
Part Number 84-0902045A000 Rev A

Version Date 27 June 1997

DTOS COMPOSABILITY STUDY

CONTRACT NO. MDA904-93-C-4209
CDRL SEQUENCE NO. A020

Prepared for:
Maryland Procurement Office

Prepared by:



Secure Computing Corporation
2675 Long Lake Road

Roseville, Minnesota 55113

Authenticated by Approved by
(Contracting Agency) (Contractor)

Date Date

Distribution limited to U.S. Government Agencies Only. This document contains NSA
information (27 June 1997). Request for the document must be referred to the Director, NSA.

Not releasable to the Defense Technical Information Center per DOD Instruction 3200.12.

c
 Copyright, 1995-1997, Secure Computing Corporation. All Rights Reserved. This material
may be reproduced by or for the U.S. Government pursuant to the copyright license under the

clause at DFARS 252.227-7013 (OCT.88).

Technical Note

DTOS COMPOSABILITY STUDY

Secure Computing Corporation

Abstract
This report describes a study into techniques for specifying and verifying modular systems
using composability.

Part Number 84-0902045A000 Rev A
Created 19 September 1995
Revised 27 June 1997
Done for Maryland Procurement Office
Distribution Secure Computing and U.S. Government
CM /home/cmt/rev/dtos/docs/compose/RCS/compose.vdd,v 1.9 27 June 1997

This document was produced using the TEX document formatting system and the LATEX style macros.

LOCKserverTM, LOCKstationTM, NETCourierTM, Security That Strikes BackTM, SidewinderTM, and
Type EnforcementTM are trademarks of Secure Computing Corporation.

LOCK
R, LOCKguard
R, LOCKix
R, LOCKout
R, and the padlock logo are registered trademarks of Secure
Computing Corporation.

All other trademarks, trade names, service marks, service names, product names and images mentioned
and/or used herein belong to their respective owners.

c
 Copyright, 1995-1997, Secure Computing Corporation. All Rights Reserved. This material may be
reproduced by or for the U.S. Government pursuant to the copyright license under the clause at DFARS
252.227-7013 (OCT.88).

CDRL A020
Composability Study i

Contents

1 Scope 1
1.1 Identification : 1
1.2 System Overview : 1
1.3 Document Overview : 1

2 Applicable Documents 4

3 Introduction 5

4 State Views 6

5 Components 7

6 Behaviors 19

7 Satisfaction 20

8 State and Action Predicates 26

9 Composition 31
9.1 Relation to Prior Work : 31
9.2 Definition of Composition : 34

10 Composition Theorem 46

11 Distinction between hidd and rely 54
11.1 State : 54
11.2 Component Specification : 55
11.3 Correctness : 59
11.4 Summary : 62

12 Correctness of Definition 63

13 Proving Liveness 66

14 State and Agent Translation 72

15 Composing Two Components 84

16 An Example 89

17 Kernel 90
17.1 State : 90
17.2 Operations : 104
17.3 Environment Assumptions : 131
17.4 Component Specification : 133

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

ii
CDRL A020

CONTENTS

18 Common Transitions 136

19 Security Server 143
19.1 State : 143
19.2 Operations : 146
19.3 Environment Assumptions : 150
19.4 Component Specification : 151

20 Overview of the Cryptographic Subsystem 153

21 Cryptographic Controller 160
21.1 State : 160
21.2 Operations : 163
21.3 Environment Assumptions : 175
21.4 Component Specification : 176

22 Protection Tasks 178
22.1 State : 178
22.2 Operations : 181
22.3 Environment Assumptions : 189
22.4 Component Specification : 190

23 Key Servers 192
23.1 State : 192
23.2 Operations : 194
23.3 Environment Assumptions : 198
23.4 Component Specification : 199

24 Security Service Usage Policy Server 201
24.1 State : 201
24.2 Operations : 202
24.3 Environment Assumptions : 207
24.4 Component Specification : 207

25 Cryptographic Client 210
25.1 State : 210
25.2 Operations : 213
25.3 Environment Assumptions : 219
25.4 Component Specification : 219

26 Composing the Components 224

27 Conclusion 235
27.1 Achievements : 235
27.2 Comparison to Prior Work : 236
27.3 Problems for Further Work : 236

28 Notes 239
28.1 Acronyms : 239
28.2 Glossary : 239

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study iii

A Bibliography 240

B Additional PVS Theories 241

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

iv
CDRL A020

CONTENTS

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 1

Section 1
Scope

1.1 Identification

This report describes the results of a study into composability techniques performed on the
Distributed Trusted Operating System (DTOS) program, contract MDA904-93-C-4209. The
goal of the study is to assess existing techniques for specifying and verifying modular systems
by composing specifications and proofs for the individual system components and to develop
new techniques as necessary.

1.2 System Overview

The DTOS prototype is an enhanced version of the CMU Mach 3.0 kernel that provides support
for a wide variety of security policies by enforcing access decisions provided to it by asecurity
server. By developing different security servers, a wide range of policies can be supported by the
same DTOS kernel. By developing a security server that allows all accesses, the DTOS kernel
behaves essentially the same as the CMU Mach 3.0 kernel. Although this is uninteresting from
a security standpoint, it demonstrates the compatibility of DTOS with Mach 3.0.

By using appropriately developed security servers, the DTOS kernel can support interesting
security policies such as MLS (multi-level security) and type enforcement. The first security
server planned for development is one that enforces a combination of MLS and type enforce-
ment.

Ideally, the evaluation of the resulting system can be done on a component-by-component basis.
This would allow system components to be replaced by new components without invalidating
the formal analysis as long as the new components satisfy the same requirements. The end
goal of the work described in this report is to assess the degree to which this can be accom-
plished. The results of the study will provide insight into the feasibility of assuring a DTOS-like
architecture.

1.3 Document Overview

The report is structured as follows:

Section 1, Scope, defines the scope and this overview of the document.

Section 2, Applicable Documents, describes other documents that are relevant to this
document.

Section 3, Introduction, provides a brief introduction.

Section 4, State Views, defines the notion of the visible portion of a system state.

Section 5, Components, defines a framework for specifying system components.

Section 6, Behaviors, discusses the notion of a system behavior.

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

2
CDRL A020

Scope

Section 7, Satisfaction, discusses the notion of a component satisfying a property.

Section 8, State and Action Predicates, describes a variant of TLA based on the given
definitions of components and behaviors.

Section 9, Composition, provides a definition of specification composition.

Section 10, Composition Theorem, states the composition theorem that allows one to
conclude that a composite system satisfies any property satisfied by at least one of its
components.

Section 11, Distinction between hidd and rely, provides an example to help clarify
the distinction between the hidd and rely fields in the definition of a component and the
reason for having both fields.

Section 12, Correctness of Definition, discusses the correctness of the proposed defini-
tion of composition.

Section 13, Proving Liveness, discusses helpful rules for proving liveness properties.

Section 14, State and Agent Translation, discusses a technical detail concerning the
type-compatibility of component specifications.

Section 15, Composing Two Components, illustrates the use of translator functions
to compose two components having different state and agent types. This section shows
that the definition of composition of pairs of components given in previous versions of this
report is a special case of the definition of composition of a set of components given here.

Section 16, An Example, introduces a Synergy-like system that we use as an example of
how to specify and analyze a system within the composition framework.

Section 17, Kernel, provides a specification of a DTOS-like kernel.

Section 18, Common Transitions, defines various utility functions used in the subse-
quent component specifications.

Section 19, Security Server, provides a specification of a DTOS-like Security Server.

Section 20, Overview of the Cryptographic Subsystem, provides an overview of the
design of the Cryptographic Subsystem that forms the bulk of our example.

Section 21, Cryptographic Controller, provides a specification of the Cryptographic
Controller component.

Section 22, Protection Tasks, provides a specification of the Protection Tasks component.

Section 23, Key Servers, provides a specification of the Key Servers component.

Section 24, Security Service Usage Policy Server, provides a specification of the
Security Service Usage Policy Server component.

Section 25, Cryptographic Client, provides a specification of the Cryptographic Client
component.

Section 26, Composing the Components, demonstrates the application of the frame-
work to compose the components of the Cryptographic Subsystem into a single component
specifying the entire system. This section also demonstrates the analysis of the compo-
nents and system.

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 3

Section 27, Conclusion, summarizes the contents and conclusions of this document.

Section 28, Notes, contains a list of acronyms and a glossary for this document.

Appendix A, Bibliography, provides the bibliographical information for the documents
referenced in this document.

Appendix B, Additional PVS Theories, includes several simple utility theories used in
the report.

In summary, Sections 4–15 provide the general framework, Sections 16–25 provide example
component specifications and Section 26 provides an example of how components are composed.

Editorial Note:
An earlier draft of this report contained a Z specification of an authentication server. This specification
was not translated into PVS.

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

4
CDRL A020

Applicable Documents

Section 2
Applicable Documents

The following document provides a high level description of the Mach microkernel:

OSF Mach Kernel Principles [6]

The following documents provide a detailed description of the Mach and DTOS microkernels:

OSF Mach 3 Kernel Interface [5]

DTOS Kernel Interface Document [10]

The following document provides a description of the overall Synergy system:

Synergy: A Distributed, Microkernel-based Security Architecture [9]

The information in the Cryptographic Subsystem example is extracted from

R23 Web Pages on the Cryptographic Subsystem [8]

The following documents discuss approaches for composing specifications:

Conjoining Specifications [1]

A Lazy Approach to Compositional Verification [11]

A short, and slightly out-of-date, introduction to this report is given in the following research
paper:

A Framework for Composition [4]

The following documents provide background on PVS:

The PVS Specification Language [7]

A Tutorial Introduction to PVS [3]

Although an understanding of these documents is desirable, such an understanding is not
necessary to understand the majority of this document.

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 5

Section 3
Introduction

In this document, we describe a variation of Lamport’s TLA specification language[1] and pro-
vide a framework for composition of specifications based on the work of Abadi and Lamport[1]
and Shankar[11]. Composition is a technique for constructing more complex specifications by
building upon simpler specifications. Viewed from the other direction, the composition frame-
work allows the specification and verification of a complex system to be decomposed into the
specification and verification of simpler components. Benefits of this approach to assurance are
similar to those realized when using a modular approach to software development. In partic-
ular, complex reasoning about an overall system can be reduced to simpler reasoning about a
collection of components and reusable system components can be defined. After describing the
framework, we provide an example of the use of the framework to specify and partially analyze
an example.

The framework and example have been formalized in the PVS specification language and the
PVS prover has been used to prove all of the stated theorems (with one exception noted in the
report). The PVS representation of the framework is generic and can be used to specify and
verify other systems as well as the example provided here.

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

6
CDRL A020

State Views

Section 4
State Views

In the Abadi-Lamport theory of composition, a state represents the state of the “entire” universe
at a given point in time. Generally, only a small subset of the state is relevant to a given
specification. We refer to the relevant portion of the state as the view for that specification.
Each view is required to be an equivalence relation.1 We use VIEWS[X] to denote the set of all
equivalence relations on elements of type X.

