at which time the acce
vector will expire from the cache.

Policyld
[out unsigned int *] A number representing the current revision of th

security policy in force. This number will increment everytime 3
load_security_policy swap_security_server or avc_cache_conil

1_

a_

bS

11

with AVC_FLUSH_CACHE bit set is performed.

310

Mach 3 Kernel Interfaces

SSI_compute_access_vector

Status
[out int *] Used to return status information for a security request. Not
used.

RETURN VALUE
Generic errors apply.

RELATED INFORMATION

Functionsssec_access_provided.

Mach 3 Kernel Interfaces 311

Security Server Interface

SSI_context_to_mid

Server Interface— Returns the mandatory identifier associated with a securify
context.

LIBRARY
#include sys/security.h»

SYNOPSIS
kern_return_8SI_context_to_mid
(mach_port_t SSPort
mach_sec_context_t SecurityContext,
int SecurityContextLength
mandatory_id_t* MID);
DESCRIPTION

The SSI_context_to_midfunction is called by a client when there is a need tl
get the security identifier that is related to a particular security context. Plegse
refer toSSI_mid_to_contextfor a description of the full security context.

SECURITY
The client must holds_gen_context_to_smbrmission t&&SPort

PARAMETERS

SSPort
[in mach_port_t] The port on which the security server receives r¢
guests.

SecurityContext
[in mach_sec_context_t] The security context to convert. It must be fJl
ly specified.

SecurityContextLength
[in int] The length of the security context in bytes + 1. The maximurj
value is 256.

MID

[out mandatory_id_t *] The fully specified mandatory identifier associf
ated with the provided security context.

RETURN VALUE
Generic errors apply.

312 Mach 3 Kernel Interfaces

SSI_context_to_mid

RELATED INFORMATION

Functions: SSI_short_context_to_mid, SSI_mid_to_context,
SSI_mid_to_short_context

Mach 3 Kernel Interfaces 313

Security Server Interface

SSI_load_security policy

LIBRARY

SYNOPSIS

DESCRIPTION

SECURITY

PARAMETERS

RETURN VALUE

RELATED INFORMATION

Server Interface—Loads the security policy.

#include sys/security.h»

kern_return_8SI_load_security policy
(mach_port_t SSPort
char * SecurityPolicyDir,,
int NameLength);

The SSI_load_security_policyfunction loads the security policy found in the
directory SecurityPolicyDir The database file must be named “database_fild"
and the permissions file must be named “permissions_file”. If more than oneset
of policies is desired, then files describing the policy must be placed in sepafate
directories.

The client must holdss_gen_load_policgermission t&aSPort

SSPort
[in security_id_t] The port on which the security server receives re
guests.

SecurityPolicyDir
[in char *] The name of the directory which holds the security policy.

NameLength

[in in] The length of theSecurityPolicyNamén bytes + 1. The maxi-
mum value is 1024.

Generic errors apply.

Functions:SSI_transfer_security_server_ports

314

Mach 3 Kernel Interfaces

SSI_record_name_server

SSI _record _name_server

Server Interface—Provides the name server port right to the security server.

LIBRARY
#include ssys/security.h»

SYNOPSIS
void SSI_record_name_server
(mach_port_t SSPort
(mach_port_t NameServerPoyt
DESCRIPTION

The SSI_record_name_serverfunction gives the Security Server access to the
NameServerPortThe Security Server then registers its client port with the
name serverThis allows clients to look up the port with the name server using
the “security_server_port” keyword.

SECURITY

The client must holds_kern_record_name_senmarmission t&SPort.
PARAMETERS
SSPort
[in mach_port_t] The port on which the Security Server receives re-

quests.

NameServerPort
[in mach_port_t] The port on which the name server receives requests.

RETURN VALUE

Generic errors apply.

RELATED INFORMATION.

Functionsnetname_lookup.

Mach 3 Kernel Interfaces 315

Security Server Interface

SSI_register_caching_server

Server Interface— Provide a means for programs caching security informatio
to be notified of a flush event.

LIBRARY

#include ssys/security.h»

SYNOPSIS
void SSI_register_caching_server
(mach_port_t SSPort
mach_port_t FlushNoatificationPory,
DESCRIPTION

The SSI_register_caching_serveffunction provides an interface that may be
used by other servers caching security information that wish to be notified o

=]

f a

security cache flush event. The supplied port will receive a message contairfing

the policy ID, upon the security server requesting a flush cache. The mess
format is defined as follows:

simpleroutine flush_notify

(SSPort ‘mach_port_t;
Policyld lint);
SECURITY
The client must holdss_gen_registepermission to the security server client
port.
PARAMETERS
SSPort
[in mach_port_t] The port on which the Security Server receives cliefit
requests.
FlushNotificationPort

[in mach_port_t] The port to which the Security Server sends a me
sage when a flush event occurs.

RETURN VALUE

hge

Generic errors apply.

316 Mach 3 Kernel Interfaces

SSI_register_caching_server

RELATED INFORMATION.
None.

Mach 3 Kernel Interfaces 317

Security Server Interface

SSI _short_context_to_mid

Server Interface— Returns the mandatory identifier (MID) associated with 4

security context specified in the short format.

LIBRARY
#include sys/security.h»

SYNOPSIS
kern_return_8SI_short_context_to_mid

(mach_port_t SSPort
mach_sec_context_t SecurityContext,
int SecurityContextLength
mandatory_id_t ParentMID,
mandatory_id_t* MID);

DESCRIPTION

The SSI_short_context_to_midfunction is called by a client when there is a
need to get the mandatory identifier that is related to a particular security ¢
text. This function diers fromSSI_context_to_midin that it accepts the short

format of the security context and returns a MID whose classifier field is unsp

)C_

ified. This allows “smart” servers to manage this field in a consistent manrjer

with the Security ServelPlease refer t&SI_mid_to_short_contextfor a de-
scription of the short security context format.

SECURITY
The client must holds_gen_context_to_smbrmission t&&SPort
PARAMETERS
SSPort
[in mach_port_t] The port on which the Security Server receives r

quests.

SecurityContext
[in mach_sec_context_t] The short security context to convert.

SecurityContextLength

[in int] The length of the security context in bytes + 1. The maximurr

value is 256.

318 Mach 3 Kernel Interfaces

SSI_short_context_to_mid

ParentMID
[in mandatory_id_t] If théSecurityContextontains fields that are un-
specified, then the corresponding values are inherited from the context
associated with thearentMID.

MID
[out mandatory_id_t *] The mandatory identifier associated with the
provided security context.

RETURN VALUE
Generic errors apply.

RELATED INFORMATION

Functions: SSI_context_to_mid, SSI_short_mid_to_context,
SSI_mid_to_context

Mach 3 Kernel Interfaces 319

Security Server Interface

SSI_mid_to_context

Server Interface—Returns the security context associated with a mandatofy
identifier.

LIBRARY
#include sys/security.h»

SYNOPSIS
kern_return_8SI_mid_to_context
(mach_port_t SSPort
mandatory_id_t MID,
mach_sec_context_t * SecurityContext
int * SecurityContextLength
DESCRIPTION

The SSI_mid_to_contextfunction is called by a client when there is a need tg
get the security context that is related to a particular mandatory iderftier
security context is fully specified following the format “Domaige : Level :
Categories : Classifier”. The Domaigfk field contains either a domain name
or a type name. The Level, Categories and Classifier fields have the level ngme,
the comma separated list of category hames and the classifier name, respectively.

SECURITY

The client must holds_gen_sid_to_contegérmission t&&SPort

PARAMETERS

SSPort
[in mach_port_t] The port on which the Security Server receives r¢
guests.

MID
[in mandatory_id_t] The mandatory identifier to convert. It must be ful
ly specified.

SecurityContext
[out mach_sec_context_t *] The full security context associated with
the provided security identifier.

SecurityContextLength
[infout int *] The length of the security context in bytes + 1. On input
the variable has the maximum length that the security context can pe

320 Mach 3 Kernel Interfaces

SSI_mid_to_context

(256). On output, it contains the actual length of the security context +
1.

RETURN VALUE
Generic errors apply.

RELATED INFORMATION.

Functions: SSI_context_to_mid, SSI_short_context_to_mid,
SSI_mid_to_short_context

Mach 3 Kernel Interfaces 321

Security Server Interface

SSI_mid_to_short_context

LIBRARY

SYNOPSIS

DESCRIPTION

SECURITY

PARAMETERS

Server Interface—Returns the short format of the security context associatqd

with a mandatory identifier (MID).

#include sys/security.h»

kern_return_8SI_mid_to_short_context
(mach_port_t SSPort
mandatory_id_t MID,
mach_sec_context_t * SecurityContext
int * SecurityContextLength

The SSI_mid_to_short_contextfunction is called by a client when there is a

need to get the short format of the security context that is related to a particflar

mandatory identifier This function difers from SSI_mid_to_contextin that
the classifier field of th&1ID need not be specified. The short security contex
format is “Domain/Vpe : Level : Categories” where the “.” is a field separaton
The Domain/Ype field can contain either a domain name or a type name. T
Level and Categories fields have the security level name and a list of com
separated category names, respectivedte that the short security context dif-

!

e
na

fers from the full context in that it does not have a classifier field, therefore, the

corresponding field in thelID is not necessary.

The client must holds_gen_sid_to_contegérmission t&&SPort

SSPort
[in mach_port_t] The port on which the Security Server receives r
guests.

MID
[in mandatory_id_t] The mandatory identifier to convert. The classifig
field may be unspecified.

SecurityContext
[out mach_sec_context t *] The short security context associated w

=

th

the provided mandatory identifier.

322

Mach 3 Kernel Interfaces

SSI_mid_to_short_context

SecurityContextLength
[in/out int *] The length of the security context in bytes + 1. On input,
the variable has the maximum length that the security context can be
(256). On output, it contains the actual length of the security context +
1.

RETURN VALUE
Generic errors apply.

RELATED INFORMATION.

Functions: SSI_context_to_mid, SSI_short_context_to_mid,
SSI_mid_to_context

Mach 3 Kernel Interfaces 323

Security Server Interface

SSI_transfer_security_server_ports

Server Interface—Request to transfer Security Server funtions to a new prq
gram.

LIBRARY
#include sys/security.h»

SYNOPSIS
kern_return_8SI_transfer_security_server_ports

(mach_port_t SSPort
mach_port_t * Master_port
mach_port_t * Client_port
int * Policy id,
mach_port_array t Caching_control_ports]]
int * Caching_control_port_count.
mach_opaque_table t opaque_table[],
int * opaque_table_count,
mandatory_id_t last_opaque)

DESCRIPTION

The SSI_transfer_security_server_portsfunction wrests control of security
services from the current security sepvamd returns the receive rights for the
security services to the calling program.

SECURITY
The client must holds_gen_transfgpermission t&SPort
PARAMETERS
SSPort
[in mach_port_t] The port on which the Security Server receives r
guests.
Master_port
[out mach_port_t *] The Security Server master (kernel) port receiy

right.

Client_port
[out mach_port_t *] The Security Server client port receive right.

Policy id

[out int *] The current policy ID.

324 Mach 3 Kernel Interfaces

SSI_transfer_security_server_ports

Caching_control_ports
[out mach_port_array_t *] Array of send rights to ports representing
other servers in the system that need to be notified of cache flush
events.

Caching_control_port_count
[out int*] The number otaching_control_portpassed in the array.

opaque_table
[out mach_opaque_table_t *] Array of internal MID to opaque MID
translations. This table is used to give the new security server knowl-
edge of the existing opaque MIDs running in the system. The table con-
sists of an arragywith each element in the array containing the pairing
of an opaque and internal MID.

opaque_table_count
[out int *] The number of internal<->opaque translations.

last_opaque
[out mandatory_id_t *] The last assigned opaque MID. This is the last
opaque MID that had been assigned by the old Security Server.

RETURN VALUE
Generic errors apply.

RELATED INFORMATION.
FunctionsSSI_load_security_policy

Mach 3 Kernel Interfaces 325

Security Server Interface

SSI_transition_domain

LIBRARY

SYNOPSIS

DESCRIPTION

Server Interface—Returns a subject SID and an object SID based on the tranp

tion domain and MLS level of the input object SID and subject SID, respectiv
ly.

#include sys/security.h»

kern_return_8SI_transition_domain
(mach_port_t SSPort
security_id_t InSSIDQ
security_id_t InOSID,
security_id_t* OutSssSID;

The SSI_transition_domain function is called by a client to obtain a subject
SID that is of the appropriate domain and security level. If the security poli
provides a rule that associates an object type with a transition domain, then
output subject SID corresponds to a security context that has this transition
main. The remaining security context data is the same as that associated
the input subject SID. If no rule is provided by the security potivy subject
SID returned is the same as the input subject SID.

Used in conjunction with the Unix system caléxecve() or
execve_secure() , this feature allows a client to automatically transition td
a newdomainas a result of executing a file of a particulgre For example,
the file /bin/passwd is labeled with the security contepasswdTExec:un-
classified:noneand /etc/passwd is labeled with passwdTFile:unclassi-
fied:none The security policy database indicates that:

When a subject executes a file labgbedswdTExedt will transi-
tion topasswdDdomain

Only passwdDsubjects can write tpasswdTFildiles
passwdDsubjects can only accegsasswdTExememory
usersubjects cannot write fmasswdTExememory or files

A process labeled with the security contesér:unclassified:nonmvokesex-
ecve() on the file /bin/passwd . The Unix server calls
SSI_context_to_mid() to convert the input security contextser:unclassi-
fied:none and passwdTExec:unclassified:nometo the corresponding subject
and object SIDs, respectivellf then callsSSI_transition_domain() on these
two SIDs to obtain the new transition SID. Finallige Unix server starts the

y
the

Ho-
vith

326

Mach 3 Kernel Interfaces

SSI_transition_domain

new process labeled with the output subject SID. This new process labeled as
passwdDcan write tdetc/passwd which is labeled agasswdTFile

Another process labeled asuser:unclassified:none tries to call
execve_secure() on vi with a context of passwdTExec:unclassi-
fied:none attempting to bypasbin/passwd and perform arbitrary edits on
/etc/passwd . The resulting subject security contexpasswdTExec:unclas-
sified:none as expected. Howevethe executable’ object security context is
based orvi , which isuser:unclassified:nonélrhe new process cannot read its
own text segment and dies.

SECURITY
The client must holds_gen_transitiopermission t&SPort

PARAMETERS

SSPort
[in mach_port_t] The port on which the Security Server receives re-
quests.

INSSID
[in security_id_t] The input subject security identifier.

InOSID
[in security_id_t] The input object security identifier.

OutSSID
[out security id_t *] The output subject security identifier.

RETURN VALUE
Generic errors apply.

RELATED INFORMATION.
None.

Mach 3 Kernel Interfaces 327

Security Server Interface

328 Mach 3 Kernel Interfaces

aprenpix o MIG Server Routines

This appendix describes server message de-multiplexing routines generated by MIG
from the kernel interface definitions of use to a server in handling messages sent from
the kernel.

Mach 3 Kernel Interfaces 329

MIG Server Routines

device_reply server

Function — Handles messages from a kernel device driver

LIBRARY
libmach_sa.alibmach.a

Not declared anywhere.

SYNOPSIS
boolean_tdevice_reply_server
(mach_msg_header_t* in_msg,
mach_msg_header_t* out_msg;
DESCRIPTION

The device_reply_serverfunction is the MIG generated server handling func-

tion to handle messages from kernel device drivers. Such messages were sent in
response to the variowdevice_..._request. calls. It is assumed when using
those calls that some task is listening for reply messages on the port named as a
reply port to those calls. Ttaevice_reply_serverfunction performs all neces-

sary agument handling for a kernel message and calls one of the device server
functions to interpret the message.

PARAMETERS

in_msg
[pointer to in structure] The device driver message received from the
kernel.

out_msg
[out structure] A reply message. No messages from a device driver ex-
pect a direct reply, so this field is not used.

RETURN VALUE

TRUE
The message was handled and the appropriate function was called.

FALSE
The message did not apply to this device handler interface and no other
action was taken.

330 Mach 3 Kernel Interfaces

device_reply_server

RELATED INFORMATION
Functions: ds_device_open_reply
ds_device_write_reply_inband
ds_device_read_reply_inband

ds_device_write_reply
ds_device_read_reply

Mach 3 Kernel Interfaces

331

MIG Server Routines

exc_server

Function — Handles kernel messages for an exception handler

LIBRARY
libmach_sa.alibmach.a

Not declared anywhere.

SYNOPSIS
boolean_exc_server
(mach_msg_header_t* in_msg,
mach_msg_header_t* out_msy;
DESCRIPTION

The exc_serverfunction is the MIG generated server handling function to han-
dle messages from the kernel relating to the occurrence of an exception in a
thread. Such messages are delivered to the exception port set via
thread_set_special_portor task_set_special_portWhen an exception occurs

in a thread, the thread sends an exception message to its exception port, block-
ing in the kernel waiting for the receipt of a repife exc_serverfunction per-

forms all necessary gument handling for this kernel message and calls
catch_exception_raise which should handle the exception. If
catch_exception_raisereturns KERN_SUCCESS, a reply message will be
sent, allowing the thread to continue from the point of the exception; otherwise,
no reply message is sent apatch_exception_raisemust have dealt with the
exception thread directly.

PARAMETERS

in_msg
[pointer to in structure] The exception message received from the ker-
nel.

out_msg
[out structure] A reply message.

RETURN VALUE

TRUE
The message was handled and the appropriate function was called.

FALSE
The message did not apply to the exception mechanism and no other
action was taken.

332 Mach 3 Kernel Interfaces

exc_server

RELATED INFORMATION

Functions: thread_set_special_port task_set_special_port
catch_exception_rais.

Mach 3 Kernel Interfaces 333

MIG Server Routines

memory_object_default_server

Function — Handles kernel messages for the default memory manager

LIBRARY
libmach.a only

Not declared anywhere.

