=) Secure Gomputing
= : Corporation

Technical Note

DTOS FORMAL SECURITY POLICY MODEL
(FSPM)
(Non-Z Version)

Secure Computing Corporation

Abstract

This report identifies the services provided by the DTOS kernel and the security requirements
governing when the kernel provides the services.

Part Number 83-0902023A001

Created

Revised 26 September 1996

Done for Maryland Procurement Office

Distribution Secure Computing and U.S. Government

CM / home/ cmt / rev/ dt os/ docs/ fspm RCS/ f spm-driver.vdd,v 1.25

26 Sept enber 1996

This document was produced using the TEX document formatting system and the LATEX style macros.

LOCKserver™ | OCKstation™, NETCourier™, Security That Strikes Back™, Sidewinder™, and
Type Enforcement™ are trademarks of Secure Computing Corporation.

LOCK®, LOCKguard®, LOCKix®, LOCKout®, and the padlock logo are registered trademarks of Secure
Computing Corporation.

All other trademarks, trade names, service marks, service names, product names and images mentioned
and/or used herein belong to their respective owners.

© Copyright, 1993-96, Secure Computing Corporation. All Rights Reserved. This material may be
reproduced by or for the U.S. Government pursuant to the copyright license under the clause at DFARS
252.227-7013 (OCT.88).

DTOS FSPM

Contents

Scope

1.1 Identification

1.2 System Overview

1.3 Document Overview

A

Applicable Documents

FSPM Overview

3.1 Policy Development Approach
3.2 Separation of Enforcer and Decider

oD w

Basic Kernel State Definition

4.1 Primitive Entities

4.2 Process Management

4.3 Port Name Space

4.4 Ports
4.5 Notifications
46 SpecialPorts

4.7 Total Send Rights

4.8 Reqgistered Rights
49 Memory System
410 Messages

4.11 Processors and Processor Sets

412 Time
413 Devices
414 Summary

DTOS State Extensions

5.1 Subject Security Information
5.2 Object Security Information
5.3 Security ldentifiers for Access Computations
54 Permissions
5.5 Access Vector Cache
5.6 Message Security Information
5.7 Task Creation Information
58 ServerPorts
5.9 Memory Region Protections
5.10 Summary of DTOS Kernel State

DTOS Services

6.1 Kernel Requests and State Transitions
6.2 IPCServices
6.3 PortServices
6.4 VMServices
6.5 PagerServices
6.6 Thread Services.

Secure Computing Corporation
CAGE Code OHDC7

83-0902023A001
1.25, 26 September 1996

CONTENTS

6.7 TaskServices 50
6.8 HostName PortServices 51
6.9 Host Control PortServices 52
6.10 ProcessorServiCes 53
6.11 Processor Set Control Port Services 53
6.12 Kernel Reply Services L 54
6.13 Device Services 54
6.14 Outcall Services 55
6.15 Implementation Services L 56
7 Base Kernel Policy 57
7.1 Requirements on client t0 port_sid’(device_port'(dev)) Accesses 57
7.2 Requirements on client to port_sid'(task_self'(child)) Accesses 57
7.3 Requirements on client to port_sid'(task_self'(task)) Accesses 57
7.4 Requirements on client to pori_sid(device_port(dev)) Accesses 58
7.5 Requirements on client to port_sid(host_control_port) Accesses 58
7.6 Requirements on client to port_sid(host_name_port) AcCesses 58
7.7 Requirements on client to ;ort_sid(kernel_reply_port) Accesses 58
7.8 Requirements on client to ;ort_sid(control_port(memory)) Accesses 59
7.9 Requirements on client t0 pori_sid(port) ACCESSES 59
7.10 Requirements on client to port_sid(proc_self(proc)) Accesses 59
7.11 Requirements on client to Eort_sid(procset_self(procset)) Accesses 59
7.12 Requirements on client t0 task_target(client, parent_task’(child)) Accesses . . . 60
7.13 Requirements on client to task_target(client, task) Accesses 60
7.14 Requirements on client to thread_target(client, thread) Accesses 61
7.15 Requirements on kernel to port_sid(audit_server_port) Accesses 61
7.16 Requirements on kernel to port_sid(object_port(memory)) Accesses 61
7.17 Requirements on kernel to port_sid(port) ACCESSES 61
7.18 Requirements on kernel to ;ort_sid(§ecurity_server_master_port) Accesses .. 61
7.19 Requirements on kernel_as(eff —client) to port_sid(port) Accesses 62
7.20 Requirements on kernel_as(eff_client) to port_sid(task_eport(task)) Accesses . 62
7.21 Requirements on kernel_as(eff _client) to port_sid(thread_eport(thread)) Accesses 62
7.22 Requirements on parent_task’(child) to port_sid' (task_self'(child)) Accesses . . 62
7.23 Requirements on task t0 page_sid(task, page_index) Accesses 62
7.24 Requirements on task to port_sid’'(port) ACCeSSES 62
7.25 Requirements on task to port_sid'(task_self'(task)) Accesses 63
7.26 Requirements on task t0 port_sid(port) ACCESSES 63
7.27 Prohibited ACtions on port 63
7.28 Prohibited Actionson task 63
7.29 Requirements on client to dev Implementation Accesses 63
7.30 Requirements on client to host_control_port Implementation Accesses 63
7.31 Requirements on client to host_name_port Implementation Accesses 64
7.32 Requirements on client to memory Implementation Accesses 64
7.33 Requirements on client to proc Implementation Accesses 64
7.34 Requirements on client to ps_name_port Implementation Accesses 64
7.35 Requirements on client to ps_control_port Implementation Accesses 65
7.36 Requirements on client to task Implementation Accesses 65
7.37 Requirements on client to thread Implementation Accesses 66
8 Generic Security Server Requirements 67
83-0902023A001 Secure Computing Corporation

1.25, 26 September 1996 CAGE Code OHDC7

DTOS FSPM iii
9 Notes 70
9.1 ACIONYMS 70
9.2 Glossary e 70
9.3 Openlssues 71
A Bibliography 72
Prototype Security Server Requirements 73
B.1 Security Contexts 73
B.2 PolicyDatabase 73
B.3 Cacheability Database 74
B.4 Duration Database 74
B.5 Prototype Security Server Stateo 74
Secure Computing Corporation 83-0902023A001

CAGE Code OHDC7

1.25, 26 September 1996

iv CONTENTS

83-0902023A001 Secure Computing Corporation
1.25, 26 September 1996 CAGE Code OHDC7

Section

DTOS FSPM 1

1
Scope

1.1 Identification

This Formal Security Policy Model (FSPM) states the security policy for the prototype kernel
developed on the Distributed Trusted Operating System (DTOS) program, contract MDA904-
93-C-4209.

1.2 System Overview

The DTOS prototype is an enhanced version of the CMU Mach 3.0 kernel that provides support
for a wide variety of security policies by enforcing access decisions provided to it by asecurity
server. The set of policies that can be supported is determined by the control points imple-
mented in the prototype. Logically, an access computation query is sent to a security server
whenever the DTOS kernel reaches a control point. Request processing cannot continue until
the security server informs the DTOS kernel whether the security policy allows the processing
to be performed. For efficiency reasons, the DTOS kernel is permitted to cache security deci-
sions made by security servers. ldeally, most access checks can be performed by looking up
entries in a cache rather than actually querying a security server.

By implementing different security servers, a wide range of policies can be supported by the
same DTOS kernel. By implementing a security server that allows all accesses, the DTOS
kernel behaves essentially the same as the CMU Mach 3.0 kernel. Although this is uninter-
esting from a security standpoint, it demonstrates the compatibility of DTOS with Mach 3.0.
By using appropriately developed security servers, the DTOS kernel can support interesting
security policies such as MLS (multi-level security) and type enforcement.

1.3 Document Overview
The report is structured as follows:

m Section 1, Scope, defines the scope and this overview of the document.

m Section 2, Applicable Documents, describes other documents that are relevant to this
document.

m Section 3, FSPM Overview provides motivation for the DTOS approach to security and
an overview of the approach used to present the policy.

m Section 4, Basic Kernel State Definition, provides a brief description of the Mach 3.0
kernel data structures.

m Section 5, DTOS State Extensions, describes new kernel data structures required by
the DTOS design.

m Section 6, DTOS Services, describes the services provided by the DTOS kernel.

m Section 7, Base Kernel Policy, describes the security requirements governing the DTOS
kernel’'s enforcement of a policy specified by a security server.

m Section 8, Generic Security Server Requirements, provides a general framework for
DTOS security servers.

Secure Computing Corporation 83-0902023A001
CAGE Code OHDC7 1.25, 26 September 1996

2 Scope

m Section 9, Notes, contains a list of acronyms, a glossary, and a description of open issues
relevant to the FSPM.

m Appendix A, Bibliography, provides the bibliographical information for the documents
referenced in the FSPM.

= Appendix B, Prototype Security Server Requirements, describes the rules the pro-
totype security server uses for computing accesses.

Note that while this report contains a description of the DTOS system state and services, it
makes no attempt at providing a complete description. Readers that are unfamiliar with Mach
and/or DTOS should consult references [3], [4], and [10].

Readers who are interested in a more formal presentation of this document should consult a
separate version of this report (reference [8]) that provides a Z formalization of the definitions
and requirements stated here.

83-0902023A001 Secure Computing Corporation
1.25, 26 September 1996 CAGE Code OHDC7

Section

DTOS FSPM 3

2
Applicable Documents

The following document provides a high level description of the Mach microkernel:
m OSF Mach Kernel Principles [4]

Although Section 4 provides a summary of the information contained in reference [4], some
readers might need to consult the more complete information in reference [4].

The following documents provide a detailed description of the Mach and DTOS microkernels:

m OSF Mach 3 Kernel Interface [3]
m DTOS Kernel Interface Document (KID) [10]
m DTOS Kernel and Security Server Software Design Document (SDD) [7]

Although an understanding of these documents is desirable, such an understanding is not
necessary to understand the majority of this document.

The following documents provide formal descriptions of certain aspects of Mach-like systems:

s CLI Mathematical Model of Mach [1]
s DTMach FTLS [2]
s DTOS FTLS [6]

The model of Mach described in Section 4 is derived from references [1] and [2]. Although the
material presented in Section 4 is intended to be self contained, some readers might want to
consult references [1] and [2] for more details. Reference [2] is an earlier version of reference [6].
The former provides more complete coverage of the requests, while the latter provides more
readable and more correct descriptions.

The following document is the standard reference for DoD security policies:
m DoD Trusted Computer System Evaluation Criteria [5]

Some of the motivational examples in this document assume a basic understanding of security
policies as defined in reference [5].

Readers who are interested in a Z formalization of the model presented in this document should
consult the following reference:

s DTOS Formal Security Policy Model [8]

Secure Computing Corporation 83-0902023A001
CAGE Code OHDC7 1.25, 26 September 1996

4 FSPM Overview

Section 3
FSPM Overview

This section provides an overview of the DTOS FSPM. In addition to providing a high level de-
scription, this section also highlights differences between the DTOS FSPM and typical FSPMs.

3.1 Policy Development Approach

The goal of a security policy is to protect the confidentiality, integrity, and availability of the
system against attacks by malicious users and mistakes made by innocent users. For example,
the goal of an MLS policy[5] is to prevent users from obtaining information for which they
are not cleared. As another example, a system policy that prohibits users other than system
administrators from rebooting the machine addresses denial of service as the result of a mistake
made by a user.

Traditionally, there have been two related but distinct approaches to developing security poli-
cies. The first approach, the threat based approach is to identify the system threats that are of
concern and develop requirements that address the threats. The second approach, thecriteria
based approach is to interpret a set of requirements specified by an evaluation criteria docu-
ment (such as [5]) for the target system. The relation between the two approaches is that in
the second approach it is assumed that the developers of the evaluation criteria have already
identified all of the relevant threats.

The criteria based approach is infeasible for DTOS due to the goal to support a wide range
of policies. Regardless of whether an evaluation criteria document contains MLS, integrity,
or availability requirements, there is always the possibility that the user of a DTOS system
will want to enforce some other type of security. Consequently, the DTOS policy must provide
a framework in which a variety of policies can be supported rather than simply interpreting
requirements in an existing evaluation criteria.

Thus, the DTOS policy development is threat based. However, the threats identified are of a
different nature than those traditionally identified. When developing the policy for a system
that is intended to enforce a single policy, the identified threats typically are specific to that
policy. For example, while covert channels[5] are a threat with respect to MLS policies, they
are typically not a threat with respect to integrity policies. Since the DTOS policy is intended
to provide a framework that supports a wide variety of policies, the threats identified for DTOS
must be policy independent.

The intent is for users to be able to counter threats to their systems by appropriately con-
figuring DTOS. Furthermore, as the set of threats against which a site must protect evolves,
administrators should be able to reconfigure DTOS to address the new set of threats. This
requires controls to be placed on essentially all services. For example, DTOS must control
the setting of the scheduling policy for a thread since some users will want to protect against
service denial to user threads. Although the denial of service threat might be of little concern
to most users, the possibility that some users might be concerned suggests viewing it as a real
threat. Since providing protection against every conceivable threat is impossible, a judgement
call has been made on the set of threats that are of concern.

The approach taken in the remainder of this document is to view any access of the kernel

83-0902023A001 Secure Computing Corporation
1.25, 26 September 1996 CAGE Code OHDC7

DTOS FSPM 5

state as being a potential threat. By viewing each access as a potential threat and providing
appropriate control mechanisms, the goal of supporting multiple policies can be achieved! In
Section 6, we characterize the various types of accesses that can be made to the DTOS state
as DTOS *“services.” For motivational purposes, we also provide some specific examples in
Section 6 of how the threats associated with DTOS services relate to more general threats to
computing systems.

In stating the policy, we categorize each access as being either anabstract service or an imple-
mentation service. An abstract service is characterized by a relation on pairs of system states
that specifies a change to a kernel data structure. For example, the service that creates a new
task is characterized by a relation that specifies that the new system state contains a task that
was not present in the old system state. Stating a policy on when an abstract service can be
provided allows modifications to the kernel data structures associated with the service to be
controlled.

Note that the same abstract service can be provided by multiple requests. For example,
mach_port_allocate and mach_port_allocate_name both provide the abstract service of
adding a name to a task’s name space.[10]

An implementation service is a specific Mach request. When it is difficult to formally define the
abstract services associated with a specific Mach request, we address the request by controlling
when the request itself can be invoked rather than controlling the abstract services provided by
the request. In some cases, the reason for being unable to identify the abstract services is that
the request alters data structures that are not visible at the level of the policy. For example,
the host_adjust_time request (see reference [10]) alters the rate at which the system clock
is updated, while the model presented in this document does not address the kernel data
structures controlling the rate at which the system clock is updated. In these cases, the
implementation services could be replaced by abstract services by developing a more detailed
system model.

The other primary examples of implementation services are services that “observe” rather than
merely “modify” the system state. Observations are more difficult to detect than modifications
since they do not leave a trace in the system state. A modification of a state component results
in its value changing, while an observation does not.

Regardless of whether a service is an abstract service or an implementation service, we associate
a permission with the service. Note that the majority of this document is devoted to defining
the abstract and implementation services provided by the kernel and the permissions enforced
by the kernel. Once these are defined, the policy is essentially:

The kernel ensures that each of the defined services is provided only when the client of the
service has the appropriate permission.

This policy controls only the providing of the defined services. Although the services defined
in this document are intended to define all of the interesting services provided by the DTOS
microkernel, we might have failed to identify some of the provided services. The policy places
no constraints on the providing of any such services.

To implement the policy, the set of services provided by each request must be identified. Once
these services are identified, the requirements in this document can be used to derive the set of
permission checks that must be performed. The DTOS Kernel Interface Document [10] and the
DTOS Kernel and Security Server Software Design Document [7] identify a set of permission
checks that are currently performed for each request. We are in the process of examining

1See the DTOS Generalized Security Policy Specification [9] for more on supporting multiple policies.

Secure Computing Corporation 83-0902023A001
CAGE Code OHDC7 1.25, 26 September 1996

6 FSPM Overview

the consistency of these permission checks with those called for by the requirements in this
document.

3.2 Separation of Enforcer and Decider

Another way in which the DTOS FSPM differs from a traditional security policy is that the
requirements on the enforcer of the policy are separate from the requirements on the definer
of the policy. Traditionally, the distinction between enforcer and decider has been abstracted
away. For example, the *-Property (see [5]):

A subject may only write objects at its level or above.

directly binds the abstract service of writing to an object with the MLS requirement. In DTOS,
the set of permissions provides an intermediary between the enforcer and the decider. The
kernel associates a permission with an abstract service and each security server associates a
security requirement with the permission. By enforcing the access computations that a security
server communicates as allowed permissions, the kernel can properly enforce the policy defined
by the security server.

In addition to supporting policy flexibility, explicitly addressing the separation of the kernel and
security server functionality provides a cleaner mapping of the policy to the implementation.
The requirements stated in Section 7 provide guidance for the implementation of the DTOS
kernel, while the requirements stated in Section 8 and Appendix B state requirements that
provide guidance for the implementation of the prototype security server. The mapping from
implementation to policy is so direct that the tables in Section 7 that define the DTOS formal
security policy are automatically generated from a file that is also used to generate portions of the
DTOS SDDJ[7] and kernel code. As opposed to manual updating of all of these components, this
automated approach provides much greater confidence that the implementation of the DTOS
kernel actually satisfies the policy. 2

Editorial Note:

This document currently defines only those permissions and services relevant to the microkernel. To
address a user space server such as a file server, definitions would need to be given for each of the
services to be controlled and permissions would have to be defined to control each service. In addition,
if the server policies were layered on top of the microkernel policy, discussion would need to be added
concerning how the server and microkernel policies were related. Once policies were stated for each of
the servers comprising the trusted operating system, an overall system policy could be stated. Although
this is a desirable end result, the current scope of the DTOS program is only the microkernel.

To unambiguously define the abstract services provided by DTOS, we must first provide a
precise definition of the DTOS data structures. Sections 4 and 5 provide such a description by
describing an abstract model of the DTOS kernel. Section 6 contains a description of the DTOS
services in the context of this abstract model. The remaining sections use the abstract model
and service definitions to state the policy.

20f course, this approach still requires coordination between any individual who changes the security policy file
and those individuals responsible for regenerating documents from the file.

83-0902023A001 Secure Computing Corporation
1.25, 26 September 1996 CAGE Code OHDC7

DTOS FSPM 7

Section 4
Basic Kernel State Definition

The following describes the data structures contained in the Mach kernel state. The organiza-
tion of this section is as follows:

m Section 4.1, Primitive Entities, describes the primitive entities in Mach. Mach is an
object-based system having these primitive entities as the defined objects.

m Section 4.2, Process Management, describes data structures associated with process
management.

m Section 4.3, Port Name Space, describes data structures associated with task port name
spaces.

m Section 4.4, Ports, describes data structures associated with ports.

m Section 4.5, Notifications, describes data structures associated with registered notifica-
tions.

m Section 4.6, Special Ports, describes the various classes of ports associated with the
primitive entities.

m Section 4.7, Total Send Rights, describes the way in which send rights are counted in
the kernel.

m Section 4.8, Registered Rights, describes the data structures used to record the set of
port rights registered for a task.

m Section 4.9, Memory System, describes the data structures associated with the virtual
memory system.

m Section 4.10, Messages, describes the data structures associated with messages.

m Section 4.11, Processors and Processor Sets, describes the data structures associated
with processors and processor sets.

m Section 4.12, Time, describes the data structures associated with clocks.

m Section 4.13, Devices, describes the data structures associated with devices.

The model of Mach presented in this section consists of both primitive and derived notions. The
derived notions provide no additional information about the Mach state beyond that embodied
in the primitive notions. In the following sections, derived notions are noted as being conve-
niences. For example, Section 4.2.1 introduces the derived notion embodied by the function
threads to provide a more convenient representation for the primitive notion embodied by the
relation task_thread_rel. Although any statement about threads can be reworded as a statement
about task_thread_rel, it is often more desirable to write the statement in terms of threads. In
many cases, the choice of whether to view a structure as being primitive or derived is subjective.
For example, others might prefer to view task_thread_rel as being derived from threads instead
of threads being derived from task_thread_rel.

As a convention, we underline the first letter in the identifier for each primitive structure in
the Mach state. This is most useful when identifying which primitive structures are affected
by the DTOS services defined in Section 6.

4.1 Primitive Entities

The primitive entities in Mach are:

Secure Computing Corporation 83-0902023A001
CAGE Code OHDC7 1.25, 26 September 1996

8 Basic Kernel State Definition

Tasks — environments in which threads execute; a task consists of an address space, a port
name space, and a set of threads

Threads — active entities comprised of an instruction pointer and a local register state
Ports — unidirectional communication channels between tasks

Messages — entities transmitted through ports

Memories — memory object representing a shared memory

Pages — logical units of memory; either a unit of physical memory or provided by a memory
Hosts — instances of the Mach kernel

Processors — devices capable of executing threads

Processor Sets — groups of processors, each belonging to a host, to which threads are as-
signed for scheduling

Devices — resources such as terminals and printers that can be used to transmit information
between the system and its environment

Each of these primitive entities can be viewed as an abstract data type.

At any given time, only certain primitive entities are present in the system. The setst ask_cxists,
thread_exists, Bort_emsts, message_erists, memory_erists, Bage_emsts, Broc_emsts, Brocset_emsts,
and dewvice_exists denote the entities of each class that are present in the current system state.

Ip_null and Ip_dead are two special values in PORT which are never in the set of existing ports.
port_pointer consists of port_exists plus the special values Ip_null and Ip_dead.

Note that in the model, the kernel itself is viewed as an existing task and is denoted by k ernel.

4.2 Process Management

This section describes the data structures associated with process management. Multi-
threaded processes are supported by allowing tasks to contain multiple threads.

4.2.1 Thread to Task Relationship

The relation task_thread_rel denotes the relationship between threads and tasks; a pair
(task, thread) is an element of Lask_thread_rel exactly when thread is one of the threads contained
in tesk. Each thread belongs to exactly one task. For convenience, the following additional no-
tation is introduced:

m owning_task(thread) — the task to which thread belongs
m threads(task) — the set of threads belonging to task

83-0902023A001 Secure Computing Corporation
1.25, 26 September 1996 CAGE Code OHDC7

DTOS FSPM 9

4.2.2 Execution Status

The execution status of a thread identifies whether a thread is running, waiting on an event,
waiting uninterruptibly, and/or halted. A thread holds some subset of these characteristics
at any point in time. The type RUN_STATES defines the possible thread characteristics.
RUN_STATES has possible values Running, Stopped, Waiting, Uninterruptible and Halted.

The values of this type have the following meanings:

m Running — The thread is either executing on a processor or is in a run queue waiting to
execute.

m Stopped — The thread has been asked to stop (and might have done so). A stopped thread
does not execute any instructions.

m Waiting — The thread is waiting for an event.
n Uninterruptible — The thread is waiting uninterruptibly.

m Halted — The thread is halted at what the kernel considers to be a “clean” point (i.e., it
can be resumed properly).

The state Uninterruptible does not imply the state Waiting. A run_state that includes the former
but not the latter can result when the procedurecl ear _wai t is called on a thread that is both
Uninterruptible and Waiting. The expression run_state(thread) indicates which of the above
characteristics are held by an existing thread.

Each thread has an associated suspend count that determines whether the thread may execute
user level instructions. This count is denoted by thread_suspend_count(thread). A thread may
execute such instructions only if the value of its suspend count is zero. It is a consequence of
the operation of the system (and therefore is not stated as an axiom here) that only stopped
threads have a suspend count greater than zero.

A thread may be swapped out. A thread that is swapped out has no kernel stack. The set of
such threads is indicated by swapped_threads. Some threads may be wired into the system. A
wired thread may not be swapped out. The set threads_wired denotes the set of wired threads.
Certain threads are called idle threads. An idle thread is one that runs on a processor that has
no user threads to run. (That is, the thread keeps the processor “idling”.) User threads will not
be marked as idle. We use :dle_threads to denote the set of idle threads.

Each task also has a suspend count. The expressiontask_suspend_count(task) denotes the count
associated with tesk. If this value is non-zero, then none of the threads in tesk may execute
regardless of their individual suspend counts.

4.2.3 Priority Levels

Thread priority levels are used to determine thread execution scheduling priorities. Priority
levels are represented as a subset of the integers (in particular by the numbers between 0 and
31 inclusive in current implementations). The set Priority_levels denotes the allowable priority
levels. The relation Lower_priority indicates when a priority is lower than a second priority; in
particular, (z, y) is an element of Lower_priority exactly when z is a lower priority than y. Since
the implementation uses higher numbers to indicate lower priorities, = is lower than y when
z > y. The relation Higher_priority is the inverse ordering indicating when a priority is higher

Secure Computing Corporation 83-0902023A001
CAGE Code OHDC7 1.25, 26 September 1996

10 Basic Kernel State Definition

than a second priority. The constants Lowest_possible_priority and Highest_possible_priority
denote the maximum and minimum integers, respectively, in Priority_levels.

Using these relations, the minimum and maximum priorities in a set of priorities can be
defined. These are denoted by Lowest_priority(priority_set) and Highest_priority(priority_set),
respectively.

There is a highest priority (equal to 12 in current implementations) normally granted to ordi-
nary user threads. This priority is denoted by Base_user_priority.

Three different types of priority values are associated with each thread.

m The expression thread _priority(thread) represents a base user-settable priority for thread.

m The expression thread_max_priority(thread) represents the maximum value to which
thread_priority(thread) can be set.

» The expression thread_sched _priority(thread) represents the priority that the system uses
to make scheduling decisions. This value is determined based upon thread_priority and
the thread scheduling policy (discussed in Section 4.2.4), and is not directly set by the
user. This value cannot exceed thread_priority(thread).

The priority level of a thread can temporarily be depressed by the request swtch_pri or
thread_switch to allow other threads to run. When a thread is depressed, its priority is
set to the lowest possible priority? The set depressed_threads denotes those threads whose
priority is currently depressed. The expression priority_before_depression(thread) denotes the
priority level thread had before depression if thread’s priority level has been depressed and
thread_priority(thread) otherwise.

Each existing task has an associated priority level, denoted by task_priority(task), that is used
to assign the initial priority for any thread created within the task.