THEORY views

views[X: NONEMPTY TYPE]: THEORY
BEGIN

BASE RELATIONS: TYPE = [X, X �> bool]

x, x1, x2, x3, x4: VAR X

br: VAR BASE RELATIONS

VIEWS(br): bool = 10
((FORALL x: br(x, x))

AND (FORALL x1, x2: br(x1, x2) IMPLIES br(x2, x1))
AND

(FORALL x1, x2, x3: br(x1, x2) AND br(x2, x3) IMPLIES br(x1, x3)))

v1, v2: VAR (VIEWS)

view and prop: THEOREM VIEWS(intersection(v1, v2))

refl view: LEMMA v1(x, x) 20

sym view: LEMMA v1(x1, x2) => v1(x2, x1)

trans view: LEMMA v1(x1, x2) AND v1(x2, x3) => v1(x1, x3)

trans sym view: LEMMA v1(x1, x2) AND v1(x1, x3) => v1(x2, x3)

square view: LEMMA v1(x1, x2) AND v1(x1, x3) AND v1(x2, x4) => v1(x3, x4)

eq view1: LEMMA VIEWS(LAMBDA x1, x2: x1 = x2) 30

eq view2: LEMMA (FORALL x1, x2: br(x1, x2) IFF x1 = x2) IMPLIES VIEWS(br)

END views

1An equivalence relation is a relation that satisfies the reflexivity, symmetry, and transitivity properties.

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 7

Section 5
Components

Abadi and Lamport usually specify components in the following normal form:

9 v : Init ^2N ^ F

where:

v is a sequence of variables that are internal to the component.

Init is a state predicate characterizing the initial state,

N is a disjunction of action predicates characterizing valid transitions (including a no-op
step to allow “stuttering”),

2N means predicate N holds for all time, and

F is a fairness condition that is the conjunction of “weak” and “strong” fairness conditions
on steps comprising N .

Abadi and Lamport have proven that any property can be written in this form2 and that
the fairness condition in such a specification does not add any safety properties beyond those
defined by Init and N .

Following the approach in [11], we have chosen to place more structure on the definition of
components. The structure we use to represent components consists of:

init — the set of valid starting states for a component; this is directly analogous to Abadi-
Lamport’s Init

guar — the set of transitions representing a component’s functionality; each transition is
a triple (st1; st2; ag) with st1 and st2 denoting the start and end states for the transition
and ag indicating the agent causing the transition

An agent is simply a tag associated with transitions. The writer of a specification is free
to make use of agents as he sees fit. In the simplest case, there would be a single agent
associated with each component that is used to distinguish transitions by one component
from transitions by a second component. Another possibility would be to associate agents
with threads within the implementation of a component. Yet another possibility would
be to associate agents with different operations supported by the component.3

2The exact statement of this theorem is unclear. This theorem only seems to be true if the property depends on only
the visible portion of the state. For example, consider a state having integer fieldsx and y and suppose the property
is that the number of times x has previously changed from a non-zero value to a zero value is less than y . Without
having a field of the state that records how many times x has become zero, it is not possible to represent this property
as simply a set of allowed transitions. For example, to determine whether a transition is allowed from(x ; y) = (2;3)
to (0;3) it is necessary to know whether x has already become 0 three times.

3For example, the agent for a open request sent to a file server to open file f could be (fs;open ; f).

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

8
CDRL A020

Components

rely — the set of transitions by the component’s environment that can be “tolerated” by
the component; in other words, the intent is to prove that the component achieves its
desired functionality as long as its environment performs no transitions other than those
allowed by rely

The union of guar and rely is directly analogous to Abadi-Lamport’sN .

cags — the set of agents associated with the component; the remaining agents are asso-
ciated with the component’s environment

Although cags can be derived from guar by simply including the agent for each transition
in guar, we find it convenient to have the set of component agents explicitly defined.

view — an equivalence relation indicating which portions of the state are visible to the
component; any two states related by view are equivalent from the standpoint of the
component

In many cases, we define the state so it contains exactly the data visible to the component.
Then, view can be defined simply as equality of states.

hidd — a set of transitions specifying constraints on the interface the component provides
to other components

hidd is analogous to rely in that it states assumptions on changes other components make
to the system state. Typically, we use hidd to capture “syntactic” restrictions such as “no
other component accesses data structure x ” or “other than the component’s agents, only
agents ag1 and ag2 can access data structure y”. These constraints describe how portions
of a component’s state are shared with other components. In contrast, rely is typically
used to capture “semantic” restrictions. For example, suppose hidd indicates that data
structures l and d are accessible to a second component. If l denotes a lock protecting d ,
rely might be defined so that transitions changing d are only allowed if l is clear. This
would capture the semantics of a locking protocol in whichd cannot be accessed by others
when the component has acquired the lock.

The distinction between hidd and rely will be further described in Section 11 were we
provide an extended example of why it is valuable to have both concepts in our framework.

wfar — the set of transition classes for which “weak” fairness assumptions are required;
the meaning and use of wfar is explained in Section 7

Each transition class is a set of transitions. So,wfar is a set of sets of transitions.

sfar — the set of transition classes for which “strong” fairness assumptions are required;
the meaning and use of sfar is explained in Section 7

wfar and sfar are representations of Abadi-Lamport’sF . They are only needed when the
analyst wishes to state and prove “liveness” properties.

We require the following relationships to hold between the various fields:

view is an equivalence relation.

init is non-empty (function init restriction).

If init is empty, then the component can never really execute since it has no valid starting
state.

The agent for each transition in guar is an element of cags (function guar restriction).

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 9

Each transition in rely is also in hidd (function rely hidd restriction).

Although rely is intended to specify finer-grained assumptions thanhidd, the assumptions
captured by each must be consistent. In particular, rely cannot allow a transition that
violates the weaker restrictions captured byhidd.

The agent for each transition inhidd is not an element of cags (function hidd restriction).

This merely reflects that hidd places restrictions on how environment rather than com-
ponent agents interface with the component. Sincerely is required to be a subset of hidd,
this restriction implies that each transition inrely is by an agent not in cags.

cags is non-empty (function cags restriction).

If cags is empty, then the component can never really execute since it has no agents to
cause transitions.

rely, hidd, guar, and each of the transition sets in wfar and sfar are each well-
defined with respect to view (functions view rely restriction, view hidd restriction,
view guar restriction, view wfar restriction, and view sfar restriction).

By a set of transitions being well-defined with respect toview, we mean that whenever:

– (st1; st2; ag) is in the set of transitions,

– st1 and st3 are equivalent with respect to view, and

– st2 and st4 are equivalent with respect to view,

then (st3; st4; ag) is in the set of transitions, too. Intuitively, the requirement is that any
transition that appears the same as one in the set of transitions is itself in the set of
transitions.

init is well-defined with respect to view (function view init restriction).

Here well-defined means that any state that is equivalent (with respect toview) to a state
in init must itself be in init.

If the various elements of a component are not all well-defined with respect to the compo-
nent’s view, then the view is really not defined correctly. The component’s behavior must
be completely determined by the data structures visible to it.

guar and rely contain all of the stuttering steps (functions guar stuttering restriction and
rely stuttering restriction).

A stuttering step is a transition in which the start and finish state for the transition
are equivalent with respect to the component’s view. From the component’s standpoint,
these transitions are no-ops that appear as the system stuttering stuck in a given state.
Requiring stuttering steps is important because:

– In some situations, it is desirable to model a component at varying levels of ab-
straction and show that the lower-level models are refinements of the higher-level
models. Stuttering steps in high-level models serve as placeholders for transitions
in low-level models that manipulate data that is not visible at the high-level. So as
to not preclude the possibility of later refinement of components, it makes sense to
require stuttering steps be included.

– In the case of rely transitions, environment actions that change data visible to the
environment but not visible to the component appear as stuttering steps to the
component.

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

10
CDRL A020

Components

We will interpret the state transitions allowed by a component as follows. A transition
(st1; st2; ag) is allowed by a component cmp if

(st1; st2; ag) is in guar(cmp) (i.e., the component can perform the step), or

(st1; st2; ag) is in rely(cmp) (i.e., the component allows it environment to perform the step).

We use steps(cmp) to denote the set of transitions the component allows.

Note that we define a transition to be a state-state-agent triple rather than a state-state
pair. Although the Abadi-Lamport work allows for transitions to be specified in this form, the
examples they typically provide specify transitions simply as relations between a starting and
final state. The Shankar work completely ignores agents. Our primary area of application is
security, and we have found that specifying the agent for each transition is critical to security
analysis. When only correctness is of concern, the component that performs a step is irrelevant
as long as it is correctly performed. When security is a concern, who causes a transition is just
as important as whether the transition is performed correctly.

Note that in the PVS specification, we often use �-expressions. These are equivalent to set
comprehensions. For example, consider the set:

f x : T j P(x) g

In PVS, a set is equivalent to the predicate that evaluates to true exactly on elements of the
set. Thus, the above set is equivalent to:

�(x : T) : P(x)

Typically, the �-expressions appearing in the following specifications are such set comprehen-
sions.

THEORY component

component[ST : NONEMPTY TYPE, AG: NONEMPTY TYPE]: THEORY
BEGIN

IMPORTING views[ST]

transition: TYPE = [ST, ST, AG]

TRANSITION CLASS: TYPE = setof [transition]

st, st1, st2, st3, st4: VAR ST 10

base comp t:
TYPE =

[# init: setof [ST],
guar: setof [transition],
rely: setof [transition],
hidd: setof [transition],
cags: setof [AG],
view: (VIEWS),
wfar: setof [TRANSITION CLASS], 20
sfar : setof [TRANSITION CLASS] #]

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 11

bc: VAR base comp t

ag: VAR AG

init restriction(bc): bool = (init(bc) == emptyset)

guar restriction(bc): bool =
(FORALL st1, st2, ag: 30

member((st1, st2, ag), guar(bc)) IMPLIES member(ag, cags(bc)))

cags restriction(bc): bool = (cags(bc) == emptyset)

rely restriction(bc): bool =
(FORALL st1, st2, ag:

member((st1, st2, ag), rely(bc)) IMPLIES NOT member(ag, cags(bc)))

hidd restriction(bc): bool =
(FORALL st1, st2, ag: 40

member((st1, st2, ag), hidd(bc)) IMPLIES NOT member(ag, cags(bc)))

tranc: VAR TRANSITION CLASS

v: VAR (VIEWS)

gen view restriction(tranc, v): bool =
(FORALL ag, st1, st2, st3, st4:

v(st1, st3) AND v(st2, st4) AND member((st1, st2, ag), tranc)
IMPLIES member((st3, st4, ag), tranc)) 50

view rely restriction(bc): bool = gen view restriction(rely(bc), view(bc))

view hidd restriction(bc): bool = gen view restriction(hidd(bc), view(bc))

view guar restriction(bc): bool = gen view restriction(guar(bc), view(bc))

view init restriction(bc): bool =
(FORALL st1, st2:

view(bc)(st1, st2) AND member(st1, init(bc)) 60
IMPLIES member(st2, init(bc)))

view wfar restriction(bc): bool =
(FORALL tranc:

member(tranc, wfar(bc)) IMPLIES gen view restriction(tranc, view(bc)))

view sfar restriction(bc): bool =
(FORALL tranc:

member(tranc, sfar(bc)) IMPLIES gen view restriction(tranc, view(bc)))
70

ag set: VAR setof [AG]

gen stuttering restriction(ag set, tranc, v): bool =
(FORALL ag, st1, st2:

member(ag, ag set) AND v(st1, st2)
IMPLIES member((st1, st2, ag), tranc))

guar stuttering restriction(bc): bool =
gen stuttering restriction(cags(bc), guar(bc), view(bc))