SYNOPSIS
boolean_tmemory_object_default_server
(mach_msg_header_t* in_msg,
mach_msg_header_t* out_msg;
DESCRIPTION

Thememory_object_default_serverfunction is the MIG generated server han-
dling function to handle messages from the kerngktad to the default memo-

ry manager This server function only handles messages unique to the default
memory manageMessages that are common to all memory managers are han-
dled bymemory_object_server

A memory manageis a server task that responds to specific messages from the
kernel in order to handle memory management functions for the kernel. The
memory_object_default_serverfunction performs all necessarygament han-

dling for a kernel message and calls one of the default memory manager func-
tions.

PARAMETERS

in_msg
[pointer to in structure] The memory manager message received from
the kernel.

out_msg
[out structure] A reply message. No messages to a memory manager
expect a direct reply, so this field is not used.

RETURN VALUE

TRUE
The message was handled and the appropriate function was called.

FALSE
The message did not apply to this memory management interface and
no other action was taken.

334 Mach 3 Kernel Interfaces

memory_object_default_server

RELATED INFORMATION

Functions: seqnos_memory_object_default_servermemory_object_server
memory_object_create memory_object_data_initialize
default_pager_infg default_pager_object_create

Mach 3 Kernel Interfaces 335

MIG Server Routines

memory_object_server

Function — Handles kernel messages for a memory manager

LIBRARY
libmach.a only

Not declared anywhere.

SYNOPSIS
boolean_tmemory_object_server
(mach_msg_header_t* in_msg,
mach_msg_header_t* out_msg;
DESCRIPTION

The memory_object_server function is the MIG generated server handling
function to handle messages from the kernel targeted to a memory manager.

A memory manageis a server task that responds to specific messages from the
kernel in order to handle memory management functions for the kernel. The
memory_object_serverfunction performs all necessarygament handling for

a kernel message and calls one of the memory manager functions to interpret
the message.

PARAMETERS

in_msg
[pointer to in structure] The memory manager message received from
the kernel.

out_msg
[out structure] A reply message. No messages to a memory manager
expect a direct reply, so this field is not used.

RETURN VALUE

TRUE
The message was handled and the appropriate function was called.

FALSE
The message did not apply to this memory management interface and
no other action was taken.

336 Mach 3 Kernel Interfaces

memory_object_server

RELATED INFORMATION

Functions: memory_object_default_server memory_object_copy

memory_object_data_request
memory_object_data_write
memory_object_init,
memory_object_change_completed
seqnos_memory_object_server

memory_object_data_unlock
memory_object_data_return,
memory_object_lock_completed
memory_object_terminate

Mach 3 Kernel Interfaces

337

MIG Server Routines

notify _server

Function — Handle kernel generated IPC notifications

LIBRARY
libmach.a only

Not declared anywhere.

SYNOPSIS
boolean_notify_server
(mach_msg_header_t* in_msg,
mach_msg_header_t* out_msg;
DESCRIPTION

The notify_server function is the MIG generated server handling function to
handle messages from the kernel corresponding to IPC notifications. Such mes-
sages are delivered to the notification port named imaxch_msg or
mach_port_request_notificationcall. Thenotify_server function performs all
necessary gument handling for this kernel message and calls the appropriate
handling function. These functions must be supplied by the caller.

PARAMETERS

in_msg
[pointer to in structure] The notification message received from the ker-
nel.

out_msg
[out structure] Not used.

RETURN VALUE

TRUE
The message was handled and the appropriate function was called.

FALSE
The message did not apply to the notification mechanism and no other
action was taken.

RELATED INFORMATION

Functions: seqnos_notify_server mach_msg
mach_port_request_notification, do_mach_notify_dead_name
do_mach_notify_msg_accepted do_mach_notify_no_senders

338 Mach 3 Kernel Interfaces

notify_server

do_mach_notify_port_deleted do_mach_notify_port_destroyed
do_mach_notify_send_once

Mach 3 Kernel Interfaces 339

MIG Server Routines

prof_server

Function — Handle kernel generated PC sample messages

LIBRARY
libmach.a only

Not declared anywhere.

SYNOPSIS
boolean_prof_server
(mach_msg_header_t* in_msg,
mach_msg_header_t* out_msg;
DESCRIPTION

Theprof_server function is the MIG generated server handling function to han-
dle messages from the kernel corresponding to program counter (profiling) sam-
ples. Such messages are delivered to the task or thread sample port set by
task_sampleor thread_sample The prof_server function performs all neces-

sary agument handling for this kernel message and calls the appropriate han-
dling function. These functions must be supplied by the caller.

PARAMETERS

in_msg
[pointer to in structure] The sample message received from the kernel.

out_msg
[out structure] Not used.

RETURN VALUE

TRUE
The message was handled and the appropriate function was called.

FALSE
The message did not apply to the sample mechanism and no other ac-
tion was taken.

RELATED INFORMATION

Functionsreceive_samples

340 Mach 3 Kernel Interfaces

seqnos_memory_object_default_server

segnos_memory_object_default_server

Function — Handles kernel messages for the default memory manager

LIBRARY
libmach.a only

Not declared anywhere.

SYNOPSIS
boolean_seqnos_memory_object_default_server
(mach_msg_header_t* in_msg,
mach_msg_header_t* out_msy;
DESCRIPTION

The seqnos_memory_object_default_servefunction is the MIG generated
server handling function to handle messages from the kergetddrto the de-
fault memory manageiThis server function only handles messages unique to
the default memory managéfessages that are common to all memory manag-
ers are handled lseqgnos_memory_object_server

A memory manageis a server task that responds to specific messages from the
kernel in order to handle memory management functions for the kernel. The
seqnos_memory_object_default_servefunction performs all necessarygar

ment handling for a kernel message and calls one of the default memory manag-
er functions.

PARAMETERS

in_msg
[pointer to in structure] The memory manager message received from
the kernel.

out_msg
[out structure] A reply message. No messages to a memory manager
expect a direct reply, so this field is not used.

NOTES

seqnos_memory_object_default_server differs from
memory_object_default_serverin that it supplies message sequence numbers
to the server interfaces it calls.

Mach 3 Kernel Interfaces 341

MIG Server Routines

RETURN VALUE

TRUE
The message was handled and the appropriate function was called.

FALSE
The message did not apply to this memory management interface and
no other action was taken.

RELATED INFORMATION

Functions: memory_object_default_server seqnos_memory_object_server
seqnos_memory_object creatie seqnos_memory_object _data initialize
seqnos_default_pager_infoseqnos_default_pager_object_create

342 Mach 3 Kernel Interfaces

seqnos_memory_object_server

segnos_memory_object_server

Function — Handles kernel messages for a memory manager

LIBRARY
libmach.a only

Not declared anywhere.

SYNOPSIS
boolean_seqnos_memory_object_server
(mach_msg_header_t* in_msg,
mach_msg_header_t* out_msy;
DESCRIPTION

The segnos_memory_object_servefunction is the MIG generated server han-
dling function to handle messages from the kerngktad to a memory manag-
er.

A memory manageis a server task that responds to specific messages from the
kernel in order to handle memory management functions for the kernel. The
seqnos_memory_object_serveiunction performs all necessarygament han-

dling for a kernel message and calls one of the memory manager functions to in-
terpret the message.

PARAMETERS

in_msg
[pointer to in structure] The memory manager message received from
the kernel.

out_msg
[out structure] A reply message. No messages to a memory manager
expect a direct reply, so this field is not used.

NOTES

seqnos_memory_object_servediffers frommemory_object_serverin that it
supplies message sequence numbers to the server interfaces.

RETURN VALUE

TRUE
The message was handled and the appropriate function was called.

Mach 3 Kernel Interfaces 343

MIG Server Routines

FALSE
The message did not apply to this memory management interface and
no other action was taken.

RELATED INFORMATION

Functions: seqnos_memory_object_default_server
seqnos_memory_object _copy seqnos_memory_object data_request
seqnos_memory_object _data_unlogk segnos_memory_object_data_write
seqnos_memory_object_data_return seqnos_memory_object _inijt
seqnos_memory_object_lock completed
seqnos_seqgnos_memory_object_change_completed
seqnos_memory_object_terminatememory_object_server

344 Mach 3 Kernel Interfaces

seqnos_notify_server

seqnos_notify_server

Function — Handle kernel generated IPC notifications

LIBRARY
libmach.a only

Not declared anywhere.

SYNOPSIS
boolean_seqnos_notify_server
(mach_msg_header_t* in_msg,
mach_msg_header_t* out_msy;
DESCRIPTION

The seqnos_notify_serverfunction is the MIG generated server handling func-
tion to handle messages from the kernel corresponding to IPC notifications.
Such messages are delivered to the notification port namecdhacla msgor
mach_port_request_notificationcall. Thesegnos_notify_serverfunction per-
forms all necessary gument handling for this kernel message and calls the ap-
propriate handling function. These functions must be supplied by the caller.

PARAMETERS

in_msg
[pointer to in structure] The notification message received from the ker-
nel.

out_msg
[out structure] Not used.

NOTES

seqnos_notify_servediffers fromnotify_server in that it supplies message se-
guence numbers to the server interfaces.

RETURN VALUE

TRUE
The message was handled and the appropriate function was called.

FALSE
The message did not apply to the notification mechanism and no other
action was taken.

Mach 3 Kernel Interfaces 345

MIG Server Routines

RELATED INFORMATION

Functions: notify_server, mach_msg mach_port_request_notification,
do_segnos_mach_notify_dead_name
do_segnos_mach_notify_msg_accepted

do_segnos_mach_notify _no_senders
do_segnos_mach_notify_port_deleted

do_segnos_mach_notify port_destroyed
do_segnos_mach_notify_send_once

346 Mach 3 Kernel Interfaces

aprenpix 8 Default Memory
Management Interface

In general, the default memory manager is just like any other memory maeacmepst

that it is “trusted” to respond promptly to paging requests in as much as that it is the
memory manager of last resort. There are a few special requests issued to the default
memory manager having to do with the creation and management of anonymous memo-

ry.

Mach 3 Kernel Interfaces 347

Default Memory Management Interface

default_pager_info

Server Interface —Return default partition information

LIBRARY
libmach.a only

#include smach/default_pager_object.t»

SYNOPSIS
kern_return_tlefault_pager_info
(mach_port_t pager,
vm_size_t* total,
vm_size t* free)

segnos_default_pager_info
Sequence Numbeform

kern_return_seqnos_default_pager_info

(mach_port_t pager,
mach_port_seqno_t segnoQ
vm_size_t* total,
vm_size_t* free),

DESCRIPTION

A default_pager_info function is called as the result of a message requesting

that the default memory manager return information concerning the default pag-
er's default paging partition. The kernel does not make this call itself (which is

why it can be a synchronous call); this request is only issued by (privileged)
tasks holding a default memory managed object port.

PARAMETERS

pager
[in default-pager port] A port to the default memory manager.

segno
[in scalar] The sequence number of this message relative to the pager
port.

total
[out scalar] Total size of the default partition.

free

[out scalar] Free space in the default partition.

348 Mach 3 Kernel Interfaces

default_pager_info

RETURN VALUE

The default memory manager should return KERN_SUCCESS if it returns the
desired information and KERN_FAILURE if it does not support the operation.

RELATED INFORMATION

Functions: vm_set_default_memory_manager
memory_object_default_serverseqgnos_memory_object_default_server

Mach 3 Kernel Interfaces 349

Default Memory Management Interface

default_pager_object_create

Server Interface — Create a memory object managed by the default pager

LIBRARY
libmach.a only

#include smach/default_pager_object.t»

SYNOPSIS
kern_return_tlefault_pager_object_create
(mach_port_t pager,
memory_object_t* memory_object,
vm_size_t object_size)

segnos_default_pager_object_create
Sequence Numbeform

kern_return_steqnos_default_pager_object_create

(mach_port_t pager,
mach_port_seqno_t segnoQ
memory_object_t* memory_obiject,
vm_size t object_size)

DESCRIPTION

A default_pager_object_createfunction is called as the result of a message re-
guesting that the default memory manager create and return a (shared) memory
object which is suitable for use withm_map. This memory object has the
same properties as does a memory object providedhbwllocate its initial
contents are zero and the backing contents are temporary in that they do not per-
sist after the memory object is destroyed. The memory object is suitable for use
as non-permanent shared memompe kernel does not make this call itself
(which is why it can be a synchronous call); this request is only issued by (privi-
leged) tasks holding a default memory managed object port. This call should be
contrasted with the kernel':miemory_object create message, in which the
memory cache object is already created and the identity of the abstract memory
object is made known to the default manager.

PARAMETERS

pager
[in default-pager port] A port to the default memory manager.

segno
[in scalar] The sequence number of this message relative to the pager
port.

350 Mach 3 Kernel Interfaces

default_pager_object_create

memory_object
[out abstract-memory-object port] The abstract memory object port for
the memory object.

object_size
[in scalar] The maximum size for the memory object.

RETURN VALUE
Return KERN_SUCCESS if the object was created.

RELATED INFORMATION

Functions: vm_map, vm_set_default_memory_manager
memory_object_create memory_object_default_server
seqnos_memory_object_default_server

Mach 3 Kernel Interfaces 351

Default Memory Management Interface

memory_object_create

Server Interface — Requests transfer of responsibility for a kernel-created
memory object

LIBRARY
Not declared anywhere.

SYNOPSIS
kern_return_tnemory_object_create
(mach_port_t old_memory_object,
mach_port_t new_memory_object,
vm_size_t new_object_size,
mach_port_t new_control,
mach_port_t new_name,
vm_size_t new_page_sije

segnos_memory_object_create
Sequence Numbeform

kern_return_steqnos_memory_object_create

(mach_port_t old_memory_object,
mach_port_seqno_t segnoQ
mach_port_t new_memory_object,
vm_size t new_object_size,
mach_port_t new_control,
mach_port_t new_name,
vm_size t new_page_sije

DESCRIPTION

A memory_object_createfunction is called as the result of a message from the
kernel requesting that the default memory manager accept responsibility for the
new memory object created by the kernel. The kernel makes this call only to the
system default memory manager.

The new memory object initially consists of zero-filled pages. Only memory
pages that are actually written are provided to the memory mandben pro-
cessingnemory_object_data_requestalls from the kernel, the default memo-
ry manager must usmemory_object data_unavailablefor any pages that
have not been written previously.

The kernel does not expect a reply to this call. The kernel assumes that the de-
fault memory manager will be ready to handle data requests to this object and
does not need the confirmation ahamory_object_readycall.

352 Mach 3 Kernel Interfaces

memory_object_create

PARAMETERS

old_memory_object
[in default-pager port] An existing abstract memory object provided by
the default memory manager.

seqno
[in scalar] The sequence number of this message relative to the old ab-
stract memory object port.

new_memory_object
[in abstract-memory-object port] The port representing the new ab-
stract memory object created by the kernel. The kernel provides all
port rights (including the receive right) for the new memory object.

new_object_size
[in scalar] The expected size for the new object, in bytes.

new_control
[in memory-cache-control port] The memory cache control port to be
used by the memory manager when making cache management re-
quests for the new object.

new_name
[in memory-cache-name port] The memory cache name port used by
the kernel to refer to the new memory object data in response to
vm_region calls.

new_page_size
[in scalar] The page size used by the kernel. All calls involving this
kernel must use data sizes that are integral multiples of this page size.

NOTES

The kernel requires memory objects to provide temporary backing storage for
zero-filled memory created bym_allocate calls, issued by both user tasks and
the kernel itself. The kernel allocates an abstract memory object port to repre-
sent the temporary backing storage and os&®ory_object_createto pass the

new memory object to the default memory manager, which provides the storage.

The default memory manager is a trusted system component that is identified to
the kernel at system initialization time. The default memory manager can also
be changed at run time using tlma_set_default_memory_managecall.

The contents of a kernel-created (as opposed to ecrested) memory object

can be modified only in main memorihe default memory manager must not
change the contents of a temporary memory object, or allow unrelated tasks to
access the memory object, control, or name port.

Mach 3 Kernel Interfaces 353

Default Memory Management Interface

The kernel provides the size of a temporary memory object based on the allocat-
ed size. Since the object is not mapped by other tasks, the object will not grow
by explicit action. Howeverthe kernel may coalesce adjacent temporary ob-
jects in such a way that this object may appear to.gk@asuch, the supplied
object size is merely a hint as to the maximum size.

RETURN VALUE

Any return value other than KERN_SUCCESS or MIG_NO_RERAuses
mach_msg_serverto remove the abstract memory object, memory cache con-
trol and memory cache name port references.

RELATED INFORMATION

Functions: default_pager object create memory_object data_initialize
memory_object_data unavailable memory_object_default_server
seqnos_memory_object _default_server

354 Mach 3 Kernel Interfaces

memory_object_data_initialize

memory_object_data_initialize

Server Interface — Writes initial data back to a temporary memory object

LIBRARY
Not declared anywhere.

SYNOPSIS
kern_return_tmemory_object_data _initialize
(mach_port_t memory_obiject,
mach_port_t memory_control,
vm_offset_t offset,
vm_offset _t data,
vm_size t data_coung

seqgnos_memory_object_data_initialize
Sequence Numbeform

kern_return_seqnos_memory_object_data _initialize

(mach_port_t memory_obiject,
mach_port_seqno_t seqno
mach_port_t memory_control,
vm_offset_t offset,
vm_offset_t data,
vm_size t data_coun

DESCRIPTION

A memory_object_data_initialize function is called as the result of a kernel
message providing the default memory manager with initial data for a kernel-
created memory object. If the memory manager already has supplied data (by a
previousmemory_object_data_initialize or memory_object_data_return), it

should ignore this call. Otherwise, the call behaves the same as the
memory_object_data_returncall.

The kernel makes this call only to the default memory manager and only on tem-
porary memory objects that it has created vmitbmory_object_create Note

that the kernel does not make this call on objects created via
memory_object_copy

PARAMETERS

memory_object
[in abstract-memory-object port] The abstract memory object port that
represents the memory object data, as supplied by the kernel in a
memory_object_createcall.