4.2.4 Scheduling Policies

Each thread has an associated scheduling policy, represented by thread_sched_policy(thread).
The type SCHED_POLICY represents the set of available scheduling policies. Examples of
supported policies are Timesharing (7T'meshare) and Fixed Priority (Fizedpri). Some scheduling
policies have associated policy specific data that must be associated with each thread. For
example, threads scheduled under the Fixed Priority policy must have an associated scheduling
quantum. The type SCHED_POLICY_DATA denotes policy specific scheduling data. The
expression thread_sched_policy_data(thread) denotes any such policy specific data associated
with thread. The set supported_sp indicates which scheduling policies are actually supported by
a given Mach system. All Mach systems are required to support Timeshare and each thread in
a Mach system must be assigned one of the scheduling policies supported by the system.

4.2.5 Instruction Pointer

The set VIRTUAL_ADDRESS is used to denote the set of virtual addresses. These addresses
are assumed to be ordered in some manner with Vm_start and Vm_end denoting, respectively,
the smallest and largest addresses.

Each thread has an associated instruction pointer indicating the address at which the thread
is currently executing. The expression instruction_pointer(thread) denotes thread’s current in-
struction pointer.

3 Note, however, that not all threads having the lowest possible priority are depressed.

83-0902023A001 Secure Computing Corporation
1.25, 26 September 1996 CAGE Code OHDC7

DTOS FSPM 11

4.2.6 Emulation Environment

Mach supports binary compatibility by allowing tasks to establish user-level handlers for sys-
tem calls. This is accomplished by associating an emulation vector with each task. Each
entry in an emulation vector specifies a system call and a virtual address. Whenever the task
executes a system call that has an entry in the emulation vector, the code at the specified
virtual address for the system call is executed rather than the system call. The expression
emulation_vector(task) denotes task’s emulation vector.

4.2.7 Sampling

Any thread or task may be sampled. This causes the instruction pointer to be recorded in
a buffer during clock interrupts or page faults if the thread or task is currently execut-
ing. The type SAMPLE represents the sampling information that is collected, and type
SAMPLE_TYPES represents information that determines at which times during execution
samples are collected for a given thread or task.

There are six recognized sample types. They are:

Sample_periodic — each clock interrupt

Sample_vm_zfill_faults — zero-filling a virtual memory page
Sample_vm_reactivation_faults — reactivating a virtual memory page
Sample_vm_pagein_faults — bringing a virtual memory page in

Sample_vm_cow_faults — virtual memory copy-on-write faults

Sample_vm_faults_any — all virtual memory page faults. This includes miscellaneous
faults beyond the above mentioned four types of virtual memory faults.

These values comprise the elements of the set Recognized_sample_types.

For convenience, SAMPLE_VM_FAULTS is used as the combination of the sample
types Sample_vm_zfill_faults, Sample_vm_reactivation_faults, Sample_vm_pagein_faults and
Sample_vm_cow_faults.

There is a maximum number of samples (determined by the buffer size) that can be kept for
any thread or task. This maximum is represented by Maxz_samples.

The set sampled_threads denotes the set of threads that are currently being sampled. For
each sampled thread there is a set of sample types, denoted by {hread_sample_types(thread),
indicating when a sample should be taken for the thread. Each sample taken for a thread is
assigned a unique sequence number. The expression thread_sample_sequence_number(thread)
denotes the sequence number of the most recent sample for a thread (or zero if no samples have
been collected). The expression thread_samples(thread) denotes the currently stored samples
for thread. Each sample is stored with an associated sample number. Only the Maz_samples
most recent samples are retained.

The same sampling information is kept for tasks.
4.2.8 Thread Time Statistics
The system records time statistics for each thread. The following information is recorded:

m user_time(thread) — the total user run time for thread
n system_time(thread) — the total system run time for thread

Secure Computing Corporation 83-0902023A001
CAGE Code OHDC7 1.25, 26 September 1996

12 Basic Kernel State Definition

m cpu_time(thread) — thread's scaled CPU usage
m sleep_time(thread) — the amount of time for which thread has been sleeping

4.2.9 Machine State

The system records the machine state of each thread. Typically, the structure of the machine
state varies depending upon the architecture of the machine to which the thread is assigned.
The type SUPP_MACHINE_ARCH represents the set of supported machine architectures. The
set THREAD_STATE_INFO_TYPES denotes the names of the various structures that are
associated with the supported architectures. The type THREAD_STATE_INFO denotes the
possible values of the state information recorded for a thread.

The expression State_info_avail(arch) denotes the types of state information which the archi-
tecture supports.

The expression thread_state(thread, info_type) returns the indicated type of state information
recorded for thread.

4.3 Port Name Space

Each task uses its own (local) set of names to refer to ports. The set NVAMFE is used to hame
ports in a task’s name space.

The names Mach_port_null and Mach_port_dead are reserved. They will never be used as an
index in a task’s port name space. The remainder of this section discusses the three types of
entities that can be in name spaces: port rights, port sets, and dead names.

4.3.1 Port Rights

A port is only of use to a task if the task holds some kind of right to the port. The types of
available rights are defined via the type RIGHT. A right for a port allows a task to either send
or receive messages via that port. The task may have either a general right to send messages
via a port or a one-time right to do so. Thus, the elements of type RIGHT" are: Send, Receive,
and Send_once.

A Capability is the combination of a port and a right to do something with that port.

Strictly speaking, a task associates a name with a particular right to a port, not simply with
the port. The set port_right_rel relates the ports to which a task has rights with their right
types and their local names. More specifically, each element of port_right_rel is a tuple of the
form (task, port, name, right, ¢). Such a tuple is an element of port_right_rel only when name
denotes in task's name space a right of type right to port. The i-value is used to allow a task
to accumulate multiple send rights under the same name. For send-once or receive rights, the
value of i is always equal to 1. For convenience, the expression named_port(task, name) denotes
the port associated with name in task’s name space.

At most one task can receive messages from a port at any given time. The expression
recetver(port) denotes the task (if any) that is currently permitted to receive messages from
port, and receiver_name(port) denotes the receiver task’s name for the port.

Many tasks may have Send or Send_once rights to a port. The relation sender indicates the
tasks currently permitted to send messages to a port; an element(port, task) is in sender exactly
when task has a send right to port.

83-0902023A001 Secure Computing Corporation
1.25, 26 September 1996 CAGE Code OHDC7

DTOS FSPM 13

The i-value is called the user reference count. As noted above, it is equal to 1 for receive and
send-once rights, but is of interest for send rights. The expressions_right_ref_count(task, name)
returns the user reference count for name in task’s name space (when it is a send right). There
is a system-wide maximum number of references to a given send right which a task may
accumulate, represented by Maz_right_refs.

For convenience:

m The relations s_right, r_right, and so_right are used to identify the names of each of the
types of rights which are associated with a given task. For example, (task, name) is an
element of s_right exactly when name is a send right in task’s name space.

m The relation s_r_right is used to identify names that are either a receive or a send right.

m The relation port_right_namep identifies names that are either receive, send, or send-once
rights.

The semantics of Mach are such that send and receive rights within a task coalesce into a single
name. In other words:

m If name is a receive right for port in task’s name space, then no other name in task’s name
space may be a send right for port; the send rights must be associated with name, too.

m If name is a send right for port in task’s name space, then all of the send rights for port in
task’s name space are associated with name.

Note, however, that the same task can have multiple names associated with send-once rights
for the same port. Mach prohibits a name that is a send or a receive right from also being a
send-once right.

A message may be forcibly enqueued using a send right. In this case it will be added to the
message queue of the named port even if the queue has reached its designated size limit. At
most one message may be forcibly enqueued at a time using any given send right. After that
message is removed from the queue, a message-accepted notification is sent and the send right
can again be used to forcibly enqueue a message. The component f orcibly_queued(task, name)
denotes the message, if any, forcibly enqueued using a send rightrame in task’s ipc name space.

Review Note:

I'd like to tie the message indicated by f orcibly_gquened back to the port indicated by the send right, but
I'm not sure this will be accurate. -

4.3.2 Port Sets

A port set is a set of ports associated with a particular task and name. A port set is used to
allow the receiving of a message via any member of the port set. Given a task and a port set
name, the expression port_set(task, name) denotes the port set. The relation port_set_namep
identifies the port set names associated with each task. containing_set(port) denotes the name
of the port set containing port, if any. Note that a port can be in at most one port set.

Mach prohibits the reserved names Mach_port_null and Mach_port_dead from being port set
names or the inclusion of the same receive right in two different port sets.

Secure Computing Corporation 83-0902023A001
CAGE Code OHDC7 1.25, 26 September 1996

14 Basic Kernel State Definition

4.3.3 Dead Rights

A dead name is a nhame which previously named a send, receive, or send-once right for a task,
but no longer does.* Each dead name in a task can have an associated count that is analogous
to the reference count associated with send rights. This count is initially set based on the user
reference counts for the right previously bearing the name. The count may be modified by
subsequent actions of the kernel. The relation dead_right_rel identifies the dead names and
their associated counts for each task; an element(task, name, i) is an element of dead_right_rel
if name is a dead name in task with associated count i. The previously defined constant,
Maz_right_refs, is a system-wide maximum for the reference count of a given dead right. For
convenience:

m The relation dead_namep identifies the dead names associated with each task.
= The expression dead_right_ref _count(task, name) denotes the count associated with name
in task (when name is a dead name).

Mach prohibits Mach_port_null and Mach_port_dead from being dead names.

4.3.4 Summary

A task’s port right names (send, receive, and send-once), port set names, and dead names are
mutually disjoint. The union of port_right_namep, port_set_namep, and dead_namep identifies
the names in each task’s name space. For convenience:

m The relation local_namep is used to denote this union.
» The expression number_of _rights(task) is used to denote the number of names that
local_namep associates with task. This is the current size of task’s name space.

4.4 Ports

This section describes data structures associated with ports.

4.4.1 Make Send Count

Each time the receiver for a port creates a new send right for the port, the system increments
a counter associated with the port. The expression make_send_count(port) denotes the value
of the counter associated with pori. Note that this count does not necessarily represent the
current number of send rights for the port since tasks other than the receiver can create send
rights. Furthermore, the count does not necessarily represent the number of send rights the
receiver has created because the count can directly be set to arbitrary values by user threads.

4.4.2 Message Queues

Each port has an associated message queue. A message queue can be thought of as a sequence
of messages. In Mach, a task may set a limit on the number of messages that are permitted
in a given message queue. The value Mach_port_q_limit_default represents the default limit

4 A dead name may also be specified in the body of a message in place of an actual port right.

83-0902023A001 Secure Computing Corporation
1.25, 26 September 1996 CAGE Code OHDC7

DTOS FSPM 15

the kernel uses for newly allocated ports. The value Mach_port_q_limit_maz represents a
system-imposed limit on the value a task may specify as the limit for a message queue.

For each port, ¢_limit(port) indicates the current limit set for the port. This denotes an in-
tended bound on the number of messages in the associated message queue. The expression
port_size(port) indicates the number of messages that are actually present in port’s message
queue. Although it is intended that port_size(port) is always less than or equal to ¢_limit(port),
the kernel does not actually guarantee that this property always holds. Examples of ways in
which the property may be violated include:

= The intended bound on the number of messages in a queue can be decreased below the
number of messages already in the queue.

» Messages sent with a send-once right are delivered regardless of whether the destination
port's queue is already full.

m Each name for a send right to a port may be used to forcibly enqueue one message at a
time to the named full port.

The expression message_in_port_rel(port) denotes the sequence of messages in the queue asso-
ciated with port. Each message is contained in at most one message queue. For convenience,
the expression containing_port(message) is used to indicate the port associated with the message
gueue to which message belongs.

Each port has an associated sequence number that is used to properly sequence messages
received through the port. The expression sequence_no(port) indicates port’'s current sequence
number.

4.5 Notifications

A task may request that a notification message be sent when one of the following changes
occurs in the status of a port:

m The port is destroyed.
m The last send right for the port is deallocated.

A task may also request a notification message be sent when a send right becomes a dead name.
In each case, the task requesting the notification must register a port to which the notification
should be sent.

The relation pori_notify_destroyed_rel identifies the ports for which a destroyed noti-
fication has been requested and the associated notification ports. For convenience,
port_notify_destroyed(port) is used to denote the notification port registered for a destroyed
notification on port.

The relation port_notify_no_more_senders_rel identifies the ports for which a no-more-senders
notification has been requested and the associated notification ports. For convenience,
pori_notify_no_more_senders(port) is used to denote the notification port registered for a no-
more-senders notification on port.

The relation port_notify_dead_rel identifies the task-name pairs for which a dead-name
notification has been requested and the associated notification ports. For convenience,
port_notify_dead(task, name) is used to denote the notification port registered for a dead-name
notification on name in task’s name space.

Secure Computing Corporation 83-0902023A001
CAGE Code OHDC7 1.25, 26 September 1996

16 Basic Kernel State Definition

The registered notification ports remain in force as long as both the port in question and the
registered port exist regardless of whether the same tasks remain related to these ports.

Review Note:
Should the range of these functions also include Ip_dead? It seems that it should because the port could
die. Should look at the code to see what happens if we try to send a notification in this situation.

4.6 Special Ports

This section describes the special ports known to the kernel. Each of the special ports is
associated with some kernel entity.

4.6.1 Task Ports

In addition to the ports referenced in its port name space, each task has four special ports. The
self port is used to request the kernel to perform actions upon the task. Any task holding a
send right to a second task may use that right to request operations on the second task. The
kernel is always the receiver for a task’s self port. A task’s sself port is normally equal to its
self port, but may refer to a different port and have a task other than the kernel, such as a
debugger, as its receiver. The relations task_self_rel and task_sself _rel identify the self and
sself ports associated with each task.

The other two special ports are the exception port and the bootstrap port. A task receives
exception messages from the kernel via its exception port. A task’s bootstrap port is provided
as a start-up means for a task to obtain a send right to a service port for a server that can
provide the task start-up information. The relations task_eport_rel and task_bport_rel identify
the exception port and bootstrap port associated with each task. The sself, exception and
bootstrap ports may be modified. Unlike the self port, they may become Ip_null or Ip_dead.

For convenience:

» The expression task_self (task) denotes task’s self port.

» The expression task_sself (task) denotes task’s sself port.

m The expression task_eport(task) denotes task’s exception port.

» The expression task_bport(task) denotes task’s bootstrap port.

» The expression self _task(port) denotes the task (if any) having port as its self port.

4.6.2 Thread Ports

Each thread has a self port, sself port, and an exception port with purposes parallel to the cor-
responding special ports for tasks. The relations and functionsthread_self _rel, thread_sself _rel,
thread_epori_rel, thread_self, thread_sself, thread_eport, and self _thread are used to denote these
state components.

4.6.3 Memory Ports

A kernel and a memory object interact by engaging in a dialogue. The kernel sends messages
to an object port and the object manager sends messages to a control port. There is also a

83-0902023A001 Secure Computing Corporation
1.25, 26 September 1996 CAGE Code OHDC7

DTOS FSPM 17

name port used to identify the object in vm_region requests. The relations object_port_rel,
control_pori_rel, and name_pori_rel are used to represent the binding between a memory and
its associated ports. For a particular Mach host kernel, there is at most one of each type of port
associated with a given memory. Furthermore, no object port is associated with more than one
memory object. For convenience:

= The expressions objeci_port(memory), control_port(memory), and name_port(memory) are
used to denote, respectively, the object, control, and name port for memory.

= The expression cbject_memory(port) denotes the memory object (if any) for which port is
the object port.

» The expression control_memory(port) denotes the memory object (if any) for which port is
the control port.

Memory objects are given a name port immediately upon allocation. However, they need not
necessarily have object and control ports until a page that they back needs to be paged out.

4.6.4 Host Ports

Each host has two associated ports: the control port and the name port. These ports are
denoted by host_control_port and host_name_port. The Kernel is the receiver for each of these
ports. The name port is used to service “unprivileged” requests while the control port is used
to service “privileged” requests.

4.6.5 Processor Ports

Each processor has a port that is used to name it. The relation processor_pori_rel indicates the
association between processors and their name ports. There is exactly one port associated with
each processor. For convenience, proc_self(proc) and the_processor(port) are used to denote,
respectively, the port associated with a given processor and the processor associated with a
given port.

Each processor set has two associated ports: the control port and the name port. The relations
ps_control_port_rel and ps_name_port_rel are used to represent the binding between a processor
set and its associated ports. In Mach, there is exactly one of each type of port associated with
each existing processor set. For convenience:

» Theexpression controlled_proc_set(port) is used to indicate the processor set (if any) having
port as its control port.

m The expression procset_self (procset) is used to indicate procset’s control port.

= The expression named_proc_set(port) is used to indicate the processor set (if any) having
port as its name port.

= The expression procset_name_port(procset) is used to indicate procset’s name port.

4.6.6 Device Ports

Each device is represented by a unique port. The relation d evice_port_rel identifies the device
port representing each device. The kernel is the receiver for a device port. For convenience:

m The expression device_port(dev) is used to denote dev’s device port.

Secure Computing Corporation 83-0902023A001
CAGE Code OHDC7 1.25, 26 September 1996

18 Basic Kernel State Definition

m The expression port_device(port) is used to denote the device (if any) having port as its
device port.

4.6.7 Device Master Port

Tasks gain access to devices through the device master port which is denoted by
master_device_port. The Kernel is the receiver for this port.

4.6.8 Summary

Each special port for which the kernel is always the receiver must be distinct from all of the
other special ports for which the kernel is always the receiver. For example, no two tasks may
have the same self port, and no port may be both a task self port and a thread self port. Note,
however, that the kernel does not prohibit overlaps between the special ports for which the
kernel is always the receiver and the other special ports. For example, a task’s bootstrap port
might be set to some others task’s self port (even though this would probably not serve any
useful purpose).

Editorial Note:
The following needs some revision:

= Add port classes for pager name ports and pager (object) ports.

= Correct the misunderstanding that a port in a port class must have the kernel as the receiver.
While this is true for most classes, memory object (pager) ports are a notable exception.

The type PORT_CLASS denotes the classes of ports for which the kernel is the receiver.
These are Pc_task, Pc_thread, Pc_host_control, Pc_host_name, Pc_ps_conirol, Pc_ps_name,
Pc_processor, Pc_memory, and Pc_device.

If the kernel is the receiver for port, then the expression port_class(port) denotes port’s class.

4.7 Total Send Rights

In addition to the send rights contained in the port name spaces associated with the tasks,
the kernel maintains so-called naked send rights to the special ports. We occasionally need to
know the total number of send rights to a given port including both those recorded in a nhame
space and the naked rights. Naked rights are associated with the following ports: task_sself,
task_eport, task_bport, thread_sself and thread_eport. We define port_right_seq to be any sequence
of the elements of the set pori_right_rel (the precise ordering of elements is not important for
our purposes). The expression total_name_space_srights(port) denotes the number of send rights
to port in all name spaces, and total_naked _srights(port) denotes the total number of send rights
to port that are not stored in any name space. The expression total_srights(port) is the sum of
these two numbers.

Review Note:
Need to determine if naked send rights are implied by any other special port relationships. Note that a
naked send right is not created for the self port relationships (e.g., thread_self).

Need to determine whether rights in messages count as naked send rights too.

83-0902023A001 Secure Computing Corporation
1.25, 26 September 1996 CAGE Code OHDC7

DTOS FSPM 19

4.8 Registered Rights

Each task has a finite array of send rights, intended to use for access to the Network Name
Server, the Environment Manager, and the Service server (although they may have any use).
These rights are called “registered,” to denote the fact that the kernel knows their identity. The
expression registered_rights(task) denotes the set of names of rights registered for task. There
may be more than three registered rights, in fact their number need only be less than or equal to
the system constant Task_port_register_maz. The Kernel has three constants Name_server_slot,
Fnuvironment_slot, and Service_slot which tell it which element of the array refers to each of
these servers.

4.9 Memory System

This section describes the components of the Mach system that are used to provide tasks with
address spaces.

4.9.1 Memory

Each memory can be viewed as mapping a memory offset to a value. Essentially, a memory can
be viewed as an array of values indexed by offsets; the only difference is that a memory may
have holes in the sense that some offsets do not map to any value. The mapping from offsets to
values is defined by the memory’s manager. As described in Section 4.9.2, the kernel becomes
aware of pieces of this mapping as data is cached in resident pages. The types OFFSET and
WORD denote, respectively, the sets of memory offsets and memory values.

The kernel maintains a copy strategy for each memory object. This strategy is one of the
following:

m Memory_copy_none —

Review Note:
We need to figure out the meaning of each strategy.

n Memory_copy_call —
n Memory_copy_delay —
m Memory_copy_temporary —

These values comprise the elements of the type MEMORY _COPY_STRATEGY . The expres-
sion copy_strategy(memory) denotes the copy strategy recorded for memory.

The kernel cannot request access permissions and data from a memory object until it has
received a memory_object_ready command (normally in reply to a memory_object_init
request). The set initialized denotes the set of memory objects for which this has occurred.

The kernel records which memory objects may be cached; the setmay_cache denotes the set of
such memory objects. The memory performance for a memory object is influenced by its copy
strategy and whether it can be cached.

A memory can be either managed or unmanaged. The setmanaged denotes the set of memories
that are managed. Corresponding to each such memory there is a task acting as the memory’s
manager. The manager for memory is denoted by manager(memory). Each memory having an
object port is managed.

Secure Computing Corporation 83-0902023A001
CAGE Code OHDC7 1.25, 26 September 1996

20 Basic Kernel State Definition

Similarly, memories can be temporary or non-temporary. The settemporary_rel denotes the set
of memories that are temporary.

If the page of data corresponding to a given memory-offset pair is not resident when
a thread attempts access, then the thread is blocked on a page fault. The expression
memory_fault(memory, offset) indicates the set of threads that are currently blocked on a page
fault generated by access to a given memory-offset pair.

Temporary memory is backed by the default memory manager. The kernel records a port
identifying the current default memory manager. This port is denoted byd efault_mem_manager.

A null value is used to indicate the lack of a memory filling a particular function in a virtual
memory map entry.

Review Note:
Need to figure out how d efauli_mem_manager relates to managed and manager.

4.9.2 Pages

At the physical level, pages relate page offsets and values in much the same way as memories
relate memory offsets and values. The relation page_word_rel identifies the binding between
page-offset pairs and words of data. Since at most one value can be stored at a given page offset,
page_word_rel is actually a function mapping page-offset pairs to values. For convenience,
;age_word_fun(page)(page_oﬁset) is used to denote the word of data at offset page_offset of page
page.

Each page represents some area of memory. The relation represenis_rel indicates the binding
between pages and memory-offset pairs. This relation should be interpreted as indicating the
memory and offset within that memory of the beginning of the data that a page represents.
Since each area of memory is represented by at most one page, the function representing_page
denoting the page representing an area of memory can be defined. Each page in the range of
this function represents some area of memory. For convenience:

m The set represents_memory is used to denote the set of pages that represent some area of
memory.

m The set represented is used to denote the set of memory-offset pairs that are represented
by some page.

m The expressions represented_memory(page) and represented_offset(page) denote, respec-
tively, the memory and offset that page represents.

When a page is modified, it becomes dirty. The set dirty_rel denotes the set of dirty pages.
Upon evicting a page, the kernel checks whether the page is dirty. If it is, then the contents of
the page are sent to the appropriate memory manager for it to record the updates. A memory
manager may instruct the kernel that it will not retain a copy of a page that it has provided to
the kernel by indicating that the page is precious. Whenever the kernel evicts a precious page,
it sends the contents of the page to the appropriate memory manager regardless of whether the
page is dirty. By instructing the kernel that a page is precious, a memory manager can relieve
itself of the responsibility of retaining a copy of a page while the page is resident; the memory
manager can rely on the kernel to inform it of the page’s current contents whenever the page
is evicted. The set precious is used to denote the set of precious pages.

Mach allows pages to be locked against particular types of accesses. This is represented by
associating a set of protections with each page. The protections are of type PROTECTION which

83-0902023A001 Secure Computing Corporation
1.25, 26 September 1996 CAGE Code OHDC7

DTOS FSPM 21

is comprised of the elements Read, Write, and Ezecute. The relation page_lock_rel indicates the
access modes against which a page is locked. For convenience page_locks(page) is defined to be
the set of access modes against which page is locked.

4.9.3 Address Space

The set allocated is used to denote the set of TASK-PAGE_INDEX pairs that have been allocated
in a task’s address space. A task-index pair may be mapped to a memory area. Using the
previously defined state components, these memory areas can be related to the physical pages
used to contain the data when it is paged out. Thus, a task’s address space completes the
picture of mapping virtual addresses to physical pages and values. Note, however, that not all
allocated addresses need be mapped to memory. The relation map_rel associates task-index
pairs with memory-offset pairs. There is at most one memory-offset pair associated with each
task-index pair. For convenience:

= The expressions mapped_memory(task, index) and mapped_offset(task, index) are used to
denote the memory and offset corresponding to a given task-index pair.
m The set mapped is used to denote the set of memories to which some task-index pair maps.

4.9.4 Memory Protection

Mach protects memory objects by assigning protections to each page in a task’s address space.
Three sets of protections are associated with each page in a task’s address space. The Mach
protection holds currently applicable protection limits as indicated by users. The maximum
protection limits the allowable values for the Mach protection. The third set, the current
protections, is what actually limits a task’s access to a page. This is a DTOS addition and will
be further defined in Section 5.9°

We use mach_protection to denote the relation between tasks, pages, and Mach protec-
tion sets. The pair ((task, page_index), protection_set) is an element of mach_protection if
protection_set is the set of protections most recently established by a user request to set
the Mach protections for page_indexz. We model maximum protections similarly by defining
maz_protection(task, page_index) to denote the maximum protection that task is permitted to
the memory it has mapped at page_indez.

4.9.5 Memory Inheritance

For each memory region within a task’s address space, Mach records an inheritance attribute
that indicates the manner in which child tasks inherit the memory. The possible options are:

m [nheritance_option_share — indicates the region should be shared by the parent and child

m [nheritance_option_copy — indicates the region should be shared by the parent and child
until one of them writes to the region; once a modification occurs, a copy-on-write is
performed

m Inheritance_option_none — indicates the region should not be made accessible to the child

5The Mach protection in DTOS is called the current protection in Mach and is used in Mach to control a task’s
access of pages. The terminology has been changed here to remain consistent with the prototype which must take into
account the decisions of the security server when determining the current protections.

Secure Computing Corporation 83-0902023A001
CAGE Code OHDC7 1.25, 26 September 1996

22 Basic Kernel State Definition

These values comprise the elements of the type INHERITANCE_OPTION .

The expression inheritance(task, page_index) indicate the inheritance option associated with the
region indicated by page_indez in task’s address space.