80
rely stuttering restriction(bc): bool =

gen stuttering restriction(complement(cags(bc)), rely(bc), view(bc))

hidd stuttering restriction(bc): bool =
gen stuttering restriction(complement(cags(bc)), hidd(bc), view(bc))

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

12
CDRL A020

Components

rely hidd restriction(bc): bool = subset?(rely(bc), hidd(bc))

comp t(bc): bool =
init restriction(bc) 90

AND guar restriction(bc)
AND rely hidd restriction(bc)

AND hidd restriction(bc)
AND cags restriction(bc)

AND view rely restriction(bc)
AND view hidd restriction(bc)

AND view guar restriction(bc)
AND view init restriction(bc)

AND view wfar restriction(bc)
AND view sfar restriction(bc) 100

AND guar stuttering restriction(bc)
AND rely stuttering restriction(bc)

steps(bc): setof [[ST, ST, AG]] =
(LAMBDA st1, st2, ag: guar(bc)(st1, st2, ag) OR rely(bc)(st1, st2, ag))

c: VAR (comp t)

component init: THEOREM init restriction(c)
110

component guar: THEOREM guar restriction(c)

component rely hidd: THEOREM rely hidd restriction(c)

component hidd: THEOREM hidd restriction(c)

component rely: THEOREM rely restriction(c)

component cags: THEOREM cags restriction(c)
120

component view rely: THEOREM view rely restriction(c)

component view hidd: THEOREM view hidd restriction(c)

component view guar: THEOREM view guar restriction(c)

component view init: THEOREM view init restriction(c)

component view wfar: THEOREM view wfar restriction(c)
130

component view sfar : THEOREM view sfar restriction(c)

component guar stuttering: THEOREM guar stuttering restriction(c)

component rely stuttering: THEOREM rely stuttering restriction(c)

component hidd stuttering: THEOREM hidd stuttering restriction(c)

END component
140

We impose an ordering on components as follows; cmp contains(cmp1; cmp2) is said to hold
whenever:

each of init, rely, hidd, and view for cmp1 is a subset of the analogous entity for cmp2 (for
example, init(cmp1) � init(cmp2)),

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 13

each of cags, wfar, and sfar for cmp2 is a subset of the analogous entity for cmp1 (for
example, cags(cmp2) � cags(cmp1)), and

cmp1’s guar is a subset of the set of steps for cmp2 (which is the union of guar and rely for
cmp2).

This imposes a partial order on components. In particular, a component always “contains” itself.
We later show that this definition of containment is such that whenevercmp1 is contained in
cmp2, then any property that holds for cmp2 holds for cmp1, too. Before doing so, we must first
define what is meant by a “property” and what it means for a component to “satisfy” a property.

THEORY cmp contains

cmp contains[ST : NONEMPTY TYPE, AG: NONEMPTY TYPE]: THEORY
BEGIN

IMPORTING component[ST, AG]

cmp1, cmp2, cmp3: VAR (comp t)

cmp contains(cmp1, cmp2): bool =
subset?(init(cmp1), init(cmp2))

AND subset?(cags(cmp2), cags(cmp1)) 10
AND subset?(guar(cmp1), steps(cmp2))

AND subset?(wfar(cmp2), wfar(cmp1))
AND subset?(sfar(cmp2), sfar(cmp1))

AND subset?(rely(cmp1), rely(cmp2))
AND subset?(hidd(cmp1), hidd(cmp2))

AND subset?(view(cmp1), view(cmp2))

cmp contains reflexive: THEOREM cmp contains(cmp1, cmp1)

cmp contains as guar: THEOREM 20
cmp contains(cmp1, cmp2) AND cmp contains(cmp2, cmp1)

IMPLIES subset?(guar(cmp1), guar(cmp2))

cmp contains antisymmetric: THEOREM
cmp contains(cmp1, cmp2) AND cmp contains(cmp2, cmp1)

IMPLIES cmp1 = cmp2

cmp contains tr guar: THEOREM
cmp contains(cmp1, cmp2) AND cmp contains(cmp2, cmp3)

IMPLIES subset?(guar(cmp1), steps(cmp3)) 30

cmp contains transitive: THEOREM
cmp contains(cmp1, cmp2) AND cmp contains(cmp2, cmp3)

IMPLIES cmp contains(cmp1, cmp3)

cmp contains po: THEOREM partial order?(cmp contains)

END cmp contains

40

We define a number of functions and theorems for simplifying the specification of components
and the demonstration that the restrictions on a component are satisfied. First, we define
gen class(tranc; v) to denote the set of transitions that look the same, with respect to a viewv ,

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

14
CDRL A020

Components

as some transition in a set of transitions tranc. As an example of how this function might be
used, suppose the state type is a record with fields a, b, c, d , and e and the view is such that
only a and b are visible. Suppose we wish to specify an operation that incrementsa and leaves
b unchanged. A naive approach would be to model a function f (st) that returns a new state in
which only a is altered and a ’s new value is 1 more than its previous value. This specification
does not fit with the framework, though, since it constrains the values ofc, d , and e which
are not visible to the component. By constraining values that are not visible, the specification
violates the requirement that it be well-defined with respect to the view. By applyinggen class

to the set of transitions specified byf , any other transitions that are equivalent to those specified
by f are added. The resulting set is well-defined with respect to the view. In summary, using
gen class allows the specifier to write the simpler, naive specification and then extend it to a
specification that is well-defined with respect to the view.

Similarly, a naive approach to specification would be to only specify operations that have some
effect on the system state. Doing so would not satisfy the requirement that a component be
stuttering closed. We use add stuttering(ag set ; tranc; v) to denote the set of transitions that
are either:

elements of tranc, or

stuttering steps (with respect to v) by agents in ag set

Given a set of transitions, a specifier can obtain a stuttering closed set of transitions by using
add stuttering . The function add stuttering and gen combines add stuttering and gen class by
first adding stuttering steps and then adding all equivalent transitions. We prove that:

(gen class view)4 gen class(tranc; v) returns a set of transitions that is well-defined with
respect to v

Proof: gen class adds any transitions needed to ensure the set of transitions is well-defined
with respect to v .

(add stuttering guar) add stuttering(cags(cmp); tranc; view(cmp)) returns a set of transi-
tions that satisfies the stuttering requirement onguar

Proof: add stuttering adds any missing stuttering steps by component agents.

(add stuttering rely) add stuttering(complement(cags(cmp)); tranc; view(cmp)) returns a set
of transitions that satisfies the stuttering requirement onrely

Proof: add stuttering adds any missing stuttering steps by environment agents.

(gen class preserves stuttering) If a set of transitions, tranc, contains all of the stuttering
steps with respect to v , then gen class(tranc; v) also contains all of the stuttering steps
with respect to v .

Proof: gen class does not remove any transitions.

(asag stuttering) add stuttering and gen(ag set ; tranc; v) contains all stuttering steps with
respect to v

Proof: add stuttering adds in all of the stuttering steps andgen class does not remove any.

4The name in parentheses at the beginning of a bulleted item is the name of the theorem in the PVS specification.
The remaining text in the first paragraph for a bulleted item is the statement of the theorem. The second paragraph
of text for a bulleted item is a sketch of the proof.

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 15

(asag view) add stuttering and gen(ag set ; tranc; v) is well-defined with respect to v

Proof: gen class always returns a set of transitions that is well-defined with respect to
the view.

In summary, the functions defined above can be used to extend a naive specification to a spec-
ification that is stuttering closed and well-defined, and the theorems stated above guarantee
the results on stuttering closure and well-definedness.

Often, we define a different state type for each of the components we specify. Then, the entire
state is visible to the component, and the view relation for the component is simply equality. In
other words, two states look the same to the component only if they are exactly the same state.
In this case, the stuttering closure and well-definedness requirements (view rely restriction,
view hidd restriction, view guar restriction, view init restriction, view wfar restriction, and
view sfar restriction) trivially hold. The theorem component view eq red asserts this fact.

Often guar, rely, and hidd are specified as a union of different transition classes. For exam-
ple, guar is often specified as the union of the individual transition classes representing the
different operations supported by the component. Then, proving the requirements placed on
components typically requires stepping through each of the transition classes. Since there are
multiple requirements on guar, rely, and hidd, this can require stepping through the individ-
ual transition classes multiple times. We now define functions and theorems that allow the
requirements to be proved by stepping through the transition classes only once. The general
approach is to generate a single condition that is sufficient to establish all of the requirements
and then prove that condition for each of the transition classes. The functions are as follows:

guar reqs hold(st1; st2; ag ; cmp) returns true when:

– ag is an element of cmp ’s cags, and

– for any st3 and st4 that are equivalent to, respectively, st1 and st2 with respect to
cmp ’s view, (st3; st4; ag) is an element of cmp ’s guar

For cmp to be a valid component, these conditions must hold whenever (st1; st2; ag) is an
element of cmp ’s guar.

rely reqs hold(st1; st2; ag ; cmp) returns true when:

– (st1; st2; ag) is an element of cmp ’s hidd, and

– for any st3 and st4 that are equivalent to, respectively, st1 and st2 with respect to
cmp ’s view, (st3; st4; ag) is an element of cmp ’s rely

For cmp to be a valid component, these conditions must hold whenever (st1; st2; ag) is an
element of cmp ’s rely.

hidd reqs hold(st1; st2; ag ; cmp) returns true when:

– ag is not an element of cmp ’s cags, and

– for any st3 and st4 that are equivalent to, respectively, st1 and st2 with respect to
cmp ’s view, (st3; st4; ag) is an element of cmp ’s hidd

For cmp to be a valid component, these conditions must hold whenever (st1; st2; ag) is an
element of cmp ’s hidd.

The associated theorems are:

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

16
CDRL A020

Components

(guar reqs hold thm) guar reqs hold is true for each transition in a transition class,tranc,
exactly when it is true for each transition ingen class(tranc; view(cmp)).

(rely reqs hold thm) rely reqs hold is true for each transition in a transition class, tranc,
exactly when it is true for each transition ingen class(tranc; view(cmp)).

(hidd reqs hold thm) hidd reqs hold is true for each transition in a transition class,tranc,
exactly when it is true for each transition ingen class(tranc; view(cmp)).

These theorems allow reasoning about guar, rely, and hidd for tranc to be related to
reasoning about guar, rely, and hidd for an extension to make tranc well-defined with
respect to the view.

(guar reqs su�cient) guar reqs hold is true for each transition in a component’s guar
exactly when the component satisfies the view guar restriction and guar restriction re-
quirements on components.

(rely reqs su�cient) rely reqs hold is true for each transition in a component’srely exactly
when the component satisfies the view rely restriction and rely hidd restriction require-
ments on components.

(hidd reqs su�cient) hidd reqs hold is true for each transition in a component’s hidd ex-
actly when the component satisfies theview hidd restriction and hidd restriction require-
ments on components.

These theorems allow proofs of some of the requirements on components to be reduced to
proofs of guar reqs su�cient , rely reqs su�cient , and hidd reqs su�cient .