Mach 3 Kernel Interfaces 355

Default Memory Management Interface

seqno
[in scalar] The sequence number of this message relative to the ab-
stract memory object port.

memory_control
[in memory-cache-control port] The memory cache control port to be
used for a response by the memory mandfére memory object has
been supplied to more than one kernel, this parameter identifies the ker-
nel that is making the call.

offset
[in scalar] The offset within the memory object.

data
[in pointer to dynamic array of bytes] The data that has been modified
while cached in physical memory.

data_count

[in scalar] The number of bytes to be written, startingféget The
number converts to an integral number of memory object pages.

RETURN VALUE

Any return value other than KERN_SUCCESS or MIG_NO_RERAuses
mach_msg_serverto remove the memory cache control port reference and to
de-allocate the returned data.

RELATED INFORMATION

Functions: memory_object_create memory_object_data_return,
memory_object_default_serverseqgnos_memory_object default_server

356 Mach 3 Kernel Interfaces

vm_set_default_memory_manager

vm_set_default_memory_manager

Function — Sets the default memory manager.

SYNOPSIS
kern_return_vm_set_default_memory_manager
(mach_port_t host_priv,
mach_port_t* default_managéer
DESCRIPTION

Thevm_set_default_memory_managefunction establishes the default memo-
ry manager for a host.

SECURITY

The requesting task must holtpsv_set default_ memory _mpgermission to
host_priv

PARAMETERS

host_priv
[in host-control port] The control port haming the host for which the
default memory manager is to be set.

default_manager
[pointer to in/out default-pager port] A memory manager port to the
new default memory managdf this value is MACH_POR _NULL,
the old memory manager is not changed. The old memory manager
port is returned in this variable.

RETURN VALUE

Only generic errors apply.

RELATED INFORMATION

Functionsmemory_object_createvm_allocate

Mach 3 Kernel Interfaces 357

Default Memory Management Interface

358 Mach 3 Kernel Interfaces

appenpix ¢ Multicomputer Support

Support for multicomputers is being added to the Mach kernel. This provides transparent
support for distributed, non-shared-memory environments. The current support does not
handle node failures and so is suitable to multicomputer environments but not yet to net-
worked workstation environments.

With this support, a single logical Mach kernel is formed that spans a set of computers.
This support transparently distributes Mach IPC and virtual merfowever each host
(called anodg within the multicomputer maintains its identity (separate control and
name ports, processor sets, devices, etc.).

This appendix describes operations that apply to individual nodes in such a configuration.

Mach 3 Kernel Interfaces 359

Multicomputer Support

norma_get_special_port

Function — Returns a send right to a node specific port

LIBRARY
#include smach/norma_special_ports.k

SYNOPSIS
kern_return_torma_get_special_port
(mach_port_t host_priv,
int node,
int which_port,
mach_port_t* special_port)
norma_get_device_port
Macro form
kern_return_torma_get _device_ port
(mach_port_t host_priv,
int node
mach_port_t* special_port)
O norma_get_special_porthost_privnode NORMA_DEVICE_PORT,
special_port
norma_get_host_paging_port
Macro form
kern_return_norma_get_host_paging_port
(mach_port_t host_priv,
int node
mach_port_t* special_port)

O norma_get_special_portthost_priy node
NORMA_HOST_PAGING_PORTspecial_por}

norma_get_host_port

Macro form

kern_return_torma_get_host_port
(mach_port_t host_priv,
int node
mach_port_t* special_port)

O norma_get_special_portthost_privnode NORMA_HOST_PORT,
special_port

norma_get_host_priv_port
Macro form

kern_return_torma_get_host_priv_port
(mach_port_t host_priv,

360 Mach 3 Kernel Interfaces

norma_get_special_port

int node
mach_port_t* special_port)

O norma_get_special_portthost_privhode NORMA_HOST_PRIV_PORT,
special_port

norma_get _nameserver_port
Macro form

kern_return_norma_get_nameserver_port

mach_port_t host_priv,
p p

int node
mach_port_t* special_port)

0 norma_get_special_portthost_priy node
NORMA_NAMESERVER_PORTspecial_port

DESCRIPTION

Thenorma_get_special_portfunction returns a send right for a special port be-
longing tonodeonhost_priv

Each node maintains a (small) set of node specific ports. The device master
port, host paging port, host name and host control port are maintained by the
kernel. The kernel also permits a small set of server specified node specific
ports; the name server port is an example and is given (by convention) an as-
signed special port index.

PARAMETERS

host_priv

[in host-control port] The control port for the host for which to return
the special port’s send right.

node
[in scalar] The index of the node for which the port is desired.

which_port

[in scalar] The index of the special port for which the send right is re-
guested. Valid values are:

NORMA_DEVICE_PORT
[device-master port] The device master port for the node.

NORMA_HOST_PAGING_PORT
[default-pager port] The default pager port for the node.

Mach 3 Kernel Interfaces 361

Multicomputer Support

NORMA_HOST_PORT
[host-name port] The host name port for the node. If the speci-
fied node is the current node, this value (unless otherwise set)
is the same as would be returnechigch_host_self

NORMA_HOST_PRIV_PORT
[host-control port] The host control port for the node.

NORMA_NAMESERVER_PORT
[name-server port] The registered name server port for the
node.

special_port
[out norma-special port] The returned value for the port.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION

Functions: mach_host_self norma_set_special_port
vm_set_default_memory_manager

362 Mach 3 Kernel Interfaces

norma_port_location_hint

norma_port_location_hint

Function — Guess a port’s current location

LIBRARY
Not declared anywhere.

SYNOPSIS
kern_return_tiorma_port_location_hint
(mach_port_t task,
mach_port_t port,
int* node)
DESCRIPTION

Thenorma_port_location_hint function returns the best guesspairt's current
location. The hint is guaranteed to be a node where the port once was; it is guar-
anteed to be accurate if port has never moved. This can be used to determine res-
idence node for hosts, tasks, threads, etc.

PARAMETERS

task
[in task port] Task reference (not currently used)

port
[in random port] Send right to the port to locate.

node
[out scalar] Port location hint

RETURN VALUE

Only generic errors apply.

RELATED INFORMATION

Functionstask_set child_nodenorma_task create

Mach 3 Kernel Interfaces 363

Multicomputer Support

norma_set_special_port

Function — Sets a node specific special port

LIBRARY
#include smach/norma_special_ports.k

SYNOPSIS
kern_return_torma_set_special_port
(mach_port_t host_priv,
int node,
int which_port,
mach_port_t special_port)
norma_set _device_port
Macro form
kern_return_torma_set_device_port
(mach_port_t host_priv,
int node
mach_port_t special_port)
O norma_set_special_porihost_priynode NORMA_DEVICE_PORT,
special_port
norma_set_host_paging_port
Macro form
kern_return_norma_set_host_paging_port
(mach_port_t host_priv,
int node
mach_port_t special_port)

O norma_set_special_porihost_priy node
NORMA_HOST_PAGING_PORTspecial_por}

norma_set_host_port

Macro form

kern_return_torma_set_host_port
(mach_port_t host_priv,
int node
mach_port_t special_port)

0 norma_set_special_porthost_priynode NORMA_HOST_PORT,
special_port

norma_set_host_priv_port
Macro form

kern_return_torma_set_host_priv_port
(mach_port_t host_priv,

364 Mach 3 Kernel Interfaces

norma_set_special_port

int node
mach_port_t special_port)

O norma_set_special_porihost_priynode NORMA_HOST_PRIV_PORT,
special_port

norma_set_nameserver_port
Macro form

kern_return_horma_set_nameserver_port

(mach_port_t host_priv,
int node
mach_port_t special_port)

0 norma_set_special_porihost_priy node
NORMA_NAMESERVER_PORTspecial_port

DESCRIPTION

The norma_set_special_portfunction sets the special port belongingntme
onhost_priv

Each node maintains a (small) set of node specific ports. The device master
port, host paging port, host name and host control port are maintained by the
kernel. The kernel also permits a small set of server specified node specific
ports; the name server port is an example and is given (by convention) an as-
signed special port index.

PARAMETERS

host_priv

[in host-control port] The host for which to set the special port. Cur-
rently, this must be the per-node host control port.

node
[in scalar] The index of the node for which the port is to be set.

which_port
[in scalar] The index of the special port to be set. Valid values are:

NORMA_DEVICE_PORT
[device-master port] The device master port for the node.

NORMA_HOST_PAGING_PORT
[default-pager port] The default pager port for the node.

NORMA_HOST_PORT
[host-name port] The host name port for the node.

Mach 3 Kernel Interfaces 365

Multicomputer Support

NORMA_HOST_PRIV_PORT
[host-control port] The host control port for the node.

NORMA_NAMESERVER_PORT
[name-server port] The registered name server port for the
node.

special_port
[in norma-special port] A send right to the new special port.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION

Functions: mach_host_self norma_get_special_port
vm_set_default_memory_manager

366 Mach 3 Kernel Interfaces

norma_task_clone

norma_task clone

Function — “Clone” a task on a specified node

LIBRARY
Not declared anywhere.

SYNOPSIS
kern_return_torma_task_clone
(mach_port_t parent_task,
boolean_t inherit_memory
int child_node
mach_port_t* child_task)
DESCRIPTION

The norma_task clonefunction “clones” a new task fromparent_taskon the
specifiednode and returns the name of the new taslclild_task The child
task acquires shared parts of the pasesdidress space (sem_inherit) regard-
less of the inheritance set for the paremtemory regions, although the inherit-
ance for the child regions will be set to that of the parentgions. The child
task initially contains no threads.

By way of comparison, tasks created by the stantieskl createprimitive are
created on the node last set hgsk set child node (by default the
parent_tasls node).

Other than being created on afeliént node, the new task has the same proper-
ties as if created hyask_create

PARAMETERS

parent_task
[in task port] The port for the task from which to draw the child sask’
port rights, resource limits, and address space.

inherit_memory
[in scalar] Address space inheritance indicafdrue, the child task in-
herits the address space of the parent task. If false, the kernel assigns
the child task an empty address space.

child_node
[in scalar] The node index of the node on which to create the child.

child_task
[out task port] The kernel-assigned port name for the new task.

Mach 3 Kernel Interfaces 367

Multicomputer Support

NOTES

This call difers fromnorma_task_createin that the inheritance set for the par-
ent's memory regions is ignored; the child always shares memory with the par-
ent.

This call is intended to support process migration, where the inheritance seman-
tics of norma_task_createwould break migrated programs that depended upon
sharing relationships remaining after migration.

This call is not a true task migration call, in that it does not migrate the port
space, threads, and other non-address-space attributes of the task.

RETURN VALUE

Only generic errors apply.

RELATED INFORMATION

Functionstask create norma_task createtask set child_node

368

Mach 3 Kernel Interfaces

norma_task_create

norma_task create

Function — Create a task on a specified node

LIBRARY
Not declared anywhere.

SYNOPSIS
kern_return_torma_task create
(mach_port_t parent_task,
boolean_t inherit_memory
int child_node
mach_port_t* child_task)
DESCRIPTION

The norma_task_createfunction creates a new task frgmarent_taskon the
specifiednode and returns the name of the new taslclild_task The child
task acquires shared or copied parts of the paremfdress space (see
vm_inherit). The child task initially contains no threads.

By way of comparison, tasks created by the stantieskl createprimitive are
created on the node last set hgsk set child node (by default the
parent_tasls node).

Other than being created on afeliént node, the new task has the same proper-
ties as if created hyask_create

PARAMETERS

parent_task
[in task port] The port for the task from which to draw the child sask’
port rights, resource limits, and address space.

inherit_memory
[in scalar] Address space inheritance indicafdrue, the child task in-
herits the address space of the parent task. If false, the kernel assigns
the child task an empty address space.

child_node
[in scalar] The node index of the node on which to create the child.

child_task
[out task port] The kernel-assigned port name for the new task.

Mach 3 Kernel Interfaces 369

Multicomputer Support

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functionstask create norma_task clonetask_set child_nodeéSECURITY

The requesting task must hold hsv_get_host_name permission to the procesgor’s
host name port.

370 Mach 3 Kernel Interfaces

task_set_child_node

task_set child_node

Function — Set the node upon which future child tasks will be created

LIBRARY
Not declared anywhere.

SYNOPSIS
kern_return_task_set child_node
(mach_port_t task,
int child_node)
DESCRIPTION

Thetask_set_child_nodédunction specifies a node upon which child tasks will
be created. This call exists only to allow testing with unmodified servers. Server
developers should usmrma_task createinstead.

PARAMETERS

task
[in task port] The task who's children are to be affected.

node
[in scalar] The index of the node upon which future children should be
created.

RETURN VALUE

Only generic errors apply.

RELATED INFORMATION

Functions:norma_task_create norma_task_clone

Mach 3 Kernel Interfaces 371

Multicomputer Support

372 Mach 3 Kernel Interfaces

aprenpix o INtel 386 SUppOI’t

This appendix describes special kernel interfaces to support the special hardware features
of the Intel 386 processor and its successors.

Aside from the special functions listed here, the Intel 386 support also includes special
thread state “flavors” (Semach/thread_status.h).

i386_ THREAD_STAE—Basic machine thread state, except for segment and float-
ing registers.

i386_ REGS_SEGS_STA—Same as i386_ THREAD_&TE but also sets/gets seg-
ment registers.

i386_FLOAT_STATE—Floating point registers.
i386_V86_ASSIST_STATE—Virtual 8086 interrupt table.

(The i386_ISA_POR_MAP_STATE flavor shown inmach/thread_status.hhas been
disabled.)

IO Permission Bitmap

The 386 supports direct IO instructions. Generally speaking, these instructions are privi-
leged (sensitive to IOPL). Mach, in combination with the procesdlows threads to di-

rectly execute these instructions against hardware 10 ports for which the thread has
permission (those named in its IO permission bitmap). (Note that this isthreead
property.) Thé386_io_port_addfunction enables 10 to the port corresponding to the de-
vice port supplied to the calB86_io_port_removedisables such 10386 _io_port_list

lists the devices to which 10 is permitted.

For the sake of supporting the DOS emulatioe kernel supports a special deviagl!.
Access to this device implies access to the speakerfiguration CMOS, game port,

Mach 3 Kernel Interfaces 373

Intel 386 Support

sound blastemrinter and the VGA ports (devidelO or vga). Attempting to execute an
IO instruction against one of these devices when the task holds send rightopd dee
vice automatically adds these devices to the 10 permission bitmap.

Virtual 8086 Support

Virtual 8086 mode is supported by Mach, enabled when the EFL_VM (virtual machine)
flag in the thread stateefl is set. The various instructions sensitive to IOPL are simulat-
ed by the Mach kernel. This includes simulating an interrupt enabled flag and associated
instructions.

A virtual 8086 task receives simulated 8086 interrupts by setting an interrupt descriptor
table (in task space). This table is set with the i386_V86_ASSIST_STATE status flavor.

[1] structi386_v86 assist state

[2] {
[3] unsigned int int_table
[4] int int_count
[5] %

[6] #define i386_V86_ASSIST_STATE_COUNT
(sizeof (struct386_v86_assist_stajésizeof(unsigned int))

Theint_tablefield points to an interrupt table in task space. The tabléinhasounten-
tries. Each entry of this table has the format shown below.

[1] structv86_interrupt_table

[2] {

[3] unsigned int count
[4] unsigned short mask
[5] unsigned short veg
6] %

When the 8086 task has an associated interrupt table and its simulated interrupt enable
flag is set, the kernel will scan the table looking for an entry wbogetis greater than

zero and whosenaskvalue is not set. If found, the count will be decremented and the
task will take a simulated 8086 interrupt to the address giveredWNo other simulated
interrupts will be generated until the 8086 task executégfimstruction and the (simu-

lated) interrupt enable flag is again set. The generation of the simulated interrupt will
turn off the hardwares trace trap flag; executing tiret instruction will restore the trace

trap flag.

Local Descriptor Table

Although the 386 (and successors) view the address space as segmented, Mach provides
each task with a linear address space (32 bits for the Intel family). The various entries in
the system global descriptor table (GDT) are used for system use; in general the entries
map all of kernel memonyhe thread local descriptor table (LDT) maps its task space.
Segment 2 of this table is used for task code accesses (it permits only read access); seg-
ment 3 is used for data accesses (it permits write access, subject to page level protec-
tions); both segments, though, map all of the tagkidress space. Segment 1 of the table

is unused. Segment 0 is used as a call gate for system calls (traps).

374 Mach 3 Kernel Interfaces

Each thread may set entries in its LDT to describe various ranges of its underlying ad-
dress space. There is no way that this mechanism permits a thread to access any more vir-
tual memory than its address space permits; these LDT segment entries merely provide
different views of the address space. A segment may be thought of as an automatically re-
located portion of the address space; the beginning of a segment can be referenced as ad-
dress zero given the appropriately set 386 segment regidtese local segment
descriptors are manipulated with ti@86_set_|dt function and examined with the
i386_get_ldtfunction.

Mach 3 Kernel Interfaces 375

Intel 386 Support

1386_get Idt

Function — Return per-thread segment descriptors

LIBRARY
#include smach/i386/mach_i386.h

SYNOPSIS
[1] structdescriptor
[2] {
[3] unsigned int low_word
[4] unsigned int high_word
[5] %
[6] typedef struct descriptor descriptor_t;
[7] typedef struct descriptor* descriptor_list_t;
kern_return_1386_get Idt
(mach_port_t thread,
int first_selector
int desired_count
descriptor_list_t* desc_list
mach_msg_type number_t* returned_count)
DESCRIPTION

The i386_get_|dt function returns pethread segment descriptors from the
thread’s local descriptor table (LDT).