4.9.6 Shadow Memories

A memory, memory,, is said to back a second memory, memory,, if memory,’s manager takes
responsibility for pages of memory, that are not handled by memory,’s manager. The relation
backing_rel indicates when memory, backs memory, at a given offset within memory,. Each
memory is backed by at most one memory-offset pair. Furthermore, a memory may back at most
one other memory. For convenience, backing_memory(memory) and backing_offset(memory) are
used to denote, respectively, the memory and offset backing memory.

Whenever memory, backs memory,, memory, is said to shadow memory,. For convenience:

= The expression shadow_memories(memory) indicates the singleton set of memories backed
by memory. shadow_memories is defined only for those memories that back another mem-
ory.

m The expression backing_chain(memory) indicates the sequence of memories backing
memory.

If a memory is not backed by any memories, then its backing chain is empty. If memory,
is backed by memory, then the backing chain for memory, consists of memory, followed by
the backing chain for memory,. For example, suppose memory, backs memory,, memory, backs
memory,, and No memory backs memorys. Then, the backing chains for memorys, memory,, and
memory,are, respectively, (), (memorys), and (memory,, memorys). Mach does not permit cycles
to occur in the sequence of memories backing a memory. Thus, we require that no memory be
present in its backing chain.

4.9.7 Page Wiring

To prevent critical pages from being evicted, Mach allows tasks to wire pages. For each page
allocated in a task, a count is maintained of the number of times that the task has wired the
page. The expression wire_count(task, page_index) denotes the number of times that task has
wired the page indicated by page_index in its address space. As long as a task’s count for
page_index remains nonzero, the physical page associated with pege_indez must be retained in
memory. In other words, a physical page may only be evicted when no task has the page wired.
The set wired denotes the set of physical pages that are wired by some task.

Review Note:

The wire_count component corresponds to the VM entry wire count. A page is wired if any VM entry
that is mapped to it is wired. For efficiency the prototype maintains two wire counts, one on VM entries
and another on pages. The latter denotes the number of VM entries that have the page wired ignoring
multiple wirings by a single VM entry. We do not model the page wire count.

4.10 Messages

This section discusses the structure of messages.

83-0902023A001 Secure Computing Corporation
1.25, 26 September 1996 CAGE Code OHDC7

DTOS FSPM 23

4.10.1 Message Options

The type MACH_MSG_OPTION denotes the base values of the options parameter of
mach_msg. The recognized values of this type are Mach_send_msg, Mach_rcv_msyg,
Mach_send_cancel, Mach_send_notify, Mach_rcv_notify, Mach_rcv_large, Mach_send_timeout,
and Mach_rcv_timeout. The options parameter is set to some set of the base values.

4.10.2 Complex Messages

In addition to simply carrying data, a message can also carry port rights and memory regions.
A message carrying port rights or memory regions is called acomplex message. Each message
carries a flag indicating whether the message contains port rights or memory regions. The type
COMPLEX_OPTION consists of the elements Co_carries_rights and Co_carries_memory; the
flag carried in each message is a set of these values. Note that a flag containing both elements
indicates that the message contains both port rights and memory regions.

4.10.3 Data Types

Each element in the body of a message is typed. The set MACH _MSG_TYPE denotes the set
of data types recognized by the system.

Whenever a port right is sent in a message, the client indicates a transfer option for the port
right. The collection of acceptable transfer options is denoted by Recognized_transfer _optionsand
contain the values Mmi_make_send, Mmi_copy_send, Mmi_move_send, Mmi_make_send_once,
Mmit_move_send_once, and Mmi_move_receive.

An element of type Mmt_make_send indicates a receive right held by the sender from which a
send right is to be created for the receiver. Similarly, an element of type Mmt_make_send_once
indicates a receive right held by the sender from which a send-once right is to be created for
the receiver.

An element of type Mmt_copy_send indicates a send right that should be copied from the sender’s
port name space into the receiver's port name space. In other words, the sender retains the
existing port right while passing the right to the receiver.

An element of type Mmit_move_send indicates a send right that should be moved from the
sender’s port name space into the receiver’'s port name space. In other words, the sender’s
reference count is decremented by one and the receiver's reference count is incremented by
one. If the sender’s reference count was one, then the sender loses the capability associated
with the right. If the receiver’s reference count was zero, then the receiver gains the capability
associated with the right. Similarly, Mmt_move_send_once and Mmi_move_receive allow send-
once and receive rights to be moved from the sender’s name space to the receiver's name space.

After the kernel translates the port rights to an internal representation, it is no longer relevant
whether the right was moved, copied or made and the kernel simply records the type of right,
Mach_msg_type_port_receive, Mach_msg_type_port_send, or Mach_msg_type_port_send_once.

These values of MACH_MSG_TYPFE comprise the set Mach_msg_type_port_rights.

4.10.4 Message Headers

The header for a message residing in user-space memory or kernel-space memory contains the
following data:

Secure Computing Corporation 83-0902023A001
CAGE Code OHDC7 1.25, 26 September 1996

24 Basic Kernel State Definition

m local_port — specifies the reply port when sending a message (Mach_pori_null indicates
no reply port is specified)

local_rights — the port rights for the local port (if one is specified)

remote_port — specifies the destination port when sending a message

remote_rights — the port rights for the remote port

size — specifies the size, in bytes, of a message when receiving

msg_sequence_no — specifies the sequence number when receiving a message

operation — operation or function id set by message sender

In addition, a message header in kernel space contains a value complez which in-
dicates whether the message carries port rights or memory regions or both. This
value is a set of elements of type COMPLEX_OPTION. In place of complez,
a message header in user space contains a single value complex_boolean indicating
whether the message carries port rights and/or memory regions. The possible val-
ues are Co_carries_rights_and_or_memory and Co_carries_neither_rights_nor_memory. If
complex_boolean has value Co_carries_neither_rights_nor_memory, then the message contains
no port rights nor memory regions regardless of what is indicated by the individual data ele-
ments of the message.

Messages residing in kernel space contain ports rather than names. Thus, theremote_port and
local_port fields contain ports instead of names when a message is in transit. If Mach_port_null
was specified as the name of the local port in the MachMsgHeader, then local_port is empty in
the corresponding MachinternalHeader.

4.10.5 Outcall Operations

There are several sets of operation identifiers used in messages to external servers (e.g., the
security server) and user tasks. Some of these identifiers are used by the kernel when sending
outcalls. We use

m Frception_ids to denote the set of operations used by the kernel when sending an exception
message, The only element of this set is Mach_exception_id.

m Kernel_service_reply_ids to denote the set of operations used by the kernel in reply mes-
sages to kernel service requests,

m Security_server_ids to denote the set of security server operations,

m Audit_ids to denote the set of audit operations,

m Mem_obj_confirmation_ids to denote the set of operations used by the kernel when sending
confirmations of memory operations to a pager,

m Pager_request_ids to denote the set of pager operations,

m Mach_notify_ids to denote the set of operations used by the kernel in notification messages,
and

m Network_packet_ids to denote the set of operations used by the kernel when forwarding
network packets.

4.10.6 Message Bodies

The body of a message consists of a sequence of message elements. Each element contains the
following:

» the number of data elements contained in the message element

83-0902023A001 Secure Computing Corporation
1.25, 26 September 1996 CAGE Code OHDC7

DTOS FSPM 25

= a data type
m a collection of data elements or a single address

A triple that contains a collection of data elements represents in-line data. The number of data
elements in the collection is the same as the specified number of data elements, and each such
element is of the specified type. A triple that contains a single address represents out-of-line
data. The address specifies the start of the area of memory containing the data. The data in
that area is interpreted as being a collection of the specified humber of data elements of the
specified data type. Each out-of-line element contains a flag indicating whether the memory
should be deallocated from the sender’'s address space. The possible values of this flag are
Msg_deallocate and Msg_dont_deallocate.

Thus, an in-line message element is denoted by:

In_line(n, mach_msg_type, data_seq)

and an out-of-line message element is denoted by:

Out_of _line(n, mach_msg_type, va, olsd)

The number of entries specified in a triple representing in-line data must be the same as the
number of entries in the specified sequence of data elements. The set Msg_clement denotes the
set of valid message elements, and the set WVESSAGE_BODY denotes the set of sequences of
valid message elements. In other words, MESSAGE_BODY denotes the set of valid message
bodies.

When a message is moved into kernel space, the port names appearing in the message are
transformed into port identifiers and the virtual addresses indicating out-of-line data are
transformed into memory-offset pairs. In other words, the client specific names for kernel
entities are transformed into the appropriate global names used internal to the kernel. Thus,
an element in a message body in kernel space is of one of the following forms:

n Msg_value(n, mach_msg_type, (task, value_seq)) — an in-line element; if mach_msg_type is

an element of Recognized_transfer_options and some elements of value_seq have not yet
been resolved to ports then further processing is required to transform the sequence of
data into a sequence of ports.
Note that there are two forms for elements of value_seq. An entry of the form
V_data(msg_data,v_data_l) denotes the data msg_date while an entry of the form
V_port(port, v_date_l) denotes a port name that has been resolved into a port. In ei-
ther case, v_data_I indicates whether the element came from an in-line data element or
an out-of-line data element. The only time v_data_I will indicate an out-of-line data ele-
ment is when the element is a port name from an out-of-line data element that has been
resolved into a port.

n Transit_right(n, mach_msg_type, (task, port_seq, v_data_l)) — a sequence of port rights in
transit; task indicates the task that sent the message and »_data_I indicates whether the
port right was sent in-line or out-of-line

w Msg_region(n, mach_msg_type, (task, va, olsd)) — an out-of-line element that requires fur-
ther processing to transform the task-address pair into a memory-offset pair; task indi-
cates the task that sent the message and olsd indicates whether the region should be
deallocated from task’s address space

n Transit_memory(n, mach_msg_type, (task, memory, offset)) — an out-of-line element that
has been transformed from a task-address pair to a memory-offset pair;task indicates the
task that sent the message

Secure Computing Corporation 83-0902023A001
CAGE Code OHDC7 1.25, 26 September 1996

26 Basic Kernel State Definition

The number of entries specified in a triple representing in-line data must be the same as the
number of entries in the specified sequence of data elements. The type Internal_clement denotes
the set of valid message elements internal to the kernel, and the type INTERNAL_BODY
denotes the set of sequences of these elements. Thus, INTERNAL_BODY denotes the set of
message bodies that can be stored in the kernel.

Note that all of the elements in a single message body must contain the same task identifier.
It is intended that this task identifier unambiguously defines the identity of the task that sent
the message.

4.10.7 Message Status
Once a message enters the kernel, it can be in one of three states:

m Msg_stat_send — indicates that the kernel is performing processing to send the message

m Msg_stat_pseudo — indicates that the kernel is performing processing to return the mes-
sage to the message sender as part of a failed send request

m Msg_stat_rcv — indicates that the kernel is performing processing to receive the message

These elements comprise the values of the type MSG_STATUS.

The following error conditions can arise during the process-
ing of a message: Msg_error_invalid_memory, Msg_error_invalid_right, Msg_error_invalid_type,

Msg_error_msg_too_small, Msq_error_notify_in_progress, and Msg_error_timed_out. These val-
ues comprise the set MSG_ERROR.

4.10.8 Message Structure

Each message is modeled as containing fields header and body. The type Message denotes the
set of user space messages.

In addition to the header and body, messages in transit also contain the following fields:

m option — indicates the options specified by the client

m time_out_at — indicates when a given send or receive request will time out
If the set contained in this field is empty, then the message will not time out. Otherwise,
the set contains exactly one value and this value defines the earliest time at which the
associated send or receive request can time out.

m status — indicates future processing the kernel must perform on the message

m error — indicates the first error (if any) that occurred during the processing of the message.

The type InternalMessage denotes the possible values of messages in transit.

4.10.9 Pending Receives

Each port can have clients blocked on message receive requests waiting for messages to arrive
at the port. Each pending receive request has the following associated information:

» notify — the notify port name specified by the receiving task
m option — the options specified by the receiving task
m rcv_size — the receive size specified by the receiving task

83-0902023A001 Secure Computing Corporation
1.25, 26 September 1996 CAGE Code OHDC7

DTOS FSPM 27

m time_out_at — the time at which the request will time out; this has the same format as
the time_out_at component of InternalMessage.

4.10.10 Reply Ports

The sender of a message can specify a reply port for the receiver to use to reply to the message.
The sender does so by setting the local_port field to its name for the port. For convenience,
the relation reply_port_rel is used to denote the reply port and transferred right in a message
specifying a reply port. The interpretation of:

(message, (port, right))

being an element of reply_port_rel is that message transfers the type of right specified by right
(send or send-once) for port to the receiver of message. The intent is that the receiver use
the transferred right to send a reply message to port. Each message contains at most one
reply port and right for that port. For convenience, the expressions reply_port(message) and
reply_port_right(message) are used to denote the reply port and transferred right contained in
a given message.

4.10.11 Summary

This section has defined the data structures used to model messages. The expression
msg—_contents(message) is used to denote the internal message structure associated with each
message identifier, and the expression pending_receives(task, name) indicates the receive re-
quests currently pending for threads intask that attempted to receive through the port named
by name. The expression task_received_msgs(task) denotes the set of user-space messages that
have been received by task.

For convenience, the expression msg_operation(message) is used to denote the type of operation
requested by message. In other words, the returned value is the operation field of the message
identified by message.

4.11 Processors and Processor Sets

Each host has a default processor set denoted by d efault. Furthermore, each host has a master
processor denoted by master_proc.

Each processor is a member of a single processor set. The relation member_rel indicates which
processors belong to each processor set. For convenience, the expressions processors(procset)
and proc_assigned_procset(proc) are used to denote, respectively, the set of processors that belong
to procset and the processor set to which proc belongs.

Each task is assigned to a single processor set. The relation task_assignment_rel indi-
cates the association between tasks and processor sets. For convenience, the expressions
have_assigned_tasks(procset) and task_assigned_to(task) are used to denote, respectively, the set
of tasks assigned to procset and processor set to which task is assigned.

Similarly, Each thread is assigned to a single processor set. The relation
thread_assignment_rel associates threads with processor sets. For convenience, the expressions
have_assigned_threads(procset) and thread_assigned_to(thread) are used to denote, respectively,
the set of threads assigned to procset and processor set to which thread is assigned.

Secure Computing Corporation 83-0902023A001
CAGE Code OHDC7 1.25, 26 September 1996

28 Basic Kernel State Definition

Each processor set has a set of enabled scheduling policies, denoted by enabled_sp(procset)
and a maximum priority for assigned threads, denoted by ps_maz_priority(procset). The set of
enabled scheduling policies for a thread’s processor set is used to constrain the policies that can
be assigned to that thread. The maximum scheduling priority for a processor set constrains
the priorities that can be assigned to a newly created thread associated with that processor set.

Each processor may have an active thread. The expression active_thread(proc) indicates the
thread (if any) that is active on proc.

4.12 Time

Each host provides a system clock. The current system time is denoted by host_time.

4.13 Devices

Each device has an associated count indicating how many times the device has been opened
and not closed. We use device_open_count(dev) to indicate the count associated with dev. This
count is incremented each time dev is opened and decremented each time dew is closed. Each
device with a positive creation count has an associated device port that represents the device.

A kernel-space device driver may supply event counters for use by user-space device drivers.
An event counter is used as a semaphore for events produced by kernel-space drivers. The
counter is incremented when a relevant event occurs and decremented when a thread (e.g., a
user-space device driver) indicates via the evc_wait trap that it wishes to process an event.
Each task refers to an event by referencing its event counter. The appropriate event counter
is communicated to a thread in a driver-specific way’ The expression EVENT_COUNTER
denotes the set of all event counters.

Each event counter may have at most one thread, denoted by thread_waiting(evc), waiting for
it. Furthermore, each thread may be waiting on at most one event counter. The number of
event that are queued and waiting to be processed by a thread is denoted by event_count(evc).
The expression supplying_device denotes the kernel-space device driver that supplied the event
counter.

Devices can be associated with memory objects that can then be mapped into address spaces.
We use mapped_devices to denote the set of devices that have been associated with memory
objects.

Each device has two associated queues of data records. We use device_in(dev) and
device_out(dev) to denote, respectively, data input and output through the device. Data
read from dev is dequeued from device_in(dev), and data written to dev is enqueued to
device_out(dev).

Each device can have associated filters that are used to route data received through the device.
Each filter has an associated port to which data accepted by the filter is delivered. Further-
more, a priority can be associated with each port to indicate the ordering when there are
multiple ports associated with the filter. We use device_filter_info(dev) to indicate the set of
(device_filter, port, filter_priority) triples associated with dev.

Each device has an associated status. We use d evice_status(dev) to denote dev’s status.

8Threads may also wait for events that occur while the system is operating in kernel space (e.g., another thread
becomes suspended). This is handled through a separate waiting mechanism that is not modeled in the FTLS.

83-0902023A001 Secure Computing Corporation
1.25, 26 September 1996 CAGE Code OHDC7

DTOS FSPM 29

4.14 Summary

The data structures defined in the previous sections comprise the Mach system state. The type
Mach is used to denote the set of Mach system states.

Secure Computing Corporation 83-0902023A001
CAGE Code OHDC7 1.25, 26 September 1996

30 DTOS State Extensions

Section 5
DTOS State Extensions

This section describes extensions to the base Mach microkernel state that are needed to support
the DTOS kernel. The DTOS kernel is intended to support a wide range of policies. Thus, the
state components described in this section are independent of any specific access control policy.

In general, an access control policy consists of three components. First, security attributes must
be associated with the subjects accessing entities in the system. Second, security attributes
must be associated with the entities in the system that subjects access. Finally, a rule must
be defined that indicates the set of accesses that a subject with a given attribute can make to
an entity with a given attribute. To provide policy flexibility, the DTOS kernel abstracts the
security attributes associated with specific policies into sets ofsecurity identifiers. Although
the kernel relies upon a security server to define the policy to be enforced, the kernel maintains
a cache of accesses previously authorized by the security server.

In addition to providing a framework for access control policies, the DTOS kernel also enhances
the security of the Mach IPC mechanism.

The organization of this section is as follows:

m Section 5.1, Subject Security Information, describes the security information recorded
for subjects.

m Section 5.2, Object Security Information, describes the security information recorded
for objects.

m Section 5.3, Security Identifiers for Access Computations, describes some security
identifiers used only in access computations.

m Section 5.4, Permissions, describes the permissions enforced in DTOS.

m Section 5.5, Access Vector Cache, describes the DTOS kernel's access vector cache.

= Section 5.6, Message Security Information, describes the security information associ-
ated with messages to enhance the security of the Mach IPC mechanism.

m Section 5.7, Task Creation Information, describes information associated with tasks
to enhance the security of the Mach approach for process initiation.

m Section 5.8, Server Ports, describes ports used by the kernel for communication with
other servers.

m Section 5.9, Memory Region Protections, describes information associated with re-
gions to allow the DTOS kernel to enforce access.

5.1 Subject Security Information

Subjects in DTOS are threads executing within tasks. Each task has asubject security identifier
(SSI). The set SSI denotes the set of all SSls.

We will occasionally need to identify two distinct components of each SID, amandatory se-
curity identifier (MID) and an authentication identifier (AID). The functions Ssi_to_mid and
Ssi_to_aid are used to map SSls to MIDs and AIDs.

The expressions fask_sid(task), task_mid(task) and task_aid(task) are used to denote the SSI,

83-0902023A001 Secure Computing Corporation
1.25, 26 September 1996 CAGE Code OHDC7

DTOS FSPM 31

MID and AID associated with a task. The expression thread_sid(thread) denotes the SSI asso-
ciated with a thread. It is defined to be the SSI of its parent task.

5.2 Object Security Information

Each port has an associated object security identifier (OSI) that represents the security at-
tributes associated with the port. Similarly, each memory region has an associated OSI. The
set 057 denotes the set of all OSls.

The functions Osi_to_mid and Osi_to_aid are used to map OSls to MIDs and AIDs.

The expressions port_sid(port), port_mid(port) and port_aid(port) are used to denote the OSI,
MID and AID associated with a port.

Each task and thread has a self port on which the kernel receives requests to perform an action
on the task or thread. The OSI of the self ports is derived from the SSI of the corresponding
task. The expressions Task_port_sid(ssi) and Thread_port_sid(ssi) indicate the corresponding
OSls. When memory is allocated, it is labeled with an OSI that is derived from the SSI of the
owning task. The expression Default_vm_port_sid(ssi) indicates the derived OSI. Similarly,
when a port is created, it is labeled with an OSI derived from the SSI of the task in whose IPC
name space it is allocated. The expression Default_port_sid(ssi) indicates the derived OSI.

The expressions page—_sid(task, page_index), page_mid(task, page_index)
and page_aid(task, page_index) are used to denote the OSI, MID and AID associated with a
page. Note that page_sid effectively associates an OSI with each allocated address in a task’s
address space. If a page is managed and the manager is not the default memory manager, then
the SID of the page is derived from the SID of the pager port of the object containing the page.
The derivation of page SIDs from pager port SIDs is modeled by the function Pp_to_page_sid.

5.3 Security Identifiers for Access Computations

Access computations in the DTOS kernel are generally made based upon the SSI of the task
accessing an object and the OSI of the accessed object. This section discusses a few special
cases in which other security identifiers are used.

Sometimes kernel requests can have side effects resulting in outcalls from the kernel, for
instance, to deliver dead name notifications. For fine grained control over such operations it is
desirable to distinguish between the kernel sending such a message to a port as a side effect
of another request and the client directly sending a message to the port. To provide for this,
such side effects are sometimes controlled based not upon the SSI of the client but upon an SSI
derived from the client’s SSI and indicating that it is the kernel acting on behalf of a client with
the given SSI. The function Derive_kernel_as maps an SSl s; to the derived SSI s, representing
the kernel acting on behalf of a task with SSI s;. We use kernel_as(task) to denote the derived
SSI indicating the kernel acting on behalf of a task task.

One of the features of Mach is that it allows tasks to perform operations on other tasks that
have not traditionally been provided by operating systems. For example, Mach allows tasks to
access memory regions in other tasks while one of the features of traditional operating systems
is the separation of address spaces. To provide finer control over task accesses, we define
Task_self _sid to be a value to be used in access computations governing accesses a task makes
to itself. Similarly, we use Thread_self _sid to be a value to be used in access computations
governing accesses a task makes to threads that it owns. The security policy should normally
be defined in such a way as to prevent any kernel entities from being assigned Task_self _sid or

Secure Computing Corporation 83-0902023A001
CAGE Code OHDC7 1.25, 26 September 1996

32 DTOS State Extensions

Thread_self_sid as their SID.” Instead, these SIDs indicate to security servers that the kernel
requires an access computation to be performed between a task and the task itself or between
a task and one of the task’s threads. One potential use of this finer control would be to contain
a faulty task by preventing it from corrupting other tasks having the same SID.

We define task_target(tasky, tasks) to be the OSI of tasks’s self port if task; and task, are
different and Tusk_self_sid, otherwise. Analogously, we define thread_target(task, thread) to
be the OSI of thread’s self port if thread does not belong to task and Thread_self _sid, oth-
erwise. When task; attempts to operate on task,, the kernel enforces accesses on the pair
(Lask_sid(tasky), task_target(tasky, tasks)). Analogously, operations that task performs on thread
are governed by the accesses recorded for (task_sid(task), thread_target(task, thread)). This al-
lows separate permissions sets to be applied when a task operates on itself versus operating
on another process with the same SSI.

Editorial Note:

In the prototype Task_self _sid and Thread_self _sid are not implemented as constants. Rather, they
are derived from the corresponding subject SID in the same way as the derived SIDs Task_port_sid,
Thread_port_sid, Default_vm_port_sid and Defauli_port_sid which are described above. Given the way
the self SIDs are used the two approaches are equivalent.

5.4 Permissions

The DTOS security policy constrains when clients may obtainservices. The security policy is
enforced by:

» associating a set of allowed permissions® with each SSI-OSI pair,

m associating a set of required permissions with each service, and

m granting service only when the required permissions are contained in the allowed per-
missions for the client to the target for the operation.

The set PERMISSION denotes the set of all permissions. This set contains permissions govern-
ing kernel services as well as permissions governing services provided by user space servers.

The set Kernel_permission is used to denote the subset of PERMISSION that governs kernel
services.

The elements of Kernel_permission are enumerated in subsections 5.4.1-5.4.14.

5.4.1 IPC Permissions

The DTOS kernel enforces the following “IPC” permissions: Can_receive, Can_send,
Hold_receive, Hold_send, Hold_send_once, Interpose, Map_vm_region, Sei_reply, Specify,
Transfer_ool, Transfer_receive, Transfer_rights, Transfer_send, Transfer_send_once. \We use
Ipc_permaissions to denote this set of permissions.

"This property is not guaranteed by the kernel. For example, amach_port_allocate_secure request may specify
a self SID as the SID for the newly created port. If the security server allows the client to add a name to the target
task and allows the target task to hold a receive right for a port with the specified SID, the request will succeed and
the port will be labeled with a self SID.

® Note that the terms access vector, service vector, and permission set are used somewhat interchangeably.

83-0902023A001 Secure Computing Corporation
1.25, 26 September 1996 CAGE Code OHDC7

DTOS FSPM 33

5.4.2 Port Permissions

The DTOS kernel enforces the following permissions on port requests: Add_name,
Alter_pns_info, Fxtraci_right, Lookup_ports, Manipulate_port_set, Observe_pns_info,
Port_rename, Register_notification, Register_ports, Remove_name. We use Port_permissions to
denote this set of permissions.

5.4.3 VM Permissions

The DTOS kernel enforces the following permissions on VM requests:
Access_machine_attribute, Allocate_vm_region, Chg_vm_region_prot, Copy_vm,
Deallocate_vm_region, Get_vm_region_info, Get_vm_statistics, Read_vm_region,
Set_vm_region_inherit, Wire_vm_for_task, Write_vm_region. We use Vm_permissions to denote
this set of permissions.

5.4.4 Memory Object Permissions

The DTOS kernel enforces the following permissions on memory requests: Have_execute,
Have_read, Have_write, Page_vm_region. We use Memory_object_permissions to denote this set
of permissions.

5.4.5 Pager Permissions

The DTOS kernel enforces the following permissions on pager requests: Change_page_locks,
Destroy_object, Get_attributes, Invoke_lock_request, Make_page_precious, Provide_data,
Remove_page, Revoke_ibac, Save_page, Set_attributes, Set_ibac_port, Supply_ibac. We use
Pager_permissions to denote this set of permissions.