THEORY component aux

component aux[ST : NONEMPTY TYPE, AG: NONEMPTY TYPE]: THEORY
BEGIN

IMPORTING component[ST, AG]

bc: VAR base comp t

st1, st2, st3, st4: VAR ST

ag: VAR AG 10

ag set: VAR setof [AG]

tranc: VAR setof [transition]

v: VAR (VIEWS)

gen class(tranc, v): setof [transition] =
(LAMBDA st1, st2, ag:

(EXISTS st3, st4: 20
member((st3, st4, ag), tranc) AND v(st1, st3) AND v(st2, st4)))

gen class view: THEOREM gen view restriction(gen class(tranc, v), v)

add stuttering(ag set, tranc, v): setof [transition] =
(LAMBDA st1, st2, ag:

member((st1, st2, ag), tranc) OR (member(ag, ag set) AND v(st1, st2)))

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 17

add stuttering guar: THEOREM
guar(bc) = add stuttering(cags(bc), tranc, view(bc)) 30

IMPLIES guar stuttering restriction(bc)

add stuttering rely: THEOREM
rely(bc) = add stuttering(complement(cags(bc)), tranc, view(bc))

IMPLIES rely stuttering restriction(bc)

gen class preserves stuttering: THEOREM
gen stuttering restriction(ag set, tranc, v)

IMPLIES gen stuttering restriction(ag set, gen class(tranc, v), v)
40

add stuttering and gen(ag set, tranc, v): setof [transition] =
gen class(add stuttering(ag set, tranc, v), v)

asag stuttering: THEOREM
gen stuttering restriction(ag set,

add stuttering and gen(ag set, tranc, v),
v)

asag view: THEOREM
gen view restriction(add stuttering and gen(ag set, tranc, v), v) 50

view eq(bc) : bool =
(FORALL st1, st2: view(bc)(st1, st2) IFF st1 = st2)

component view eq red: THEOREM
view eq(bc)

IMPLIES view rely restriction(bc)
AND view hidd restriction(bc)

AND view guar restriction(bc)
AND view init restriction(bc) 60

AND view wfar restriction(bc) AND view sfar restriction(bc)

component view eq thm: THEOREM
view eq(bc)

AND init restriction(bc)
AND guar restriction(bc)

AND rely hidd restriction(bc)
AND hidd restriction(bc)

AND cags restriction(bc)
AND guar stuttering restriction(bc) 70

AND rely stuttering restriction(bc)
=> comp t(bc)

guar reqs hold(st1, st2, ag, bc): bool =
(member(ag, cags(bc))

AND
(FORALL st3, st4:

view(bc)(st1, st3) AND view(bc)(st2, st4)
IMPLIES member((st3, st4, ag), guar(bc))))

80
guar reqs hold thm: THEOREM

(FORALL st1, st2, ag:
member((st1, st2, ag), tranc)

IMPLIES guar reqs hold(st1, st2, ag, bc))
IFF

(FORALL st1, st2, ag:
member((st1, st2, ag), gen class(tranc, view(bc)))

IMPLIES guar reqs hold(st1, st2, ag, bc))

guar reqs sufficient: THEOREM 90
(FORALL st1, st2, ag:

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

18
CDRL A020

Components

member((st1, st2, ag), guar(bc))
IMPLIES guar reqs hold(st1, st2, ag, bc))

IFF (view guar restriction(bc) AND guar restriction(bc))

rely reqs hold(st1, st2, ag, bc): bool =
(member((st1, st2, ag), hidd(bc))

AND
(FORALL st3, st4:

view(bc)(st1, st3) AND view(bc)(st2, st4) 100
IMPLIES member((st3, st4, ag), rely(bc))))

rely reqs sufficient: THEOREM
(FORALL st1, st2, ag:

member((st1, st2, ag), rely(bc))
IMPLIES rely reqs hold(st1, st2, ag, bc))

IFF (view rely restriction(bc) AND rely hidd restriction(bc))

hidd reqs hold(st1, st2, ag, bc): bool =
(NOT member(ag, cags(bc)) 110

AND
(FORALL st3, st4:

view(bc)(st1, st3) AND view(bc)(st2, st4)
IMPLIES member((st3, st4, ag), hidd(bc))))

hidd reqs hold thm: THEOREM
(FORALL st1, st2, ag:

member((st1, st2, ag), tranc)
IMPLIES hidd reqs hold(st1, st2, ag, bc))

IFF 120
(FORALL st1, st2, ag:

member((st1, st2, ag), gen class(tranc, view(bc)))
IMPLIES hidd reqs hold(st1, st2, ag, bc))

rely reqs hold thm: THEOREM
view hidd restriction(bc)

IMPLIES
((FORALL st1, st2, ag:

member((st1, st2, ag), tranc)
IMPLIES rely reqs hold(st1, st2, ag, bc)) 130

IFF
(FORALL st1, st2, ag:

member((st1, st2, ag), gen class(tranc, view(bc)))
IMPLIES rely reqs hold(st1, st2, ag, bc)))

hidd reqs sufficient: THEOREM
(FORALL st1, st2, ag:

member((st1, st2, ag), hidd(bc))
IMPLIES hidd reqs hold(st1, st2, ag, bc))

IFF (view hidd restriction(bc) AND hidd restriction(bc)) 140

END component aux

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 19

Section 6
Behaviors

The basic construct in TLA is behaviors. A behavior consists of an infinite sequence of states
st0; st1; st2; : : : and an infinite sequence of agents ag0; ag1; : : :. Each element of the sequence of
states represents a snapshot of the system state as time progresses. The sequence of agents
indicates the entity responsible for each given state transition. In the specification of the
framework, we represent each sequence as a function from the set of natural numbers to the
elements of the sequence. We define the type trace t to denote a record containing the following
fields:

sts — denotes the sequence of states; sts(i) is the ith state

ags — denotes the sequence of agents; ags(i) is the agent causing the transition from the
ith state to the i+1th state

A behavior predicate is an assertion about a behavior. We represent each predicate by the set of
behaviors satisfying the predicate. We use prop t to denote the set of all behavior predicates.

THEORY props

props[ST : NONEMPTY TYPE, AG: NONEMPTY TYPE]: THEORY
BEGIN

trace t: TYPE = [# sts: [nat �> ST], ags: [nat �> AG] #]

prop t: TYPE = setof [trace t]

END props

10

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

20
CDRL A020

Satisfaction

Section 7
Satisfaction

A component is modeled as a set of behaviors. A predicate p holds in a behavior beh when
beh 2 p. A system component cmp is said to satisfy a behavior predicate if each element of
the set of behaviors modeling the system component satisfies the behavior predicate. We write
satisfies(cmp,p) to indicate that cmp satisfies p. We use prop for(cmp) to denote the set of
behaviors modeling cmp. This set consists of all behaviors such that:

the behavior starts in a state belonging to init for cmp (function initial okay),

each transition in the behavior is either an element of rely or guar for cmp (function
steps okay),

and the behavior satisfies the weak and strong fairness assumptions stated inwfar and
sfar for cmp (functions is wfar and is sfar).

The weak fairness assumptions are denoted by the transition classes comprisingwfar. Given a
transition class tranc, assuming weak fairness of tranc means each behavior of the component
must be such that either:

tranc is infinitely often disabled in the behavior, or

tranc occurs infinitely often.

A transition class is said to be enabled in a state st if there exists a st2 and ag such that
(st ; st2; ag) is an element of the transition class. Intuitively, a transition class is enabled in a
state if some element of the transition class has that state as its starting state. A transition
class is disabled in a state whenever it is not enabled in that state. A transition class is said to
occur at some point in a behavior if the transition at that point of the behavior is an element of
the transition class.

So, a behavior satisfies weak fairness for a transition class if points are repeatedly reached in
the behavior where either the transition class is disabled or occurs. The motivation for this
notion of fairness is that if a transition class is not forever disabled, it should eventually occur.

Strong fairness represents a stronger notion of fairness in which a behavior is acceptable only
if each of the transition classes specified insfar is either:

eventually stuck disabled forever, or

occurs infinitely often.

To understand the difference between weak and strong fairness, consider a behavior that
oscillates between states in which a transition class is enabled and states in which it is disabled.
Suppose the transition class does not occur infinitely often in the behavior. Then:

The behavior is consistent with the weak fairness assumption for the transition class
because the class is repeatedly disabled.

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 21

The behavior is inconsistent with the strong fairness assumption for the transition class
because it is never stuck disabled forever (since it repeatedly becomes enabled) and the
transition class does not occur infinitely often.

In summary, wfar and sfar filter out certain behaviors that are judged to be unfair because
transition classes that are prepared to occur are denied their opportunity to occur. Their use
in the definition of the set of behaviors for a component results in those behaviors being “fair”
as defined by the analyst. The notion of fairness is only important when provingliveness prop-
erties. Intuitively, a liveness property requires that some condition eventually hold. Typically,
these properties are proven by demonstrating a transition class that results in the condition
holding. To complete the proof, though, it is necessary to know the transition class is eventually
given an opportunity to occur. In particular, a behavior which stutters forever is unlikely to
result in any interesting conditions holding. By excluding such behaviors as unfair, liveness
properties can be proven. The fairness assumptions must somehow be justified when the model
is mapped to the implementation. For example, an argument might be given that the scheduler
for events that occur in the implementation schedules events fairly.

Now that we have completed the discussion of what it means for a component to satisfy a
property, we can state the following theorem:

Suppose cmp1 and cmp2 are components such cmp2 “contains” cmp1. Then, any
property satisfied by cmp2 is also satisfied by cmp1.

Here, “contains” is component containment as defined in Section 5. The proof of the theorem is
as follows:

If a property p is satisfied by cmp2, then every behavior of cmp2 satisfies p.

Since cmp2 contains cmp1, the set of behaviors for cmp2 is at least as big as the set of
behaviors of cmp1.

Thus, every behavior of cmp1 satisfies p. By definition, this means cmp1 satisfies p.

This theorem is the key step in the proof of the composition theorem in Section 10. The composi-
tion theorem identifies conditions sufficient to ensure that properties of system components are
preserved as the components are composed with other components. Given the preceding the-
orem, the composition theorem can be proven by demonstrating that the sufficient conditions
ensure the composite is “contained” in the components comprising the composition.