SECURITY
The requesting task must hdlisv_get thread_infpermission tahread

PARAMETERS

thread
[in thread port] Thread whose segment descriptors are to be returned

first_selector
[in scalar] Selector value (segment register value) corresponding to the
first segment whose descriptor is to be returned

desired_count
[in scalar] Number of returned descriptors desired

376 Mach 3 Kernel Interfaces

i386_get_Idt

desc_list
[unbounded out in-line array oescriptor_} Array of segment descrip-
tors. The reserved size of this array is supplied as the input value for
returned_count

returned_count
[pointer to in/out scalar] On input, the reserved size of the descriptor ar-
ray; on output, the number of descriptors returned

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions:i386_set_Idt

Mach 3 Kernel Interfaces 377

Intel 386 Support

1386 _io_port_add

Function — Permit 10 instructions to be performed against a device

LIBRARY
#include smach/i386/mach_i386.h

SYNOPSIS
kern_return_t386_io_port_add
(mach_port_t thread,
mach_port_t device)
DESCRIPTION

Thei386_io_port_addfunction adds a device to the 10 permission bitmap for a
thread, thereby permitting the thread to execute 10 instructions against the de-
vice.

SECURITY

The requesting task must holthsv_set thread_environmeipermission to
thread

PARAMETERS

thread
[in thread port] Thread whose permission bitmap is to be set.

device
[in device port] The device to which 10 instructions are to be permitted.

NOTES

Normally, the thread must have callé886 io_port_add for all devices to
which it will execute 10 instructions. Howevegpossessing send rights to the
iopl device port will cause th@pl device to be automatically added to the
threads IO map upon first attempted access. This is a backward compatibility
feature for the DOS emulator.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functionsi386_io_port_list i386_io_port_remove

378 Mach 3 Kernel Interfaces

i386_io_port_list

1386 _i0_port_list

Function — List devices permitting 10

LIBRARY
#include smach/i386/mach_i386.h

SYNOPSIS
kern_return_1386_io_port_list
(mach_port_t thread,
device_list_t* list,
mach_msg_type _number_t* count)
DESCRIPTION

The i386_io_port_list function returns a list of the devices named in the
threads 10 permission bitmap, namely those permitting 10 instructions to be ex-
ecuted against them.

SECURITY
The requesting task must hdlisv_get thread_infpermission tahread

PARAMETERS

thread
[in thread port] Thread whose permission list is to be returned

list
[out pointer to dynamic array of device ports] Device ports permitting
10

count
[out scalar] The number of ports returned

RETURN VALUE

Only generic errors apply.

RELATED INFORMATION

Functionsi386_io_port_add i386_io_port_remove

Mach 3 Kernel Interfaces 379

Intel 386 Support

1386_io_port_remove

Function — Disable |0 instructions against a device

LIBRARY
#include smach/i386/mach_i386.h

SYNOPSIS
kern_return_t386_io_port_remove
(mach_port_t thread,
mach_port_t device)
DESCRIPTION

The i386_io_port_remove function removes the specified device from the
threads IO permission bitmap, thereby prohibiting 10 instructions being execut-
ed against the device.

SECURITY

The requesting task must holthsv_set thread_environmeipermission to
thread

PARAMETERS

thread
[in thread port] Thread whose permission bitmap is to be cleared

device
[in device port] Device whose permission is to be revoked

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions:i386_io_port_add i386_io_port_list

380 Mach 3 Kernel Interfaces

i386_set_|dt

i386_set_|dt

Function — Set per-thread segment descriptors

LIBRARY
#include smach/i386/mach_i386.h

SYNOPSIS
[1] structdescriptor

[2] {

[3] unsigned int low_word

[4] unsigned int high_word

5] %

[6] typedef struct descriptor descriptor_t;

[7] typedef struct descriptor* descriptor_list_t;

kern_return_t386_set_Idt
(mach_port_t thread,
int first_selector
descriptor_list_t desc_list
mach_msg_type_number_t count)

DESCRIPTION

Thei386_set_ldtfunction allows a thread to have a private local descriptor ta-
ble (LDT) which allows its local segments to map various ranges of its address
space.

SECURITY

The requesting task must holthsv_set thread_environmeipermission to
thread

PARAMETERS

thread
[in thread port] Thread whose segment descriptors are to be set

first_selector
[in scalar] Selector value (segment register value) corresponding to the
first segment whose descriptor is to be set

desc_list
[pointer to in array oflescriptor_} Array of segment descriptors. The
following forms are permitted:

Mach 3 Kernel Interfaces 381

Intel 386 Support

count

Empty descriptorThe ACC_P flag (segment present) may or may
not be set.

ACC_CALL_GATE — Converted into a system call gate. The
ACC_P flag must be set.

All other descriptors must have both the ACC_P flag set and specify
user mode access (ACC_PL_U).

ACC_DATA
ACC_DATA_W
ACC_DATA E
ACC_DATA_EW
ACC_CODE
ACC_CODE_R
ACC_CODE_C
ACC_CODE_CR
ACC_CALL_GATE_16
ACC_CALL_GATE

[in scalar] Number of descriptors to be set

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functionsi386_get_Idt

382

Mach 3 Kernel Interfaces

APPENDIX E Data Structures

This appendix discusses the specifics of the various structures used as a part of the ker-
nel’'s various interfaces. This appendix does not discuss all of the various data types used
by the kernel’s interfaces, only the fields of the various structures used.

Mach 3 Kernel Interfaces 383

Data Structures

host_basic_info

Structure — Defines basic information about a host

SYNOPSIS
[1] structhost_basic_info
[2] {
[3] int max_cpus
[4] int avail_cpus
[5] vm_size_t memory_size
[6] cpu_type_t cpu_type
[7] cpu_subtype_t cpu_subtype
8] %
[9] typedef struct host_basic_info host_basic_info_data_t
[10] typedef struct host_basic_info* host_basic_info_t
DESCRIPTION
The host_basic_infostructure defines the basic information available about a
host.
FIELDS
max_cpus
Maximum possible CPUs for which kernel is configured
avail_cpus

Number of CPUs now available

memory_size
Size of memory, in bytes

cpu_type
CPU type

cpu_subtype
CPU sub-type

NOTES

This structure is machine word length specific because of the memory size re-
turned.

RELATED INFORMATION

Functions:host_info.

Data structureshost_load_infg host_sched_info.

384 Mach 3 Kernel Interfaces

host_load_info

host_load_info

Structure — Defines load information about a host

SYNOPSIS
[1] #defineCPU_STATE_USER 0
[2] #defineCPU_STATE_SYSTEM 1
[3] #defineCPU_STATE_IDLE 2
[4] structhost_load_info
[5] {
[6] long avenrur3];
[7] long mach_factoj3];
8 %
[9] typedef struct host_load_info host_load_info_data_{
[10] typedef struct host load_info* host_load_info_t
DESCRIPTION

The host_load_infostructure defines the loading information available about a
host. The information returned is exponential averages over three periods of
time: 5, 30 and 60 seconds.

FIELDS

avenrun
load average—average number of runnable processes divided by num-
ber of CPUs

mach_factor

The processing resources available to a new thread—the number of
CPUs divided by (1 + the number of threads)

RELATED INFORMATION
Functions:host_info.

Data structureshost_basic_infg host_sched_info.

Mach 3 Kernel Interfaces 385

Data Structures

host_sched_info

Structure — Defines scheduling information about a host

SYNOPSIS

[1] structhost_sched_info

(2] {

[3] int min_timeout

[4] int min_quantum

[5] %

[6] typedef struct host_sched_info host_sched_info_data ;t

[7] typedef struct host_sched_info* host_sched_info i
DESCRIPTION

The host_sched_infostructure defines the limiting scheduling information
available about a host.

FIELDS

min_timeout
Minimum time-out, in milliseconds

min_quantum

Minimum quantum (period for which a thread can be scheduled if unin-
terrupted), in milliseconds

RELATED INFORMATION

Functions:host_info.

Data structureshost_basic_infg host_load_info.

386 Mach 3 Kernel Interfaces

mach_access_vector

mach_access_vector

SYNOPSIS
[1] structmach_access_vector
2] {
[3] [* permissions*/
[4] unsigned char
(5]
[6]
[7]
(8]
(9]
[10]
[11]
[12] unsigned char
[13]
[14]
[15]
[16]
[17]
(18]
[19] /* allowed operations*/
[20] union mach_services
[21] %
[22] typedef struct mach_access_vector
[23] typedef struct mach_access_vector*
DESCRIPTION
In total it takes two 32 bit words.
FIELDS

Structure — Defines the mach access vector which defines the privileges sup-

ported by the Mach kernel.

av_can_receivel,
av_can_sendl,
av_hold_receivel,
av_hold_sendi,
av_hold_send_onc4,
av_interposel,
av_specifyl,
av_transfer_receivel;
av_transfer_rights: 1,
av_transfer_sendl,
av_transfer_send_oncég;
av_transfer_oall,
MOoSV_map_vm_regiot;
av_set_replyl;
av_unused?2;

av_service

mach_access_vector_data; t

mach_access_vector; t

The mach_access_vectostructure defines the permissions that one security
identifier has to another security identifi¢he Mach kernel IPC processing is
responsible for the enforcement of the permissions upon each attempted use of
a port right. In addition the Mach kernel service processing is responsible for
the enforcement of the services portion of an access vector before any service is
rendered. The general structure provides for 16 permissions and 48 operations.

av_can_receive

Indicates that the task has receive permission to the associated port

right.

Mach 3 Kernel Interfaces

387

Data Structures

av_can_send
Indicates that the task has permission to send on the associated port
right.

av_hold_receive
Indicates that the task has permission to hdREEEIVE right.

av_hold_send
Indicates that the task has permission to h&dEAD right.

av_hold_send_once
Indicates that the task has permission to h&&ERND ONCE right.

av_interpose
Indicates that the task has permission to receive messages that werg to
be received by another security identifier.

av_specify
Indicates that the task has permission to specify which security identjty
is to be associated with a message.

av_transfer_receive
Indicates that the task has permission to transRE@EIVE right.

av_transfer_send
Indicates that the task has permission to transgND right.

av_transfer_send_once
Indicates that the task has permission to trans&END ONCE right.

av_transfer_ool
Indicates that the task has permission to transfer out-of-line data iff a
message to the target port.

MOsV_map_vm_region
Controls default_pager_object ceate, vm_allocate,
vm_allocate_secure, vm_map

av_service
Defines the services that security policy allows the message receivef to
do for the message’s send€he kernel interprets this portion of the ac-
cess vector if and if only the kernel is the receiver of the message.

NOTES

The contents of an access vector are computed by the Security Server in agqree-
ment with a specific security policy and provided to the kernel via interactign
with the Security ServeiThe kernel may cache the access vectors to increape

388 Mach 3 Kernel Interfaces

mach_access_vector

performance. The kernel provides entries to ensure that the cached vectors may
be invalidated.

Functionsmach_msg_secure

Data Structuregnach_services .t

Mach 3 Kernel Interfaces 389

Data Structures

mach_device_services

Structure — Defines the services that a task is allowed to request of a dev
on a kernel device port.

SYNOPSIS
[1] structmach_device_services
(2] {
[3] unsigned char dsv_close_devicd,
[4] dsv_get_device_status,
[5] dsv_map_devicd,
[6] dsv_open_devicd,
[7] dsv_read_devicel,
[8] dsv_set_device filtet,
[9] dsv_set_device_statuk
[10] dsv_write_devicé;
[11] unsigned char dsv_pager_ctrl1,
[12] dsv_pad7
[13] }

[14] typedef struct mach_device_services mach_device_services_data; t
[15] typedef struct mach_device_services* mach_device_services; t

DESCRIPTION

The mach_device_servicestructure defines the services that a requesting tas
is allowed to make to a kernel device port.

SECURITY

The system security policy specifies the criteria for setting the fields in this velc—

tor. The kernel enforces the allowed operations on each device directed ke
request.

FIELDS

A TRUE value in a specific field indicates that requesting task is allowed
make the request identified in the field.

RELATED INFORMATION
Functions: See list above.

Data Structuresnach_access_vector, tnach_services .t

ce

k

nel

(0]

390 Mach 3 Kernel Interfaces

mach_generic_services

mach_generic_services

Structure — General data structure to set the maximum size of an allowed op-
erations vector.

SYNOPSIS
[1] structmach_generic_services
[2] {
[3] unsigned char ago_first_8_bits;
[4] unsigned char ago_second_8_bits;
[5] unsigned char ago_thrid_8 bits;
[6] unsigned char ago_forth_8_bits;
[7] unsigned char ago_fifth_8_bits;
[8] unsigned char ago_sixth_8 bits;
ol %

[10] typedef struct mach_generic_services mach_generic_services data; t
[11] typedef struct mach_generic_services* mach_generic_services;t

DESCRIPTION

The mach_generic_servicestructure established the maximum size of the ser-
vice vectors. This must be taken into consideration when defining the security
database for any system built on the DTOS kernel.

SECURITY
Not Applicable.

FIELDS

The fields of instances of allowed operations vectors are specified by the system
security policy.

RELATED INFORMATION

Functions:

Data Structuresnach_access_vector, andmach_services .t

Mach 3 Kernel Interfaces 391

Data Structures

mach_kernel_reply port_services

Structure — Defines the services that a task is allowed to request of a kergel
host server on a kernel host privilege port.

SYNOPSIS
[1] structmach_kernel_reply_port_services
(2] {
[3] unsigned char krpsv_provide_permissiod,
[4] krpsv_pad?7;
[5] X

[6] typedef struct mach_host_priv_services
mach_kernel_reply_port_services;

[7] typedef struct mach_host_priv_services*
mach_kernel_reply_port_services_;t

DESCRIPTION

The mach_kernel_reply_port_servicesstructure defines the services that a re;
guesting task is allowed to make on a kernel reply_port.

SECURITY

The system security policy specifies the criteria for setting the fields in this vgc-
tor. The kernel enforces the allowed operations on each reply port that it pfo-
vides to an external server as a result of a kernel outcall request. The followgng
list indicates which kernel entries are controlled by each service bit.

krpsv_provide_permission
Controls reply tesec_access_provideskrvice request

FIELDS

A TRUE value in a specific field indicates that the requesting task is allowed|to
make the request identified in the field.

RELATED INFORMATION

Functions: See list above.

Data Structuresnach_access_vector dndmach_services .t

392 Mach 3 Kernel Interfaces

mach_host_priv_services

mach_host_priv_services

Structure — Defines the services that a task is allowed to request of a kernel
host server on a kernel host privilege port.

SYNOPSIS
[1] structmach_host_priv_services
[2] {
[3] unsigned char hpsv_get_boot_infdl,
[4] hpsv_get_host_processol,
[5] hpsv_pset_ctrl_portl,
[6] hpsv_reboot_host,
[7] hpsv_set_default_memory_mr
[8] hpsv_set_timel,;
[9] hpsv_wire_threadl,
[10] hpsv_wire_vmi,;
[11] K

[12] typedef struct mach_host_priv_services mach_host_priv_services_data;t
[13] typedef struct mach_host_priv_services*mach_host_priv_services ;t

DESCRIPTION

The mach_host_priv_servicesstructure defines the services that a requesting
task is allowed to make on a kernel host control port.

SECURITY

The system security policy specifies the criteria for setting the fields in this vec-
tor. The kernel enforces the allowed operations on each host privileged port di-
rected kernel request.

FIELDS

A TRUE value in a specific field indicates that the requesting task is allowed to
make the request identified in the field.

RELATED INFORMATION

Functions: See list above.

Data Structuresnach_access_vector andmach_services_.t

Mach 3 Kernel Interfaces 393

Data Structures

mach_host_services

Structure — Defines the services that a task is allowed to request of a kergel
host server on a kernel host name port.

SYNOPSIS

[1] structmach_host_services

2] {
[3] unsigned char
[4]
(5]
[6]
[7]
[8]
[°]
[10]
[11] unsigned char
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19] unsigned char
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27] unsigned char
[28]
[29] X

[30] typedef struct mach_host_services
[31] typedef struct mach_host_services*

DESCRIPTION

The mach_host_servicestructure defines the services that a requesting task

hsv_create_pset,
hsv_flush_permission,
hsv_get default_pset nanig
hsv_get_host_infdL,
hsv_get_host_namé,
hsv_get_host_version,
hsv_get_timel,
hsv_pset_nameg,
hsv_get_audit_portl,
hsv_get_security_client_pott,
hsv_get_security_master_pott,
hsv_get_special_port,
hsv_set_audit_part,
hsv_set_security_client_poti,
hsv_set_security_master_patt
hsv_set_special_port,
hsv_get_crypto_portl,
hsv_get_host_control_port,
hsv_get _negotiation_port,
hsv_set_crypto_part,
hsv_set_negotiation_port,
hsv_get_authentication_port,
hsv_set_authentication_pott,
hsv_get_network_ss_port:1;
hsv_set _network_ss_pdrt
hsv_pad7;

mach_host_services_data; t
mach_host_services ;t

allowed to make on a kernel host name port.

SECURITY

is

The system security policy specifies the criteria for setting the fields in this vgc-

tor. The kernel enforces the allowed operations on each host name port dire

kernel request.

ted

394

Mach 3 Kernel Interfaces

mach_host_services

FIELDS

A TRUE value in a specific field indicates that the requesting task is allowed to
make the request identified in the field.

RELATED INFORMATION
Functions: See list above.

Data Structuresnach_access_vector dndmach_services .t

Mach 3 Kernel Interfaces 395

Data Structures

mach_mem_obj_services

Structure — Defines the services that a task is allowed to request of a kergel

host server on memory object ports.

SYNOPSIS
[1] structmach_mem_obj_services
(2] {
[3] unsigned char mosv_have_execute,
[4] mosv_have_read,
[5] mosv_havewrite: 1,
[6] mosv_unused1l,
[7] mosv_page_vm_regiof,
[8] mosv_pad3;
©1 k

[10] typedef struct mach_mem_obj_services mach_mem_obj_services_data; t
[11] typedef struct mach_mem_obj_services*mach_mem_obj_services;t

DESCRIPTION

The mach_mem_obj_servicesstructure defines the services that a requesting

task is allowed to make to a kernel processor port.

SECURITY

The system security policy specifies the criteria for setting the fields in this vgc-

tor. The kernel enforces the allowed operations on each memory object dired
kernel request.

FIELDS

A TRUE value in a specific field indicates that the requesting task is allowed
make the request identified in the field.

RELATED INFORMATION
Functions: See list above.