5.4.6 Thread Permissions

The DTOS kernel enforces the following permissions on thread requests: Abort_thread,
Abort_thread_depress, Assign_thread_to_pset, Can_switch, Can_swtch_pri, Depress_pri,
Get_thread_assignment, Get_thread_exception_port, Get_thread _info, Get_thread_kernel_port,
Get_thread_state, Initiate_secure, Raise_exception, Resume_thread, Sample_thread,
Set_maz_thread_priority, Sei_thread_exception_port, Set_thread_kernel_port, Set_thread_policy,
Set_thread_priority, Set_thread_state, Suspend_thread, Switch_thread, Terminate_thread,
Wait_eve, Wire_thread_into_memory. We use Thread_permissions to denote this set of
permissions.

5.4.7 Task Permissions

The DTOS kernel enforces the following permissions on task requests: Add_thread,
Add_thread_secure, Assign_task_to_pset, Change_sid, Chg_task_priority, Create_task,
Create_task_secure, Cross_contexti_create, Cross_contexi_inherit, Get_emulation,
Get_task_assignment, Get_task_boot_port, Get_task_exception_port, Gel_task_info,
Get_task_kernel_port, Get_task_threads, Make_sid, Resume_task, Sample_task, Set_emulation,
Set_ras, Set_task_boot_port, Set_task_exception_port, Set_task_kernel_port, Suspend_task,
Terminate_task, Transition_sid. We use Task_task_permissions to denote this set of permissions.

We use Task_permissions to denote the union of Task_task_permissions, Pori_permissions, and
Vm_permissions.

Secure Computing Corporation 83-0902023A001
CAGE Code OHDC7 1.25, 26 September 1996

34 DTOS State Extensions

5.4.8 Host Name Port Permissions

The DTOS kernel enforces the following permissions on host name port requests: Create_pset,
Flush_permission, Get_audit_port, Get_authentication_port, Get_crypto_port,
Get_default_pset_name, Get_host_control_port, Get_host_info, Get_host_name,
Get_host_version, Get_negotiation_port, Gel_network_ss_port, Gel_security_master_port,
Get_security_client_port, Get_special_port, Get_time, Pset_names, Set_audit_port,
Set_authentication_port, Set_crypto_port, Set_negotiation_port, Set_network_ss_port,
Set_security_master_port, Set_security_client_port, Set_special_port. We use
Host_name_pori_permissions to denote this set of permissions.

5.4.9 Host Control Port Permissions

The DTOS kernel enforces the following permissions on host control port requests:
Get_boot_info, Get_host_processors, Pset_ctri_port, Reboot_host, Set_defauli_memory_mgr,
Set_time, Wire_thread, Wire_vm. We use Host_control_pori_permissions to denote this set of
permissions.

5.4.10 Processor Permissions

The DTOS kernel enforces the following permissions on processor requests:
Assign_processor_to_set, Get_processor_assignment, Get_processor_info, May_control_processor.
We use Processor_permissions to denote this set of permissions.

5.4.11 Processor Set Name Port Permissions

The DTOS kernel enforces the following permissions on processor set name port requests:
Get_pset_info. We use Procset_name_port_permissions to denote this set of permissions.

5.4.12 Processor Set Control Port Permissions

The DTOS kernel enforces the following permissions on processor set control port requests:
Assign_processor, Assign_task, Assign_thread, Chg_pset_maz_pri, Define_new_scheduling_policy,
Destroy_pset, Invalidate_scheduling_policy, Observe_pset_processes. \We use
Procset_control_port_permissions to denote this set of permissions.

We use Procsel_permissions to denote the union of Procset_name_pori_permissions and
Procset_control_port_permissions.

5.4.13 Device Permissions

The DTOS kernel enforces the following permissions on device requests: Close_device,
Control_pager, Get_device_status, Map_device, Open_device, Read_device, Set_device_filter,
Set_device_status, Write_device. We use Device_permissions to denote this set of permissions.

5.4.14 Kernel Reply Port Permissions

The DTOS kernel enforces the following permissions on requests sent to kernel reply ports:
Provide_permission. We use Kernel_reply_permissions to denote this set of permissions.

83-0902023A001 Secure Computing Corporation
1.25, 26 September 1996 CAGE Code OHDC7

DTOS FSPM 35

We do not require that all of the above sets of permissions be non-overlapping. The only
such requirement is that the Ipc_permissions do not overlap with any of the other sets. This
is consistent with the current prototype in which permissions are simply integers specifying
positions in access vectors. Because there are different types of access vector depending upon
the type of target object, multiple permissions may specify the same access vector position.
Every vector contains the IPC permissions stored at the same positions.

5.5 Access Vector Cache

The kernel receives an access decision from the security server as aRuling. Each ruling consists
of:

ssi — a subject security identifier

0st — an object security identifier

access_vector — a set of granted permissions between the ssi and os:

control_vector — the set of granted permissions which are allowed to be cached in the
kernel for later access

m expiration_value — the time at which the cached permissions expire

Aruling is usable for a given ssi and os: if the ssi and osi match those in the ruling and the ruling
has not expired. The expression Usable_ruling(ssi, osi, time) denotes the set of all such rulings
with respect to ss¢, osi and time, the time at which the ruling is consulted. When a ruling is
initially received by the kernel, the kernel need only check the access vector and expiration time
to see if a permission is granted. This is reflected by the function Ruling_allows(ruling, ssi, osi)
which returns the set of permissions in the access vector ofruling if ss: and os: are the same as
in ruling.

Editorial Note:
The prototype does not currently check the expiration time in these cases, but we plan to correct this.

To enhance performance, the kernel is permitted to cache the rulings provided by security
servers. A cached ruling is usable for a given ssi, osi and permission if the ssi and os: match
those in the ruling, the permission is in the control_vector and the ruling has not expired.
The expression Usable_cached _ruling(ssi, osi, permission, time) denotes the set of all such rul-
ings. Once cached, a ruling grants a particular permission from ssi to osi if the ruling is
usable and the permission is included in the access_vector. This is reflected by the function
Cached_ruling_allows(ruling, ssi, osi, time), where time is the time at which the ruling is con-
sulted.

The kernel cache is a set of rulings, represented by cache. There may only be one unexpired
ruling in the cache for each (ssi, osi) pair. The function cache_allows(ssi, osi) returns the set of
permissions granted to the (ssi, osi) pair by the rulings in the cache according to the function
Cached_ruling_allows. The quadruple (ssi, osi, permission, ruling) is in cached _ruling_avail if and
only if ruling is in the cache and it is usable for ssi, os: and permission at the current time.

5.6 Message Security Information

Each existing message has an SSI associated with it that indicates the SSI of the task that
sent the message. The expression msg_sending_sid(message) indicates the SSI of the task that

Secure Computing Corporation 83-0902023A001
CAGE Code OHDC7 1.25, 26 September 1996

36 DTOS State Extensions

sent message. In addition, certain messages have an associated SSI that indicates which tasks
may receive the message. The set msg_receiver_specified indicates the set of messages that have
a receiving SID specified, and msg_receiving_sid(message) indicates the receiving SSI for each
message in this set. As part of the processing of a message, the sender’s permissions to the
destination port are computed and attached to the message. The set msg_ruling_computed
denotes the set of messages for which the permissions have already been computed, and
msg_ruling(message) indicates the associated set of permissions for each such message. A
ruling must be computed for each message before the message can be enqueued at a port. An
“effective” sending SID and access vector may optionally be specified by the sender of a mes-
sage. The expressions msg_specified_sid(message) and msg_specified_vector(message) indicate,
respectively, the “effective” SID and access vector specified by the sender.

Editorial Note:

Need to think about how to model the specified vectors. The current specification ignores the cache
control and notification vectors. The prototype currently has all three vectors represented explicitly. It
has been implemented to allow the number of vectors to be easily changed.

5.7 Task Creation Information

Each task has a state used in controlling the secure initiation of threads within that task.
The type TASK_CREATION_STATE is comprised of the possible values of this state. The
recognized values of this type are:

m Tes_task_empty — indicates a task that was created usingtask_create_secure and does
not yet have any threads.

m Tes_thread_created — indicates a task created using task_create_secure for which a
thread has been created using thread_create_secure but has not had its initial state
set.

m Tes_thread_state_set — indicates a task created using task_create_secure for which a
thread has been created using thread_create_secure that has had its initial state set
using thread_set_state_secure but has not been resumed (i.e., started).

m Tes_task_ready —- indicates either a task that was not created usingtask_create_secure
or a task that was created using task_create_secure and which has a thread
that was created using thread_create_secure, has had its state set using
thread_set_state_secure, and has been resumed using thread_resume_secure.

These states are used to ensure that processes initiated usingtask_create_secure follow the
normal process initiation sequence of:

Create the task.

Create a thread within the task.
Set the state of the thread.
Resume the thread.

PonPE

Review Note:
The above, particularly the description of Tcs_task_ready, must be checked against the prototype

83-0902023A001 Secure Computing Corporation
1.25, 26 September 1996 CAGE Code OHDC7

DTOS FSPM 37

This allows an untrusted process to create a trusted process usingtask_create_secure while
prohibiting the untrusted process from (for example) changing the state of threads in the
trusted process after the trusted process has started execution.

The expression task_creation_state(task) denotes the creation state of task.

The Mach model of process creation uses an existing task to serve as a “template” for each
new task. This task is the par ent _t ask parameter to task_create. A newly created task
inherits parts of its environment, such as portions of its address space, from the “parent”
task. To simplify the statement of the security requirements on task creation, we introduce
parent_task(task) to denote task’s parent.”

5.8 Server Ports
The kernel records the ports to be used for communications with certain servers:

m security_server_master_port denotes the port used by the kernel to make requests of the
security server.

m security_server—_client_port denotes the port used by non-kernel clients to make requests
of the security server.

m authentication_server_port denotes the port used to make requests of the authentication

server.

aundit_server_port denotes the port used to make requests of the audit server.

crypto_server_port denotes the port used to make requests of the crypto server.

negotiation_server_port denotes the port used to make requests of the negotiation server.

network_ss_port denotes the port used to make security requests over the network.

When the kernel requests an access computation from the Security Server, it specifies a reply
port to which the computed accesses should be sent. We use kernel_reply_poris to denote the
set of ports that the kernel has specified as reply ports for requests to the Security Server.

5.9 Memory Region Protections

The current protection of a region limits a task’s access to that region. It is calculated as the
intersection of the Mach protection together with the accesses allowed for a task to a memory
region by the relevant access vector. We use protection(task, index) to denote current protections
of the region denoted by a given task-index pair.'°

5.10 Summary of DTOS Kernel State

The DTOS kernel state is the Mach kernel state augmented with the access vector cache and
the security information associated with subjects, objects, and messages.

?Note that this information is not actually recorded in the current design. Since we only use this information
for stating requirements on task creation and this information is available at this point in the processing in the
implementation, this deviation between the model and the implementation is tolerable.

10The prototype does not currently implement the enforcement of read-only access. The low-level memory routines
in the prototype treat read and execute interchangeably.

Secure Computing Corporation 83-0902023A001
CAGE Code OHDC7 1.25, 26 September 1996

38

DTOS Services

Section 6

DTOS Services

This section describes the services provided by DTOS. The organization of this section is as
follows:

m Section 6.1 presents a simple execution model for DTOS.
m Sections 6.2— 6.13 define the abstract services relevant to IPC, ports, VM, pagers, threads,

tasks, hosts, processors, processor sets, the permissions cache, and devices. Each abstract
service is described informally in the context of the model provided in the preceding
sections. Each abstract service is assigned a name to facilitate references to the service.
The tables in Section 7 use these service names to define the association between services
and permissions.

Section 6.14 defines the abstract services of initiating a kernel outcall. These abstract
services are used to state the requirements on kernel outcall services in Section 7.
Section 6.15 defines the abstract service of initiating an implementation service. This
abstract service is used to state the requirements on implementation services in Section 7.

In addition to describing the DTOS services, we also describe security threats that suggest
the desirability of controlling the services. Our goal in describing these threats is to provide
motivation for our selection of services rather than provide a complete description of all security
threats to DTOS.

6.1

Kernel Requests and State Transitions

Editorial Note:
This section provides a very brief execution model for DTOS. Much more detail can be found by consulting
the FTLS.

In the simplest model, DTOS kernel state transitions occur as the result of client requests.
Requests include the following information:

request_op — The identifier of the operation (such asmach_port_allocate) in the request.
eff _client — The client task making the request.

service_port — The port through which the request is received.

intteal_ruling — As part of the initial processing of a request, the kernel associates a ruling
with the request.

Editorial Note:

When initial_ruling is computed, the SSI associated with the ruling is the SID of ¢ff _client and the
OSI associated with the ruling is the SID of the port through which the request was received (modulo
the Task_self _sid and Thread_self _sid computations). In later processing of the request, the kernel
sometimes assumes that

m the SID of ¢ff _client is the same as when the request was received,

83-0902023A001 Secure Computing Corporation
1.25, 26 September 1996 CAGE Code OHDC7

DTOS FSPM 39

= the SID of the port through which the request was received is the same as when the request was

received, and
= the permissions in nitial_ruling are still valid.

This lack of support for non-tranquility is not reflected in the model.

Editorial Note:
In the current execution model, Reguest refers to service requests sent through mach_msg as well as
traps; the fields request_op and service_port only apply in the case of amach_msg request.

During the initial processing of a newly received request, the DTOS kernel performs some
integrity validation and permission checks. We use validated_requests to model the collection of
requests that have successfully passed these checks. Note that it is possible that some of the
requests in validated_requests are identical.

Each DTOS kernel state transition is associated with the following:

m client — The task responsible for the transition occurring. If the transition is a direct
response to a kernel request, then client is the task which made the request (eff_client).

Otherwise, client is the kernel task.
m client_sid — The current SID of client. If client no longer exists when its request is being

processed, then this is the SID of client when it was destroyed.

Editorial Note:
This used to say that it was the SID of clzent when the request was made, but | do not believe that
is true. The spec-to-code analysis should make the determination. We also may need to make the

determination of what it should be.

Editorial Note:
This also needs to get fixed to reflect the possibility of a specified SID when the prototype is updated.

m rulings — Zero or more rulings may be retrieved from the security server during the
transition. The initial_ruling contained in the request might be included in this set, or it
might come from the cache. These rulings need not be part of the initial or final state of
the transition.

m kernel_allows(ssi, osi) — This function returns the set of permissions which are allowed
either by the kernel's cache or by a ruling associated with the transition.

In addition, transitions are often associated with a particular kernel request.

Editorial Note:
Using host_time for Ruling_allows above is probably not correct. Each ruling might be checked at a

different time.

We use the set Valid_transitions to denote the set of transitions that are possible on the DTOS
system.!!

110ne of the purposes of the FTLS is to define this set of Valid_transitions.

Secure Computing Corporation 83-0902023A001
CAGE Code OHDC7 1.25, 26 September 1996

40 DTOS Services

6.2 |IPC Services

Mach IPC consists of sending messages to and receiving messages from ports. Although the
Mach capability mechanisms (port rights) provide control over which tasks can send messages
to each port, the mechanisms are relatively weak. For example, any task that holds a right
may pass the right to any other task. Thus, a “trusted” task that holds a right for a “privileged”
port might accidentally transfer the right to a malicious task. The DTOS policy addresses
this threat by controlling the transferring of rights and the ability to hold rights (permissions
Transfer_rights, Hold_receive, Hold_send, Hold_send_once, Transfer_receive, Transfer_send, and
Transfer_send_once).

Another weakness of capabilities is that the holding of a right implies the ability to use the
right. Tasks such as name servers will need to hold rights to many entities that they do not
need to access themselves. This is a violation of “least privilege.” The DTOS policy addresses
this threat by making a distinction between the ability to hold a right versus use a right
(permissions Hold_receive, Hold_send, and Hold_send_once versus Can_receive and Can_send).

In addition to being able to pass port rights in messages, tasks may also pass regions of memory.
Since these memory regions can be backed by untrusted pagers and may consume a lot of space
in the receiver’'s address space, there are integrity and denial of service threats related to
such data transfers. The DTOS policy addresses these threats by controlling which tasks can
transfer memory regions through messages sent to ports. For example, the policy could be
used to prohibit the transfer of memory regions through a service port for a trusted server that
provides an interface using only in-line data transfer (permission Transfer_ool).

As noted in Section 5, DTOS tags messages with a sending SSI and (potentially) a receiving
SSI. Although the kernel protects the tags while the message is in transit, certain tasks must
be trusted to override the normal use of these tags. For example, a user space network server
interposing on user ports needs to receive messages for which it is not the ultimate receiver
and copy the original sender’'s SSI onto the forwarded message. However, the overriding
must be controlled for the tags to serve their purpose. The DTOS policy addresses threats to
the correctness of the tags by controlling which tasks are permitted to override the normal
processing (permissions Specify and Interpose).

Service Definition 1 (InitiatesMsgSend) A state transition initiates the sending of a message
to port if the client is not the kernel, there exists a new msg sent to port, and port is not destroyed.

When the kernel sends a message, it is considered an outcall. Outcall services are defined in
Section 6.14.

Editorial Note:
Currently, outcall messages are only distinguished from other messages when computing the Send per-
mission. We need to decide if this is appropriate.

Service Definition 2 (InitiatesRightsTransfer) A state transition initiates the sending of a mes-
sage to port and the transfer of port rights in the body of the message if there exists amsg such
that:

® msg IS @ new message,
m msg’s destination is port, and
= some element of the body of msg carries a port right.

Note that this service involves the transferring of port rights in the bodies of messages sentto
port while the following three services involve the transferring of port rightsfor pori.

83-0902023A001 Secure Computing Corporation
1.25, 26 September 1996 CAGE Code OHDC7

DTOS FSPM 41

Service Definition 3 (InitiatesReceive Transfer) A state transition initiates the transfer of a
receive right for port if there exists a msg such that:

m msg IS a new message, and
» some element of the body of msg carries a receive right for port.

Service Definition 4 (InitiatesSend Transfer) A state transition initiates the transfer of a send
right for port if there exists a msg such that:

m msg IS a new message, and
m the reply port field in the header of msg or some element of the body of msg carries a send
right for port.

Service Definition 5 (InitiatesSendOnce Transfer) A state transition initiates the transfer of a
send-once right for port if there exists a msg such that:

® msg IS a new message, and
m the reply port field in the header of msg or some element of the body of msg carries a
send-once right for port.

Service Definition 6 (InitiatesOolDataTransfer) A state transition initiates the transfer of out-
of-line data through port if there exists a msg such that:

® msg IS a new message,
m msg’s destination is port, and
m some element of the body of msg carries an out-of-line region.

Service Definition 7 (SetsReply) A state transition sets the reply port to which a reply message
will be sent to port if there exists a msg such that:

m msg IS a new message,
m msg’'s local_port IS port.

Service Definition 8 (SpecifiesSsi) A state transition initiates the sending of a message toport
with a sending SID specified if there exists amsg such that:

® msg IS @ new message,
m msg’s destination is port, and
= msg is in the domain of the function msg_specified_sid’.

Service Definition 9 (SpecifiesAV) A state transition initiates the sending of a message toport
with an access vector specified if there exists amsg such that:

m msg IS a new message,
m msg’s destination is port, and
= msg is in the domain of the function msg_specified_vector’.

The remaining IPC services consider the receiving of messages.

Service Definition 10 (InitiatesMsgReceive) A state transition initiates the receiving or re-
moval of a message from port if there exists msg such that:

Secure Computing Corporation 83-0902023A001
CAGE Code OHDC7 1.25, 26 September 1996

42 DTOS Services

m msg is removed from the queue associated with port, and
m port is not destroyed

Service Definition 11 (Interposes) A state transition receives a message with a specified re-
ceiving SID other than the client’s SID from port if there exists a msg such that:

in the initial state, msg is enqueued at port,

msg is added to the set of messages received by client,
a receiving SID is specified for msg, and
msyg_receiving_sid(msg) # client_sid.

Note that the services InitiatesMsgReceive and Interposes present different definitions of “re-
ceiving” a message. This is because the InitiatesMsgReceive considers the more general case of
receiving or removing a message from the queue, while Inierposes only considers the case of
receiving a message from the queue. This distinction is important since it may be necessary
for a client to remove a message from a queue when it is not allowed to receive the message
because it is not the specified receiver.

6.3 Port Services

All kernel entities are represented by ports. Consequently, the security of a task rests on the
ability to protect the task’s port name space. Mach allows any task holding a send right to a
second task’s self port to modify the second task’s port name space.

By allocating rights in a second task’s port name space, a malicious task can consume resources
in that task. This could lead to a denial of service. The DTOS policy addresses this by controlling
the adding of names to port name spaces (permission Add_name).

If a malicious task can deallocate rights in a second task’s port name space, then it can make
resources the second task is using unavailable. This can lead to a denial of service, too.
The DTOS policy addresses this by controlling the removal of names from port name spaces
(permission Remove_name).

A related threat is the moving of a port right in a port name space. For example, if a malicious
task renames a port right or changes the members of a port set in a second task, the second task
might fail as the result of port rights no longer being where they should be. The DTOS policy
addresses this threat by controlling the moving of names within a port name space (permissions
Port_rename, Manipulate_port_set, Register_ports).

A more subtle type of threat is the modification of the notifications registered for a task. If a
task has a thread waiting to receive a notification and the notification is canceled by a second
task, then the thread will never receive the notification. The DTOS policy addresses this by
controlling the registering of notifications (permission Register_notification).

Other threats include modifying the make-send count, queue limit, or sequence number for a
port. For example, if the queue limit for a server’s service port is decreased, messages sent
to the server might start to time out. This could result in a denial of service. The DTOS
policy addresses such threats by controlling the setting of these port attributes (permission
Alter_pns_info).

The DTOS policy with respect to MIDs is tranquil in that once the kernel associates a MID with
an entity, the entity remains bound to the same MID. For ports, we represent this by defining a
service, ChangesPortMid, that characterizes the changing of a port's MID and then prohibiting
this service in Section 7.

83-0902023A001 Secure Computing Corporation
1.25, 26 September 1996 CAGE Code OHDC7

DTOS FSPM 43

However, the AID of some entities is allowed to change. The AID of a port is allowed to change
only in the case of a task or thread port for a task whose AID also changes. We represent this
by defining a service, ChangesPortAid, that characterizes the changing of a port's AID under all
other circumstances, and prohibiting this service in Section 7.

Service Definition 12 (AddsReceive) A state transition adds a receive right for port to task’s
port name space if task obtains a receive right for port and task did not previously hold a receive
right for port.1?

Service Definition 13 (AddsSendRight) A state transition adds a send to port right to task’s
port name space if tesk obtains a send to port right and tesk did not previously hold a send to
portright.

Service Definition 14 (AddsSendReference) A state transition adds a send to port reference to
task’s port name space if task has a send to pori right and task obtains an additional reference
to a send to port right.

Composite Service Definition 1 We refer to the service in which either a send right is created
or a reference count for a send right is incremented as the serviceAddsSend.

Service Definition 15 (AddsSendOnce) A state transition adds a sendonce toport right to task’s
port name space if task obtains a sendonce to port right and task did not previously hold a
sendonce to port right.

Service Definition 16 (AddsDead NameRight) A state transition adds a dead name right to
task’s port name space if the number of names which are dead and not previously intask’s port
name space is greater than the number of names which were dead and are not currently intask’s
port name space.

Editorial Note:

This service ignores the case where a dead name is created when the corresponding port dies (such a
name is not in either of the set comprehensions) as well as the case where a dead name is renamed (the
first set contains the new dead name but not the old, while the second set contains the old dead name
but not the new.)

Service Definition 17 (AddsDeadNameReference) A state transition adds a dead name refer-
ence to task’s port name space if task obtains an additional reference to a dead name right that
it previously held.

Composite Service Definition 2 We refer to the service in which either a dead name is created
or a reference count for a dead name is incremented as the serviceAddsDead Name.

Service Definition 18 (CreatesPortSet) A state transition creates a new port set in task’s port
name space if the number of entries fortask in pori_set_namep, the set of (task, name) pairs that
denote port sets, is increased.

Composite Service Definition 3 We refer to the service in which either a receive, send, send-
once right, a dead name, or a port set is added totask’s port name space as the service AddsName.

Editorial Note:
The next four service definitions are intended to refer to services which explicitly remove rights from a
name space. As stated, they are much too broad. For instance,

12 Note that this service does not define the SID that is associated with the port. The expression port_sid’(port)
denotes this SID. The requirements in Section 7 require that the client have permission to add ports with this SID to
task's port name space and that task have permission to hold ports with this SID. No other restrictions are placed on
the SID assigned to the new port.

Secure Computing Corporation 83-0902023A001
CAGE Code OHDC7 1.25, 26 September 1996

44 DTOS Services

= They don't consider the possibility that a send or send-once right disappears because it is used to
send a message.
= They don't consider the possibility that a right disappears because it is sent in a message.

As a general rule, side effects of destroying a port aren't handled well in these abstract service definitions.
There is a long chain of possible consequences to simply removing one port.

Editorial Note:

It is not clear that we can identify rights that are being removed as a result of being transferred in a mes-
sage or expiring due to use. At first glance it seems that we can check for the existence of an appropriate
message as in the definition of the IPC services InitiatesRights Transfer, InitiatesReceive Transfer, etc.
According to the specification of Transit_right (see the definition of BASE_INTERNAL_ELEMENT) we
can recover the name of the task initiating the transfer of rights from the message contents, but we do
not believe that this is carried out in the prototype. An alternative is to compare Request’s eff _client
with task, but the complexity of the execution model makes it difficult to determine if this handles all
cases accurately.

Service Definition 19 (RemovesReceive) A state transition removes areceive right forpert from
task’s port name space if task loses a receive right for port that it previously held, and task is not
destroyed.

Service Definition 20 (RemovesSendRight) A state transition removes a send to port right from
task’s port name space if task loses a send to port right that it previously held, and task and port
are not destroyed.

Service Definition 21 (RemovesSendReference) A state transition removes a send to port refer-
ence from task’s port name space if task’s reference count for a send right for port is decreased,
and task and port are not destroyed.

Composite Service Definition 4 We refer to the service in which either a send right is removed
or a reference count for a send right is decremented as the serviceRemovesSend.

Service Definition 22 (RemovesSendOnce) A state transition removes a sendonce to port right
from task’s port name space if task loses a sendonce to port right that it previously held, and task
and port are not destroyed.

Service Definition 23 (RemovesDead NameRight) A state transition removes adead name right
from task’s port name space if the number of dead names intask’s port name space is decreased,
and task is not destroyed.