THEORY cprops

cprops[ST : NONEMPTY TYPE, AG: NONEMPTY TYPE]: THEORY
BEGIN

IMPORTING cmp contains[ST, AG]

IMPORTING props[ST, AG]

cmp, cmp1, cmp2: VAR (comp t)

t: VAR trace t 10

n, i, j, k, l: VAR nat

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

22
CDRL A020

Satisfaction

p: VAR prop t

st, st1, st2: VAR ST

ag: VAR AG

tranc, tranc1: VAR TRANSITION CLASS 20

initial okay(cmp, t): bool = member((sts(t)(0)), init(cmp))

steps okay(cmp, t): bool =
(FORALL n: member((sts(t)(n), sts(t)(n + 1), ags(t)(n)), steps(cmp)))

enabled(tranc, st1): bool = (EXISTS st2, ag: member((st1, st2, ag), tranc))

is wfar(cmp, t): bool =
(FORALL tranc: 30

member(tranc, wfar(cmp))
IMPLIES

(FORALL i :
(EXISTS j :

j > i
AND

(NOT enabled(tranc, sts(t)(j))
OR

member((sts(t)(j), sts(t)(j + 1), ags(t)(j)), tranc)))))
40

is sfar(cmp, t): bool =
(FORALL tranc:

member(tranc, sfar(cmp))
IMPLIES

(FORALL i :
(EXISTS j :

j > i
AND

((FORALL k: k >= j IMPLIES NOT enabled(tranc, sts(t)(k)))
OR 50

(EXISTS l :
l >= j

AND
member((sts(t)(l), sts(t)(l + 1), ags(t)(l)),

tranc))))))

prop for(cmp): prop t =
(LAMBDA t:

initial okay(cmp, t)
AND steps okay(cmp, t) AND is wfar(cmp, t) AND is sfar(cmp, t)) 60

satisfies(cmp, p): bool = (FORALL t: prop for(cmp)(t) IMPLIES p(t))

initial okay prop: THEOREM
(FORALL st: member(st, init(cmp1)) IMPLIES member(st, init(cmp2)))

AND initial okay(cmp1, t)
IMPLIES initial okay(cmp2, t)

steps okay prop: THEOREM
(FORALL st1, st2, ag: 70

member((st1, st2, ag), steps(cmp1))
IMPLIES member((st1, st2, ag), steps(cmp2)))

AND steps okay(cmp1, t)
IMPLIES steps okay(cmp2, t)

is wfar prop: THEOREM

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 23

(FORALL tranc:
member(tranc, wfar(cmp2)) IMPLIES member(tranc, wfar(cmp1)))

AND is wfar(cmp1, t)
IMPLIES is wfar(cmp2, t) 80

is sfar prop: THEOREM
(FORALL tranc:

member(tranc, sfar(cmp2)) IMPLIES member(tranc, sfar(cmp1)))
AND is sfar(cmp1, t)
IMPLIES is sfar(cmp2, t)

satisfies prop: THEOREM
(FORALL st1, st2, ag:

member((st1, st2, ag), steps(cmp1)) 90
IMPLIES member((st1, st2, ag), steps(cmp2)))

AND
(FORALL st: member(st, init(cmp1)) IMPLIES member(st, init(cmp2)))

AND
(FORALL tranc:

member(tranc, wfar(cmp2)) IMPLIES member(tranc, wfar(cmp1)))
AND

(FORALL tranc:
member(tranc, sfar(cmp2)) IMPLIES member(tranc, sfar(cmp1)))

AND satisfies(cmp2, p) 100
IMPLIES satisfies(cmp1, p)

satisfies contains prop: THEOREM
satisfies(cmp2, p) AND cmp contains(cmp1, cmp2)

IMPLIES satisfies(cmp1, p)

END cprops

It is interesting to note that prop for(cmp) is closed with respect to cmp ’s view. To formalize
this, we define beh equiv(v) to be an equivalence relation on behaviors such thatb1 is considered
equivalent to b2 whenever the following hold for each i :

agent i of b1 is the same as agent i of b2,

state i of b1 is equivalent to state i of b2 with respect to v .

Then, the closure property is asserted in the theorem:

(beh equiv prop) If b1 and b2 are equivalent with respect to cmp ’s view, then b1 is an
element of prop for(cmp) if and only if b2 is, too.

This theorem is nice since it implies that properties of a component are dependent only on
portion’s of the state visible to the component. It would be disconcerting if it were possible to
prove a component guaranteed properties about portions of the state that are not visible to the
component.

THEORY beh equiv

beh equiv[ST : NONEMPTY TYPE, AG: NONEMPTY TYPE]: THEORY
BEGIN

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

24
CDRL A020

Satisfaction

IMPORTING cprops[ST, AG]

IMPORTING views[trace t[ST, AG]]

b, b1, b2, b3: VAR trace t

p: VAR prop t 10

v: VAR (VIEWS[ST])

i: VAR nat

cmp: VAR (comp t)

tranc: VAR setof [transition]

beh equiv(v)(b1, b2): bool = 20
(FORALL i : v(sts(b1)(i), sts(b2)(i)) AND ags(b1)(i) = ags(b2)(i))

beh equiv is refl: THEOREM beh equiv(v)(b, b)

beh equiv is sym: THEOREM beh equiv(v)(b1, b2) IMPLIES beh equiv(v)(b2, b1)

beh equiv is trans: THEOREM
beh equiv(v)(b1, b2) AND beh equiv(v)(b2, b3)

IMPLIES beh equiv(v)(b1, b3)
30

beh equiv is equiv: THEOREM VIEWS(beh equiv(v))

beh equiv init: THEOREM
beh equiv(view(cmp))(b1, b2) AND initial okay(cmp, b1)

IMPLIES initial okay(cmp, b2)

beh equiv gen steps: THEOREM
beh equiv(v)(b1, b2)

AND gen view restriction(tranc, v)
AND member((sts(b1)(i), sts(b1)(i + 1), ags(b1)(i)), tranc) 40

IMPLIES member((sts(b2)(i), sts(b2)(i + 1), ags(b2)(i)), tranc)

beh equiv steps: THEOREM
beh equiv(view(cmp))(b1, b2) AND steps okay(cmp, b1)

IMPLIES steps okay(cmp, b2)

beh equiv enabled: THEOREM
beh equiv(v)(b1, b2)

AND gen view restriction(tranc, v) AND enabled(tranc, sts(b1)(i))
IMPLIES enabled(tranc, sts(b2)(i)) 50

beh equiv wfar: THEOREM
beh equiv(view(cmp))(b1, b2) AND is wfar(cmp, b1)

IMPLIES is wfar(cmp, b2)

beh equiv sfar : THEOREM
beh equiv(view(cmp))(b1, b2) AND is sfar(cmp, b1)

IMPLIES is sfar(cmp, b2)

beh equiv prop help: THEOREM 60
beh equiv(view(cmp))(b1, b2) AND member(b1, prop for(cmp))

IMPLIES member(b2, prop for(cmp))

beh equiv prop: THEOREM
beh equiv(view(cmp))(b1, b2)

IMPLIES (member(b1, prop for(cmp)) IFF member(b2, prop for(cmp)))

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 25

property(p, v): bool =
(FORALL b1, b2:

beh equiv(v)(b1, b2) IMPLIES (member(b1, p) IFF member(b2, p))) 70

cmp property(p, cmp): bool = property(p, view(cmp))

END beh equiv

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

26
CDRL A020

State and Action Predicates

Section 8
State and Action Predicates

In general, we attempt to perform analysis in terms of state predicates and action predicates
and use functions defined below to translate the analyzed predicates into behavior predicates.

A state predicate is an assertion about a state. We represent each predicate by the set of states
satisfying the predicate. The type STATE PRED denotes the set of all state predicates. We
use init satis�es(cmp; sp) to denote that sp holds in each of cmp ’s initial states.

An action predicate is an assertion about state transitions. We represent each predicate by
the set of triples (st1; st2; ag) satisfying the predicate. Intuitively, the meaning of (st1; st2; ag)
belonging to the set representing an action predicate is that the action predicate allows an action
by ag to cause a state transition from st1 to st2. The type ACTION PRED [ST ;AG] denotes the
set of all action predicates. We use steps satisfy(cmp; ap) to denote that each transition (guar
and rely) allowed by cmp satisfies ap.

We say that a state predicate is held stable by a transition if whenever it holds in a given state,
it holds in any state reachable from that state by the transition. Given a state predicatesp,
there is an associated action predicate stable(sp) denoting the set of transitions that hold sp
stable.

Given a behavior predicate p, we use always(p) to denote the behavior predicate representing
that p “always holds”. The formal definition is thatalways(p) contains a behavior t if each “tail”
of t satisfies p. A tail of t is any behavior resulting from the removal of a finite number of
steps from the beginning of t . Similarly, we use eventually(p) to denote the behavior predicate
representing that p “eventually holds”. Rather than requiring p hold for every tail, it requires
that p hold for at least one tail.

To allow us to reduce reasoning about behavior predicates to reasoning about state and action
predicates, we define:

stbp(sp) to denote the behavior predicate representing that state predicatesp holds in the
initial state

atbp(ap) to denote the behavior predicate representing that action predicateap is satisfied
by each transition

Given these functions, we can define:

alwayss(sp) to denote always(stbp(sp))

We prove (alwayss prop) that alwayss(sp) denotes the set of behaviors such that each state
in the behavior satisfies sp.

eventuallys(sp) to denote eventually(stbp(sp))
We prove (eventuallys prop) that eventuallys(sp) denotes the set of behaviors such that
some state in the behavior satisfies sp.

alwaysa(ap) to denote always(atbp(ap))
We prove (alwaysa prop) that alwaysa(ap) denotes the set of behaviors such that each
transition in the behavior satisfiesap.

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 27

eventuallya(ap) to denote eventually(atbp(ap))

We prove (eventuallya prop) that eventuallya(ap) denotes the set of behaviors such that
some transition in the behavior satisfies ap.

The standard logical operators can be defined on the various types of predicates. For example,
aandas(ap; sp) can be defined as the action predicate representing thatap holds for a transition
and sp holds for the starting state of the transition. We define the following functions in
addition to aandas:

aand(ap1; ap2) denotes the action predicate representing that bothap1 and ap2 hold.

aimplies(ap1; ap2) denotes the action predicate representing that any transition satisfying
ap1 also satisfies ap2.

sand(sp1; sp2) denotes the state predicate representing that both sp1 and sp2 hold.

sor(sp1; sp2) denotes the state predicate representing that at least one ofsp1 and sp2 hold.

simplies(sp1; sp2) denotes the state predicate representing that any state satisfying sp1
also satisfies sp2.

We prove the following theorems for reasoning about predicates:5

(inv1) If sp holds initially and is stable, then sp always holds.

(inv2) If ap is satisfied by each transition, then ap always holds.

(inv3 and inv4) If ap always holds and sp always holds, then aandas(ap,sp) always holds.

(inv5) If ap1 always holds and ap2 always holds, then aand(ap1,ap2) always holds.

(inv6) If sp1 always holds and sp2 always holds, then sand(sp1,sp2) always holds.

(always and) If behavior predicates p1 and p2 both hold, then their intersection holds.

(always aimplies) If ap1 always holds and ap1 implies ap2, then ap2 always holds.

Note that inv1 is the proof rule commonly used to prove that every reachable state of a system
satisfies a given state predicate. First, the state predicate is shown to hold in any initial state.
Then, the state predicate is shown to be held invariant (stable) by each possible transition.

THEORY preds

preds[ST : NONEMPTY TYPE, AG: NONEMPTY TYPE]: THEORY
BEGIN

IMPORTING cprops[ST, AG]

STATE PRED: TYPE = setof [ST]

sp, sp1, sp2: VAR STATE PRED

5Similar theorems could be stated and proved to cover all of the logical operators and types of predicates. Our
approach has been to add such theorems as necessary for the examples we work rather than attempt to define a
complete set.