Data Structuresnach_access_vector, tnach_services .t

396 Mach 3 Kernel Interfaces

ted

Jto

mach_mem_ctrl_services

mach_mem_ctrl_services

Structure — Defines the services that a task is allowed to request on a kernel
host server on a memory control port.

SYNOPSIS

[1] structmach_mem_ctrl_services
[2] {
[3] unsigned char mcsv_change_page_locKs
[4] mcsv_destroy object,
[5] mcsv_get_attributed,,
[6] mcsv_invoke lock reque&t
[7] mcsv_make_page_preciods
[8] mcsv_provide datdl,
[9] mcsv_remove_pagk,

[10] mcsv_revoke_ibad;

[11] unsigned char mcsv_save_pageé,

[12] mcsv_set_attributeq,

[13] mcsv_set_ibac_port,

[14] mcsv_supply_ibad,

[15] osv_pad4;

[16] };

[17] typedef struct mach_mem_ctrl_services mach_mem_ctrl_services_data;t
[18] typedef struct mach_mem_ctrl_services*mach_mem_ctrl_services ;t

DESCRIPTION

The mach_mem_ctrl_servicesstructure defines the services that a requesting
task is allowed to make to a kernel memory control port.

SECURITY

The system security policy specifies the criteria for setting the fields in this vec-
tor. The kernel enforces the allowed operations on memory control port directed
kernel request.

FIELDS

A TRUE value in a specific field indicates that the requesting task is allowed to
make the request identified in the field.

RELATED INFORMATION

Functions: See list above

Data Structuresnach_access_vector, tnach_services .t

Mach 3 Kernel Interfaces 397

Data Structures

398 Mach 3 Kernel Interfaces

mach_msg_header

mach_msg_header

Structure — Defines the header portion for messages

SYNOPSIS
[1] typedef struct
[2] {
[3] mach_msg_bits t msgh_bits
[4] mach_msg_size_t msgh_size
[5] mach_port_t msgh_remote_part
[6] mach_port_t msgh_local_port
[7] mach_port_seqno_t msgh_seqgno
[8] mach_msg_id_t msgh_id

[9] } mach_msg_header ;t

DESCRIPTION

A Mach message consists of a fixed size message heaaler
mach_msg_header ,t followed by zero or more data items. Data items are
typed. Each item has a type descriptor followed by the actual data (or an ad-
dress of the data, for out-of-line memory regions).

There are two forms of type descriptors, naach_msg_type tand a

mach_msg_type_long .t The mach_msg_type long_ttype descriptor allows
larger values for these fields. Thesgtl_headeffield in the long descriptor is
only used for its in-line, long-form, and de-allocate bits.

FIELDS

msgh_bits
This field specifies the following properties of the message:

MACH_MSGH_BITS_REMOTE_MASK
Encodesmach_msg_type name_tvalues that specify the
port rights in themsgh_remote_porfield. The value must
specify a send or send-once right for the destination of the
message.

MACH_MSGH_BITS_LOCAL_MASK
Encodesmach_msg_type name_tvalues that specify the
port rights in themsgh_local_porfield. If the value doest’
specify a send or send-once right for the messagely port,
it must be zero and msgh_local port must be
MACH_PORT_NULL.

Mach 3 Kernel Interfaces 399

Data Structures

MACH_MSGH_BITS_COMPLEX
The complex bit must be specified if the message body con-
tains port rights or out-of-line memory regions. If it is not
specified, then the message body carries no port rights or
memory no matter what the type descriptors may seem to in-
dicate.

MACH_MSGH_BITS_REMOTH(its)
This macro returns the appropriateach_msg_type_name_t
values, given ansgh_bitssalue.

MACH_MSGH_BITS_LOCALpits)
This macro returns the appropriateach_msg_type_name_t
values, given ansgh_bitssalue.

MACH_MSGH_BITS ¢emote local)
This macro constructs a value fonsgh_bits given two
mach_msg_type name_values.

msgh_size
In the header of a received message, this field contains the message's
size. The message size, a byte qugnititgludes the message header
type descriptors, and in-line data. For out-of-line memory regions, the
message size includes the size of the in-line address, not the size of the
actual data region. There are no arbitrary limits on the size of a Mach
message, the number of data items in a message, or the size of the data
items.

msgh_remote_port
When sending, specifies the destination port of the message. The field
must carry a legitimate send or send-once right for a port. When re-
ceived, this field is swapped withsgh_local_port

msgh_local_port
When sending, specifies an auxiliary port right, which is conventional-
ly used as a reply port by the recipient of the message. The field must
carry a send right, a send-once right;, MACH_HORULL, or
MACH_PORI_DEAD. When received, this field is swapped with
msgh_remote_part

msgh_seqgno
The sequence number of this message relative to the port from which it
is received. This field is ignored on sent messages.

msgh_id
Not set or read by th@ach_msgcall. The conventional meaning is to |
convey an operation or function id.

400 Mach 3 Kernel Interfaces

mach_msg_header

NOTES

Simple messages are provided to handle in-line data. The sender copies the in-
line data into the message structure, and the receiver usually copies it out.

Non-simple messages are provided to handle out-of-line data. Out-of-line data
allows for the sending of port information or data blocks that are veayg tar

of variable size. The kernel maps out-of-line data from the address space of the
sender to the address space of the receiler kernel copies the data only if

the sender or receiver subsequently modifies it. This is an example of copy-on-
write data sharing.

RELATED INFORMATION
Functionsmach_msg mach_msg_receivemach_msg_send

Data Structuresnach_msg_typemach_msg_type_long

Mach 3 Kernel Interfaces 401

Data Structures

mach_msg_type

Structure — Defines the data descriptor for long data items in messages

SYNOPSIS
[1] typedef struct
(2] {
[3] unsigned int msgt_names,
[4] msgt_size8,
[5] msgt_numberl2,
[6] msgt_inline 1,
[7] msgt_longform1,
[8] msgt_deallocatel,
[9] msgt_unusedL,;

[10] } mach_msg_type it

DESCRIPTION
Each data item in a MACH IPC message has a type descriptor
mach_msg_type t or a mach_msg_type long_.t The

mach_msg_type long_type descriptor allows larger values for these fields.

FIELDS

msgt_name
Specifies the data's type. The following types are predefined:

MACH_MSG_TYPE_UNSTRUCTURED
un-interpreted data (32 bits)

MACH_MSG_TYPE_BIT
single bit

MACH_MSG_TYPE_BOOLEAN
boolean value (32 bits)

MACH_MSG_TYPE_INTEGER_16
16 bit integer

MACH_MSG_TYPE_INTEGER_32
32 bit integer

MACH_MSG_TYPE_CHAR
single character

MACH_MSG_TYPE_BYTE
8-hit byte

402 Mach 3 Kernel Interfaces

mach_msg_type

MACH_MSG_TYPE_INTEGER_8
8-bit integer

MACH_MSG_TYPE_REAL
floating value (32 bits)

MACH_MSG_TYPE_STRING
null terminated

MACH_MSG_TYPE_STRING_C
null terminated

MACH_MSG_TYPE_PORT_NAME
type of mach_port_t. This is the type of the name for a port,
not the type to specify if a port right is to be specified.

MACH_MSG_TYPE_MOVE_RECEIVE
move the name receive right

MACH_MSG_TYPE_MOVE_SEND
move the named send right

MACH_MSG_TYPE_MOVE_SEND_ONCE
move the named send-once right

MACH_MSG_TYPE_COPY_SEND
make a copy of the named send right

MACH_MSG_TYPE_MAKE_SEND
make a send right from the named receive right

MACH_MSG_TYPE_MAKE_SEND_ONCE
make a send-once right from the named send or receive right

The last six types specify port rights, and receive special treatment.
The type MACH_MSG_TYPE_PORNAME describes port right
names, when no rights are being transferred, but just names. For this
purpose, it should be used in preference to
MACH_MSG_TYPE_INTEGER_32.

msgt_size
Specifies the size of each datum, in bits. For examplandige _sizeof
MACH_MSG_TYPE_INTEGER_32 data is 32.

msgt_number
Specifies how many data elements comprise the data item. Zero is a le-
gitimate number The total length specified by a type descriptor is
(msgt_size* msgt_numbégr rounded up to an integral number of
bytes. In-line data is then padded to an integral number of long-words.

Mach 3 Kernel Interfaces 403

Data Structures

This ensures that type descriptors always start on long-word bound-
aries. It implies that message sizes are always an integral multiple of a
long-word’s size.

msgt_inline
When RALSE, specifies that the data actually resides in an out-of-line
region. The address of the data region follows the type descriptor in
the message bodyhemsgt namemsgt_sizeandmsgt_numbefields
describe the data region, not the address.

msgt_longform
Specifies, when TRUE, that this type descriptor is a
mach_msg_type_long_instead of anach_msg_type t.

msgt_deallocate
Used with out-of-line regions. When TRUE, it specifies the data region
should be de-allocated from the sensleaddress space (as if with
vm_deallocatg when the message is sent.

msgt_unused
Not used, should be zero.

RELATED INFORMATION

Functionsmach_msg mach_msg_receivemach_msg_send

Data Structuresnach_msg_heademach_msg_type_long

404

Mach 3 Kernel Interfaces

mach_msg_type_long

mach_msg_type long

Structure — Defines the data descriptor for long data items in messages

SYNOPSIS
[1] typedef struct
[2] {
[3] mach_msg_type t msgtl_header
[4] unsigned short msgtl_namg
[5] unsigned short msgtl_size
[6] unsigned int msgtl_number

[71 } mach_msg_type_long ;t

DESCRIPTION

Each data item has a type descriptama mach_msg type t or a
mach_msg_type_long .t The mach_msg_type long_ttype descriptor allows
larger values for these fields. Thesgtl_headefield in the long descriptor is
only used for its in-line, long-form, and de-allocate bits.

FIELDS

msgtl_header
A header in common with mach_msg_type t When the
msgt_longformbit in the header is TRUE, this type descriptor is a
mach_msg_type long t instead of a mach_msg type t The
msgt_namemsgt_size and msgt_numbeffields should be zero. In-
stead, mach_msg uses the following:msgtl_namge msgtl_size and
msgtl_numbefields.

msgtl_name
Specifies the data's type. The defined values are the same as those for
mach_msg_type

msgtl_size
Specifies the size of each datum, in bits. For examplensigd_sizeof
MACH_MSG_TYPE_INTEGER_32 data is 32.

msgtl_number
Specifies how many data elements comprise the data item. Zero is a le-
gitimate number The total length specified by a type descriptor is
(msgtl_size* msgtl_numbér rounded up to an integral humber of
bytes. In-line data is then padded to an integral number of long-words.
This ensures that type descriptors always start on long-word bound-
aries. It implies that message sizes are always an integral multiple of a
long-word’s size.

Mach 3 Kernel Interfaces 405

Data Structures

RELATED INFORMATION
Functionsmach_msg mach_msg_receivemach_msg_send

Data Structuresnach_msg_headegmach_msg_type

406 Mach 3 Kernel Interfaces

mach_port_status

mach_port_status

Structure — Defines information for a port

SYNOPSIS
[1] structmach_port_status
[2] {
[3] mach_port_t
[4] mach_port_seqno_t
[5] mach_port_mscount_t
[6] mach_port_msgcount_t
[7] mach_port_msgcount_t
[8] mach_port_rights_t
[9] boolean_t
[10] boolean_t
[11] boolean_t
(12] %
[13] typedef struct mach_port_status

DESCRIPTION

Themach_port_statusstructure defines information about a port.

FIELDS

mps_pset
Containing port set

mps_seqno

mps_pset
mps_seqno
mps_mscount
mps_glimit
mps_msgcount
mps_sorights
mps_srights
mps_pdrequest
mps_nsrequest

mach_port_status t

Current sequence number for the port.

mps_mscount
Make-send count

mps_glimit
Queue limit

mps_msgcount
Number in the queue

mps_sorights

How many send-once rights

mps_srights
True if send rights exist

Mach 3 Kernel Interfaces

407

Data Structures

mps_pdrequest
True if there is a port-deleted requested

mps_nsrequest
True if no-senders requested

RELATED INFORMATION
Functionsmach_port_get_receive_status.

408 Mach 3 Kernel Interfaces

mach_proc_services

mach_proc_services

Structure — Defines the services that a task is allowed to request of a kernel
host server on a kernel processor port.

SYNOPSIS
[1] structmach_proc_services
2] {
[3] unsigned char psv_assign_processor_to skt
[4] psv_get processor_assignmeht
[5] psv_get processor_infa,
[6] psv_may_control_processar
[7] psv_pad4;
8 %
[9] typedef struct mach_proc_services mach_proc_services_data ;t

[10] typedef struct mach_proc_services* mach_proc_services ;t

DESCRIPTION

The mach_proc_servicesstructure defines the services that a requesting task is
allowed to make to a kernel processor self port.

SECURITY

The system security policy specifies the criteria for setting the fields in this vec-
tor. The kernel enforces the allowed operations on each processor port directed
kernel request.

FIELDS

A TRUE value in a specific field indicates that the requesting task is allowed to
make the request identified in the field.

RELATED INFORMATION

Functions: See list above.

Data Structuresnach_access_vector, andmach_services .t

Mach 3 Kernel Interfaces 409

Data Structures

mach_proc_set_services

Structure — Defines the services that a task is allowed to request of a ker
host server on a kernel processor set port.

SYNOPSIS
[1] structmach_proc_set_services
(2] {
[3] unsigned char pssv_assign_processdr,
[4] pssv_assign_task,
[5] pssv_assign_thread,
[6] pssv_chg_pset_max_pti,
[7] pssv_define_new_scheduling_pality
[8] pssv_destroy pset,
[9] pssv_get pset_infd,
[10] pssv_invalidate_scheduling_policy,
[11] pssv_observe_pset_processes
[12] psv_pad5;
[13] %

[14] typedef struct mach_proc_set_services mach_proc_set services_data; t
[15] typedef struct mach_proc_set_services* mach_proc_set services;t

DESCRIPTION

The mach_proc_set_servicestructure defines the services that a requesting

task is allowed to make to a kernel processor set port.

SECURITY

pel

The system security policy specifies the criteria for setting the fields in this vgc-

tor. The kernel enforces the allowed operations on each processor set dire
kernel request.

FIELDS

A TRUE value in a specific field indicates that the requesting task is allowed
make the request identified in the field.

RELATED INFORMATION
Functions: See list above.

Data Structuresnach_access_vector dndmach_services .t

410 Mach 3 Kernel Interfaces

cted

Jto

mach_services

mach_services

Structure — Defines service vectors that control the services that task is al-
lowed to request on kernel ports.

SYNOPSIS
[1] unionmach_services
[2] {
[3] mach_device_services data t dev_sy
[4] mach_host_priv_services_data_tost_priv_sy
[5] mach_host_services_data_t host_sy
[6] mach_mem_obj_services_data_tmem_obj_sv
[7] mach_mem_ctrl_services_data_tmem_ctrl_sy
[8] mach_proc_services data t proc_sy
[9] mach_proc_set_services_data_tproc_set sy
[10] mach_task _services data t task_sy
[11] mach_thread_services_data_t thread_sy
[12]
[13] mach_generic_services_data_t gen_sy
(14] %
[15]
[16] typedef union mach_services mach_services_data_t;
[17] typedef union mach_services *mach_servicest;
DESCRIPTION

Themach_serviceaunion defines the classes of services that the kernel will en-
force as well as the general operation vector which may be used by non kernel
system servers. The interpretation of the fields of this vector are specified by the
system security policy and enforced by the receiver of the associated port.

SECURITY

The service field in the access vector allows the system security policy to speci-
fy which services a specific task may make to a particular port. It is the responsi-
bility of a port’s receiver to enforce the information provided in the allowed
operations portion of an access vecidris provides two levels of control over
operations. First it is possible to deny a task permission to send a message to a
port, and second it is possible to control which services will be allowed.

FIELDS

dev_sv
Bit vector indicating which device port directed service requests the re-
guesting task is allowed to make.

Mach 3 Kernel Interfaces 411

Data Structures

RELATED INFORTION

host_priv_sv
Bit vector indicating which host priv port directed service requests th
requesting task is allowed to make.

host_sv
Bit vector indicating which host port directed service requests the r
guesting task is allowed to make.

mem_obj_sv
Bit vector indicating which object port directed service requests the r
guesting task is allowed to make.

mem_ctrl_sv
Bit vector indicating which memory control port directed service re
guests the requesting task is allowed to make.

proc_sv
Bit vector indicating which processor port directed service requests t
requesting task is allowed to make.

proc_set_sv
Bit vector indicating which processor set port directed service reques
the requesting task is allowed to make.

task_sv
Bit vector indicating which task port directed service requests the r
guesting task is allowed to make.

thread_sv
Bit vector indicating which thread port directed service requests the 1
guesting task is allowed to make.

gen_sv
A port specific bit vector indicating which services the requesting ta
is allowed to make to the port. The purpose of this field is to determi
the maximum number of bits in a service vector.

Functions: None.

Data Structures: mach_device_services, mach_host_priv_services,
mach_host_services mach_mem_obj_services, mach_mem_ctrl_services,
mach_proc_services, mach_pc_set services, mach_task serviceand

D
]

D
i

192
I

k
e

mach_thread_services

412

Mach 3 Kernel Interfaces

mach_task_services

mach_task services

Structure — Defines the services that a task is allowed to request of a kernel
host server on a kernel task port.