Service Definition 24 (RemovesDeadNameReference) A state transition removes a dead name
reference from task’'s port name space if task loses a reference to a dead name right that it
previously held, and task is not destroyed.

Composite Service Definition 5 We refer to the service in which either a dead name is de-
stroyed or a reference count for a dead name is decremented as the serviceRemovesDead Name.

Service Definition 25 (DestroysPortSet) A state transition destroys a port set in task’s port
name space if the number of names intask’s port name space that are port set names decreases,
and task is not destroyed.

Composite Service Definition 6 We refer to the service in which either a receive, send, send-
once right, a dead name, or a port set is removed from task’s port name space as the service
RemovesName.

Service Definition 26 (RenamesinPortNameSpace) A state transition renames a port, dead
name, or port set in task’s port name space if an entry is removed from the name space and
an identical entry is added under a different name.

83-0902023A001 Secure Computing Corporation
1.25, 26 September 1996 CAGE Code OHDC7

DTOS FSPM 45

Service Definition 27 (ManipulatesPortSet) A state transition manipulates a port set in task’s
port name space if there is some port set name such that the set of ports associated with name is
altered in a manner other than by simply removing ports for which task is no longer the receiver.
In other words, there exists name and port such that:

m name represents a port set in task’s port name space in both the initial and final states of
the transition, and

— port is added to port_set(task, name), or
— port is removed from pori_set(task, name) and task remains the receiver from port.

Service Definition 28 (RegistersPort) A state transition registers a port or removes a previ-
ously registered port associated with a task if there exists port which

» is added to registered_rights(task), or
m is removed from registered_rights(task) without being destroyed.

Service Definition 29 (RegistersPortDestroyed Notification) A state transition registers a port-
destroyed notification request for a port in task’s name space or removes a previously registered
request if there exists port; and port, such that

m task is the receiver for port, in both the initial and final states of the transition, and

— port, is added to port_notify_destroyed(port,), or
— port, is removed from port_notify_destroyed(port,) without being destroyed.

Service Definition 30 (RegistersNoMoreSendersNotification) A state transition registers a no-
more-senders notification request for a port intask’s name space or removes a previously regis-
tered request if there exists port; and port, such that

m task is the receiver for port, in both the initial and final states of the transition, and

— port, is added to port_notify_no_more_senders(port,), or
— port, is removed from port_notify_no_more_senders(port;) without being destroyed.

Service Definition 31 (RegistersDead NameNotification) A state transition registers a dead-
name notification request for a port in task’s name space or removes a previously registered
request if there exists name and port such that

m name represents some port right in task’s name space in both the initial and final states of
the transition, and

— port is added to pori_notify_dead(task, name), or
— port is removed from pori_notify_dead(task, name) without being destroyed.

Composite Service Definition 7 We refer to the service in which either a port-destroyed, no-
more-senders, or dead-name notification is registered or removed fromtask’s port name space as
the service RegistersNotification.

Service Definition 32 (SetsMakeSendCount) A state transition modifies the make-send count
for a port in task’s port name space if there is some port for which task is the receiver and
make_send_count(port) is altered.

Service Definition 33 (SetsQueuelimit) A state transition modifies the queue limit for a port
in task’s port name space if there is some port for which task is the receiver and q_limit(port) is
altered. B

Secure Computing Corporation 83-0902023A001
CAGE Code OHDC7 1.25, 26 September 1996

46 DTOS Services

Service Definition 34 (SetsSegNo) A state transition modifies the sequence number for a port
in task’s port name space if there is some port for which task is the receiver and sequence_no(port)
is altered.

Editorial Note:

Each of the previous three service definitions need to be checked (and changed) for possible side effects.
For instance, the make-send count changes as a side effect of creating new rights. | don't believe there
are side effect with the queue limit. The sequence number can change whenever a message is removed
from a message queue.

Composite Service Definition 8 We refer to the service in which either the make-send count,
gueue limit, or sequence number for a port is altered as the service ModifiesPortinfo.

Service Definition 35 (ChangesPortMid) A state transition changes a port's MID if it alters
port_mid(port).

Service Definition 36 (ChangesPortAid) A state transition changes a port's AID if it alters
pori_aid(port), except in the case of the AID of a task or thread port changing due to a similar
change in the task AID.

6.4 VM Services

An interesting feature of the Mach Virtual Memory (VM) system is that it allows a task holding
a send right to a second task’s self port to access the address space of the second task.

By allocating memory in a second task’s address space, a malicious task can consume resources
in that task. This could lead to a denial of service. The DTOS policy addresses this by
controlling the allocation of memory (permission Allocate_vm_region).

If a malicious task can deallocate memory in a second task's address space, then it can
make memory the second task is using unavailable. This can lead to a denial of service,
too. The DTOS policy addresses this by controlling the deallocation of memory (permission
Deallocate_vm_region).

To protect the integrity and confidentiality of data, it is necessary to control the Mach, cur-
rent and maximum protections for memory allocated to a task. The DTOS policy addresses
these concerns by requiring the permissions cache be consulted whenever protections are set
(permissions Have_read, Have_write, Have_execute, Chg_vm_region_prot).

A more subtle way in which data integrity or confidentiality can be compromised is through
the modification of inheritance attributes. For example, a malicious task might change the
inheritance attribute of a memory object that a second task wants to keep private so that the
object is shared with children of the second task. The DTOS policy addresses this by controlling
the modification of inheritance attributes (permission Set_vm_region_inherit).

Service Definition 37 (AllocatesRegion) A state transition allocates a region at page_indez in
task’s virtual address space if page_index is allocated for task in the final state but not in the
initial state.

Service Definition 38 (AllocatesReadRegion) A state transition allocates a readable region at
page_index N task’s virtual address space if page_index is allocated for task with read access in
the final state but not in the initial state.

Service Definition 39 (Allocates Write Region) A state transition allocates a writable region at
page_index N task’s virtual address space if page_indez is allocated for task with write access in

83-0902023A001 Secure Computing Corporation
1.25, 26 September 1996 CAGE Code OHDC7

DTOS FSPM 47

the final state but not in the initial state.

Service Definition 40 (AllocatesFrecuteRegion) A state transition allocates an executable re-
gion at page_index in task’s virtual address space if page_indez is allocated for fask with execute
access in the final state but not in the initial state.

Editorial Note:
The preceding four services are all performed by the vm_allocate, vm_allocate_secure and vm_map
requests. It was realized recently that the FSPM and the prototype contained different checks related
to these requests/services and that neither was “correct”. This draft of the FSPM contains corrected
requirements for these services. The prototype will be modified at a later date to implement these new
requirements.

These services are also performed by mach_msg. We need to consider what permission checks are
required in this case. (It appears that the prototype is checking read, write and execute permissions, but
not Allocate_vm_region and Map_vm_region.)

Service Definition 41 (DeallocatesRegion) A state transition deallocates a region in task’s vir-
tual address space if it decreases the number of pages intask’s virtual address space.

Service Definition 42 (SetsProtection) A state transition changes the protection of a re-
gion in task’s virtual address space if there is some page_index for which either
mach_protection(task, page_index) Or max_protection(task, page_index) is altered.

Service Definition 43 (Setsinheritance) A state transition changes the inheritance attributes
of a region in task’s virtual address space if there is some page_index for which
inheritance(task, page_indez) is altered.

Service Definition 44 (ModifiesRegion) A state transition modifies a memory region in task’s
virtual address space if there exists memory, page, and page_offset such that page is associated
with memory and page_word_rel(page, page_offset) is altered.

6.5 Pager Services

Mach's support for user pagers introduces threats that are not usually a concern. If a malicious
task can act as the pager for an object, it can provide incorrect data for the object or make
the object unavailable. The DTOS policy controls which tasks can page a memory (permission
Provide_data) and which tasks can make an object unavailable (permissions Destroy_object,
Change_page_locks, Remove_page).

Examples of more subtle threats are changing the set of precious pages and flushing dirty
pages. In both cases, the kernel could fail to make the pager aware of modifications that have
been made to the pages. The DTOS policy addresses these threats by controlling which tasks
may change the set of precious pages or flush dirty pages (permissions Make_page_precious,
Save_page).

Service Definition 45 (ChangesMemoryObjectAttr) A state transition changes the attributes of
memory if it alters copy_strategy(memory) or adds or removes memory from may_cache.

Service Definition 46 (ServicesPage Fault) A state transition services a page fault for memory
if it removes a thread from the set of threads that memory_fault indicates are waiting on a page
from memory.

Service Definition 47 (MakesPagePrecious) A state transition makes a page representing
memory precious if there is a page representing memory that is added to or removed from
PTeECious.

Secure Computing Corporation 83-0902023A001
CAGE Code OHDC7 1.25, 26 September 1996

48 DTOS Services

Service Definition 48 (ChangesPagelLocks) A state transition modifies the locks on a page rep-
resenting memory if there exists a page representing memory such that page_lock_rel(page) is
altered. B

Editorial Note:

The preceding two services (as well as SavesPage and RemovesPage below) do not currently have any
associated policy requirements. We are considering whether the 12 permissions currently defined for
memory control services can actually be reduced to a single permission indicating that the subject can
serve as the pager for a given memory object. The case for doing this is that any usable pager probably
needs to be allowed to use the entire paging protocol. Thus, the ability to page for a memory object may
well be an all-or-nothing proposition. If so, nothing is gained by having 12 permissions.

Service Definition 49 (DestroysMemory) A state transition destroys memory if it removes
memory from control_port.

Service Definition 50 (SavesPage) A state transition saves a dirty page representing memory
if there exists a page representing memory such that page is removed from dirty_rel.

Service Definition 51 (RemovesPage) A state transition removes a page representing memory
if there exists a page representing memory such that page is removed from represented_memory.

6.6 Thread Services

The attributes associated with a thread determine if and when a thread may execute. Modifi-
cation of these attributes can lead to denial of service conditions. For example, if a malicious
task depresses the priority of a thread, that thread might be prevented from executing. As
another example, a malicious task could prevent a thread from executing by incrementing
the thread’s suspend count. The DTOS policy addresses such threats by controlling modifi-
cations to thread attributes (Assign_thread_to_pset, Set_maz_thread_priority, Set_thread_policy,
Terminate_thread, Set_thread_priority, Depress_pri).

The resumption of a thread is also a concern. For example, if a thread is resumed before an
event that it is waiting on has completed, then the thread might fail to operate correctly. The
DTOS policy addresses this threat by controlling which tasks can decrement a thread’s suspend
count (permissions Initiate_secure, Resume_thread).

Another threat to threads is that a malicious task can change the thread’s sself or exception
port. If the sself port is changed before the thread gets a send right to it, then when the
thread requests a send right to its kernel port, it is given a right to the sself port instead.
When the thread later attempts to send kernel requests to its kernel port, the requests will
actually be sent to other ports. If the exception port is changed, then the thread will not receive
exception messages and might fail to operate properly. The DTOS policy addresses these
threats by controlling the changing of a thread special port (permissionsSet_thread_kernel_port,
Set_thread_exception_port).

A more subtle threat is the changing of a thread’s program counter. Doing so will change the
location in memory from which the thread is reading instructions. Problems that could occur
include the thread attempting an illegal instruction and failing or the thread skipping over a
section of its code that performs some security check. The DTOS policy addresses this threat
by controlling which tasks have access to a thread’s register set (permissionSet_thread_state).

Service Definition 52 (DepressesPriority) A state transition depresses thread's priority if it
adds thread to depressed_threads, the set of depressed threads.

83-0902023A001 Secure Computing Corporation
1.25, 26 September 1996 CAGE Code OHDC7

DTOS FSPM 49

Service Definition 53 (AbortsPriorityDepression) A state transition aborts the depression of
thread’s priority if it removes thread from depressed_threads, the set of depressed threads.

Service Definition 54 (AssignsThread) A state transition assigns thread to procset if it adds
thread to have_assigned_threads(procset), the set of threads assigned to procset.

Service Definition 55 (ResumesThread) A state transition resumes thread in the normal Mach
paradigm if it decrements thread_suspend_count(thread) without changing the task create state
of the associated task.

Service Definition 56 (MakesTuskReady) A state transition resumes thread in the DTOS cross-
context-create paradigm if it decrements thread_suspend_count(thread) and changes the task cre-
ate state of the associated task to Tcs_task_ready. Note that this service is a DTOS enhancement.

Service Definition 57 (IncrementsThread MaxPriority) A state transition increments thread’s
maximum priority if thread_maz_priority(thread) is incremented and thread assignments do not
change.

Service Definition 58 (DecrementsThread MaxPriority) A state transition decrements thread’s
maximum priority if thread_maz_priority(thread) is decremented and thread assignments do
not change.

Editorial Note:

Care must be taken in mapping the prior two services to the implementation. The higher the numeric
value of a priority, the lower the priority. Thus, incrementing a priority is a decrease in priority while
decrementing a priority is an increase in priority.

Service Definition 59 (SetsThread Priority) A state transition sets thread's priority if
thread_priority(thread) is altered, thread_maz_priority(thread) does not change, the depression
status of no thread changes and thread assignments do not change.

Service Definition 60 (SetsThreadPolicy) A state transition sets thread’s policy if
thread_sched_policy(thread) is altered and thread assignments have not changed.

Service Definition 61 (SetsThreadKernelPort) A state transition sets thread's kernel port if it
alters thread_sself (thread), thread’s kernel port. Note that thread_sself (thread) may be undefined
in either the current or new state!?

Service Definition 62 (SetsThread EzceptionPort) A state transition sets thread’s exception port
if it alters thread_eport(thread), thread's exception port. Note that thread_eport(thread) may be
undefined in either the current or new state.

Service Definition 63 (MakesThread OwnerReady) A statetransition sets thread’s machine state
in the DTOS cross-context-create paradigm ifthread _state(thread) is altered and the task creation
state of the associated task is set to Tes_thread_state_set. Note that this service is a DTOS
enhancement.

Service Definition 64 (SuspendsThread) A state transition suspends thread if it increments
thread _suspend_count(thread).

Service Definition 65 (TerminatesThread) A state transition terminates thread if it removes
thread from thread_ezists, the set of existing threads without removing its parent task from
task_exists.

13 The expression R(S) denotes the relational image of the set $ under relation R (i.e., the set of all values to which
an element of S is mapped by R).

Secure Computing Corporation 83-0902023A001
CAGE Code OHDC7 1.25, 26 September 1996

50 DTOS Services

Service Definition 66 (FnablesThreadSampling) A state transition enables sampling for thread
if thread is added to sampled_threads, the set of threads currently being sampled.

Service Definition 67 (Disables ThreadSampling) A state transition disables sampling for
thread if thread is removed from sampled_threads, the set of threads currently being sampled.

6.7 Task Services

Many of the task services are analogous to thread services. For example, there is a task suspend
service that is analogous to the thread suspend service. Due to the similarity of the requests,
there are similar threats to be addressed and the DTOS policy addresses those threats using
task permissions analogous to the thread permissions used to address the thread services.

An example of a threat that is specific to tasks is the manipulation of emulation vectors. If
correct operation of a task requires it use some emulation library, then the task can be caused
to fail by modifying its emulation vector. The DTOS policy addresses this threat by controlling
which tasks are allowed to modify each task’s emulation vector (permission Set_emulation).

The DTOS policy with respect to MIDs is tranquil in that once the kernel associates a MID with
an entity, the entity remains bound to the same MID. For tasks, we represent this by defining a
service, ChangesTaskMid, that characterizes the changing of a task’s MID and then prohibiting
this service in Section 7.

However, the AID of a task may be allowed to change. A service, ChangesTaskAid, is defined to
characterize the changing of a task’s AID.

Service Definition 68 (AddsThread) A state transition adds a thread to task in the normal
Mach paradigm if it adds a thread to threads(task), the set of threads belonging to task, and does
not change the task creation state of {ask.

Service Definition 69 (AddsThreadSecure) A state transition adds a thread to {ask in the
DTOS cross-context-create paradigm if it adds a thread to threads(task), the set of threads
belonging to task, and changes the task creation state of task to T'cs_thread_created. Note that
this service is a DTOS enhancement.

Service Definition 70 (AssignsTask) A state transition assigns an existing task to procset if it
adds task to the set have_assigned_tasks(procset).

Service Definition 71 (SetsTuaskPriority) A state transition sets task’s priority if it changes the
value of task_priority(task).

Service Definition 72 (CreatesTask) A state transition creates child in the normal Mach
paradigm if it adds child to task_exists and sets child’s task creation state to T'es_task_ready.

Service Definition 73 (CreatesTaskSecure) A state transition creates child in the DTOS cross-
context-create paradigm if it adds child to task_exists and sets child’s task creation state to
Tes_task_empty. Note that this service is a DTOS enhancement.

Service Definition 74 (InvTaskCreationState Trans) A state transition changes task’s creation
state inappropriately if it does not follow the pattern non-existent— Tes_task_ready or the pattern
non-existent — T'cs_task_emply — Tcs_thread_created — Tcs_thread_state_set — Tcs_task_ready.

Service Definition 75 (ResumesTask) A state transition resumes task if it decrements
task_suspend_count(task).

Service Definition 76 (SetsEmulation Vector) A state transition sets an emulation vector for
task if it alters emulation_vector(task).

83-0902023A001 Secure Computing Corporation
1.25, 26 September 1996 CAGE Code OHDC7

DTOS FSPM 51

Service Definition 77 (SuspendsTask) A state transition suspends task if it increments
task_suspend_count(task).

Service Definition 78 (SetsTaskKernelPort) A state transition sets task’s kernel port if
task_sself (task) is altered. Note that task_sself(task) may be undefined in either the current
or new state.!*

Service Definition 79 (SetsTuskFzceptionPort) A state transition sets fask’s exception port if
task_eport(task) is altered. Note that task_eport(task) may be undefined in either the current or
new state.

Service Definition 80 (SetsTaskBootPort) A state transition sets task’s boot port if
task_bport(task) is altered. Note that task_bport(task) may be undefined in either the current
or new state.

Service Definition 81 (TerminatesTask) A state transition terminates task if it removes task
from task_exists.

Service Definition 82 (FnablesTaskSampling) A state transition enables sampling for task if
task is added to sampled_tasks, the set of tasks currently being sampled.

Service Definition 83 (Disables TaskSampling) A state transition disables sampling for task if
task is removed from sampled_tasks, the set of tasks currently being sampled, and task still exists.

Service Definition 84 (ChangesTaskMid) A state transition changes a task's MID if it alters
task_mid(task).

Service Definition 85 (ChangesTaskAid) A state transition changes a task’s AID if it alters
task_aid(task).

6.8 Host Name Port Services

Mach allows tasks holding a send right to the host nhame port to create new processor sets.
Such tasks might be able to cause a resource exhaustion condition by creating a large number
of processor sets. The DTOS policy addresses this threat by controlling which tasks are allowed
to create processor sets (permission Create_pset).

The DTOS prototype services requests to remove permission sets from the permissions cache
through the host name port. Tasks that can remove entries from the cache can deny service
by revoking access to resources. The DTOS policy addresses this threat by controlling which
tasks can remove entries from the permissions cache (permission Flush_permission).

The DTOS prototype also services requests to change the Security Server Port through the
host name port. Since this is the port that indicates where the kernel should send requests for
access computations, the security of the system can be compromised if it is set inappropriately.
The DTOS policy addresses this threat by controlling which tasks can alter the Security Server
Port (permission Set_security_master_port).

Service Definition 86 (CreatesProcset) A state transition creates a processor set procset if
procset is added to procset_exists.

Service Definition 87 (FlushesCache) A state transition flushes an entry from the kernel’s per-
mission cache if it removes a ruling from cache that has not yet expired.

Service Definition 88 (SetsSecServerMasterPort) A state transition changes the Security
Server master port if it alters the value of security_server_master_port.

1 The expression R(S) denotes the relational image of the set S under relation R (i.e., the set of all values to which
an element of S is mapped by R).

Secure Computing Corporation 83-0902023A001
CAGE Code OHDC7 1.25, 26 September 1996

52 DTOS Services

Service Definition 89 (SetsSecServerClientPort) A state transition changes the Security Server
client port if it alters the value of security_server_client_port.

Service Definition 90 (SetsAuthenticationServer) A state transition changes the Authentica-
tion Server Port if it alters the value of authentication_server_port.

Service Definition 91 (SetsAuditServer) A state transition changes the Audit Server Port if it
alters the value of a udit_server_port.

Service Definition 92 (SetsCryptoServer) A state transition changes the Crypto Server Port if
it alters the value of crypto_server_port.

Service Definition 93 (SetsNegotiationServer) A state transition changes the Negotiation
Server Port if it alters the value of negotiation_server_port.

Service Definition 94 (SetsNetworkSecurityServer) A state transition changes the Network Se-
curity Server Port if it alters the value of network_ss_port.

Composite Service Definition 9 A state transition sets a special port if it per-
forms one of the services SetsAuditServer, SetsAuthenticationServer, SetsSecServerClientPort,
SetsSecServerMasterPort, SetsCryptoServer, SetsNegotiationServer or SetsNetworkSecurityServer.

6.9 Host Control Port Services

Mach allows tasks holding a send right to the host control port to change the value of the system
clock. For applications that use time stamps to ensure consistency, the changing of time can
lead to integrity concerns. The DTOS policy addresses this threat by controlling which tasks
can change the value of the system clock (permission Set_time).

The host control port can also be used to change the default memory manager port recorded
by the kernel. If the receiver for the new port does not provide the same functionality as the
“real” default manager, then temporary objects would no longer be paged properly. The DTOS
policy addresses this threat by controlling which tasks can change the default manager port
(permission Set_default_memory_mgr).

Another privileged operation that can be performed through the host control port is the wiring
of threads into memory. If arbitrary tasks are permitted to wire threads, then the kernel
resources can easily be exhausted. The DTOS policy addresses this threat by controlling which
tasks are permitted to wire threads (permission Wire_thread).

Note that the Mach approach to controlling privileged host operations is to limit the tasks that
hold a send right to the host control port. However, there is always the possibility that a task
that holds such a right might accidentally transfer it to an inappropriate task. Furthermore, it
is not necessarily true that every task that needs to execute a privileged host operation needs
to execute all privileged host operations. The DTOS approach addresses the first problem by
separating the holding of a right from the ability to use the right. For example, a task must
have Set_time permission in addition to holding a send right to the host control port to set
the system clock.'® The DTOS approach addresses the second problem by using a separate
permission to control each service. For example, a task might be permitted to wire threads
while not being permitted to load entries into the permissions cache.

Service Definition 95 (Changes Wiring) A state transition wires or unwires memory in task’s
address space if there exists apage_indez such that

15This permission is enforced on an implementation service rather than an abstract service since the time may
change during virtually any system transition. The prototype prevents any change (increasing or decreasing) via the
request host_set_time if Set_time permission is not held.

83-0902023A001 Secure Computing Corporation
1.25, 26 September 1996 CAGE Code OHDC7

DTOS FSPM 53

m wire_count(task, page_index) is altered, and

» the portions of memory that are allocated do not change.

Note that this might have no effect on the wiring of the page to which the page_index is mapped
since the page might be wired for a different memory region or it might be wired multiple times
for the region affected by this transition.

Service Definition 96 (SetsDefaultManager) A state transition sets the system’s default man-
ager if it alters d efault_mem_manager.

Service Definition 97 (WiresThread) A state transition wires or unwires thread if it adds or
removes thread from threads_wired.

6.10 Processor Services

Mach allows tasks to change the execution status of a processor. For example, processing on
a processor can be stopped by “exiting” the processor. As another example, a processor can
be moved into a different processor set that schedules threads differently than the processor’s
initial processor set. The DTOS policy addresses these threats by controlling which tasks can
perform operations on processors (permissions Assign_processor_to_set, May_control_processor).

As with privileged host operations, Mach controls these operations through the use of capabil-
ities. Once again, the DTOS control mechanisms are much stronger and more flexible (see the
discussion in Section 6.9).

Service Definition 98 (AssignsProcessor) A state transition assigns a processor proc to a pro-
cessor set procset if proc is added to processors(procset).

Service Definition 99 (EzitsProcessor) A state transition causes a processor proc to be exited
if it removes it from the processor set specified by proc_assigned _procset(proc) and does not add
proc to any other processor set.

6.11 Processor Set Control Port Services

Mach allows a task holding a send right to a processor set control port to destroy the processor
set. This can adversely impact the scheduling of threads executing on the processor set. Similar
effects can also be achieved by changing the scheduling policies supported by the processor set
or the maximum priority allowed for threads assigned to the processor set. The DTOS policy
addresses these threats by controlling which tasks may operate on a processor set (permissions
Destroy_pset, Chg_pset_maz_pri, Invalidate_scheduling_policy, Define_new_scheduling_policy).

As with privileged host operations, Mach controls these operations through the use of capabil-
ities. Once again, the DTOS control mechanisms are much stronger and more flexible (see the
discussion in Section 6.9).

Service Definition 100 (DestroysProcset) A state transition destroys a processor set procset if
procset is removed from procset_exists.

Service Definition 101 (SetsProcsetMazPriority) A state transition sets the maximum
scheduling priority for the processor setprocset if it alters ps_max_priority(procset).

Service Definition 102 (DisablesPolicy) A state transition disables a scheduling policy for the
processor set procset if it removes an element from enabled _sp(procset).

Secure Computing Corporation 83-0902023A001
CAGE Code OHDC7 1.25, 26 September 1996

54 DTOS Services

Service Definition 103 (EnablesPolicy) A state transition enables a scheduling policy for the
processor set procset if it adds an element to enabled_sp(procset).

6.12 Kernel Reply Services

The prototype uses kernel reply ports as the service ports for requests to add permission sets
to the permissions cache. Tasks that can add entries to the cache can circumvent the DTOS
policy. Tasks that can remove entries from the cache can deny service by revoking access to
resources. The DTOS policy addresses this threat by controlling which tasks can add entries
to the permissions cache (permissions Provide_permission).

Service Definition 104 (LoadsCache) A state transition loads an entry into the kernel’s per-
mission cache if it adds a ruling to cache.

Editorial Note:
We need to consider how to relate the ruling t0 kernel_reply_port in the above.

6.13 Device Services

Tasks in Mach must first open or map a device before accessing the device. Confidentiality can
be compromised if a task can open devices that are being used to input data that is inappropriate
for the task. Integrity can be compromised if a task can output data through a device that a user
believes is being controlled by a trusted task. Availability can be compromised if a task opens
a device that only allows a single connection at a time. DTOS protects against these threats by
controlling which tasks can open and map each device (permissions Open_device, Map_device).