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

28
CDRL A020

State and Action Predicates

cmp: VAR (comp t[ST, AG]) 10

st, st1, st2: VAR ST

ag: VAR AG

init satisfies(cmp, sp): bool = (FORALL st: init(cmp)(st) IMPLIES sp(st))

ACTION PRED: TYPE = setof [[ST, ST, AG]]

ap, ap1, ap2: VAR ACTION PRED 20

steps satisfy(cmp, ap): bool =
(FORALL st1, st2, ag:

(guar(cmp)(st1, st2, ag) OR rely(cmp)(st1, st2, ag))
IMPLIES ap(st1, st2, ag))

stable(sp): ACTION PRED = (LAMBDA st1, st2, ag: sp(st1) IMPLIES sp(st2))

t: VAR trace t
30

p: VAR prop t

i, j: VAR nat

shift(i, t): trace t =
(# sts := (LAMBDA j : sts(t)(i + j)), ags := (LAMBDA j : ags(t)(i + j)) #)

always(p): prop t = (LAMBDA t: (FORALL i : p(shift(i, t))))

eventually(p): prop t = (LAMBDA t: (EXISTS i : p(shift(i, t)))) 40

stbp(sp): prop t = (LAMBDA t: sp(sts(t)(0)))

atbp(ap): prop t = (LAMBDA t: ap(sts(t)(0), sts(t)(1), ags(t)(0)))

alwayss(sp): prop t = always(stbp(sp))

eventuallys(sp): prop t = eventually(stbp(sp))

alwayss prop: THEOREM alwayss(sp) = (LAMBDA t: (FORALL i : sp(sts(t)(i)))) 50

eventuallys prop: THEOREM
eventuallys(sp) = (LAMBDA t: (EXISTS i : sp(sts(t)(i))))

alwaysa(ap): prop t = always(atbp(ap))

eventuallya(ap): prop t = eventually(atbp(ap))

alwaysa prop: THEOREM
alwaysa(ap) 60

= (LAMBDA t: (FORALL i : ap(sts(t)(i), sts(t)(i + 1), ags(t)(i))))

eventuallya prop: THEOREM
eventuallya(ap)

= (LAMBDA t: (EXISTS i : ap(sts(t)(i), sts(t)(i + 1), ags(t)(i))))

inv1: THEOREM
init satisfies(cmp, sp) AND steps satisfy(cmp, stable(sp))

IMPLIES satisfies(cmp, alwayss(sp))
70

inv2: THEOREM steps satisfy(cmp, ap) IMPLIES satisfies(cmp, alwaysa(ap))

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 29

aandas(ap, sp): ACTION PRED =
(LAMBDA st1, st2, ag: ap(st1, st2, ag) AND sp(st1))

inv3: THEOREM
intersection(alwaysa(ap), alwayss(sp)) = alwaysa(aandas(ap, sp))

inv4: THEOREM
intersection(alwayss(sp), alwaysa(ap)) = alwaysa(aandas(ap, sp)) 80

aand(ap1, ap2): ACTION PRED =
(LAMBDA st1, st2, ag: ap1(st1, st2, ag) AND ap2(st1, st2, ag))

aimplies(ap1, ap2): ACTION PRED =
(LAMBDA st1, st2, ag: ap1(st1, st2, ag) IMPLIES ap2(st1, st2, ag))

inv5: THEOREM
intersection(alwaysa(ap1), alwaysa(ap2)) = alwaysa(aand(ap1, ap2))

90
sand(sp1, sp2): STATE PRED = (LAMBDA st: sp1(st) AND sp2(st))

sor(sp1, sp2): STATE PRED = (LAMBDA st: sp1(st) OR sp2(st))

simplies(sp1, sp2): STATE PRED = (LAMBDA st: sp1(st) IMPLIES sp2(st))

inv6: THEOREM
intersection(alwayss(sp1), alwayss(sp2)) = alwayss(sand(sp1, sp2))

p1, p2: VAR prop t 100

always and: THEOREM
(satisfies(cmp, p1) AND satisfies(cmp, p2))

= satisfies(cmp, intersection(p1, p2))

always aimplies: THEOREM
satisfies(cmp, alwaysa(ap1))

AND (FORALL st1, st2, ag: aimplies(ap1, ap2)(st1, st2, ag))
IMPLIES satisfies(cmp, alwaysa(ap2))

110
END preds

Theorymore preds generalizes the concepts of stability to conditional stability (stable assuming).
It also provides several theorems for reasoning with conditional stability.

THEORY more preds

more preds[ST : NONEMPTY TYPE, AG: NONEMPTY TYPE]: THEORY
BEGIN

IMPORTING unity[ST,AG]

sp, sp1, sp2: VAR STATE PRED

cmp: VAR (comp t[ST, AG])
10

st, st1, st2: VAR ST

p, p1, p2: VAR prop t[ST,AG]

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

30
CDRL A020

State and Action Predicates

ag: VAR AG

stable assuming(sp1, sp2): ACTION PRED
= (LAMBDA st1, st2, ag: sp1(st1) and sp1(st2) and sp2(st1)

IMPLIES sp2(st2)) 20

pimplies always: THEOREM
init satisfies(cmp, simplies(sp1, sp2))

AND steps satisfy(cmp, stable assuming(sp1, sp2))
=> satisfies(cmp, pimplies(alwayss(sp1),alwayss(sp2)))

init simplies: THEOREM
init satisfies(cmp, sp2)

=> init satisfies(cmp, simplies(sp1, sp2))
30

satisfies modus ponens: THEOREM
satisfies(cmp, p1) AND satisfies(cmp, pimplies(p1, p2))

=> satisfies(cmp, p2)

END more preds

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 31

Section 9
Composition

First we discuss how our definition of composition relates to the Abadi-Lamport and Shankar
approaches. In doing so, we will allude to our as yet unstated definition of composition. After
the discussion, we explicitly state our definition of composition.

9.1 Relation to Prior Work

The approach we use for combining specifications is a hybrid of the approaches used by Abadi-
Lamport and Shankar. In the Abadi-Lamport work, components with no fairness assumptions
are simply properties with the normal form9 v : I ^2N . Composition is defined simply to be
conjunction; the composition of9 v1 : I1 ^2N1 with 9 v2 : I2 ^2N2 is

(9 v1 : I1 ^2N1) ^ (9 v2 : I2 ^2N2):

Abadi and Lamport demonstrate that under the correct assumptions regarding free and quan-
tified variables in the component specifications, this conjunction can essentially be rewritten
in the form

9 v : (I1 ^ I2) ^2[N1 ^N2]

and in the form

9 v : (I1 ^ I2) ^2[cN1 _ cN2]

where cNi is a formula denoting an Ni transition where the variables in v3�i do not change
value.

In the Shankar approach, components are specified in terms of a tuple (init ; guar ; rely) and
composition is defined as:

(init1 ^ init2; (guar1 _ rely2) ^ (guar2 _ rely1); rely1 ^ rely2)

N in the Abadi-Lamport approach corresponds to guar _ rely in the Shankar approach. Thus,
N1 ^N2 corresponds to:

(guar1 ^ rely2) _ (guar2 ^ rely1) _ (rely1 ^ rely2) _ (guar1 ^ guar2)

The first two terms correspond to Shankar’s definition ofguar for the composite while the third
term corresponds to Shankar’s definition ofrely for the composite. So, other than the last term,
both definitions are essentially the same. Typically, the steps by each component are disjoint so
the last term does not contribute anything. In these cases, the two definitions are essentially
the same.

Our definition of composition is similar but slightly different. Reasons for the differences
include:

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

32
CDRL A020

Composition

While the Shankar approach ignores fairness, we follow the Abadi-Lamport approach for
addressing fairness.

We have made view , cags, and hidd explicit parts of the definition of a component, so we
need to define view , cags, and hidd for the composite system in terms of the component
systems.

In the definition of guar for the composite, we replace rely1 in Shankar’s definition with
hidd1 and rely2 with hidd2.

The hidd sets are related to conditional implementation in Abadi-Lamport where dis-
jointness conditions are added asserting that the outputs of different components do not
change simultaneously. Along with concerns about serializability, this reflects the fact
that when combining two implemented systems the behavior of the combination depends
upon how they were combined. For example, we would expect very different behavior in
the case where the data segments of the two components are overlaid versus that where
the address spaces are entirely separate. Abadi and Lamport assert that such assump-
tions should not be included in the specification of a component of an open system; we
want to be able to combine the component with other components in more or less arbitrary
ways and then reason about the results. By makinghidd part of a component, we have
violated this goal of Abadi and Lamport.

Our main motivation for making hidd part of the definition of a component is to ensure
the well-definedness of a composite’s guar with respect to its view. Since well-definedness
of guar is part of the definition of a component, this is essential to ensuring that the
composite of a collection of components is itself a component. Whenhidd is separate from
a component, then the proper choice ofhidd is often dependent on what the component will
be composed with. Then, each time a component is composed with different components,
it could be necessary to show that the resulting composition’sguar is well-defined with
respect to its view. In our approach wherehidd is part of the definition of a component, the
well-definedness of the composite’s guar with respect to its view is guaranteed regardless
of what other components are included in the composition.

The disadvantage of our approach is that if there is a desire to change the manner in which
a component interfaces with other components, it is necessary to change thehidd portion
of the specifications of the components. In the Abadi-Lamport approach, the specifications
of the components do not need to be changed since hidd is specified separately. So far,
we have not found this to be a serious disadvantage. A change in the manner in which
components interact is a fairly significant design change for which it is not unreasonable
to expect the specifications of components to change.

In earlier versions of the framework, we included a field called priv in the definition
of a component that indicated which data is private to a component and therefore not
modifiable by other components. We used priv in place of hidd in the definition of com-
position. However, this approach has a weakness when more than two components must
be composed. This weakness is the need for component-level (or finer) granularity in
specifying what state information of each component is protected from other components.
The granularity on priv was such that it could only distinguish between data private to
the component and data potentially shared with other components. However, the collec-
tion of shared data elements can differ for each pair of components drawn from the set of
components being composed. At a minimum we need the ability to specify data privacy
on a component-pair basis. This allows us to automatically limit each component to its
own data as we compose. We call this the priv problem. The solution adopted in the
framework goes further by allowing privacy to be specified on a per-agent basis in the

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 33

hidd field of each component specification. The granularity ofhidd allows a specification
of exactly which agents have access to each data structure.

Our use of hidd constitutes a generalization of Shankar’s definition since we can takehiddi
to be the set of all (st1; st2; ag) triples such that (st1; st2) is in Shankar relyi .6 There are
two options to consider for the selection of aShankar rely relation:

weak rely — Shankar rely requires that the component’s private data does not change,
but places no restrictions on changes to the interface data of the component. This
definition leads to the situation described above where componentA can make ar-
bitrary modifications to data it is unable to see. This can be dealt with in defining
guar , but only at the expense of decreased maintainability of the specifications.

strong rely — Shankar rely requires that the component’s private data does not change
and that any changes to the component’s interface data follow the assumed protocol.
In this case, the changes to the interface data are at least not arbitrary. However,
if we are interested in restricting the components that can communicate with the
component being defined, then we must do so in the guar of the other components.
This again leads to maintainability problems.

The basic weakness in both of these definitions of hidd is that they are not sensitive to
agents. From the standpoint of system functionality, this may not be a crucial concern,
but from the standpoint of security it is very important to know not just what happened
but also who caused it to happen.

In earlier versions of the framework, we explored an option like the Abadi-Lamport
approach in which hidd was defined separate from a component. We called the hidd sets
“respect relations”. As discussed previously, we have now rejected this approach due to
the issue with well-definedness of the composite’s guar with respect to its view.