SYNOPSIS

[1] structmach_task_services

[2] {

[3] unsigned char tsv_access_mach_nattribute

[4] tsv_add namel,

[5] tsv_add_threadl,

[6] tsv_add_thread_securg,

[7] tsv_allocate_vm_regiori,

[8] tsv_alter_pns_infol,

[9] tsv_assign_task to psé,
[10] tsv_chg_vm_region_prot;
[11] unsigned char tsv_chg_task_priorityl,
[12] tsv_copy_vmil,

[13] tsv_create taskl,

[14] tsv_create task securg,
[15] tsv_deallocate_vm_regiod,
[16] tsv_extract_right1,

[17] tsv_get_emulatiar,

[18] tsv_get_task assignmeit
[19] unsigned char tsv_get_task boot port,
[20] tsv_get_task exception_polt
[21] tsv_get_task infdl,

[22] tsv_get_task_kernel_po,
[23] tsv_get_task thread§,

[24] tsv_get_vm_region_infd,
[25] tsv_get_vm_statistic§,

[26] tsv_lookup_pos: 1;

[27] unsigned char tsv_manipulate_port_set,
[28] tsv_observe_ pns_infa,

[29] tsv_port_renamel,

[30] tsv_read_vm_regiorl,

[31] tsv_register_notificatianl,
[32] tsv_register_portsl,

[33] tsv_remove_namé,

[34] tsv_resume_task;

[35] unsigned char tsv_sample_task,

[36] tsv_set_emulatiortL,

[37] tsv_set_vm_region_inherit,
[38] tsv_set rasl,

[39] tsv_set task boot port,
[40] tsv_set_task_exception_patt
[41] tsv_set task kernel poft,
[42] tsv_suspend_task;

Mach 3 Kernel Interfaces 413

Data Structures

[43] unsigned char tsv_terminate_task,

[44] tsv_wire_vm_for_tasi,

[45] tsv_write_vm_regionl,

[46] tsv_cross_context_create,

[47] tsv_cross_context_inherit,

[48] tsv_chg_sidl,

[49] tsv_make_sidl,

[50] tsv_transition_sid1,

[51] %

[52] typedef struct mach_task services mach_task_services data;t

[53] typedef struct mach_task services* mach_task services ;t
DESCRIPTION

The mach_task_servicestructure defines the services that a requesting task|is
allowed to make on a kernel task port.

SECURITY

The system security policy specifies the criteria for setting the fields in this vgc-
tor. The kernel enforces the allowed operations on each task directed kernel re-
quest.

FIELDS

A TRUE value in a specific field indicates that the requesting task is allowed|to
make the request identified in the field.

RELATED INFORMATION

Functions: See list above.

Data Structuresnach_access_vector andmach_services .t

414 Mach 3 Kernel Interfaces

mach_thread_services

mach_thread_services

Structure — Defines the services that a task is allowed to request of a kernel
host server on a kernel thread port.

SYNOPSIS
[1] structmach_thread_services

2] {
[3] unsigned char
[4]
(5]
[6]
[7]
(8]
(9]
(10]
[11] unsigned char
[12]
[13]
[14]
[15]
[16]
[17]
(18]
[19] unsigned char
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27] unsigned char
(28]
[29]
[30] X

[31] typedef struct mach_thread_services
[32] typedef struct mach_thread_services*

DESCRIPTION

thsv_abort_threadl,
thsv_abort_thread depress,
thsv_assign_thread_to psét
thsv_can_swtchl,
thsv_can_swtch_pril,
thsv_depress_pril,
thsv_get_thread_assignmemi
thsv_get thread_exception_patt
thsv_get_thread_infd,
thsv_get_thread_kernel_pott,
thsv_get_thread_statk
thsv_initate_securg,
thsv_raise_exceptior,
thsv_resume_thread,
thsv_sample_thread,
thsv_set _max_thread_prioity;
thsv_set thread_exception_patt
thsv_set thread_kernel_potft,
thsv_set_thread_policyt,
thsv_set_thread_priorityl,
thsv_set thread_staté,
thsv_suspend_thread,
thsv_switch_threadl,
thsv_terminate_thread,;
thsv_wait_evcl;
thsv_wire_thread_into_memory;
thsv_padb;

mach_thread_services_data ;t
mach_thread_services ;t

The mach_thread_servicesstructure defines the services that a requesting task
is allowed to make on a kernel thread port.

Mach 3 Kernel Interfaces

415

Data Structures

SECURITY

The system security policy specifies the criteria for setting the fields in this vgc-
tor. The kernel enforces the allowed operations on each thread port directed ker-
nel request.

FIELDS

A TRUE value in a specific field indicates that the requesting task is allowed|to
make the request identified in the field.

RELATED INFORMATION
Functions: See list above.

Data Structuresnach_access_vector andmach_services .t

416 Mach 3 Kernel Interfaces

mapped_time_value

mapped_time_value

Structure — Defines format of kernel maintained time in the mapped clock de-

vice

SYNOPSIS

[1] structmapped time_value

[2] {

[3] long seconds

[4] long microseconds

[5] long check_seconds

[6] %

[7] typedef struct mapped_time_value mapped_time_value_t
DESCRIPTION

The mapped_time_valuestructure defines the format of the current-time struc-
ture maintained by the kernel and visible by mappdeyice_mayp the “time”
pseudo-device. The data in this structure is updated at every clock interrupt. It
contains the same value that would be returnelolsy get_time

FIELDS

seconds
Seconds since system initialization

microseconds
Microseconds in the current second

check_seconds
A field used to synchronize with the kernel’'s setting of the time.

NOTES

Because of the race between the referencing of these multiple fields and the ker-
nel’'s setting them, they should be referenced as follows:

[1] do

[2] {

[3] secs= mtime — seconds

[4] usecs= mtime — microseconds

[5] } while (secs&= mtime - check secon(ls

RELATED INFORMATION

Functions:device_maphost_adjust_time host_get_time host_set_time.

Mach 3 Kernel Interfaces 417

Data Structures

processor_basic_info

Structure — Defines the basic information about a processor.

SYNOPSIS
[1] structprocessor_basic_info
2] {
[3] cpu_type_t cpu_type
[4] cpu_subtype_t cpu_subtype
[5] boolean _t running
[6] int slot_num
[7] boolean_t is_master
8 %

[9] typedef struct processor_basic_info* processor_basic_info_;t

DESCRIPTION

The processor_basic_infestructure defines the information available about a
processor slot.

FIELDS

cpu_type
Type of CPU

cpu_subtype
Sub-type of CPU

running
True if the CPU is running

slot_num
Slot number of the CPU

is_master
True if this is the master processor

RELATED INFORMATION

Functionsprocessor_infa

418

Mach 3 Kernel Interfaces

processor_set_basic_info

processor_set_basic_info

Structure — Defines the basic information about a processor set.

SYNOPSIS
[1] structprocessor_set basic_info
2] {
[3] int processor_count
[4] int task_count
[5] int thread_count
[6] int load_average
[7] int mach_factoy
8 %

[9] typedef struct processor_set basic_info*processor_set basic_info;t

DESCRIPTION

The processor_set_basic_infagtructure defines the basic information available
about a processor set.

FIELDS

processor_count
Number of processors in this set

task_count
Number of tasks currently assigned to this processor set

thread_count
Number of threads currently assigned to this processor set

load_average
Average number of runnable processes divided by number of CPU

mach_factor

The processing resources available to a new thread — the number of
CPUs divided by (1 + the number of threads)

RELATED INFORMATION
Functionsprocessor_set_info

Data Structuregrocessor_set_sched_info

Mach 3 Kernel Interfaces 419

Data Structures

processor_set sched_info

Structure — Defines the scheduling information about a processor set.

SYNOPSIS
[1] structprocessor_set_sched_info
(2] {
[3] int policies
[4] int max_priority;
[5] X

[6] typedef struct processor_set_sched_infoprocessor_set_sched_info; t

DESCRIPTION

The processor_set_sched_infetructure defines the global scheduling informa-
tion available about a processor set.

FIELDS
policies
Number of Allowed policies. |
max_priority
Maximum scheduling priority for new threads. |

RELATED INFORMATION

Functionsprocessor_set_info

Data Structuregrocessor_set_basic_info

420 Mach 3 Kernel Interfaces

sampled_pc

sampled _pc

Structure — Defines PC sampling information

SYNOPSIS
[1] structsampled_pc
[2] {
[3] unsigned int id;
[4] vm_offset t pc;
[5] sampled_pc_flavor t sampletype
[6] %
[7] typedef struct sampled_pc sampled_pc_t
[8] typedef struct sampled_pc* sampled_pc_array_t
DESCRIPTION
The sampled_pcstructure defines the information provided by the pc sampling
routines.
FIELDS
id
The sampled thread id.
pc
The sampled pc value.
sampletype

The sample flavor.

RELATED INFORMATION

Functions: task_disable_pc_sampling task_enable_pc_sampling
task_get_sampled_pc thread_disable_pc_sampling
thread_enable _pc_samplingthread_get sampled_pc

Data Structuressampled_pc_flavor t

Mach 3 Kernel Interfaces 421

Data Structures

security_id_t

Structure — Defines the Security Identifier (SID) structure

SYNOPSIS

[1] structsecurity id

(2] {

[3] mandatory _id_t mid;

[4] auth_id_t aid;

[5] X

[6] typedef struct security_id security_id_t;
DESCRIPTION

The security_id structure defines the label that is associated with subjects ahd

objects in the system.

FIELDS
mid
The mandatory identifier (MID) is a 64-bit field. Its 10 most significan
bits define the classifier and can be used by user applications to m
age their own objects. The remaining 54 bits are reserved by the Sec
ty Server and no structure can be assumed about them.
aid

The authentication identifier (AID) is a 32-bit field.

RELATED INFORMATION

Functions: SSI_compute_access_vector SSI_context_to_mid,
SSI_short_context_to_mid, SSI_mid_to_context,
SSI_mid_to_short_context, task_change_sid&ny function with_secue suf-

fix.

422 Mach 3 Kernel Interfaces

hn-
iri-

task_basic_info

task _basic_info

Structure — Defines basic information for tasks

SYNOPSIS
[1] structtask basic_info
[2] {
[3] int suspend_count
[4] int base_priority
[5] vm_size_t virtual_size
[6] vm_size t resident_size
[7] time_value _t user_time
[8] time_value _t system_time
©l %
[10] typedef struct task basic_info* task_basic_info_t
DESCRIPTION

Thetask_basic_infostructure defines the basic information array for tasks. The
task_info function returns this array for a specified task.

FIELDS

suspend_count
The current suspend count for the task.

base_priority
The base scheduling priority for the task.

virtual_size
The number of virtual pages for the task.

resident_size
The number of resident pages for the task

user_time
The total user run time for terminated threads within the task.

system_time
The total system run time for terminated threads within the task.

RELATED INFORMATION
Functionstask_info.

Data Structuredask_thread_times_infa

Mach 3 Kernel Interfaces 423

Data Structures

task_basic_secure_info

Structure — Defines basic information including security information for tasks

SYNOPSIS

[1] structtask_basic_secure_info
(2] {
[3] int suspend_count
[4] int base_priority
[5] vm_size t virtual_size
[6] vm_size t resident_size
[7] time_value t user_time
[8] time_value_t system_time
[9] security_id_t subj_sid

[10] %

[11] typedef struct task_basic_secure_info* task_basic_secure_info ;t

DESCRIPTION

The task_basic_secure_infostructure defines the basic information arriay
cluding the tasls subj_sid for a task. Theask_info function returns this array
for a specified task.

FIELDS

suspend_count
The current suspend count for the task.

base_priority
The base scheduling priority for the task.

virtual_size
The number of virtual pages for the task.

resident_size
The number of resident pages for the task

user_time
The total user run time for terminated threads within the task.

system_time
The total system run time for terminated threads within the task.

subj_sid
The task’s associated security identifier.

424 Mach 3 Kernel Interfaces

task_basic_secure_info

RELATED INFORMATION
Functionstask_info.

Data Structuredask_thread_times_infa

Mach 3 Kernel Interfaces 425

Data Structures

task_thread_times_info

Structure — Defines thread execution times information for tasks

SYNOPSIS
[1] structtask_thread_times_info
[2] {
[3] time_value _t user_time
[4] time_value_t system_time
[5] %

[6] typedef struct task thread_times_info* task_thread_times_info_t

DESCRIPTION

The task_thread_times_info structure defines thread execution time statistics
for tasks. Thetask_info function returns these times for a specified task. The
thread_info function returns this information for a specific thread.

FIELDS

user_time
Total user run time for live threads.

system_time
Total system run time for live threads.

RELATED INFORMATION

Functionstask_info.

Data Structuredask_basic_info, thread_info

426 Mach 3 Kernel Interfaces

thread_basic_info

thread_basic_info

Structure — Defines basic information for threads

SYNOPSIS
[1] structthread_basic_info
[2] {
[3] time_value _t user_time
[4] time_value _t system_time
[5] int Ccpu_usagp
[6] int base_priority
[7] int cur_priority;
[8] int run_state
[9] int flags
[10] int suspend_count
[11] long sleep_time
[12] };
[13] typedef struct thread_basic_info* thread_basic_info_t;
DESCRIPTION

Thethread_basic_infostructure defines the basic information array for threads.
Thethread_info function returns this array for a specified thread.

FIELDS

user_time
The total user run time for the thread.

system_time
The total system run time for the thread.

cpu_usage
Scaled CPU usage percentage for the thread.

base_priority
The base scheduling priority for the thread.

cur_priority
The current scheduling priority for the thread.

run_state
The thread’s run state. Possible values are:

TH_STATE_RUNNING
The thread is running normally.

Mach 3 Kernel Interfaces 427

Data Structures

TH_STATE_STOPPED
The thread is stopped.

TH_STATE_WAITING
The thread is waiting normally.

TH_STATE_UNINTERRUPTIBLE
The thread is in an un-interruptible wait state.

TH_STATE_HALTED
The thread is halted at a clean point.

flags
Swapl/idle flags for the thread. Possible values are:

TH_FLAGS_SWAPPED
The thread is swapped out.

TH_FLAGS_IDLE
The thread is an idle thread.

suspend_count
The current suspend count for the thread.

sleep_time
The number of seconds that the thread has been sleeping.

RELATED INFORMATION
Functionsthread_info.

Data Structureghread_sched_info

428 Mach 3 Kernel Interfaces

thread_sched_info

thread_sched_info

Structure — Defines scheduling information for threads

SYNOPSIS

[1] structthread_sched_info

[2] {

[3] int policy;

[4] int datg

[5] int base_priority

[6] int max_priority,

[7] int cur_priority;

[8] boolean_t depressed

[9] int depress_priority

[10] };

[11] typedef struct thread_sched_info* thread_sched_info_t
DESCRIPTION

The thread_sched_infostructure defines the scheduling information array for

threads. Thehread_info function returns this array for a specified thread.

FIELDS

policy
Scheduling policy in effect

data
Associated data for the scheduling policy

base_priority
Base scheduling priority

max_priority
Maximum scheduling priority

cur_priority
Current scheduling priority

depressed
True if scheduling priority is depressed

depress_priority
Scheduling priority from which depressed

Mach 3 Kernel Interfaces 429

Data Structures

RELATED INFORMATION
Functionsthread_info.

Data Structureghread_basic_infa

430 Mach 3 Kernel Interfaces

time_value

time_value

Structure — Defines format of system time values

SYNOPSIS

[1] structtime_value

[2] {

[3] long seconds

[4] long microseconds

[51 %

[6] typedef struct time_value time_value_t
DESCRIPTION

Thetime_value structure defines the format of the time structure supplied to or
returned from the kernel.

FIELDS

seconds
Seconds since system initialization

microseconds
Microseconds in the current second

RELATED INFORMATION
Functionshost_adjust_time host_get_time host_set_time.

Mach 3 Kernel Interfaces 431

Data Structures

vm_ statistics

Structure — Defines statistics for the kernel’'s use of virtual memory

SYNOPSIS
[1] structvm_statistics
(2] {
[3] long
[4] long
[5] long
[6] long
[7] long
[8] long
[9] long
[10] long
[11] long
[12] long
[13] long
[14] long
[15] long
[16] };

[17] typedef struct vm_statistics*

DESCRIPTION

pagesize
free_count
active_count
inactive_count
wire_counf
zero_fill_courtt
reactivations
pageins
pageouts
faults
cow_faults
lookups

hits;

vm_statistics_t

Thevm_statisticsstructure defines the statistics available on the kerosg of
virtual memory The statistics record virtual memory usage since the kernel was

booted.

You can also finghagesizéby using the global variablen_page_sizeThis vari-
able is set at task initialization and remains constant for the life of the task.

For related information for a specific task, seetéis& basic_infostructure.

FIELDS

pagesize

The virtual page size, in bytes.

free_count

The total number of free pages in the system.

active_count

The total number of pages currently in use and pageable.

inactive_count

The number of inactive pages.

432 Mach 3 Kernel Interfaces

vm_statistics

wire_count
The number of pages that are wired in memory and cannot be paged
out.

zero_fill_count
The number of zero-fill pages.

reactivations
The number of reactivated pages.

pageins
The number of requests for pages from a pager (such as the i-node pag-
er).

pageouts
The number of pages that have been paged out.

faults
The number of times them_fault routine has been called.

cow_faults
The number of copy-on-write faults.

lookups
The number of object cache lookups.

hits
The number of object cache hits.

RELATED INFORMATION
Functionstask_info, vm_statistics

Data Structuregask_basic_infa

Mach 3 Kernel Interfaces 433

Data Structures

434 Mach 3 Kernel Interfaces

aprenDIX F Error Return dlues

This appendix lists the various kernel return values.

Error Code Format

An error code has the following format:
system code (6 bits). Thegr_get_system(err) macro extracts this field.
subsystem code (12 bits). The_get_sub(err) macro extracts this field.
error code (14 bits). Therr_get _code(err) macro extracts this field.

The various system codes are:
err_kern—kernel
err_us— user space library
err_server— user space servers
err_mach_ipc— Mach-IPC errors
err_local — user defined errors

A typical user error code definition would be:
#define SOMETHING_WRONGrr_local | err_sub (13) | 1

Mach 3 Kernel Interfaces 435

Error Return Values

MIG Stub Errors

MIG_ARRAY_TOO_ LARGE
User specified array not large enough to hold returned array

MIG_BAD_ARGUMENTS

Message receiver found an invalid message size, invalid header fields or invalid
descriptors. This could only happen if an invalidly formatted message (i.e., one
that did not pass through Mach IPC) were passed to a MIG de-multiplexing rou-
tine.

MIG_BAD_ID

Bad message ID. This is only returned by MIG de-multiplexing routines when
the message ID in the supplied message is not handled by that routine.