Since service can also be denied by inappropriately closing a device, DTOS controls the closing
of devices (permission Close_device). Further protection is provided by controlling the transfer
of data through open devices (permissions Read_device, Write_device).

More subtle attacks could be mounted by inappropriately setting the status of a device or the
filter associated with a device. For example:

m Packets received through a device could be routed to an inappropriate port as a result of
that port being specified as the destination for a filter.
m Packets might not be delivered as they should be due to a filter being changed.

DTOS protects against these threats by controlling the setting of device status and device filters
(permissions Sei_device_filter, Set_device_status).

Service Definition 105 (ClosesDevice) A state transition closes dev if it decrements
device_open_count(dev), the count of the number of times that dev has been opened and not
closed.

Service Definition 106 (DecreasesFventCounter) A state transition decreases an event counter
eve supplied by dev if eve is supplied by dev before and after the transition and the count
associated with evc decreases.

Editorial Note:
The service DecreasesEventCounter is not currently controlled in DTOS, but the addition of controls on
this service as indicated in Section 7 are planned.

83-0902023A001 Secure Computing Corporation
1.25, 26 September 1996 CAGE Code OHDC7

DTOS FSPM 55

Service Definition 107 (MapsDevice) A state transition maps dev if it adds dev to
mapped_devices, the set of mapped devices.

Service Definition 108 (OpensDevice) A state transition opens dev if it increments
device_open_count(dev), the count of the number of times that dev has been opened and not
closed.

Service Definition 109 (ReadsDevice) A state transition reads dev if it removes a record from
device_in(dev), the set of data records input through dev and not yet received.

Service Definition 110 (SetsDevice Filter) A state transition “sets” a filter associated with dev
if it changes device_filter_info(dev), the filter information associated with dev.

Service Definition 111 (SetsDeviceStatus) A state transition changes the status associated
with dev if it changes d evice_status(dev), the status information associated with dev.

Service Definition 112 (WritesDevice) A state transition writes dev if it adds a record to
device_out(dev), the set of data records output through dev and not yet delivered.

6.14 Outcall Services

A kernel outcall occurs when the kernel sends a message to a port. We define abstract services
for the outcalls that the kernel may make. These outcall services must be controlled since a
task may cause an outcall to occur by making requests to the kernel. For example, when a
task makes a kernel request it may direct the reply message to a given port. When the kernel
processing of the request is finished, the kernel will perform an outcall, sending the reply
message to the designated reply port. Thus, the task that made the original request has caused
a message to be sent to the port. Even though the kernel is sending the message, we want to
make sure the task that made the request has permission to send a message to the reply port.

From the kernel's perspective, all of the outcalls require a check of permission Can_send.'® For
outcalls that send reply messages to kernel requests, send exception messages or send a port
notification, a non-kernel task must have the permission to send to the destination port of the
outcall.

There are several other types of outcall:

security fault — The kernel sends a message to the security server requesting an access
vector computation.

page fault — The kernel sends a message to a pager via a memory object’s pager port.

pageout — The kernel's pageout daemon determines that a page must be paged out.

send audit information — The kernel sends audit information to an audit port.

forward network packet — The kernel forwards a network packet to a port for the UNIX
server.

In contrast to the outcalls described earlier, we require for these types of outcall that the kernel
itself have Can_send permission to the destination port of the outcall message. Any effective
client on whose behalf the kernel is executing need not have any permission to the destination
port. This allows us to restrict the set of tasks that have Can_send permission for important
ports such as the security server port. In the case of a page out outcall, the kernel is in fact
acting on its own behalf and therefore needs Can_send permission.

16 For several of the outcalls the server to which the outcall is sent should check additional permissions. As an
example, when the security server receives a request to compute an access vector, it checks that the client has
permission to make that request. These checks are server-dependent and we do not specify them at this time.

Secure Computing Corporation 83-0902023A001
CAGE Code OHDC7 1.25, 26 September 1996

56 DTOS Services

Service Definition 113 (MakesSecurityOutcall) A state transition makes a security outcall if
the kernel sends a request to the security server port with operationsS/_compute_av_id.

Service Definition 114 (SendsPagerQOutcall) A state transition sends a pager outcall if the
kernel sends a request with an operation in the set Pager_request_ids to the object (pager) port of
a memory.

Service Definition 115 (ConfirmsKernelMemOp) A state transition confirms a memory op-
eration by the kernel if the kernel sends a message with an operation in the set
Mem_obj_confirmation_ids. This message is sent to a reply port provided by the memory manager
in an earlier kernel request to which this outcall is the reply.

Service Definition 116 (RaisesErceptionToThread) A state transition raises an exception to
a thread if the kernel sends a message to the exception port of the thread with operation
Mach_exception_id.

Service Definition 117 (RaisesErceptionToTask) A state transition raises an exception to
a task if the kernel sends a message to the exception port of the task with operation
Mach_exception_id.

Service Definition 118 (SendsKernelReply) A state transition sends a reply from a kernel ser-
vice request to a reply port if the kernel sends a message to the reply port with an operation in
the set Kernel_service_reply_ids.

Service Definition 119 (SendsNotification) A state transition sends a notification message to
a port if the kernel sends a message to the port with an operation in the set Mach_notify_ids.

Service Definition 120 (SendsAuditData) A state transition sends audit data if the kernel
sends a message to the audit_server_port with an operation in the set Audit_ids.

Service Definition 121 (ForwardsNetworkPacket) A state transition forwards a network packet
to port if the kernel sends a message to a port with the operation set to Forward_net_packei_id.

6.15 Implementation Services

Service Definition 122 (InitiatesOperation) A state transition initiates op if there is a request
for op which is added to validated _requests.

The set of requests that are treated as implementation services and the permissions associated
with these requests are identified in the implementation service tables in Section 7. The
DTOS policy addresses each implementation service by only allowing it to be executed when
the client holds the permission that the table identifies for the service. The DTOS request
task_get_special_port can perform any one of three services — getting the kernel, exception
or bootstrap port of the task — depending upon the value of one of its parameters. We identify
each of these services separately. Similar statements apply to thethread_get_special_port
and host_get_special_port requests.

83-0902023A001 Secure Computing Corporation
1.25, 26 September 1996 CAGE Code OHDC7

DTOS FSPM 57

Section 7
Base Kernel Policy

This section identifies which permission governs each service and which SSI and OSI are
used to perform the permissions check. The security policy is simply that a service is only
permitted when the permission associated with the service is recorded as being appropriate for
the identified SSI and OSI. This section is organized by SSI-OSI pairs. For each SSI-OSI pair,
we provide a table identifying the relevant services and their associated permissions.

Note that primed terms are used to indicate values in the state following a transition. For
example, port_sid’'(port) denotes the SID that port will have after the transition rather than
port’s SID before the transition. This notation is used to state requirements on the creation of
entities. For example, when a port is being created, it has no SID in the initial state. Specifying
a check on port_sid’(port) indicates that a check should be performed on the SID that port will
have after it is created.

7.1 Requirements on client t0 port_sid'(device_port'(dev)) Accesses

| Abstract Service | Required Permission ||

|| OpensDevice(dev) | Open_device H

7.2 Requirements on client t0 port_sid'(task_self'(child)) Accesses

| Abstract Service | Required Permission ||

|| CreatesTaskSecure(child) | Cross_context_create ||

7.3 Requirements on client t0 port_sid'(task_self'(task)) Accesses

|| Abstract Service | Required Permission ||
|| ChangesTaskAid(task) | Make_sid ||

Secure Computing Corporation 83-0902023A001
CAGE Code OHDC7 1.25, 26 September 1996

58 Base Kernel Policy

7.4 Requirements on client t0 port_sid(device_port(dev)) ACCesses

| Abstract Service | Required Permission ||
ClosesDevice(dev) Close_device
Decreases EventCounter(dev) | Wait_eve
MapsDevice(dev) Map_device
ReadsDevice(dev) Read_device
SetsDevice Filter(dev) Set_device_filter
SetsDeviceStatus(dev) Set_device_stalus
WritesDevice(dev) Write_device

7.5 Requirements on client t0 port_sid(host_control_port) Accesses

|| Abstract Service | Required Permission ||

Changes Wiring(task) | Wire_vm
SetsDefaultManager | Set_defauli_memory_mgr
WiresThread(thread) | Wire_thread

7.6 Requirements on client 10 port_sid(host_name_port) ACccesses

|| Abstract Service | Required Permission ||
Creates Procset(procset) Create_psel
FlushesCache Flush_permission
SetsAuditServer Set_audit_port
SetsAuthenticationServer Set_authentication_port
SetsCryptoServer Set_crypto_port
SetsNegotiationServer Set_negotiation_port

SetsNetworkSecurityServer | Set_network_ss_port
SetsSecServerClientPort Set_security_client_port
SetsSecServerMasterPort Set_security_master_port
SetsSpecial Port Set_special_port

7.7 Requirements on client t0 port_sid(kernel_reply_port) AcCcesses

| Abstract Service | Required Permission ||

|| LoadsCache(kernel_reply_port) | Provide_permission ||

83-0902023A001 Secure Computing Corporation
1.25, 26 September 1996 CAGE Code OHDC7

DTOS FSPM 59

7.8 Requirements on client 10 port_sid(control_port(memory)) ACCesses

| Abstract Service | Required Permission ||
ChangesMemoryObject Attr(memory) | Set_attributes
DestroysMemory(memory) Destroy_object
ServicesPage Fault(memory) Provide_data

7.9 Requirements on client t0 port_sid(port) Accesses

Abstract Service

Required Permission ||

Initiates MsgReceive(port) Can_receive
InitiatesMsgSend(port) Can_send
InitiatesQolData Transfer(port) Transfer_ool
Initiates Receive Transfer(port) Transfer_recetve
Initiates Rights Transfer(port) Transfer_rights
InitiatesSend Once Transfer(port) | Transfer_send_once
InitiatesSend Transfer(port) Transfer_send
Interposes(port) Interpose
SetsReply(port) Set_reply
SpecifiesAV (port) Specify
SpecifiesSsi(port) Specify

7.10 Requirements on client 10 port_sid(proc_self (proc)) Accesses

[Abstract Service | Required Permission ||

AssignsProcessor(proc,procset) | Assign_processor_to_set
FritsProcessor(proc) May_control_processor

7.11 Requirements on client 10 port_sid(procset _self (procset)) Accesses

Abstract Service

Required Permission |

AssignsProcessor(proc,procset) Assign_processor
AssignsTask(task,procset) Assign_task

Assigns Thread(thread,procset) Assign_thread
DestroysProcset(procset) Destroy_pset
DisablesPolicy(procset) Invalidate_scheduling_policy
EnablesPolicy(procset) Define_new_scheduling_policy
SetsProcsetMaxPriority(procset) | Chg_pset_maz_pri

Secure Computing Corporation 83-0902023A001
CAGE Code OHDC7 1.25, 26 September 1996

60 Base Kernel Policy

7.12 Requirements on client 10 task_target(client, parent _task'(child)) Accesses

[Abstract Service | Required Permission ||

CreatesTask(child) Create_task
CreatesTaskSecure(child) | Create_task_secure

7.13 Requirements on client to task_target(client, task) Accesses

Abstract Service

Required Permission ||

AddsName(task,port) Add_name
AddsThread(task) Add_thread
AddsThreadSecure(task) Add_thread_secure
AllocatesRegion(task,page_index) | Allocate_vm_region
AssignsTask(task,procset) Assign_task_to_pset
Changes Wiring(task) Wire_vm_for_task
ChangesTaskAid(task) Change_sid
DeallocatesRegion(task) Deallocate_vm_region
Disables TaskSampling(task) Sample_task
EnablesTaskSampling(task) Sample_task
ManipulatesPortSet(task) Manipulate_port_set
Modifies PortInfo(task) Alter_pns_info
ModifiesRegion(task) Write_vm_region
RegistersNotification(task) Register_notification
RegistersPort(task) Register_ports
RemovesName(task,port) Remove_name
RenamesinPortNameSpace(task) | Port_rename
ResumesTask(task) Resume_task
SetsEmulation Vector(task) Set_emulation
Setsinheritance(task) Set_vm_region_inherit
SetsProtection(task) Chg_vm_region_prot
SetsTaskBootPort(task) Set_task_boot_port
SetsTaskExceptionPort(task) Set_task_exception_port
SetsTaskKernelPort(task) Set_task_kernel_port
SetsTaskPriority(task) Chg_task_priority
SuspendsTask(task) Suspend_task
TerminatesTask(task) Terminate_task
83-0902023A001 Secure Computing Corporation

1.25, 26 September 1996 CAGE Code OHDC7

DTOS FSPM 61

7.14 Requirements on client to thread_target(client, thread) Accesses

| Abstract Service | Required Permission ||
AbortsPriorityDepression(thread) Abort_thread_depress
Assigns Thread(thread,procset) Assign_thread_to_pset
DecrementsThread MaxPriority(thread) | Set_max_thread_priority
DepressesPriority(thread) Depress_pri
Disables ThreadSampling(thread) Sample_thread
Enables ThreadSampling(thread) Sample_thread
IncrementsThreadMaxPriority(thread) | Set_maxz_thread_priority
MakesTaskReady(thread) Initiate_secure
MakesThreadOwnerReady(thread) Initiate_secure
ResumesThread(thread) Resume_thread
SetsThread EzceptionPort(thread) Set_thread_exception_port
SetsThread KernelPort(thread) Set_thread_kernel_port
SetsThreadPolicy(thread) Set_thread_policy
SetsThread Priority(thread) Set_thread_priority
SuspendsThread(thread) Suspend_thread
Terminates Thread(thread) Terminate_thread
Wires Thread(thread) Wire_thread_into_memory

7.15 Requirements on kernel t0 port_sid(audit_server_port) Accesses

[Abstract Service | Required Permission ||
|| SendsAuditData | Can_send ||

7.16 Requirements on kernel to port_sid(object_port(memory)) Accesses

[Abstract Service | Required Permission ||

|| SendsPagerOutcall(memory) | Can_send H

7.17 Requirements on kernel to port_sid(port) Accesses

| Abstract Service | Required Permission ||

ConfirmsKernelMemOp(port) | Can_send |
ForwardsNetworkPacket(port) | Can_send |

7.18 Requirements on kernel to port_sid(security_server_master_port) AcCesses

| Abstract Service | Required Permission ||
|| MakesSecurityOutcall | Can_send ||

Secure Computing Corporation 83-0902023A001
CAGE Code OHDC7 1.25, 26 September 1996

62 Base Kernel Policy

7.19 Requirements on kernel_as(eff _client) to port_sid(port) Accesses

[Abstract Service | Required Permission ||

|Sends[(ernelReply(port) Can_send
| SendsNotification(port) | Can_send

7.20 Requirements on kernel_as(eff _client) t0 port_sid(task_eport(task)) Ac-
cesses

[Abstract Service | Required Permission ||
| RaisesExceptionToTask(lask) | Can_send I

7.21 Requirements on kernel_as(eff —client) 10 port_sid(thread_eport(thread)) Ac-
cesses

|| Abstract Service | Required Permission ||
|| Raises ExceptionTo Thread (thread) | Can_send ||

7.22 Requirements on parent_task’(child) to port_sid'(task_self’(child)) Ac-
cesses

| Abstract Service | Required Permission ||
| CreatesTaskSecure(child) | Cross_context_inherit |

7.23 Requirements on task t0 page_sid(task, page_index) ACCesses

[Abstract Service | Required Permission ||
AllocatesExecute Region(task,page_index) | Have_execute
AllocatesReadRegion(task,page_indez) Have_read
AllocatesRegion(task,page_index) Map_vm_region

Allocates Write Region(task,page_inder) Have_write

7.24 Requirements on task to port_sid'(port) Accesses

| Abstract Service | Required Permission |
|| AddsReceive(task,port) | Hold _receive ||

83-0902023A001 Secure Computing Corporation
1.25, 26 September 1996 CAGE Code OHDC7

DTOS FSPM 63

7.25 Requirements on task to port_sid'(task_self’(task)) Accesses

|| Abstract Service | Required Permission ||
|| ChangesTaskAid(task) | Transition_sid |

7.26 Requirements on task t0 port_sid(port) Accesses

|| Abstract Service | Required Permission ||
AddsReceive(task,port) Hold_receive
AddsSend (task,port) Hold_send
AddsSendOnce(task,port) | Hold_send_once

7.27 Prohibited Actions on port

No transition may perform any of the following services: ChangesPortAid, ChangesPortMid.

7.28 Prohibited Actions on task

No transition may perform any of the following services: ChangesTaskMid,
InvTaskCreationState Trans.

7.29 Requirements on client to dev Implementation Accesses

| Request | Required Permission ||
| device_get_status | Get_device_status |

7.30 Requirements on client t0 host_control_port Implementation Accesses

| Request | Required Permission ||
host_adjust_time Set_time
host_get_boot_info Get_bool_info
host_processor_set_priv | Pset_ctri_port
host_processors Gel_host_processors
host_reboot Rebool_host
host_set_time Set_time
Secure Computing Corporation 83-0902023A001

CAGE Code OHDC7 1.25, 26 September 1996

64 Base Kernel Policy

7.31 Requirements on client t0 host_name_port Implementation Accesses

|| Request | Required Permission ||
host_get_audit_port Gel_audil_port
host_get_authentication_port Gel_authentication_port
host_get_crypto_port Gel_crypto_port
host_get_host_control_port Get_host_conlrol_port
host_get_negotiation_port Getl_negotliation_port
host_get_network_ss_port Gel_network_ss_port
host_get_sec_server_client_port | Get_security_client_port
host_get_sec_server_port Gel_security_master_port
host_get_special_port Gel_special _port
host_get_time Gel_time
host_info Get_host_info
host_kernel_version Getl_host_version
host_processor_sets Pset_names
mach_host_self Get_host_name
processor_set_default Get_default _pset_name

7.32 Requirements on client to memory Implementation Accesses

| Request | Required Permission ||

| memory_object_get_attributes | Get_atiributes
|| memory_object_lock_request Invoke_lock_request

7.33 Requirements on client to proc Implementation Accesses

| Request | Required Permission ||
processor_control May_control_processor
processor_get_assignment | Get_processor_assignment
processor_info Get_processor_info
processor_start May_control_processor

7.34 Requirements on client t0 ps_name_port Implementation Accesses

| Request | Required Permission ||
[processor_set_info | Get_pset_info |

83-0902023A001 Secure Computing Corporation
1.25, 26 September 1996 CAGE Code OHDC7

DTOS FSPM

65

7.35 Requirements on client t0 ps_control_port Implementation Accesses

[Request

| Required Permission ||

processor_set_tas ks

Observe_pset_processes

processor_set_threads

Observe_pset_processes

7.36 Requirements on client to task Implementation Accesses

Request

Required Permission ||

mach_port_extract_right

Ertract_right

mach_port_get_receive_status

Observe_pns_info

mach_port_get_refs

Observe_pns_info

mach_port_get_set_status

Observe_pns_info

mach_port_names

Observe_pns_info

mach_ports_lookup

Lookup_ports

mach_port_type

Observe_pns_info

mach_port_type_secure

Observe_pns_info

mach_task_self

Get_task_kernel_port

task_get_assignment

Get_task_assignment

task_get_bootstrap_port

Get_task_boot_port

task_get_emulation_vector

Get_emulation

task_get_exception_port

Get_task_exception_port

task_get_kernel_port

Get_task_kernel_port

task_get_sampled_pcs

Sample_task

task_info

Getl_task_info

task_ras_control Set_ras
task_threads Get_task_threads
vm_copy Copy_vm

vm_machine_attribute

Access_machine_attribute

vm_read

Read_vm_region

vm_region

Get_vm_region_info

vim_reg ion_secure

Get_vm_region_info

vm_statistics

Get_vm_statistics

Secure Computing Corporation
CAGE Code OHDC7

83-0902023A001

1.25, 26 September 1996

66

Base Kernel Policy

7.37 Requirements on client to thread Implementation Accesses

| Request | Required Permission ||
mach_thread_self Get_thread_kernel_port
swtch Can_swich
swtch_pri Can_swich_pri

thread_abort

Abort_thread

thread_get_assignment

Get_thread_assignment

thread_get_exception_port

Get_thread_exception_port

thread_get_kernel_port

Get_thread_kernel_port

thread_get_sampled_pcs

Sample_thread

thread_get_state

Get_thread_state

thread_info

Get_thread_info

thread_set_state

Set_thread_state

thread_set_state_secure

Set_thread_state

thread_switch

Switch_thread

83-0902023A001

1.25, 26 September 1996

Secure Computing Corporation

CAGE Code OHDC7

Section

DTOS FSPM 67

38

Generic Security Server Requirements

This section describes the data structures and security requirements on security servers in
general. The material in this section is applicable to all DTOS security servers that define
policy for the DTOS kernel. This includes those security servers that define policy on exclusively
kernel entities and those that define policy on higher level entities as well as kernel entities.
Note, however, that security servers that define policy on only entities above the kernel level
are not considered here.

Editorial Note:
The interface between the kernel and the security server described in this section is incomplete. Notifi-
cation vectors have been omitted.

Each DTOS security server makes security policy decisions on asubject security context (SSC)
to object security context (OSC) basis. For example, a security server implementing an MLS
policy might define subject and object security contexts to consist of a single level. If the MLS
policy required limiting subjects to operate in ranges of levels, then another alternative for the
subject security context would be a pair of levels specifying the minimum level at which the
subject may write and the maximum level at which the subject may read.

In the following, we use SSC and 0SC to denote, respectively, the sets of subject and object
security contexts. Note that these sets can be different for each security server.

Each security server recognizes certain sets of SSCs and OSCs. We userecognized_sscs and
recognized_oscs 1o denote the SSCs and OSCs recognized by a given security server.

To hide the structure of security contexts from other system components, security servers use
security identifiers (SIDs) to represent security contexts. Each security server recognizes certain
sets of subject SIDs (SSls) and object SIDs (OSIs). We use recognized_ssis and recognized_osis
to denote the SSls and OSIls recognized by a given security server. The OSIs Task_self _sid and
Thread_self _sid defined in the formalization of the microkernel requirements are two special
OSls that must be recognized by all security servers. The kernel specifies one of these SIDs as
a target to indicate that the security server should compute access for the client to the client
itself.

Each security server processes access queries containing an SSI-OSI pair by mapping the pair
to an SSC-OSC pair and performing an access computation. We use:

m sid_ssc(ssi) to denote the SSC associated with ssi. This function is defined only for
recognized SSls.

m sid_osc(os?) to denote the OSC associated with osi. This function is defined only for OS7
other than Task_self _sid and Thread_self _sid.

m task_self _osc(ssi) to denote the OSC representing that a task with SID ssi is accessing
itself. This function is defined only for recognized SSis.

m thread_self_osc(ssi) to denote the OSC representing that a thread with SIDssi is accessing
another thread within the same task. This function is defined only for recognized SSis.

m targei_osc(ssi, osi) to denote the OSC that is to be used for computing ssi-osi access. This
function is defined only for recognized SSls and OSls. This function is defined as follows:

Secure Computing Corporation 83-0902023A001
CAGE Code OHDC7 1.25, 26 September 1996

68 Generic Security Server Requirements

— If osi is Task_self _sid, then the result is task_self _osc(ssi).
— If osi is Thread_self _sid, then the result is thread_self _osc(ssi).
— If osi is neither Task_self _sid nor Thread_self _sid, then the result is sid_osc(osi).

Each security server distinguishes between OSCs for communication ports, tasks, default
pagers, pagers, threads, host name ports, host control ports, processors, processor set name
ports, processor set control ports, kernel reply ports, and device ports. We use the fol-
lowing sets to denote the recognized OSCs for each class: communication_oscs, task_oscs,
default_pager_oscs, pager_oscs, thread_oscs, host_name_oscs, host_control_oscs, processor_oscs,
procset_name_oscs, procset_control_oscs, kernel_reply_oscs, and d evice_oscs. These OSC classes
address the Mach kernel entities. Security servers may also protect user level resources such
as files. For example, a security server might define a set of OSCs calledfile_oscs for use with
files. We use recognized_osc_classes to denote the collection of OSC classes recognized by a given
security server. We require that recognized_osc_classes contains the class associated with each
kernel entity and that each OSC in a recognized class is an OSC recognized by the security
server.

Each security server associates a set of permissions with each OSC class. This set of permis-
sions consists of those that are relevant to the type of entity represented by the class. For
example, the set of permissions associated with thread_oscs must be Thread_permissions. \We
use osc_class_permissions(osc_class) to denote the permissions a security server associates with
osc_class. We require that the appropriate kernel permissions are associated with each kernel
OSC class.

Each security server has an associated rule indicating which permissions are permitted on a
context-to-context basis. We use policy_allows(ssc, osc) to denote the set of permissions that
a subject with context ssc is permitted to an object with context osc. Each permission set
consists of a set of IPC permissions and a set of permissions specific to osc’s class. We re-
quire that the latter set of permissions be contained in the set of permissions identified by
osc_class_permissions. For example, when osc is the context of a thread port, the permissions
returned by policy_allows consist of IPC and thread permissions. Typically, a security server
will manage a database that defines policy_allows. For example, a security server supporting
an MLS policy will manage a database that defines the existing security levels and a partial
ordering of those levels. We use policy_database to denote this database.

Each security server has an associated rule indicating which permission decisions are cacheable
on a context-to-context basis. We use cacheable(ssc, osc) to denote the set of permission decisions

that are cacheable for a subject with contextssc to an object with context osc. Each permission

decision set consists of a set of IPC permissions and a set of permissions specific toosc’s class.

We require that the latter set of permissions be contained in the set of permissions identified by
osc_class_permissions. For example, when osc is the context of a thread port, the permissions
returned by cacheable consist of IPC and thread permissions. Typically, a security server will
manage a database that defines cacheable. We use cacheability_database to denote this database.

Each security server has an associated rule indicating the period of validity of access compu-
tations on a context-to-context basis. We use v alidity_duration(ssc, osc) to denote the period
of time for which an access computation on ssc to osc is valid. Typically, a security server
will manage a database that defines v alidity_duration. We use duration_database to denote this
database.

In summary, a generic security server consists of:

m sets of recognized SSCs, OSCs, SSls, and OSls,
= mappings from SSls to SSCs and OSls to OSCs,

83-0902023A001 Secure Computing Corporation
1.25, 26 September 1996 CAGE Code OHDC7

DTOS FSPM 69

a partitioning of the recognized OSCs into recognized OSC classes,

a mapping from recognized OSC classes to associated permission sets,

a policy database and rule defining permission sets on an SSI-to-OSlI basis,

a cacheability database and rule defining sets of cacheable permission decisions on an
SSI-to-OS| basis, and

m a duration database and rule defining validity durations on an SSI-to-OSl basis.