To ensure the composition of two components is consistent, it is necessary to check that
each component satisfies the assumptions the other component makes about its envi-
ronment. The expression guara \ relyb

7 denotes the set of transitions that agents of
component cmpa can make that also satisfy the environmental assumptions of component
cmpb . Shankar’s approach of using guara \ relyb as the basis for the definition of composi-
tion ensures the result is consistent by eliminating transitions that violate environmental
assumptions of the other component. Our approach retains the proof obligation to demon-
strate that the components are consistent. This means provingguara \ hiddb is a subset
of guarb [relyb.

While the Shankar approach and our previous frameworks have defined composition
pairwise, we now allow an arbitrary number of sets to be composed at once. For example,
we now use compose(f cmp1; cmp2; cmp3 g) to denote the composition of components cmp1,
cmp2, and cmp3 where we previously used compose(compose(cmp1 ; cmp2); cmp3). As the
number of components increases, the former approach is much nicer than the latter
approach from a notational standpoint. Also, the more general definition of composition
was found to greatly simplify the proof of a more general version of the composition
theorem.

Note that the discussion above only addresses the case of the composition of two compo-
nents but can be generalized to the composition of an arbitrary number of components in
a straightforward manner.

6Our rely includes agents while Shankar’s does not. We will henceforth userely andShankar rely to avoid confusion.
7Note that we use “\” and “^” interchangeably. Similarly, we use “[” and “_” interchangeably.

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

34
CDRL A020

Composition

9.2 Definition of Composition

We define the expression compose(cset) to denote the composition of each of the components in
the set cset . Note that in prior versions of our framework:

the parameters to compose contained a pair of components rather than a set of components,
and

the parameters to compose also contained state and agent translator functions that were
used to address differences in data types used in the specification of the various compo-
nents.

As noted earlier, we now have generalized the definition of compose to sets of components.
In doing so, our use of PVS forced us to assume that the same data types were used in the
definition of each component since each element of a PVS set must be of the same data type.
We could have addressed this problem by using some data structure other than a set. For
example, if we made cset be a tuple rather than a set, then each of the elements of the tuple
could be of a different data type. However, then we would have to specify in advance how many
elements are in the tuple. This is essentially the situation we were in previously where we
could compose components of different data types but could only compose two at a time. Since
we know of no way in PVS to specify an arbitrary sized collection of elements of different data
types, we now require each of the elements to be of the same data type. Consequently, it is
no longer necessary to provide state and agent translator functions as parameters tocompose
because no type translation is required.

However, we do still include the notion of state and agent translators in our framework (see
Section 14). The intent is that the analyst would use state and agent translators as necessary
to convert all of the components to the same data type. Then, the compose function could be
used to compose all of the components together.

In defining compose, it is convenient to have generalized notions of union and intersection. For
example, cags for the compose(cset) is defined as the union of cags for each element of cset . To
formalize this in PVS, we define gen union(ss) to be the union of each of the sets in the set
of sets ss. For example, gen union(f f a; b g; f c g; f b; d g g) is f a; b; c; d g. Similarly, we define
gen intersection as a generalized version of intersection.

THEORY gen set

gen set[X: TYPE]: THEORY
BEGIN

s, s1, s2: VAR setof [X]

ss, ss1, ss2: VAR setof [setof [X]]

x, x1: VAR X

nonempty th: THEOREM s == emptyset IFF (EXISTS x: member(x, s)) 10

gen union(ss): setof [X] =
(LAMBDA x: (EXISTS s: member(s, ss) AND member(x, s)))

gen intersection(ss): setof [X] =
(LAMBDA x: (FORALL s: member(s, ss) IMPLIES member(x, s)))

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 35

gen union zero: THEOREM gen union(emptyset[setof [X]]) = emptyset

gen intersection zero: THEOREM gen intersection(emptyset[setof [X]]) = fullset 20

gen union two: THEOREM gen union(fs j s = s1 OR s = s2g) = union(s1, s2)

gen intersection two: THEOREM
gen intersection(fs j s = s1 OR s = s2g) = intersection(s1, s2)

gen union one: THEOREM gen union(singleton(s)) = s

gen intersection one: THEOREM gen intersection(singleton(s)) = s
30

gen intersection bigger: THEOREM
subset?(ss1, ss2)

IMPLIES subset?(gen intersection(ss2), gen intersection(ss1))

gen union smaller: THEOREM
subset?(ss1, ss2) IMPLIES subset?(gen union(ss1), gen union(ss2))

contains at most one(s): bool =
(FORALL x, x1: member(x, s) AND member(x1, s) IMPLIES x = x1)

40
contains one(s): bool = s == emptyset AND contains at most one(s)

contains one def : THEOREM contains one(s) IFF (EXISTS x: s = singleton(x))

END gen set

We restrict the domain of compose as follows:

cset must be nonempty,

each of the elements of cset must be a component as defined in Section 5,

and there must be some state that is in init for each of the components in cset .

Intuitively, this requires that there is some state that is an acceptable start state for every
component in cset .

The function composable(cset) tests whether cset satisfies these conditions. The function
compose(cset) is defined whenever composable(cset) holds. Then, the result of the composition
is defined to be a component for which:

The set of allowable initial states for the composite is the intersection of the init sets for
the individual components in cset

The set of transitions that the composite can make consists of the transitions that belong
to guar for at least one of the components and belong to either guar or hidd for the
remaining components.

The motivation for this definition is:

– The composite should be able to perform only transitions that could be performed by
at least one of the components. This means that each element of the composite’sguar
must be an element of guar for some component.

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

36
CDRL A020

Composition

– The composite should not be able to perform transitions that violate the interface
requirements of any of the components. This means that any transition of the
composite that is not in guar for one of the components must be in hidd for that
component (meaning that it respects the interface requirements of the component).

Suppose we let G denote the union of the guar ’s for each of the components in cset and let
GH denote the intersection of guar [hidd for each of the components. Then, G denotes
the set of transitions that are inguar for at least one of the components whileGH denotes
the set of transitions that are in either guar or hidd for each component. The transitions
in guar for the composite are transitions belonging to bothG and GH . So, the definition
of guar for the composite can be given asG \GH .

The environment transitions allowed by the composite consist of transitions that each
component allows of its environment. In other words, rely for the composite is the inter-
section of the rely ’s for each component in cset .

The agents for the composite consists of the union of the agents for the individual compo-
nents in cset .

Two states appear the same to the composite only if they appear the same to each com-
ponent. In other words, view for the composite is the intersection of the view ’s for each
component in cset .

Since hidd is similar to rely , hidd for the composite is defined to be the intersection of the
hidd ’s for each component in cset .

The fairness assumptions are cumulative. In other words, if a component makes a weak
fairness assumption for some transition class, then the composite must make a weak
fairness assumption for that transition class, too. Consequently, the set of transition
classes for which the composite assumes weak fairness is the union of thewfar ’s for each
of the components in cset .

Similarly, sfar for the composite is the union of the sfar ’s for each of the components in
cset .

We prove that the result of the composition is itself a component in the sense defined in
Section 5. Some of the requirements of a component are only provable when composable(cset)
holds. In fact, this is precisely why composable is defined as it is. It is the weakest definition
for which composable(cset) ensures compose(cset) satisfies the requirements on components.
Examples of requirements of components that depend on composable are as follows:

gen union(�) is equal to�. Consequently, if cset is empty, cags for the composite is empty
and violates the requirement that a component have a nonemptycags set.

If there was not some state that belonged to the init set for each element of cset , then the
intersection of the init ’s for components in cset would be empty. This would violate the
requirement that a component have a nonempty init set.

For most of the requirements on a component, it is necessary that the requirement hold
for each element of cset in order for it to hold for the composite. For example, suppose
cags were empty for each element of cset . Then, cags for the composite would be empty,
too. Thus, each element of cset is required to satisfy the requirements on components.8

8Technically, this is not precisely necessary for the composite to be a component. For example, even if some
of the elements of cset had an empty cags set, as long as one element has a nonempty cags set, the composite is

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 37

THEORY compose

compose[ST : NONEMPTY TYPE, AG: NONEMPTY TYPE]: THEORY
BEGIN

IMPORTING gen set

IMPORTING component[ST, AG]

cset: VAR setof [(comp t)]

cmp, cmp1, cmp2: VAR (comp t) 10

st, st1, st2, st3, st4: VAR ST

ag: VAR AG

agreeable start(cset): bool =
(EXISTS st: (FORALL cmp: member(cmp, cset) IMPLIES member(st, init(cmp))))

composable(cset): bool = cset == emptyset AND agreeable start(cset)
20

st set: VAR setof [ST]

inits for(cset): setof [setof [ST]] =
(LAMBDA st set: (EXISTS cmp: member(cmp, cset) AND st set = init(cmp)))

compose init(cset): setof [ST] = gen intersection(inits for(cset))

tranc: VAR TRANSITION CLASS

guars for(cset): setof [TRANSITION CLASS] = 30
(LAMBDA tranc: (EXISTS cmp: member(cmp, cset) AND tranc = guar(cmp)))

guar or hidds for(cset): setof [TRANSITION CLASS] =
(LAMBDA tranc:

(EXISTS cmp: member(cmp, cset) AND tranc = union(guar(cmp), hidd(cmp))))

relys for(cset): setof [TRANSITION CLASS] =
(LAMBDA tranc: (EXISTS cmp: member(cmp, cset) AND tranc = rely(cmp)))

hidds for(cset): setof [TRANSITION CLASS] = 40
(LAMBDA tranc: (EXISTS cmp: member(cmp, cset) AND tranc = hidd(cmp)))

v: VAR (VIEWS)

views for(cset): setof [(VIEWS)] =
(LAMBDA v: (EXISTS cmp: member(cmp, cset) AND v = view(cmp)))

ag set: VAR setof [AG]

cagss for(cset): setof [setof [AG]] = 50
(LAMBDA ag set: (EXISTS cmp: member(cmp, cset) AND ag set = cags(cmp)))

tc set: VAR setof [TRANSITION CLASS]

sfars for(cset): setof [setof [TRANSITION CLASS]] =
(LAMBDA tc set: (EXISTS cmp: member(cmp, cset) AND tc set = sfar(cmp)))

guaranteed to have a nonempty cags set. Since stating the precise necessary conditions would be more difficult and it
seems reasonable to require each element of cset satisfy the requirements on components, we have chosen to define
composable to require each element of cset be a component.