MIG_REPLY_MISMATCH

The message ID in a reply message is not 100 more than the message ID of the
reguest message.

MIG_SERVER_DIED

Message recipient no longer exists, or the recipient destroyed the request mes-
sage without replying.

MIG_TYPE_ERROR
The wrong number or size of data or rights was received.

Base IPC Status

MACH_MSG_SUCCESS
Normal IPC success. This is the same value as KERN_SUCCESS.

MACH_MSG_IPC_KERNEL
(mask bit) Kernel resource shortage handling an IPC capability.

MACH_MSG_IPC_SPACE
(mask bit) No room in IPC name space for another capability name.

436 Mach 3 Kernel Interfaces

IPC Send Errors

MACH_MSG_VM_KERNEL
(mask bit) Kernel resource shortage handling out-of-line memory.

MACH_MSG_VM_SPACE
(mask bit) No room in VM address space for out-of-line memory.

MACH_MSG_INSUFFICIENT_PERMISSION
(mask bit) A permission check failure prevented the reception of a port right.

IPC Send Errors

The following errors can occur whenach_msgis used with the MACH_SEND_MSG
option. This is also the case for all function interfaces.

MACH_SEND_INTERRUPTED
Message send interrupted.

MACH_SEND_INVALID_DATA
Message buffer is unreadable.

MACH_SEND_INVALID_DEST

The destination port name in the message is MACH TPORILL,
MACH_PORI_DEAD, names a null or dead right, names a port set or is a right
whose type (receive, send or send-once) does not match the type specified.

MACH_SEND_INVALID_HEADER
A field in the message header had a bad value.

MACH_SEND_INVALID_MEMORY

An out-of-line memory region does not exist in the address space or is not read-
able.

MACH_SEND_INVALID_NOTIFY

The notify port name (MACH_SEND_CANCEL) specifiedniach_msgis not
a receive right.

Mach 3 Kernel Interfaces 437

Error Return Values

MACH_SEND_INVALID_REPLY

The reply port name in the message is MACH_FPAOBEAD, names a null
right, names a port set or is a right whose type (receive, send or send-once) does
not match the type specified.

MACH_SEND_INVALID_RIGHT

A port name in the message body is MACH_HOBEAD, names a null right,
names a port set or is a right whose type (receive, send or send-once) does not
match the type specified.

MACH_SEND_INVALID_TYPE
Invalid message type specification.

MACH_SEND_MSG_TOO_SMALL
Message buffer doesn’t contain a complete message.

MACH_SEND_NO_BUFFER
No kernel message buffer is available.

MACH_SEND_NO_NOTIFY
Resource shortage; can't request message-accepted notification.

MACH_SEND_NOTIFY_IN_PROGRESS
Message-accepted notification already pending.

MACH_SEND_TIMED_OUT
Message not sent before time-out expired.

MACH_SEND_WILL_NOTIFY
A message-accepted notification will be generated.

IPC Receive Errors

The following errors can be returned bsnach_msg when used with the
MACH_RCV_MSG option. They can occur for kernel function interfaces.

MACH_RCV_BODY_ERROR
Error receiving kernel message body. See special bits.

438 Mach 3 Kernel Interfaces

Generic Kernel Errors

MACH_RCV_HEADER_ERROR
Error receiving message header. See special bits.

MACH_RCV_IN_SET
The receive port name specifiedtach_msgis a member of a port set.

MACH_RCV_INTERRUPTED
A software interrupt occurred.

MACH_RCV_INVALID DATA
The message buffer was not writable.

MACH_RCV_INVALID_NAME

The receive port name specified mach_msgis MACH_POR _NULL,
MACH_PORI_DEAD, names a null or dead right or is a right whose type (re-
ceive, send or send-once) does not match the type specified.

MACH_RCV_INVALID_NOTIFY

The notify port name (MACH_RCV_NOTIFY) specified nmach_msgis not a
receive right.

MACH_RCV_PORT_CHANGED
Receive right specified tmach_msgwas moved into a set during the receive.

MACH_RCV_PORT _DIED
Receive right (or set) specifiedritach_msgwas sent away/died during receive.

MACH_RCV_TIMED_OUT
A message was not received within the time-out value.

MACH_RCV_TOO_LARGE
Message buffer is not large enough for the message.

Generic Kernel Errors

KERN_SUCCESS
Successful completion

Mach 3 Kernel Interfaces 439

Error Return Values

KERN_INSUFFICIENT _PERMISSION
The requesting task does not have sufficient permission to make the request.

KERN_INVALID_ARGUMENT
The function requested was not applicable to this type of object.

KERN_INVALID_CAPABILITY
The supplied right is dead, null or not of the proper type.

KERN_INVALID_VALUE

A parameters value was out of range (or possibly ill-formed). Specific error re-
turn values are returned if the parameteralue is properly formed and in
range, but not a usable value at this time.

KERN_RESOURCE_SHORTAGE

A system resource could not be allocated to fulfill this request. This failure may
not be permanent.

Port Manipulation Errors

KERN_INVALID NAME
The port name doesn't denote a right in the task.

KERN_INVALID_RIGHT
The port name denotes a right, but not an appropriate right.

KERN_NAME_EXISTS
The port name already denotes a right in the task.

KERN_NO_SPACE
The task’s port name space is full.

KERN_NOT IN_SET
The receive right is not a member of a port set.

KERN_RIGHT_EXISTS
The task already has send or receive rights for the port under another name.

440 Mach 3 Kernel Interfaces

Virtual Memory Manipulation Errors

KERN_UREFS_OVERFLOW
Operation would overflow limit on user-references.

Virtual Memory Manipulation Errors

KERN_INVALID_ADDRESS
Specified virtual address is not currently valid.

KERN_MEMORY_ERROR

During a page fault, the memory object indicated that the data could not be re-
turned. This failure may be temporary; future attempts to access this same data
may succeed, as defined by the memory object.

KERN_MEMORY_FAILURE

During a page fault, the @et address refers to a memory object that has been
destroyed. This failure is permanent.

KERN_NO_SPACE

The task$ address space is full (not ficient free space) or the specified ad-
dress range is already in use.

KERN_PROTECTION_FAILURE

Specified memory is valid, but does not permit the required forms of access or
the protection being requested exceeds that permitted.

Random Kernel Errors

EML_BAD_CNT

Invalid syscall number specified for an emulation vector entry

EML_BAD_TASK

Target of a syscall emulation vector manipulation call is not a task

KERN_ABORTED
The operation was aborted.

Mach 3 Kernel Interfaces 441

Error Return Values

KERN_FAILURE
A catch-all error for implementation dependent failures.

KERN_INVALID_HOST
An argument supplied to assert system privilege was not a host control port.

KERN_INVALID_TASK
Target task isn’t an active task.

Kernel Device Errors

D_SUCCESS
Normal device return. This is the same value as KERN_SUCCESS.

D_ALREADY_OPEN
Exclusive-use device already open

D_DEVICE_DOWN
Device has been shut down

D_INVALID_OPERATION
No filter port was specified.

D_INVALID_RECNUM
Invalid record (block) number

D_INVALID_SIZE
Invalid 10 size

D_10_ERROR
Hardware 10 error

D_NO_SUCH_DEVICE
No device with that name, or the device is not operational.

442 Mach 3 Kernel Interfaces

Kernel Device Errors

D_OUT_OF_BAND
Out-of-band condition occurred on device (such as typing control-C)

D_READ_ONLY
Data cannot be written to this device.

D_WOULD BLOCK
Operation would block, but D_NOWAIT set

Mach 3 Kernel Interfaces 443

Error Return Values

444 Mach 3 Kernel Interfaces

aprenDIX ¢ Permission Definitions

This appendix lists the various permission definitions and their associated values. These
permission values are passed from the kernel to the security server to identify which per-
mission is being checked for the given paie permission value is also displayed in au-

dit logs, and kernel debugging messages.

Device Port Permissions

DSV_CLOSE_DEVICE
0x01000011

DSV_GET_DEVICE_STATUS
0x01000012

DSV_MAP_DEVICE
0x01000013

DSV_OPEN_DEVICE
0x01000014

DSV_READ_DEVICE
0x01000015

Mach 3 Kernel Interfaces 445

Permission Definitions

DSV_SET_DEVICE_FILTER
0x01000016

DSV_SET_DEVICE_STATUS
0x01000017

DSV_WRITE_DEVICE
0x01000018

DSV_PAGER_CTRL
0x01000019

Host Priviledge Port Permissions

HPSV_GET_BOOT_INFO
0x02000011

HPSV_GET_HOST_PROCESSORS
0x02000012

HPSV_PSET _CTL_PORT
0x02000013

HPSV_REBOOT_HOST
0x02000014

HPSV_SET_DEFAULT_MEMORY_MGR
0x02000015

HPSV_SET TIME
0x02000016

HPSV_WIRE_THREAD
0x02000017

446 Mach 3 Kernel Interfaces

Host Port Permissions

HPSV_WIRE_VM
0x02000018

Host Port Permissions

HSV_CREATE_PSET
0x03000011

HSV_FLUSH_PERMISSION
0x03000012

HSV_GET_DEFAULT_PSET_NAME
0x03000013

HSV_GET _HOST_INFO

0x03000014

HSV_GET_HOST_NAME

0x03000015

HSV_GET _HOST_VERSION

0x03000016

HSV_GET_TIME

0x03000017

HSV_PSET_NAMES

0x03000018

HSV_GET_AUDIT_PORT

0x03000019

Mach 3 Kernel Interfaces 447

Permission Definitions

HSV_GET_SECURITY_CLIENT_PORT

0x0300001A

HSV_GET_SECURITY_MASTER_PORT

0x0300001B

HSV_GET_SPECIAL_PORT

0x0300001C

HSV_SET_AUDIT_PORT

0x0300001D

HSV_SET_SECURITY_CLIENT_PORT

0x0300001E

HSV_SET_SECURITY_MASTER_PORT

0x0300001F

HSV_SET_SPECIAL_PORT

0x03000020

HSV_GET_CRYPTO_PORT

0x03000021

HSV_GET_HOST_CONTROL_PORT

0x03000022

HSV_GET_NEGOTIATION_PORT

0x03000023

HSV_SET _CRYPTO_PORT

0x03000024

448 Mach 3 Kernel Interfaces

Kernel Reply Port Permissions

HSV_SET_NEGOTIAION_PORT

0x03000025

HSV_GET_AUTHENTICATION_PORT

0x03000026

HSV_SET_AUTHENTICATION_PORT

0x03000027

Kernel Reply Port Permissions

KRPSV_PROVIDE_PERMISSION
0x0B000011

Memory Object Permissions

MOSV_HAVE_EXECUTE
0x04000011

MOSV_HAVE_READ

0x04000012

MOSV_HAVE_WRITE

0x04000013

MOSV_PAGE_VM_REGION

0x04000015

Memory Control Port Permissions

MCSV_CHANGE_PAGE_LOCKS
0x05000011

Mach 3 Kernel Interfaces

449

Permission Definitions

MCSV_DESTROY_OBJECT

0x05000012

MCSV_GET_ATTRIBUTE

0x05000013

MCSV_INVOKE_LOCK_REQUEST

0x05000014

MCSV_MAKE_PAGE_PRECIOUS

0x05000015

MCSV_PROVIDE_DATA

0x05000016

MCSV_REMOVE_PAGE

0x05000017

MCSV_REVOKE_IBAC

0x05000018

MCSV_SAVE_PAGE

0x05000019

MCSV_SET_ATTRIBUTES

0x0500001a

MCSV_SET_IBAC_PORT

0x0500001b

MCSV_SUPPLY_IBAC

0x0500001c

450 Mach 3 Kernel Interfaces

Processor Port Permissions

Processor Port Permissions

PSV_ASSIGN_PROCESSOR_TO_SET

0x06000011

PSV_GET_PROCESSOR_ASSIGNMENT

0x06000012

PSV_GET_PROCESSOR_INFO

0x06000013

PSV_MAY_CONTROL_PROCESSOR

0x06000014

Processor Set Permissions

PSSV_ASSIGN_PROCESSOR

0x07000011

PSSV_ASSIGN_TASK

0x07000012

PSSV_ASSIGN_THREAD

0x07000013

PSSV_CHG_PSET_MAX_PRI

0x07000014

PSSV_DEFINE_NEW_SCHEDULING_POLICY

0x07000015

Mach 3 Kernel Interfaces 451

Permission Definitions

PSSV_DESTROY_PSET

0x07000016

PSSV_GET_PSET_INFO

0x07000017

PSSV_INVALIDATE_SCHEDULING_POLICY

0x07000018

PSSV_OBSERVE_PSET_PROCESSES

0x07000019

Task Port Permissions

TSV_ACCESS_MACHINE_ATTRIBUTE

0x08000011

TSV_ADD_NAME

0x08000012

TSV_ADD_THREAD

0x08000013

TSV_ADD_THREAD_SERVICE

0x08000014

TSV_ALLOCATE_VM_REGION

0x08000015

TSV_ALTER_PNS_INFO

0x08000016

452 Mach 3 Kernel Interfaces

Task Port Permissions

TSV_ASSIGN_TASK_TO PSET

0x08000017

TSV_CHG_VM_REGION_PROT

0x08000018

TSV_CHG_TASK_PRIORITY

0x08000019

TSV_COPY_VM

0x0800001a

TSV_CREATE_TASK

0x0800001b

TSV_CREATE_TASK_SECURE

0x0800001c

TSV_DEALLOCATE_VM_REGION

0x0800001d

TSV_EXTRACT_RIGHT

0x0800001e

TSV_GET_EMULATION

0x0800001f

TSV_GET_TASK_ASSIGNMENT

0x08000020

Mach 3 Kernel Interfaces

453

Permission Definitions

TSV_GET_TASK_BOOT_PORT

0x08000021

TSV_GET_TASK_EXCEPTION_PORT

0x08000022

TSV_GET_TASK_INFO

0x08000023

TSV_GET_TASK_KERNEL_PORT

0x08000024

TSV_GET_TASK_THREADS

0x08000025

TSV_GET_VM_REGION_INFO

0x08000026

TSV_GET_VM_STATISTICS

0x08000027

TSV_LOOKUP_PORTS

0x08000028

TSV_MANIPULATE_PORT_SET

0x08000029

TSV_OBSERVE_PNS_INFO

0x0800002a

TSV_PORT_RENAME

0x0800002b

454 Mach 3 Kernel Interfaces

Task Port Permissions

TSV_READ_VM_REGION

0x0800002¢c

TSV_REGISTER_NOTIFICATION

0x0800002d

TSV_REGISTER_PORTS

0x0800002e

TSV_REMOVE_NAME

0x0800002f

TSV_RESUME_TASK

0x08000030

TSV_SAMPLE_TASK

0x08000031

TSV_SET_EMULATION

0x08000032

TSV_SET_VM_REGION_INHERIT

0x08000033

TSV_SET_RAS

0x08000034

TSV_SET_TASK_BOOT PORT

0x08000035

Mach 3 Kernel Interfaces 455

Permission Definitions

TSV_SET_TASK_EXCEPTION_PORT

0x08000036

TSV_SET_TASK_KERNEL_PORT

0x08000037

TSV_SUSPEND_TASK

0x08000038

TSV_TERMINATE_TASK

0x08000039

TSV_WIRE_VM_FOR_TASK

0x0800003a

TSV_WRITE_VM_REGION

0x0800003b

TSV_CROSS_CONTEXT_CREATE

0x0800003c

TSV_CROSS_CONTEXT_INHERIT

0x0800003d

TSV_CHG_SID

0x0800003e

TSV_MAKE_SID

0x0800003f

TSV_TRANSITION_SID

0x08000040

456 Mach 3 Kernel Interfaces

Thread Port Permissions

Thread Port Permissions

THSV_ABORT_THREAD

0x09000011

THSV_ABORT_THREAD_DEPRESS

0x09000012

THSV_ASSIGN_THREAD TO PSET

0x09000013

THSV_CAN_SWTCH

0x09000014

THSV_CAN_SWTCH_PRI

0x09000015

THSV_DEPRESS_PRI

0x09000016

THSV_GET_THREAD_ASSIGNMENT

0x09000017

THSV_GET_THREAD_EXCEPTION_PORT

0x09000018

THSV_GET_THREAD_INFO

0x09000019

THSV_GET_THREAD_KERNEL_PORT

0x0900001a

Mach 3 Kernel Interfaces 457

Permission Definitions

THSV_GET_THREAD_STATE

0x0900001b

THSV_INITIATE_SECURE

0x0900001c

THSV_RAISE_EXCEPTION

0x0900001d

THSV_RESUME_THREAD

0x0900001e

THSV_SAMPLE_THREAD

0x0900001f

THSV_SET_MAX_THREAD_PRIORITY

0x09000020

THSV_SET_THREAD_EXCEPTION_PORT

0x09000021

THSV_SET_THREAD_KERNEL_PORT

0x09000022

THSV_SET_THREAD_POLICY

0x09000023

THSV_SET_THREAD_PRIORITY

0x09000024

THSV_SET_THREAD_STATE

0x09000025

458 Mach 3 Kernel Interfaces

IPC Permissions

THSV_SUSPEND_THREAD

0x09000026

THSV_SWITCH_THREAD

0x09000027

THSV_TERMINATE_THREAD

0x09000028

THSV_WAIT_EVC

0x09000029

THSV_WIRE_THREAD_INTO_MEMORY

0x0900002a

IPC Permissions

AV_CAN_RECEIVE

0x0a000001

AV_RECEIVE

0x0a000001

AV_CAN_SEND

0x0a000002

AV_SEND

0x0a000002

AV_HOLD RECEIVE

0x0a000003

Mach 3 Kernel Interfaces 459

Permission Definitions

AV_HOLD_SEND

0x0a000004

AV_HOLD_SEND_ONCE

0x0a000005

AV_INTERPOSE

0x0a000006

AV_SPECIFY

0x0a000007

AV_TRANSFER_OOL

0x0a000008

AV_TRANSFER_RECEIVE

0x0a000009

AV_TRANSFER_SEND

0x0a00000a

AV_TRANSFER_SEND_ONCE

0x0a00000b

AV_TRANSFER_RIGHTS
0x0a00000c

MOSV_MAP_VM_REGION

0x0a00000d

AV_SET_REPLY

0x0a00000e

460 Mach 3 Kernel Interfaces

IPC Permissions

Mach 3 Kernel Interfaces 461

Permission Definitions

462 Mach 3 Kernel Interfaces

Object Index

APPENDIX H

A

abstract memory object vim_map. 93
memory_ObJECt_COPYo oo 114
memory_object data _request..................... 121
memory_object data_return...................... 123
memory_object data_unlock 130
memory_object_data write. 132
memory_object_init 138
memory_object_terminate 153
device map.oiiii i 277
default_pager_object create...................... 350
memory _object create 352
memory_object_data_initialize. 355