Each security server accepts requests specifying a pair of SIDs and a reply port. Each request
is received through a message and each message has an attached sendingss:. Thus, a request
can be viewed as a record having fields client_ssi, source_ssi, target_osi, and ar_reply_name. In
response to an access request, a security server sends a Sec_access_provided_id message con-
taining the pair of SIDs, set of permissions, cacheability information (denoted by control_vector)
and validity duration. The set of permissions, cacheability and validity duration must be con-
sistent with the pair of SIDs. If either of source_ssi or target_osi are unrecognized SIDs, then
an empty set of permissions and duration of 0 must be returned. We allow the possibility of
a non-empty set of cacheable permission decisions being returned. This provides the security
server with a mechanism to avoid additional requests with the same pair of SIDs. Given a
current security server state of ss_state, we use Valid_ss_responses(ss_state) to denote the set of
messages which are consistent with the policy, cacheability and duration databases contained
IN ss_state.

The specification of a specific security server requires defining:

m The structure of SSC, OSC, POLICY_DB, CACHE_DB,and DUR_DB.

m The rule for defining policy_allows.

= The rule for defining cacheable.

m The rule for defining v alidity_duration.

» The definition of any OSC classes beyond those representing kernel entities.

m The permissions associated with each OSC class beyond those representing kernel enti-
ties.

Secure Computing Corporation 83-0902023A001
CAGE Code OHDC7 1.25, 26 September 1996

70 Notes

Section 9
Notes

9.1 Acronyms

CMU Carnegie Mellon University
DTOS Distributed Trusted Operating System
FSPM Formal Security Policy Model
IBAC ldentity Based Access Control
IPC Interprocess Communication
KID Kernel Interface Document
MLS Multi-Level Secure

OSC Object Security Context

OSF Open Software Foundation
OSI Object Security Identifier

SID Security Identifier

SSC Subject Security Context

SSI Subject Security Identifier

VM Virtual Memory

9.2 Glossary

abstract service An abstract service is characterized by a relation on pairs of system states
that specifies a change to a kernel data structure. For example, the service that creates a
new task is characterized by a relation that specifies that the new system state contains
a task that was not present in the old system state.

control point A control point is a point in the processing of a request where the kernel must
enforce an access decision.

dirty page A page in kernel memory is dirty if the pager associated with the page has not yet
been made aware of modifications that have been made to the page.

IBAC Server An IBAC server is a user space task that defines an IBAC policy on a memory
object. The kernel interacts with an IBAC server in much the same manner as it interacts
with security servers.

implementation service An implementation service is a Mach request for which the set of
provided abstract services is difficult to formally define.

83-0902023A001 Secure Computing Corporation
1.25, 26 September 1996 CAGE Code OHDC7

DTOS FSPM 71

permission A permission is an access mode enforced by the kernel. The kernel ensures that
a service is provided only when the client of the service has the appropriate permission.

precious page A page in kernel memory is precious if the pager associated with the page has
indicated that it is not maintaining a copy of the page. Regardless of whether the page
is dirty, the kernel must send the contents of the page to the pager before removing the
page from memory.

security server A security server is a user space task that provides access computations to
the kernel.

9.3 Open Issues

» This document does not currently address i386 and debugger requests.

» The original system design specified that each memory object would be labeled with IBAC
protections and have an associated port used by the kernel to request IBAC decisions for
the memory. These features have not been implemented and no policy requirements are
stated regarding the IBAC protections and IBAC ports. However, permissions have been
defined in the access vectors to control the use of these IBAC components should they
ever be implemented.

m The specification of the interface between the kernel and the security server is not com-
plete. In particular, requests to the security server include the permission being re-
guested, and responses from the security server include a notification vector.

» Side effects need to be taken into account in some of the service definitions. This has been
done for the thread services but might still need to be done for some of the other services.

m The prototype does not currently implement the enforcement of read-only access. The
low-level memory routines in the prototype treat read and execute interchangeably.

= We need to consider whether the 12 permissions currently defined for memory control
services can actually be reduced to a single permission indicating that the subject can
serve as the pager for a given memory object. The case for doing this is that any usable
pager probably needs to be allowed to use the entire paging protocol. Thus, the ability
to page for a memory object may well be an all-or-nothing proposition. If so, nothing is
gained by having 12 permissions.

= Checks on SID triples rather than SID pairs might be required to obtain the degree of
control that we would like over some services. For example, checking permissions on the
basis of the client, port, and receiver might be necessary when transferring a port right
instead of checking on the basis of only the client and the port.

= The current prototype does not provide support for identity based policies in which each
task and memory object might need a different SID. Enhancements to support such
policies are under consideration. Few if any changes would be required in this documents
to address such an enhancement.

» This control policy does not require complete tranquility of SIDs (the AID of a task, task
port, or thread port may change) or tranquility of the set of accesses permitted between
two SIDs. This may lead to inconsistencies between the prototype and this policy, because
of possible concurrency in the system. In general, the requirements in this document
state that a permission check is based upon the SID of the source and target in the state
when the service is provided, though this cannot always be guaranteed in the prototype.
One way to lessen the scope of this problem with respect to nontranquility of SIDs is
to limit those permissions which can depend upon the AID field of the SID. This will
likely be addressed in future drafts of this document. It is currently expected that the
prototype will only use the AID fields for determining permissions to perform the services
ChangesTaskAid and CreatesTaskSecure.

Secure Computing Corporation 83-0902023A001
CAGE Code OHDC7 1.25, 26 September 1996

72

Bibliography

Appendix A

Bibliography

[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]

[9]

William R. Bevier and Lawrence M. Smith. A Mathematical Model of the Mach Kernel:
Entities and Relations (Draft). Technical report, Computational Logic, Incorporated, April
1993.

Todd Fine, Carol Muehrcke, and Edward A. Schneider. Formal Top Level Specification for
Distributed Trusted Mach. Technical report, Secure Computing Corporation, 2675 Long
Lake Road, Roseville, Minnesota 55113-2536, April 1993. DTMach CDRL A012.

Keith Loepere. Mach 3 Kernel Interfaces. Open Software Foundation and Carnegie Mellon
University, November 1992.

Keith Loepere. OSF Mach Kernel Principles. Open Software Foundation and Carnegie
Mellon University, final draft edition, May 1993.

NCSC. Trusted Computer Systems Evaluation Criteria. Standard, DOD 5200.28-STD,
US National Computer Security Center, Fort George G. Meade, Maryland 20755-6000,
December 1985.

Secure Computing Corporation. DTOS Formal Top-Level Specification (FTLS). Technical
report, Secure Computing Corporation, 2675 Long Lake Road, Roseville, Minnesota 55113-
2536, December 1994. DTOS CDRL A005.

Secure Computing Corporation. DTOS Kernel and Security Server Software Design Docu-
ment. Technical report, Secure Computing Corporation, 2675 Long Lake Road, Roseville,
Minnesota 55113-2536, January 1994. DTOS CDRL A002.

Secure Computing Corporation. DTOS Formal Security Policy Model (FSPM). Technical
report, Secure Computing Corporation, 2675 Long Lake Road, Roseville, Minnesota 55113-
2536, June 1995. DTOS CDRL A004.

Secure Computing Corporation. DTOS Generalized Security Policy Specification. Tech-
nical report, Secure Computing Corporation, 2675 Long Lake Road, Roseville, Minnesota
55113-2536, January 1995. DTOS CDRL A019.

[10] Secure Computing Corporation. DTOS Kernel Interfaces Document. Technical report,
Secure Computing Corporation, 2675 Long Lake Road, Roseville, Minnesota 55113-2536,
April 1995. DTOS CDRL A003.

83-0902023A001 Secure Computing Corporation

1.25, 26 September 1996 CAGE Code OHDC7

Appendix

DTOS FSPM 73

B
Prototype Security Server
Requirements

This section describes the data structures and security requirements relevant to the proto-
type security server. This security server enforces accesses using both a Multilevel Secure
(MLS) Policy and a Type Enforcement Policy. The MLS Policy provides confidentiality in the
DoD sense. The Type Enforcement Policy provides a mechanism for constructing protected
subsystems.

B.1 Security Contexts

Each user of the system is represented by a user identifier. We use USER to denote the set of
all user identifiers. Each subject and object has an associatedlevel. We use LEVEL to denote
the set of all levels. Each subject operates in some domain. We use DOMAIN to denote the set
of all domains. Each object has an associated type. We use 7'YPFE to denote the set of all types.

The subject security context of a process consists of the following:

m user — the user in whose name the process is executing,
» /vl — the level at which the process is executing,
m domain — the domain in which the process is executing.

The object security context of an object consists of the following:

m user — the user associated with the object. This is null_user except for those OSCs that
are derived from an SSC (e.g., the OSCs in task_oscs).

» [v] — the object’s level,

m iype — the object’s type.

B.2 Policy Database

There are six components of the policy database. First, the policy database records the set of
recognized security attributes. We use recognized_users, recognized_levels, recognized_domains,
and recognized_types to denote the sets of recognized security attributes.

Second, the policy database records the ordering of the recognized levels. We use lvl; < v, to
denote that v/, and lvl; are recognized levels and that [v/; is at or below lvl,. We require that
=< is a partial ordering of the levels.

Third, the policy database records a group of four permission sets for each domain-type pair.
We use te_vectors(domain, type) to denote the group of permission sets associated with the pair
(domain, type). We view each group of permission sets as a record having the following fields:

m same — the permissions for the case in which the source subject and target object are at
the same level,

Secure Computing Corporation 83-0902023A001
CAGE Code OHDC7 1.25, 26 September 1996

74 Prototype Security Server Requirements

m source_higher — the permissions for the case in which the source subject is at a level
strictly dominating that of the target object,

m target_higher — the permissions for the case in which the target object is at a level strictly
dominating that of the source subject,

m incomparable — the permissions for the case in which the levels of the source subject and
target object are incomparable

We require that no permissions be allowed if the domain or type is unrecognized.

Fourth, the policy database records the set of levels for which each user is authorized. We
use authorized_levels(user) to denote the set of levels for which user is authorized and require
that unrecognized users are not cleared to any levels and recognized users are cleared to only
recognized levels.

Fifth, the policy database records the set of domains for which each user is authorized. We
use authorized_domains(user) to denote the set of domains for which user is authorized and
require that unrecognized users are not authorized for any domains and recognized users are
authorized for only recognized domains.

Finally, for each OSC class the policy database records a set of permissions that are AlID-
relevant. We use aid_relevant(osc_class) to denote this set. We will require that osc_class be
an element of recognized_osc_classes. In addition, the policy database records a set of domains
may_change_user such that a context with a domain in the set may be granted AlD-relevant
permissions to contexts with a different user. A context with a domain not in this set will be
granted an AlD-relevant permission only to a context with the same user.

Together, these six components comprise the prototype security server policy database.

B.3 Cacheability Database

In the prototype Security Server there is no cacheability database since every permission sent
in an access vector, whether granted or denied, is cacheable.

B.4 Duration Database

The duration database has the same structure as the type enforcement component of the policy
database. For each domain-type pair, there is a separate duration value associated with each
of the possible relations between the source and target levels. We require that non-zero
durations only be permitted for recognized domains and types.

B.5 Prototype Security Server State

The prototype security server state is the generic security server state instantiated with
the types PrototypeSSC, PrototypeOSC, PrototypePolicyDatabase, NULL_DATABASE and
Prototype DurationDatabase. The set of recognized SSCs is defined to be those for which the
user field is a recognized user and the level and domain fields are appropriate for the user field.
The set of recognized OSCs is defined to be those for which the user field is a recognized user,
the level field is appropriate for the user field, and the type field is recognized. The functions
policy_allows, and wvalidity_duration are defined in terms of the policy and duration databases.
Both use < to determine the relation between the source and target levels and then return the

83-0902023A001 Secure Computing Corporation
1.25, 26 September 1996 CAGE Code OHDC7

DTOS FSPM 75

appropriate value of the four values associated with the source domain and target type. The
function cacheable always returns the full set of possible permissions for the given OSC class.

The policy database is indexed by domain and type. For AlD-relevant permissions the user
fields of the contexts must also be considered when making the permission decision. For these
permissions the policy database may be overridden. For example, in order for a task task; to
create a task task, in a context with a different user, task; must be in a domain that is an
element of the set of privileged domains may_change_user. If the contexts of task; and tasks
have the same user, then permission is based entirely upon the domain and type.

The set of AlID-relevant permissions is defined for each recognized OSC class. Ata minimum the
permissions Cross_context_create, Change_sid, Make_sid and Transition_sid are AlD-relevant for
task OSCs.

Editorial Note:
We need to consider whether we want the prototype security policy to control which clients may check
each task’s permissions to each target.

Secure Computing Corporation 83-0902023A001
CAGE Code OHDC7 1.25, 26 September 1996

76

Index

Index

The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

Symbols cache_allows 35
AbortsPriorityDepression 48 Cached_ruling_allows 35
Abort_thread 33 cached_ruling_avadl 35
Abort_thread_depress 33 Can_receive 32
Access_machine_attribute 33 Can_send 32
active_thread 28 Can_swtch 33
Add_name 33 Can_swtch_pri 33
AddsDeadName 43 Change_page_locks 33
AddsDeadNameReference 43 Chg_pset_max_priouuueuuunn.. 34
AddsDeadNameRight 43 Chg_vm_region_prot 33
AddsName 43 Change_std 33
AddsRecetve 43 ChangesMemoryObjectAttr 47
AddsSend 43 ChangesPagelocks 48
AddsSendOnce 43 ChangesWiring i 52
AddsSendReference 43 ChangesPortAid 46
AddsSendRight, 43 ChangesPortMed 46
AddsThread 50 ChangesTaskAed 51
AddsThreadSecure 50 ChangesTaskMid 51
Add_thread 33 Chg_task_priority 33
Add_thread_secure 33 Close_device, 34
AllocatesFxecuteRegion A7 ClosesDevice 54
AllocatesReadRegion 46 Co_carrieS_memoryuvu .. 23
AllocatesRegion 46 Co_carries_rights 23
Allocates WriteRegion 46 communication_08CS 68
Allocate_vm_region, 33 COMPLEX_OPTION 23
allocated 21 ConfirmsKernelMemOp 56
Alter_pns_info 33 containing_port 15
ABSIGN_Processor 34 containing_set 13
Assign_processor_to_set 34 control_memory 17
AssignsProcessor o o 53 Control_pager 34
AssignsTask 50 controlled_proc_set 17
AssignsThread 49 copy_strategy e 19
Assign_task e 34 Copy_vm e 33
Assign_task_to_pset 33 cpu_time ... 12
Assign_thread, 34 Create_pset 34
Assign_thread_to_pset 33 CreatesPortSet, 43
Audit_ads e 24 CreatesProcset, 51
audit_server_port 37 CreatesTask 50
authentication_server_port 37 CreatesTaskSecure 50
backing_chain 22 Create_task 33
backing_memory 22 Create_task_secure, 33
backing_offset 22 Cross_context_create 33
backing_rel 22 Cross_context_inherit 33
Base_user_priority 10 crypto_server—_port 37
cacheability_database 68 dead_namep 14
cacheable 68 dead_right_ref_count 14
83-0902023A001 Secure Computing Corporation

1.25, 26 September 1996

CAGE Code OHDC7

DTOS FSPM 77

dead_right_rel 14 Get_device_status 34
DeallocatesRegion A7 Get_emulation 33
Deallocate_vm_region 33 Get_host_control_port 34
DecreasesEventCounter 54 Get_host_info 34
Decrements ThreadMaxPriority 49 Get_host_name 34
default_mem_manager 20 Get_host_processorsuuiuiii.n 34
default_pager_oscs 68 Get_host_version 34
Default_port_sid 31 Get_negotiation_port 34
Default_vm_port_sid 31 Get_network_ss_port 34
Define_new_scheduling_policy 34 Get_processor_assignment 34
depressed_threads 10 Get_processor_info 34
DepressesPriority A48 Get_pset_info 34
Depress_pri L. 33 Get_security_master_port 34
priority_before_depression 10 Get_security_client_port 34
Destroy_object 33 Get_special_port, 34
Destroy_pset 34 Get_task_assignment 33
DestroysMemory 48 Get_task_boot_port 33
DestroysPortSet 44 Get_task_exception_port 33
DestroysProcset 53 Get_task_info 33
device_exists 8 Get_task_kernel_port 33
device_filter_info 28 Get_task_threads 33
deVice_in . .. e 28 Get_thread_assignment 33
device_open_count 28 Get_thread_exception_port 33
deVICE_08CS v e 68 Get_thread_info 33
device_out 28 (Get_thread_kernel_port 33
Device_permissions 34 (Get_thread_state 33
device_port 17 Get_time 34
device_port_rel 17 Get_vm_region_info 33
device_status 28 Get_vm_statistics 33
dirty_rel ... 20 Halted e 9
DisablesPolicy 53 have_assigned_tasks 27
DisablesTaskSampling 51 have_assigned_threads 27
Disables ThreadSampling 50 Have_execuleuuuuuiiuiinnnnas 33
emulation_vector 11 Have_read iiiiienenen.. 33
enabled_sp 28 Have_write 33
EnablesPolicy 53 Higher_priority 9
EnablesTaskSampling 51 Highest_possible_priority 10
EnablesThreadSampling 49 Hold_recetve i 32
Environment_slot A9 Hold_send i, 32
event_count 28 Hold_send_once, 32
EVENT_COUNTER 28 host_control_port, 17
Exception_ads 24 host_name_port 17
ExitsProcessor 53 host_control_oscs 68
Ertract_right 33 Host_control_port_permissions 34
Fizedpri 10 host_time 28
FlushesCache 51 host_nmame_o0scs 68
Flush_permission 34 Host_name_port_permissions 34
Jorcibly_queued L A3 jdle_threads 9
ForwardsNetworkPacket 56 IncrementsThreadMaxPriority 49
Get_attributes 33 inheritance 22
Get_audit_port 34 Inheritance_option_copy 21
Get_authentication_port 34 Inheritance_option_none 21
Get_boot_info 34 INHERITANCE_OPTION 22
Get_crypto_port 34 Inheritance_option_share 21
Get_default_pset_name 34 nitealized ... 19
Secure Computing Corporation 83-0902023A001

CAGE Code OHDC7

1.25, 26 September 1996

78 Index

Initiate_secure 33 MakesThreadOwnerReady 49
InitiatesMsgRecetve A1 managed e 19
InitiatesMsgSend L. A0 manager 19
InitiatesOolDataTransfer 41 Manipulate_port_set 33
InitiatesOperation 56 MantpulatesPortSet 45
InitiatesReceiveTransfer 40 map_rel ... 21
InitiatesRightsTransfer 40 Map_device 34
InitiatesSendOnceTransfer A1 mapped ... 21
InitiatesSendTransfer 41 mapped_devices 28
instruction_pointer 10 mapped_memory 21
INTERNAL_BODY 26 mapped_offset 21
Internal_element 26 MapsDevice 55
Interpose 32 Map_vm_region 32
Interposes 42 master_device_port 18
Invalidate_scheduling_policy 34 master_proc 27
InvTaskCreationStateTrans 50 Highest_priority 10
Invoke_lock_request 33 max_protection 21
Ipc_permissions 32 Max_right_refs 13
Ip_dead 8 Maz_samples 11
Ip_null o000 8 may_cache 19
kernel 8 May_control_processor 34
kernel_as 31 member_rel 27
Kernel_permisston 32 control_port 17
kernel_reply_oscs 68 control_port_rel 17
Kernel_reply_permassions 34 Memory_copy_call 19
kernel_reply_ports 37 Memory_copy—delay 19
Kernel_service_reply_ids 24 Memory_copy—noneuo... 19
LoadsCache 54 MEMORY_COPY_STRATEGY 19
local_namep 14 Memory_copy_temporary 19
Lookup_ports 33 name_port 17
Lower_priority 9 name_port_rel 17
Lowest_possible_priority 10 memory—_exists 8
Mach_exceptionad 24 Mem_obj_confirmation_ids 24
MACH_MSG_OPTION 23 Memory_object_permissions 33
MACH_MSG_TYPE 23 Msg_element 25
Mach_notify_ads 24 message_extsts 8
Mach_port_dead 12 message_n_port_rel 15
Mach_port_null 12 Lowest_priority 10
Mach_port_q_limit _default 14 Mmit_copy—send 23
Mach_port_q_limit_maz 15 Mmit_make_send 23
mach_protection 21 Mmit_make_send_once 23
Mach_rcv_large 23 Mmi_move_receive 23
Mach_rco_msg i 23 Mmi_move_send 23
Mach_rcvo_notify 23 Mmi_move_send_once 23
Mach_rcv_timeout 23 Mach_msg_type_port_recetve 23
Mach_send_cancel 23 Mach_msg_type_port_rights 23
Mach_send_msg 23 Mach_msg_type_port_send 23
Mach_send_notefy 23 Mach_msg_type_port_send_once 23
Mach_send_timeout 23 ModifiesPortInfo 46
Make_page_precious0 33 ModifiesRegion 47
make_send_count 14 MESSAGE_BODY 25
Make_sid 33 msg_contents 27
MakesPagePrecious 47 Msg_deallocate 25
MakesSecurityOuteall 55 Msg_dont_deallocate 25
MakesTaskReady 49 Msg_error_invalid_memory 26
83-0902023A001 Secure Computing Corporation

1.25, 26 September 1996

CAGE Code OHDC7

DTOS FSPM 79
Msg_error_invalid_right 26 Pe_device 18
Msg_error_invalid_type 26 Pc_host_control, 18
Msg_error_msg_too_small 26 Pc_host_name 18
Msg_error_notify_in_progress 26 Pe_memory 18
MSG_ERROR 26 PC_processor ... 18
Msg_error_timed_out 26 Pc_ps_control 18
MSY_OPETALION . o o v v i e it e 27 Pc_ps_name 18
msg_recetving_sid 36 Pe_task 18
Msg_region, 25 Pc_thread 18
msg_ruling 36 pending_receives 27
msg_sending_sid ... 35 PERMISSIONcccc.... 32
msg_specified_sid 36 policy_allows 68
msg_specified_vector 36]_)olz'cy_database 68
Msg_stat_pseudo 26 — . Dy
MSGStat_1co « oo oo 26 port_aid 31
Msg_stat_sendo 26 port_class i 18
MSG_STATUS . 26 PORT_CLASS 18
Msg_valtie « .o oo oo e o5 port_device 18
RAMEA_POTt o oo 12 port_exists 8
named_proc_set 17 port_mid ... 31
Name_server_slot 19 port_notify_dead 15
negotiation_server_port 37 port_notify_dead_rel 15
Network_packet_ids 24 port_notify_destroyed 15
network_ss_port 37 port_notify_destroyed_rel 15
number_of _rights 14 pori_notify_no_more_senders 15
object_memory 17 port_notify_no_more_senders_rel 15
object_port 17 }ort_permz'ssz'ons 33
object_port_rel ... 17 port_pointer e 8
Observe_pns_info ... B3 Port_rename ... 33
Observe_psel_processes 34 POTE_right_rel .o\ 12
Opendevve 11T g pertrhnamap 13
OpensDevice 55 portright_seq oo 18
. port_set 13
osc_class_permissions, 68
OST oo g1 POrLSCLRAmEp A3
Osito_aid 31 port_sid 31
Osi_to_mid . . 31 Port_size ... 15
WORD ...\t 19 Pp-to-pagesid ... 31
threads § PrECous ... 20
owning_task :8 Priority_levels 9
page_aid ... 31 proc_assigned_procset 27
POAGE_ETISLS . ot 8 proc_emisis ... 8
_ﬂemory_fault ________________________ 20 PTOCESSOT_0SCS .o i 68
pagelock_rel 21 Processor_permisSions 34
]_yage_locks ___________________________ 21 processor_port_rel 17
page_mid e 31 Pset_ctrl_port0 34
PAGET_0SCS ittt 68 Pset_names 34
Pager_permissions 33 Processors ... 27
Pager_request_ids 24 proc_self ... 17
page_sid 31 procset_exists 8
Page_vm_region 33 procset_name_port 17
page_word_rel 20 procset_control_oscs 68
page_word_fun e 20 Procset_control_port_permissions 34
SCHED_POLICY_DATA 10 procset_self 17
parent_task 37 procset_name_o08cs 68
Secure Computing Corporation 83-0902023A001

CAGE Code OHDC7

1.25, 26 September 1996

80 Index

Procset_name_port_permissions 34 representing_page 20
FBrecute 21 represents_rel 20
Read 21 representS_MEMOTY . .o 20
PROTECTION 20 ResumesTask 50
Write 21 ResumesThread 49
Provide_data 33 Resume_task 33
Provide_permission 34 Resume_thread 33
ps_control_port_rel 17 Rewoke_tbac 33
PS_MAT_priovity 28 RIGHT e 12
ps—name_port_rel 17 r-right ... 13
GUmMt L 15 Huling_allows ..o 35
Raise_exception 33 Running ..o 9
RaisesFxceptionToTask 56 LUn_SHAte oo 9
RaisesFxceptionToThread 56 RUNSTATES . oooeeeee e 2
Read_device 34 sampled_threads 11
ReadsDevice, 55 Sample_periodicl 11
Read_vm_region 33 SAMPLE ..o 11
Reboot_host, 34 Sample_task 33
Recetve ... 12 Sample_thread ... 33
TECEIVET o v i it e et e e 12 SAMPLE_-TYPES 11
TECETVET_TUATIE + v v v v v vt et e e e e e 12 Sample_vm_cow_faults 11
recognized_osc_classes 68 SAMPLE_VM_FAULTS 11
recognized_08cs g7 oample_vm_faults_any 11
recognized_08is g7 oample_vm_pagein_faults 11
Recognized_sample_typeso ooonn... 11 Sample_vm_reactivation_faults 11
recognized_sscs e g7 Sample_vm sfill faults A
recognized_ssis e 67 DAVEPAGE ... 33
Recognized_transfer_options 23 SavesPageo 48
registered_rights 19 SCHED_POLICY 10
Register _notification 33 security_server_client_port 37
Reqister_portso 33 Security_server_ids 24
RegistersDeadNameNotification 45 security_server_master_port 37
RegistersNoMoreSendersNotification 45 self task o 16
RegistersNotification 45 self thread 16
RegistersPort 45 Send ... 12
RegistersPortDestroyedNotification 45 sender ... 12
Remove_name 33 Send_once L 12
Remove_pageo 33 SendsAuditData 56
RemovesDeadName 44 SendsKernelReply 56
RemovesDeadNameReference 44 SendsNotification 56
RemovesDeadNameRight 44 SendsPagerOutcall 56
RemovesName 44 SEqUENCE_NO 15
Remoyespage _________________________ AS Service_slot ig
RemovesRecetve 44 ServicesPageFault, A7
RemovesSend 44 Set_attributes L. 33
RemovesSendOnce 44 Set_audit_port 34
RemovesSendReference 44 Set_authentication_port 34
RemovesSendRight 44 Set_crypto_port 34
RenamesinPortNameSpace 44 Set_tbac_port 33
reply—port ... e 27 Set_default_memory_mgr 34
reply_port_rel, 27 Set_device_filter 34
reply_port_right 27 Set_device_status 34
represented 20 Set_emulation 33
represented_memory 20 Set_vm_region_inherit, 33
represented_offset 20 Set_max_thread_priority 33
83-0902023A001 Secure Computing Corporation