B

bootstrap task create/task_create_secure.................... 195
task _get special_ port................. 200
task set special_port 211
norma_task clone.................. 367
norma task create 369

D

default pager default_pager_info 348
default_pager_object create...................... 350
memory _object create 352
vm_set_default_ memory_manager................. 357

Mach 3 Kernel Interfaces

463

Object Index

norma_get special port.............. 360
norma_set_special_port 364

device device close 274
device get status 275
device map. i e 277
device open 279
device read. 282
device read inband 285
device_set filter 288
device set status. 292
device_ write 294
device_write_inband. 297
iI386 i0 port add 378
iI386_i0_port list.......... 379
i386_i0_port remove 380

device master deviCe_Openttt 279
norma_get special_port 360
norma_set _special_port 364

E

exception catch_exception_raise. 156
thread_get _special_port 169
thread_set_special_port. 178
task create/task create secure.................... 195
task _get special port................., 200
task_set special port 211
norma_task clone................ 367
norma_task create 369

F

filter device_set filter 288

H

host control vm_wire 105
thread_wire 186
host_adjust time.............. 218
host get boot info............................. 219
host_get special port........................... 220
host reboot 226
host_set special port 227
host_set time 229
host_processor_set priv................. 232
host_processors. ... 235
vm_set_default._ memory_manager................. 357
norma_get special_ port 360
norma_set special_port 364

464

Mach 3 Kernel Interfaces

hostname host get time 222

host info........ 223
host_kernel_version 225
host_processor Ssets. 233
processor_info. 242
processor_set create. 244
processor_set default 246
processor_set info 248
norma_get special_port 360
norma_set special_port 364
host self mach_host self......... 230
M
memory cache control memory_object_change_attributes 110
memory _Object_ CopY 114
memory_object data_error., .. 117
memory_object_data_provided. 119
memory object _data request..................... 121
memory_object_data_return...................... 123
memory_object_data_supply 125
memory_object_data_unavailable 128
memory_object data_unlock 130
memory_object_data write. 132
memory _object_destroy 134
memory_object_get_attributes 136
memory_object_init 138
memory_object_lock_completed 141
memory_object_lock request. 143
memory object ready. 146
memory_object_set _attributes 148
memory_object_supply_completed 151
memory_object_terminate 153
memory _object create 352
memory_object_data_initialize. 355
memory cache name vm_region/vm_region_secure 101
memory_object_init 138
memory_object_terminate 153
memory _object create 352
N
name server norma_get _special_port 360
norma_set special_port 364
norma special norma_get_special_port. 360
norma_set_special_port 364
notify mach_msg/mach_msg_secure. 8
mach_Mmsg_receive 26

Mach 3 Kernel Interfaces 465

Object Index

mach msg send 27
do_mach_notify dead name 30
do_mach_notify msg _accepted 32
do_mach_notify no_senders 34
do_mach_notify port deleted 36
do_mach_notify port _destroyed 38
do_mach_notify send once....................... 40
mach_port_request_notification. 68
P
Processor hOSt_ProCeSSOIS. . ..o v v vt e 235
ProCeSSOr_asSigN. . v v it ettt e 236
processor_control 238
Processor_exit. 240
processor_get_assignment 241
Processor_info. i 242
processor_start 257
processor set control host_processor_set priv.................. 232
ProCeSSOr_asSigN. . . vttt 236
processor_set create.iiii i 244
processor_set destroy.iiiii... 247
processor_set info, 248
processor_set max_priority 250
processor_set _policy disable..................... 252
processor_set policy enable 254
processor_set tasks. 255
processor_set threads........................... 256
task_assign 258
thread_assign. 265
thread_max_priority 268
processor set namehost_processor_set priv 232
host_processor_Ssets. 233
processor_get assignment 241
processor_set create.iiii... 244
processor_set default 246
processor_set info 248
task get assignment............... 262
thread _get assignment.......................... 267
R
random mach_msg/mach_msg_secure. 8
mach_Mmsg_receive 26
mach_msg_send 27
do_mach_notify_port_destroyed 38
mach_port_extract_right. 50
mach_port_insert_right. 58
466 Mach 3 Kernel Interfaces

registered

reply

sample

task

mach_ports_lookup. 190
mach_ports_register i 191
task create/task create secure.................... 195
norma task clone........... 367
norma_task create, 369
mach_msg/mach_msg_secure. 8
mach_Mmsg_receivet 26
mach_msg_send0 i 27
mach_reply port......... 79
memory_object_change_attributes................. 110
memory_object_change completed................ 112
memory_object_data_supply 125
memory_object_lock_completed 141
memory_object_lock request. 143
memory_object_supply_completed 151
device read. 282
device_read inband 285
device_write 294
device_write_inband. 297
receive_samples 160
thread sample.......... 176
task create/task create secure.................... 195
task_sample. 205
norma_task clone................., 367
norma task create 369
mach_port_allocate/mach_port_allocate_secure 41
mach_port_allocate_name/
mach_port_allocate_name_secure 44
mach_port_deallocate. 47
mach_port_destroy, 48
mach_port_extract right. 50
mach_port_get receive _status 52
mach_port_get refs. 54
mach_port_get set status. 56
mach_port_insert_right. 58
mach_port mod refs, 60
mach_port_ move_member........................ 62
mach_port names. 64
mach_port_rename i 66
mach_port_request_notification. 68
mach_port_set mscount. 71
mach_port_set glimit............................ 73

Mach 3 Kernel Interfaces 467

Object Index

task self

mach_port set seqno............ 75
mach_port_type/mach_port_type secure............. 77
vm_allocate/vm_allocate_secure 82
VIN L _COPY .« v ottt e e e e e e e 85
vm_deallocate. 87
vm _inherit. 89
vm_machine_attribute. 91
VI AP, .« oot ee 93
VIN_Protect 97
VM _read. 99
VM_region/vm_region_Secure. 101
vm statistics 104
VI WITE o 105
VIN_WIItE . . . o 107
catch_exception_raise. 156
thread_create/thread create secure 166
mach_ports_lookup. 190
mach_ports_register 191
task_create/task create secure.................... 195
task_get emulation_vector....................... 198
task _get special_ port.......... 200
task info........... 202
task resume. 204
task sample. 205
task set emulation, .. 207
task_set_emulation_vector 209
task set special_port 211
task_suspend. 213
task terminate. 214
task threads. 215
processor_set tasks. 255
task _assign 258
task _assign default. 260
task_get_assignment............... 262
task priority 263
norma_port_location_hint. 363
norma task clone........... 367
norma_task create, 369
task set child node 371
mach_task self 193
task create/task_create secure.................... 195
task _get special port................., 200
task_set special port 211
norma_task clone.......... 367
norma_task create, 369

468

Mach 3 Kernel Interfaces

task special task _get special_ port.............. 200

task set special_port 211
thread catch_exception_raise., 156
thread _abort 164
thread_create/thread_create_secure 166
thread_depress_abort, 168
thread_get _special_port 169
thread get state 171
thread _info 173
thread_resume/thread resume_secure 175
thread_sample. 176
thread_set_special_port. 178
thread_set_state/thread set _state secure 180
thread_suspend 182
thread switch 183
thread terminate. 185
thread_wire 186
task threads. 215
processor_set threads........................... 256
thread_assign. 265
thread_assign default........................... 266
thread _get assignment.......................... 267
thread_max_priority 268
thread_policy. 270
thread_priority.o 271
i386 get Idt 376
i386 io port add 378
i386 io port list........... 379
iI386_i0_port remove 380
iI386_set Idt. 381
thread self mach_thread self 159
thread_get _special_port 169
thread_set special port. 178
thread special thread _get special port........................ 169
thread_set special port. 178

Mach 3 Kernel Interfaces 469

Object Index

470 Mach 3 Kernel Interfaces

Interface and

APPENDIX |
Structure
Index

Base IPC Status. 436 Memory Control Port Permissions . 449
Data Structures 383 Memory Object Permissions 449
Default Memory Management Interface Multicomputer Support 359

347 ObjectIndex. 463
Device Port Permissions. 445 Parameter Types. 3
Error Code Format 435 Permission Definitions. 445
Error Return Values 4 Port Manipulation Errors. 440
Error Return Values 435 Port Manipulation Interface. 29
External Memory Management Inter- Processor Management and Scheduling

face 109 Interface. 231
Generic Kernel Errors. 439 Processor Port Permissions 451
HostInterface 217 Processor Set Permissions 451
Host Port Permissions. 447 Random Kernel Errors. 441
Host Priviledge Port Permissions . . 446 SSI_compute_access_vector 309
IPClInterface.................... 7 SSI_context to mid. 312
IPC Permissions 459 SSI_load_security_policy 314
IPC Receive Errors 438 SSI_mid_to_context. 320
IPCSendErrors 437 SSI_mid_to_short_context. 322
Intel 386 Support. 373 SSI_record_name_server......... 315
Interface Descriptions. 1 SSI_register_caching_server. 316
Interface Types 2 SSI_short_context_to mid. 318
Interface and Structure Index 471 SSI_transfer_security_server_ports. 324
Introduction. 1 SSI_transition_domain. 326
Kernel Device Errors 442 Security Controls 5
Kernel Device Interface 273 Security Server Interface 303
Kernel Reply Port Permissions.. . . . 449 Special Forms. 3
MIG Server Routines 329 Task Interface. 189
MIG Stub Errors 436 Task Port Permissions 452
Mach 3 Kernel Interfaces 471

Interface and Structure Index

Thread Interface. 155

Thread Port Permissions 457

Virtual Memory Interface 81

Virtual Memory Manipulation Errors . .
441

avc_cache_control,
avc_cache_control_trap. . . 304

catch_exception_raise 156
default_pager _info.............. 348

default_pager_object_create 350
device close................... 274
device_get status............... 275
device map 277
device open................... 279
device_open_request 279
device read 282
device_read _inband............. 285
device_read_request. 282
device_read_request_inband 285
device_reply_server............. 330
device_set filter................ 288

device_set status............... 292
device_write. 294

device_write_inband 297

device_write_request............ 294
device_write_request_inband 297
do_mach_notify_dead_name....... 30
do_mach_notify_msg_accepted. 32
do_mach_notify no_senders....... 34
do_mach_notify_port_deleted. 36

do_mach_notify_port_destroyed. . . . 38

do_mach_notify_send once 40

do_segnos_mach_notify_dead_name 30
do_segnos_mach_notify_msg_accepted
32
do_segnos_mach_notify_no_senders 34
do_segnos_mach_notify_port_deleted .

36
do_segnos_mach_notify_port_destroye

d. 38
do_segnos_mach_notify_send_once . 40
ds_device_open_reply 279
ds_device read_reply 282
ds_device_read_reply_inband 285
ds_device_write_reply........... 294
ds_device_write_reply_inband297
evec wait. 300
EXC_SeIVel ...t 332
extract aid 306
extract mid 307
host_adjust time 218
host basic_info 384

host_get boot info.............. 219
host_get_special_port............ 220
host get time 222
host info...................... 223
host_kernel _version 225
host load info 385
host_processor_set_priv.......... 232
host_processor_sets 233
host_processors. 235
host reboot.................... 226
host sched info 386
host_set special_port............ 227
host set time 229
i386_get_ Idt 376
i386_io_port_ add 378
i386_io_port_list. 379
i386_io_port_remove 380
i386_set Idt. 381
mach_access _vector............. 387
mach_device_services 390
mach_generic_services. 391
mach_host_priv_services 393
mach_host self................. 230
mach_host_services 394
mach_kernel_reply_port_services . .392
mach_mem_ctrl_services......... 397
mach_mem_obj_services 396
mach_msg/mach_msg_secure 8
mach_msg_header 399
mach_msg_receive............... 26
mach_msg send................. 27
mach_msg_type 402
mach_msg_type long............ 405

mach_port_allocate/
mach_port_allocate_secure .41

mach_port_allocate_name/
mach_port_allocate_name_sec

UF€. . 44
mach_port_deallocate. 47
mach_port_destroy............... 48
mach_port_extract_right. 50
mach_port_get_receive_status 52
mach_port _get refs 54
mach_port_get_set_status.......... 56
mach_port_insert_right. 58
mach_port mod_refs 60
mach_port_move_member......... 62
mach_port names................ 64
mach_port rename............... 66
mach_port_request_notification. 68
mach_port_set mscount........... 71
mach_port_set_glimit. 73

472 Mach 3 Kernel Interfaces

mach_port_set seqno 75

mach_port_status 407

mach_port_type/
mach_port_type_secure ... 77

mach_ports_lookup............. 190

mach_ports_register 191
mach_proc_services 409
mach_proc_set_services 410
mach_reply port................ 79

mach_services. 411
mach_task self 193
mach_task_services............. 413
mach_thread_self 159
mach_thread_services........... 415
make sid..................... 308
mapped_time_value 417

memory_object_change_attributes. 110
memory_object_change_completed 112

memory_object_copy 114

memory_object create 352
memory_object_data_error. 117
memory_object_data_initialize. ... 355

memory_object_data_provided. ... 119
memory_object_data_request. 121
memory_object_data_return. 123
memory_object_data_supply 125
memory_object_data_unavailable . 128
memory_object_data_unlock 130
memory_object_data_write. 132

memory_object_default_server. ... 334
memory_object_destroy 134
memory_object_get_attributes 136
memory_object_init 138

memory_object_lock_completed . . 141

memory_object_lock_request. 143
memory_object ready........... 146
memory_object_server 336
memory_object_set_attributes 148
memory_object_supply_completed 151

memory_object_terminate 153

norma_get_device_port. 360
norma_get_host_paging_port 360
norma_get_host_port 360
norma_get_host_priv_port 360
norma_get_nameserver_port. 361
norma_get_special_port 360
norma_port_location_hint. 363

norma_set _device_port.......... 364
norma_set _host_paging_port 364
norma_set _host port............ 364
norma_set_host_priv_port 364
norma_set_nameserver_port. 365

norma_set_special_port.......... 364

norma_task clone 367
norma_task create.............. 369
notify server 338
processor_assign 236
processor_basic_info............ 418
processor_control. 238
processor_exit 240
processor_get_assignment........ 241
processor_info 242
processor_set_basic_info......... 419
processor_set create 244
processor_set_default. 246
processor_set_destroy 247
processor_set_info.............. 248
processor_set_max_priority. 250
processor_set_policy_disable 252
processor_set_policy_enable. 254
processor_set_sched_info 420
processor_set_tasks 255
processor_set_threads 256
processor_start................. 257
prof_server.................... 340
receive_samples................ 160
sampled_pc, 421
security id t................... 422
seqnos_default_pager_info 348

seqnos_default_pager_object_create 350
seqnos_memory_object_change_compl

eted 112
seqnos_memory_object_copy 114
seqnos_memory_object_create352
seqnos_memory_object_data_initialize.

355
seqnos_memory_object_data_request. .

121

seqnos_memory_object_data_return 123
seqnos_memory_object_data_unlock . .
130
seqnos_memory_object_data_write. 132
seqnos_memory_object_default_server.

341
seqnos_memory_object_init 138
seqnos_memory_object_lock_complete

d....... o 141
seqnos_memory_object_server343
seqnos_memory_object_supply_comple

ted L 151
seqnos_memory_object_terminate . 153
seqnos_notify_server............ 345
swtch 161
swtch_pri......... 162

Mach 3 Kernel Interfaces

473

Interface and Structure Index

task assign.................... 258
task_assign_default 260
task basic_info 423
task basic_secure_info 424
task change sid................ 194
task_create/task_create_secure195
task_get assignment 262
task_get_bootstrap_port. 200
task_get_emulation_vector 198
task_get_exception_port 200
task_get_kernel_port............ 200
task_get_special_port. 200
task info...................... 202
task_priority. oL 263
task resume................... 204
task_ sample 205
task_set bootstrap_port.......... 211
task_set child_node............. 371
task_set emulation. 207
task_set_emulation_vector. 209
task_set_exception_port. 211
task_set _kernel_port 211
task_set special_port............ 211
task_suspend 213
task terminate 214
task thread_times_info 426
task threads 215
thread_abort................... 164
thread_assign.................. 265
thread_assign_default 266
thread_basic_info............... 427
thread_create/thread_create_secure. 166
thread_depress_abort............ 168
thread_get_assignment. 267
thread_get_exception_port. 169
thread_get_kernel_port 169
thread_get_special_port.......... 169
thread_get state................ 171
thread_info.................... 173
thread_max_priority. 268
thread_policy 270
thread_priority 271
thread_resume/thread_resume_secure. .
175
thread_sample 176
thread_sched info 429
thread_set_exception_port. 178
thread_set_kernel_port. 178
thread_set_special_port.......... 178

thread_set_state/
thread_set_state_secure. .. 180
thread_suspend. 182

thread_switch 183
thread_terminate................ 185
thread_wire.................... 186
time value..................... 431
vm_allocate/vm_allocate_secure82
VIN_COPY - oo ettt e e e et 85
vm_deallocate. 87
vm_inherit. 89
vm_machine_attribute 91
VI_MAP « e 93
vm_protect 97
vm_read 99
vm_region/vm_region_secure 101
vm_set_default._memory_manager. .357
vm_statistics 104
vm_statistics 432
VIN_WIrE . ..ot 105
vm_write. 107

474

Mach 3 Kernel Interfaces