1.25, 26 September 1996

CAGE Code OHDC7

DTOS FSPM 81

Set_negotiation_port 34 Ssi_to_ard 30
Set_network_ss_port 34 Ssi_to_mid 30
Set_ras 33 State_info_avail L 12
Set_reply 32 Stopped 9
SetsAuditServer 52 Supply_ibac 33
SetsAuthenticationServer 52 supplying_device 28
SetsCryptoServer 52 SUPP_MACHINF_ARCH 12
SetsDefaultManager 53 supported_sp 10
SetsDeviceFilter 55 SuspendsTask 50
SetsDeviceStatus 55 SuspendsThread 49
Set_security_master_port 34 Suspend_task 33
Set_security_client_port 34 Suspend_thread 33
SetsFmulationVector 50 swapped_threads 9
Setslnheritance A7 Switch_thread 33
SetsMakeSendCount A5 system_time 11
SetsNegotiationServer 52 target_osc 67
SetsNetworkSecurityServer 52 task_aid 30
Set_special_port 34 task_assigned_to 27
SetsProcsetMaxPriority 53 task_assignment_rel 27
SetsProtection AT task_bport 16
SetsQueuwelimit 45 task_bport_rel 16
SetsReply 41 task_creation_state 37
SetsSecServerClientPort 52 TASK_CREATION_STATE 36
SetsSecServerMasterPort 51 task_eport 16
SetsSeqgNo A5 task_eport_rel 16
SetsSpecialPort 52 task_exists 8
SetsTaskBootPort 51 task_mid ... 30
SetsTaskExceptionPort 51 task_oscs ... 68
SetsTaskKernelPort 51 Task_port_register_mazx 19
SetsTaskPriority 50 Task_port_sid 31
SetsThreadFxceptionPort 49 task_priority 10
SetsThreadKernelPort 49 task_recetved_msgs 27
SetsThreadPolicy 49 task_self ... 16
SetsThreadPriority, 49 task_self_osc 67
Set_task_boot_port 33 task_self_rel 16
Set_task_exception_port 33 Task_self _sid 31
Set_task_kernel_port 33 task_sid 30
Set_thread_exception_port 33 task_sself 16
Set_thread_kernel_port 33 task_sself_rel 16
Set_thread_policy 33 task_suspend_count 9
Set_thread_priority 33 task_target e 32
Set_thread_state 33 Task_task_permisstons 33
Sel_time 34 task_thread_rel 8
shadow_memories 22 Tes_task_empty 36
SIA_08C .. 67 Tes_task_ready 36
SIA_SSC o o 67 Tcs_thread_created 36
sleep_time 12 Tes_thread_state_set 36
so_right 13 temporary_rel 20
SpecifiesAV .. e 41 TermanatesTask 51
SpecifiesSst 41 TermanatesThread 49
Spectfy . . e 32 Terminate_task 33
s_right . . e 13 Termunate_thread 33
s_right_ref _count 13 the_processor 17
s_r_right ... 13 thread_assigned _to 27
ST 30 thread_assignment_rel 27
Secure Computing Corporation 83-0902023A001

CAGE Code OHDC7

1.25, 26 September 1996

82 Index
thread_eport 16 wire_count 22
thread_eport_rel 16 wired 22
thread_exists 8 WiresThread 53
thread_maz_priority 10 Wire_thread 34
thread_08c8 . .o 68 Wire_thread_into_memory 33
Thread_permissionsc.oueu... 33 Wirecom ..o 34
Thread_port_sid 31 Wire_om_for_task 33
ERread_priority 10 Write_device 34
thread_samples 11 WritesDevice i 55
thread_sample_sequence_number 11 Write_vm_region 33
thread_sample_types 11 default ... 27
thread_sched_policy 10 protection 37
thread_sched_policy_data 10
thread_sched_priority 10 . D
thread_selfo 16 DTOS Services: ,
bhread_self—08C .« ot 67 AbortsPriorityDepression 48
thread_self_rel 16 AddsDeadName 43
Thread_self _sid\ oooeee e 31 AddsDeadNameR(?ference 43
thread—sid\ 31 AddsDeadNameltight 43
thread_sself 16 AddsNam'e """""""""""" 43
thread_sself_rel 16 AddsReceive ... 43
AddsSend 43
thread_state 12 tddsSendOnce 23
THREAD_STATE_INFO 12 AddsSendReferev;c.e """""""""" 23
THREAD_STATE_INFO_TYPES 12 ST e
AddsSendRight 43
thread_suspend_count 9
threads. wired 9 AddsThread 50
- P s AddsThreadSecure 50
thread_target 32 ;

" AllocatesFxecute Region 47
thread_waiting 28 Allocates Read Reai 16
Timeshare 10 GREGIOTL e Dy

; AllocatesRegion 46
total_naked _srights R R 18 Allocates WriteRegion + ++ o oo 26
total_na'me_space_srzghts 18 As8ignsProcessor . ..o 53
total_srights 18 AssignsTask - ..o 50
Transfer—ool T 32 AssignsThread 49
Tmnsfer_r(?cezve """""""""""" 32 ChangesMemoryObjectAttr 47
Transfer_rights 32 ChangesPageLocks - ... ooovveeonon. .. 48
Transfer_send 32 CRANGESWEFING « o o o o e v e oot 52
Transfer_send_once 32 ChangesPortAed 46
Transition_sid 33 ChangesPortMid 16
Transtt_memory 25 ChangesTaskAid oo, 51
Transit_right 25 ChangesTaskMido, 51
Uninterrupteble 9 ClosesDevice . . oo o oo 54
Usable_cached_ruling 35 ConfirmsKernelMemOpo oo... 56
Usableruling 35 CreatesPortSet 43
user_time ... a1 CreatesProcset 51
validated_requests 39 Creates Task . .. oo 50
validity_duration 68 CreatesTaskSecure 50
Valid_transitions 39 DeallocatesRegion 47
Vodata 25 DecreasesFEventCounter 54
VIRTUAL_ADDRESS 10 Decrements ThreadMaxPriority 49
Vm_end 10 DepressesPriority 48
Vm_permissions 33 DestroysMemory 48
Vm_start 10 DestroysPortSet 44
V_port ... 25 DestroysProcset 53
Watt_eve 33 DisablesPolicy 53
Waiting e 9 DisablesTaskSampling 51
83-0902023A001 Secure Computing Corporation

1.25, 26 September 1996

CAGE Code OHDC7

CAGE Code OHDC7

DTOS FSPM 83
Disables ThreadSampling 50 SetsAuthenticationServer 52
EnablesPolicy 53 SetsCryptoServer 52
EnablesTaskSampling 51 SetsDefaultManager 53
EnablesThreadSampling 49 SetsDeviceFilter 55
ExitsProcessor 53 SetsDeviceStatus 55
FlushesCache 51 SetsFmulationVector 50
ForwardsNetworkPacket 56 Setslnheritance 47
Increments ThreadMaxPriority 49 SetsMakeSendCount 45
InitiatesMsgRecetve 41 SetsNegotiationServer 52
InitiatesMsgSend 40 SetsNetworkSecurityServer 52
InitiatesOolDataTransfer 41 SetsProcsetMaxPriority 53
InitiatesReceive Transfer 40 SetsProtection 47
InitiatesRights Transfer 40 SetsQueuelimit 45
InitiatesSendOnceTransfer 41 SetsReply 41
InitiatesSendTransfer 41 SetsSecServerClientPort 52
Interposes 42 SetsSecServerMasterPort 51
InvTaskCreationStateTrans 50 SetsSeqNo 45
LoadsCache 54 SetsSpecialPort, 52
MakesPagePrecious 47 SetsTaskBootPort 51
MakesSecurityOuteall 55 SetsTaskFExceptionPort 51
MakesTaskReady 49 SetsTaskKernelPort 51
Makes ThreadOwnerReady 49 SetsTaskPriority 50
ManipulatesPortSet 45 SetsThreadFxceptionPort 49
MapsDevice 55 SetsThreadKernelPort 49
ModifiesPortinfo 46 SetsThreadPolicy 49
ModifiesRegion 47 SetsThreadPriority 49
OpensDevice 55 SpecifiesAV ... 41
RaisesFxceptionToTask 56 SpecifiesSst 41
RaisesFxceptionToThread 56 SuspendsTask 50
ReadsDevice 55 SuspendsThread 49
RegustersDeadNameNotification 45 TerminatesTask 51
RegistersNoMoreSendersNotification 45 TerminatesThread 49
RegistersNotification 45 WiresThread 53
RegistersPort 45 WritesDevice 55
RegustersPortDestroyedNotification 45 DTOS Structures:

RemovesDeadName 44 audit_server_port 37
RemovesDeadNameReference 44 authentication_server_port 37
RemovesDeadNameRight 44 cache_allows 35
RemovesName 44 Cached_ruling_allows 35
RemovesPage 48 cached _ruling_avadd 35
RemovesReceive 44 crypto_server_port 37
RemovesSend 44 Default_port _sed 31
RemovesSendOnce 44 Default_vm_port_sid 31
RemovesSendReference 44 kermel_as 31
RemovesSendRight 44 kernel_reply_ports 37
RenamesinPortNameSpace 44 msg_recetving_sid 36
ResumesTask 50 msg_ruling 36
ResumesThread 49 msg_sending_sid 35
SavesPage 48 msg_specified_sed 36
SendsAuditData 56 msg_specified_vector 36
SendsKernelReply 56 negotiation_server_port 37
SendsNotification 56 network_ss_port 37
SendsPagerOutcall 56 Osi_to_atd 31
ServicesPageFault 47 Osi_to_mid0 31
SetsAuditServer 52 page_aid 31
Secure Computing Corporation 83-0902023A001

1.25, 26 September 1996

84 Index

page_mid e 31 Chg_pset_max_pric.oo.... 34
page_sid 31 Chg_vm_region_prot 33
parent_task 37 Change_sid 33
port_aid ... 31 Chg_task_priority 33
POTt_mid o 31 Close_device 34
POTE_Sid o 31 Co_carries_memory 23
}p_to_page_sz'd ____________________ 31 Co_carries_rights 23
Ruling_allows 55 Control_pager 34
security_server_client_port 37 Copy—uvm ... 33
security_server_master_port 37 Create_pset ..., 34
Ssito_aid ... 30 Creafetask ... 33
Seitomid . 30 Create_task_secure 33
task_aid o oo 30 Cross_contest_create 33
task_creation_state 37 Cross—contextinherit 33
task_mid o o 30 Deallocate_vm_region 33
Task_port_sid . . .o E‘- Define_new_scheduling_policy 34
Task_self _sid 31 Depresspri ... 33
task_sid 30 Destroy_object ... 33
Zask_target EZ Destroy_pset 34
Thread_port _sido 31 Device_permisstons 34
Thread_self _siduvuunen .. 31 Environment_slot 19
thread_sid 31 Dweeptionids ... 24
thread_target 52 Baxtract_right ... 33
Usable_cached_ruling 35 Pugedpri ..o 10
Usable_ruling 35 Flush_permission 34
validated_requests 39 Gel_attributes 33
DTOS Types: Get_audit_port 34
OSI . . 31 Get_authentication_port 34
PERMISSION . . ., EZ Get_boot_info 34
SSI 30 Get_crypto_port 34
TASK_CREATION_STATE 36 Get_default_pset_name 34
Get_device_status 34
G Get_emulation 33
Global Identifiers: Get_host_control_port 34
Abort_thread 33 Get_host_info 34
Abort_thread_depress 33 Gel_host_name 34
Access_machine_attribute 33 Get_host_processors 34
Add_name 33 Get_host_version 34
Add_thread 33 Get_negotiation_port 34
Add_thread_secure 33 Get_network_ss_port 34
Allocate_vm_region 33 Get_processor_assignment 34
Alter_pns_info, 33 Get_processor_info 34
ASSIgN_processor 34 Get_pset_info 34
Assign_processor_to_set 34 Get_security_master_port 34
Assign_task 34 Get_security_client_port 34
Assign_task_to_pset 33 Get_special_port 34
Assign_thread 34 Get_task_assignment 33
Assign_thread_to_pset 33 Get_task_boot_port 33
Audit_ddso 24 Get_task_exception_port 33
Base_user_priority 10 Get_task_info 33
Can_recetve 32 Get_task_kernel_port 33
Can_send 32 Get_task_threads 33
Can_swtch 33 Get_thread_assignment 33
Can_swtch_pri 33 Get_thread_exception_port 33
Change_page_locks 33 Get_thread_info 33
83-0902023A001 Secure Computing Corporation

1.25, 26 September 1996 CAGE Code OHDC7

CAGE Code OHDC7

DTOS FSPM 85
Get_thread_kernel_port 33 Memory_copy_call 19
Get_thread_state 33 Memory_copy_delay 19
Get_time i 34 Memory_copy_none 19
Get_vm_region_nfo 33 Memory_copy_temporary 19
Get_vm_statistics 33 Mem_obj_confirmation_ids 24
Halted 9 Memory_object_permissions 33
Have_execute 33 Msg_element 25
Have_read 33 Lowest_priority 10
Have_write 33 Mmt_copy_send 23
Higher_priority 9 Mmt_make_send 23
Highest_possible_priority 10 Mmt_make_send_once 23
Hold _recetve 32 Mmit_move_receive 23
Hold _send 32 Mmit_move_send 23
Hold_send_once 32 Mmit_move_send_once 23
Host_control_port_permissions 34 Mach_msg_type_port_recetve 23
Host_name_port_permissions 34 Mach_msg_type_port_rights 23
Inheritance_option_copy 21 Mach_msg_type_port_send 23
Inheritance_option_none 21 Mach_msg_type_port_send_once 23
Inheritance_option_share 21 Msg_deallocate 25
Initiate_secure 33 Msg_dont_deallocate 25
Interpose 32 Msg_error_invalid_memory 26
Invalidate_scheduling_policy 34 Msg_error_invalid_right 26
Invoke_lock_request 33 Msg_error_invalid _type 26
Ipc_permissions 32 Msg_error_msg_too_small 26
Ip_dead 8 Msg_error_notify_in_progress 26
Ip_null oo 8 Msg_error_timed_out 26
Kernel_permisston 32 Msg_region i 25
Kernel_reply_permissions 34 Msg_stat_pseudo 26
Kernel_service_reply_ads 24 Msg_stat_rcv e 26
Lookup_ports 33 Msg_stat_send, 26
Lower_priority 9 Msg_value 25
Lowest_possible_priority 10 Name_server_slot 19
Mach_exception_d 24 Network_packet_ids 24
Mach_notify_eds 24 Observe_pns_info 33
Mach_port_dead 12 Observe_pset_processes 34
Mach_port_null 12 Open_device 34
Mach_port_q_limit _default 14 Pager_permissions 33
Mach_port_q_limit_mazx 15 Pager_request_ids, 24
Mach_rcv_large 23 Page_vm_region, 33
Mach_rco_msg 23 Pe_device o 18
Mach_rcv_notify 23 Pc_host_control 18
Mach_rcv_timeout 23 Pc_host_name 18
Mach_send_cancel 23 Pec_memory 18
Mach_send_msg 23 Pc_processor 18
Mach_send_notefy 23 Pe_ps_control 18
Mach_send_timeout 23 Pe_ps_name 18
Make_page_precious 33 Pe_task 18
Make_sid 33 Pe_thread 18
Manipulate_port_set 33 Port_permissions 33
Map_device 34 Port_rename, 33
Map_vm_region 32 Priority_levels 9
Highest_priority 10 Processor_permissions 34
Max_right_refs 13 Pset_ctri_port 34
Max_samples 11 Pset_names 34
May_control_processor 34 Procset_control_port_permissions 34

Secure Computing Corporation 83-0902023A001

1.25, 26 September 1996

86 Index
Procset_name_port_permissions 34 Set_task_kernel_port 33
Execute 21 Set_thread_exception_port 33
Read 21 Set_thread _kernel_port 33
Write ... 21 Set_thread_policy 33
Provide_data 33 Set_thread_priority 33
Provide_permission 34 Set_thread state 33
Raise_exception 33 Set_time i 34
Read_device 34 Specify ..o 32
Read_vm_region 33 Stateinfo_avasl A2
Reboot_host 34 Stopped ... 9
Recetve 12 Supply_ibac 33
Recognized_sample_types 11 Suspend_task ... L 33
Recognized_transfer _options 23 Sus'pend_thread --------------------- 33
Register_notification 33 Switch_thread oo 33
Register_ports 33 Task_port_register_max 19
Remove_name oo oo E; Task_task_permaissions 33
Remove_page 33 Tes_task_empty 36
Resume_task 33 Tes_task—ready 36
Resume_thread . . .« oo oo 33 Tcs_thread_created 36
Revoke_ibac . . o o 33 Tcs_tﬁread_state_set 36
Running 9 Termz'nate_task """""""""" 33
Sample_periodic 11 Termznate_th?"eqd """""""""" 33
Sample_task ...\ 33 Thread_permzsszons 33
Sample_thread 33 Timeshareo 10
Sample_vm_cow_faults 11 ;mnsfer_ool Tt %;
SAMPLE.VM_FAULTS . . . 11 mnsfer_r(?cezve 32

T Transfer_rights 32
Sample_vm_faults_any 11
. Transfer_send 32
Sample_vm_pagein_faults 11
L Transfer_send_once 32
Sample_vm_reactivation_faults 11 . .
Transition_sid 33
Sample_vm_zfill_faults 11 .
Transit_memory, 25
Save_page 33 L
. . Transit_right 25
Security_server_ids 24 . .
- Uninterruptible 9
Send 12 . .
- Valid_transitions 39
Send_once 12 V_data o5
Servcetor L B
Set_attributes 33 L
) Vm_permissions 33
Set_audzt_p(')rt R R 34 Vinostart 10
Set_authentication_port 34 Voport « oo 25
Set_qypto_port """""""""" 34 Wait_eve 33
Set_tbac_port 33 T 9
Set_defqult_memory_mgr """"""" 34 Wire_thread 34
Set_device_filter ... 34 Wire_thread_into_memory 33
Set_devz'ce_'status 34 T 34
Set_emulation 33 Wire_vm_for_taskoouoniin.. 33
Set_vm_region_inherit ...l 33 Write_device 0., 34
Set_maz_thread_priority 33 Write_vm_regionooeunor... Eg
Set_negotiation_port 34
Set_network_ss_port 34 M
SEL_TAS © v o e e e 33 Mach Structures:
Set_reply o 32 active_thread 28
Set_security_master_port 34 allocated 21
Set_security_client_port 34 backing_chain 22
Set_special_port 34 backing_memory 22
Set_task_boot_port 33 backing_offset 22
Set_task_exception_port 33 backing_rel 22
83-0902023A001 Secure Computing Corporation

1.25, 26 September 1996

CAGE Code OHDC7

DTOS FSPM 87
containing_port 15 MESSAGe_eTISES . o oo 8
containing_set 13 message_tn_port_rel 15
control_memory 17 msg_contents 27
controlled_proc_set 17 MEG_OPETALION . o v v i it et 27
copy—strategy 19 named_port 12
CPU_LIME . e 12 named_proc_set 17
dead_namep 14 number_of _rights 14
dead_right_ref _count 14 object_memory a7
dead_right_rel 14 object_port 17
default_mem_manager 20 object_port_rel 17
depressed_threads 10 threads 8
priority_before_depression 10 owning_task 8
device_exists 8 page—exisls 8
device_filter_info 28 memory_fault 20
device_tn 28 page_lock_rel 21
device_open_count 28]_jage_locks ________________________ 21
ievz’ce_out 28 page_word_rel _____________________ A)
device_port 17]_)age_word_fun _____________________ 20
device_port_rel 7 pending_recetves 27
device_status ... 28 POFE_ClASS oo o 18
dirty_rel ... 20 L . T c
emulation_vector 11 port_deyzce """""""""""" 18
enabled_sp 28 POTICTISES v 8
;vent_count 28 portnotifydead 15
?orcz'bly_queued 13 port_notify dead_rel 15
Zave_assz'gned_tasks 27 port_notzfy_destroyed """""""" 15
have_assigned_threads 27 port_notify_destroyed_rel 15
host_control_port 17 port_notify_no_more_senders 15
hoSt_name_port 17 port_notify_no_more_senders_rel 15
host_time 28 port_pornter 8
idle_threads 9 port_right_rel, 12
tnheritance L e 22 port_right_namep 13
snitialized 19 port_right_seq, 18
instruction_pointer 10 port_set 13
kernel 8 port_set_namep 13
local_namep 14 port_size 15
mach_protection 21 PTECTOUS . o it i e e e 20
make_send_count 14 proc_assigned_procset 27
managed ... 19 PrOC_ETISES ..ottt 8
IANGGET v v v v 19 processor_port_rel 17
ﬂap_rsl """""""""""""" %i PTOCESSOTS '\ v v i v it i i e e e 27
mapped ... 21
mapped_devices 28 proc_s;lf t %
mapped_memory o . procset_ewists K
mapped_offSet + .+ o EI. procset_name_port 17
master_device_port 18 procsebself .. Y
Easter_proc 7 ps—control_port_rel 17
Eax_protection ZI. PS—mazr_priovity 28
may_cache 19 ps—name_port_rel 17
member_rel L 27 g-limit ... a5
control_port 17 TECETVET v v v v it e e et 12
control_port_rel, 17 TECETVET_TVATME v v v v v v et et et e ee e s 12
RAME_POTE . o o 17 registered_rights 19
name_port_rel 17 reply_port 27
TMEMOTY_eTISES .« o v v e e 8 reply_port_rel 27

Secure Computing Corporation 83-0902023A001

CAGE Code OHDC7

1.25, 26 September 1996

88 Index
reply_port_right 27 thread_self _rel 16
represented 20 thread_sself 16
represented_memory 20 thread_sself _rel 16
represented_offset 20 thread_state 12
TEPTESENLING _PAGE o v v v i et et e 20 thread_suspend_count 9
represents_rel 20 threads_wired 9
TEPTESENtS_MEMOTY « o o v v vv e v e v e e 20 thread_watting 28
ForEGhE o 13 total_naked_srights 18
TUN_SEAEE o 9 total_name_space_srights 18
sampled_threads, 11 total_srights A8
self _task 16 USET_EMeE 11
self _thread 16 wire_count ... 22
sender .o 12 wired ... 22
SEQUENCE_NO o o oo e 15 default 27
shadow_memories 22 protection ... 37
sleep_time 12 Mach Types:

SO_TIGht 13 COMPLEX_OPTION 23
s_right ..o 13 EVENT_-COUNTER 28
S_tight_ref_COUnt - .\ oo oo 13 INHERITANCE_OPTION 22
St tigRE 13 INTERNAL_BODY 26
SUPPIYING_TEVICE « v v s e e e e e 28 Internal_element 26
SUPPOTEEd_Sp o o 10 MACH_MSG_OPTION 23
d_threads 9 MACH_MSG_TYPE 23
swapped_ Rt
SYSLEm_time .« o oo 11 MEMORY _COPY_STRATEGY 19
task_assigned_to 27 MESSAGE_BODY ... 25
task_assignment_rel 27 MSG_ERROR ..o 26
Zask_bport 16 MEGSTATUS ..o 26
task_bport_rel, 16 OFFSET oo 19
Zask_eport T6 WORD o 19
task_eport_rel T6 SCHED_POLICY _DATA oo 10
ST T — PORT_CLASS i 18
task_exists 8
Lask_priority 10 PROTECTION 20
T LS T n e - RIGHT 12
fsj-;:lc;’”ed-msgs """"""""" ZT; RUN_STATES ...\ 9
T oo - SAMPLE 11
task_self_rel, 16 SAMPLE_TYPES 11
task_sself 16 SCHED_POLICY . 10
task_sself _rel 16 SUPP_MACHINE_ARCH 12
task_suspend_count 9 THREAD._STATE_INFO 12
task_thread_rel 8 THREAD._STATE_INFO_TYPES 12
Lemporary—_rel 20 VIRTUAL_ADDRESS\ 0., 10
Lhe_processor 17
thread_assigned_to 27 IS
thread_assignment_rel 27 Schemas:
thread_eport 16 InitiatesOperation 56
thread_eport_rel, 16 SsS Structures:
thread_exists 8 cacheabiity_database 68
thread_maz_priority 10 cacheable 68
thread_priovity, 10 COMMUNICAtION_08SCS v v i 68
thread_samples 11 default_pager_oscs 68
thread_sample_sequence_number 11 device_08Cs ... 68
thread_sample_types 11 host_control_oscs 68
thread_sched_policy 10 host_name_oscs, 68
thread_sched_policy_data 10 kernel_reply_oscs 68
thread_sched_priority 10 osc_class_permissions 68
thread_self 16 PAGET_08CS o v v e i et 68
83-0902023A001 Secure Computing Corporation

1.25, 26 September 1996

CAGE Code OHDC7

DTOS FSPM 89

policy_allows 68 recognized_ssis 67
policy_database 68 SIA_0SC .o v 67
]_)rocessor_oscs 68 std_ssc ... 67
]_)rocset_control_oscs 68 target_osc 67
]_)rocset_name_oscs 68 task_oscs ... 68
Zecogm’zed_osc_classes 68 task_self _osc ... 67
recognized_o08cs 67 thread_oscs 68
recognized_0818o 67 thread_self _osc 67
recognized_88C8 e 67 validity_duration 68
Secure Computing Corporation 83-0902023A001

CAGE Code OHDC7 1.25, 26 September 1996