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

38
CDRL A020

Composition

wfars for(cset): setof [setof [TRANSITION CLASS]] =
(LAMBDA tc set: (EXISTS cmp: member(cmp, cset) AND tc set = wfar(cmp)))

60
compose guar(cset): setof [transition] =

intersection(gen intersection(guar or hidds for(cset)),
gen union(guars for(cset)))

compose rely(cset): setof [transition] = gen intersection(relys for(cset))

compose hidd(cset): setof [transition] = gen intersection(hidds for(cset))

compose cags(cset): setof [AG] = gen union(cagss for(cset))
70

compose view base(cset): setof [[ST, ST]] =
gen intersection(extend[setof [[ST, ST]],

((VIEWS)), bool,
FALSE](views for(cset)))

compose view tc: THEOREM VIEWS(compose view base(cset))

compose view(cset): (VIEWS[ST]) =
gen intersection(extend[setof [[ST, ST]],

((VIEWS)), bool, 80
FALSE](views for(cset)))

compose wfar(cset): setof [TRANSITION CLASS] = gen union(wfars for(cset))

compose sfar(cset): setof [TRANSITION CLASS] = gen union(sfars for(cset))

compose base(cset): base comp t[ST, AG] =
(# init := compose init(cset),

guar := compose guar(cset),
rely := compose rely(cset), 90
hidd := compose hidd(cset),
cags := compose cags(cset),
view := compose view(cset),
wfar := compose wfar(cset),
sfar := compose sfar(cset) #)

compose base init: THEOREM
cset == emptyset AND agreeable start(cset)

IMPLIES init restriction(compose base(cset))
100

compose base guar: THEOREM guar restriction(compose base(cset))

compose base rely hidd: THEOREM rely hidd restriction(compose base(cset))

compose base hidd: THEOREM hidd restriction(compose base(cset))

compose base cags: THEOREM
cset == emptyset IMPLIES cags restriction(compose base(cset))

compose base view rely: THEOREM view rely restriction(compose base(cset)) 110

compose base view hidd: THEOREM view hidd restriction(compose base(cset))

compose base view guar: THEOREM view guar restriction(compose base(cset))

compose base view init: THEOREM view init restriction(compose base(cset))

compose base view sfar : THEOREM view sfar restriction(compose base(cset))

compose base view wfar: THEOREM view wfar restriction(compose base(cset)) 120

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 39

compose base guar stuttering: THEOREM
guar stuttering restriction(compose base(cset))

compose base rely stuttering: THEOREM
rely stuttering restriction(compose base(cset))

cmset: VAR (composable)

compose base tc: THEOREM comp t(compose base(cmset)) 130

compose(cmset): (comp t) =
(# init := compose init(cmset),

guar := compose guar(cmset),
rely := compose rely(cmset),
hidd := compose hidd(cmset),
cags := compose cags(cmset),
view := compose view(cmset),
wfar := compose wfar(cmset),
sfar := compose sfar(cmset) #) 140

END compose

In prior versions of the framework, we have proven that composition is:

idempotent — this means composing cmp with cmp results in cmp

commutative — this means composing cmp1 with cmp2 is the same as composing cmp2
with cmp1

associative — this means compose2(cmp1; compose2(cmp2; cmp3)) is the same as
compose2(compose2(cmp1; cmp2); cmp3)

Here, compose2 denotes our old definition of a pairwise composition operator rather than
the definition of compose for sets given here.

It is common when defining binary operators to consider whether these properties hold. Since
our previous definition of compose was pairwise, it was a binary operator and we considered
these properties. The analogue of idempotency for the definition of composition of sets of
components is:

composable(f cmp g) holds for any cmp, and

compose(f cmp g) = cmp holds for any cmp.

The commutativity requirement is not of interest because sets are unordered. For example,
it would require showing that the composition of a set f cmp1; cmp2; cmp3 g is the same as the
composition of the set f cmp2; cmp3; cmp1 g. Since the order of elements of a set is irrelevant,
the two sets are equivalent and the results of the composition must be the same.

Associativity deals with the way in which components are grouped into composites. For exam-
ple, we would like to know that:

compose(f cmp1; compose(f cmp2; cmp3 g) g) =

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

40
CDRL A020

Composition

compose(f compose(f cmp1; cmp2 g); cmp3 g) =

compose(f cmp1; cmp2; cmp3 g)

In other words, we would like to know that the composition of a collection of components is the
same regardless of whether and how the components are grouped into intermediate composite
systems.

Our generalization of this requirement is as follows:

Suppose S1, …, Sn are sets of components and S is the union of all of the Si ’s. Then,

compose(f compose(S1); : : : ; compose(Sn) g) = compose(S)

In other words, the requirement is that composing a collection of composites is equivalent
to performing a single composition of all of the individual components. A corollary of this
requirement is that the result of composing a collection of composites is independent of the way
in which the components are grouped into composite systems.

The composition operator we defined previously satisfies our generalizations of idempotency,
commutativity (trivially), and associativity to sets of components.

THEORY compose idempotent

compose idempotent[ST : NONEMPTY TYPE, AG: NONEMPTY TYPE]: THEORY
BEGIN

IMPORTING compose[ST, AG]

cmp: VAR (comp t)

ci init: THEOREM compose init(singleton(cmp)) = init(cmp)

ci cags: THEOREM compose cags(singleton(cmp)) = cags(cmp) 10

ci guar: THEOREM compose guar(singleton(cmp)) = guar(cmp)

ci rely: THEOREM compose rely(singleton(cmp)) = rely(cmp)

ci hidd: THEOREM compose hidd(singleton(cmp)) = hidd(cmp)

ci view: THEOREM compose view(singleton(cmp)) = view(cmp)

ci sfar : THEOREM compose sfar(singleton(cmp)) = sfar(cmp) 20

ci wfar: THEOREM compose wfar(singleton(cmp)) = wfar(cmp)

ci composable: THEOREM composable(singleton(cmp))

ci component: THEOREM compose(singleton(cmp)) = cmp

END compose idempotent

30

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 41

THEORY compose associative

compose associative[ST : NONEMPTY TYPE, AG: NONEMPTY TYPE]: THEORY
BEGIN

IMPORTING compose[ST, AG]

cset: VAR (composable)

csets: VAR setof [(composable)]

cmp: VAR (comp t) 10

ca composable: THEOREM
composable(gen union(extend[setof [((comp t[ST, AG]))],

((composable)),
bool,
FALSE](csets)))

IFF
composable(fcmp j

(EXISTS cset:
member(cset, csets) AND cmp = compose(cset))g) 20

ca init: THEOREM
composable(gen union(extend[setof [((comp t[ST, AG]))],

((composable)),
bool,
FALSE](csets)))

IMPLIES
init(compose(gen union(extend[setof [((comp t[ST, AG]))],

((composable)),
bool, 30
FALSE](csets))))

=
init(compose(fcmp j

(EXISTS cset:
member(cset, csets)

AND cmp = compose(cset))g))

ca cags: THEOREM
composable(gen union(extend[setof [((comp t[ST, AG]))],

((composable)), 40
bool,
FALSE](csets)))

IMPLIES
cags(compose(gen union(extend[setof [((comp t[ST, AG]))],

((composable)),
bool,
FALSE](csets))))

=
cags(compose(fcmp j

(EXISTS cset: 50
member(cset, csets)

AND cmp = compose(cset))g))

tran: VAR [ST, ST, AG]

ca guar1: THEOREM
composable(gen union(extend[setof [((comp t[ST, AG]))],

((composable)),
bool,
FALSE](csets))) 60

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

42
CDRL A020

Composition

AND
guar(compose(gen union(extend[setof [((comp t[ST, AG]))],

((composable)),
bool,
FALSE](csets))))

(tran)
IMPLIES

gen union(guars for(fcmp j
(EXISTS cset:

member(cset, csets) 70
AND cmp

= compose(cset))g))(tran)

ca guar2: THEOREM
composable(gen union(extend[setof [((comp t[ST, AG]))],

((composable)),
bool,
FALSE](csets)))

AND
guar(compose(gen union(extend[setof [((comp t[ST, AG]))], 80

((composable)),
bool,
FALSE](csets))))

(tran)
IMPLIES

gen intersection(guar or hidds for(fcmp j
(EXISTS cset:

member(cset, csets)
AND cmp

= 90
compose(cset))g))

(tran)

ca guar3: THEOREM
composable(gen union(extend[setof [((comp t[ST, AG]))],

((composable)),
bool,
FALSE](csets)))

AND
guar(compose(gen union(extend[setof [((comp t[ST, AG]))], 100

((composable)),
bool,
FALSE](csets))))

(tran)
IMPLIES

guar(compose(fcmp j
(EXISTS cset:

member(cset, csets)
AND cmp = compose(cset))g))(tran)

110
ca guar4: THEOREM

composable(gen union(extend[setof [((comp t[ST, AG]))],
((composable)),
bool,
FALSE](csets)))

AND
guar(compose(fcmp j

(EXISTS cset:
member(cset, csets)

AND cmp = compose(cset))g))(tran) 120
IMPLIES

gen union(guars for(gen union(extend[setof [((comp t[ST, AG]))],
((composable)),
bool,

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 43

FALSE](csets))))
(tran)

ca guar5: THEOREM
composable(gen union(extend[setof [((comp t[ST, AG]))],

((composable)), 130
bool,
FALSE](csets)))

AND
guar(compose(fcmp j

(EXISTS cset:
member(cset, csets)

AND cmp = compose(cset))g))(tran)
IMPLIES

gen intersection
(guar or hidds for(gen union(extend[setof [((comp t[ST, 140

AG]))],
((composable)),
bool,
FALSE](csets))))

(tran)

ca guar6: THEOREM
composable(gen union(extend[setof [((comp t[ST, AG]))],

((composable)),
bool, 150
FALSE](csets)))

AND
guar(compose(fcmp j

(EXISTS cset:
member(cset, csets)

AND cmp = compose(cset))g))(tran)
IMPLIES

guar(compose(gen union(extend[setof [((comp t[ST, AG]))],
((composable)),
bool, 160
FALSE](csets))))

(tran)

ca guar: THEOREM
composable(gen union(extend[setof [((comp t[ST, AG]))],

((composable)),
bool,
FALSE](csets)))

IMPLIES
guar(compose(gen union(extend[setof [((comp t[ST, AG]))], 170

((composable)),
bool,
FALSE](csets))))

=
guar(compose(fcmp j

(EXISTS cset:
member(cset, csets)

AND cmp = compose(cset))g))

ca rely: THEOREM 180
composable(gen union(extend[setof [((comp t[ST, AG]))],

((composable)),
bool,
FALSE](csets)))

IMPLIES
rely(compose(gen union(extend[setof [((comp t[ST, AG]))],

((composable)),
bool,

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

44
CDRL A020

Composition

FALSE](csets))))
= 190

rely(compose(fcmp j
(EXISTS cset:

member(cset, csets)
AND cmp = compose(cset))g))

ca hidd: THEOREM
composable(gen union(extend[setof [((comp t[ST, AG]))],

((composable)),
bool,
FALSE](csets))) 200

IMPLIES
hidd(compose(gen union(extend[setof [((comp t[ST, AG]))],

((composable)),
bool,
FALSE](csets))))

=
hidd(compose(fcmp j

(EXISTS cset:
member(cset, csets)

AND cmp = compose(cset))g)) 210

ca view: THEOREM
composable(gen union(extend[setof [((comp t[ST, AG]))],

((composable)),
bool,
FALSE](csets)))

IMPLIES
view(compose(gen union(extend[setof [((comp t[ST, AG]))],

((composable)),
bool, 220
FALSE](csets))))

=
view(compose(fcmp j

(EXISTS cset:
member(cset, csets)

AND cmp = compose(cset))g))

ca sfar : THEOREM
composable(gen union(extend[setof [((comp t[ST, AG]))],

((composable)), 230
bool,
FALSE](csets)))

IMPLIES
sfar(compose(gen union(extend[setof [((comp t[ST, AG]))],

((composable)),
bool,
FALSE](csets))))

=
sfar(compose(fcmp j

(EXISTS cset: 240
member(cset, csets)

AND cmp = compose(cset))g))

ca wfar: THEOREM
composable(gen union(extend[setof [((comp t[ST, AG]))],

((composable)),
bool,
FALSE](csets)))

IMPLIES
wfar(compose(gen union(extend[setof [((comp t[ST, AG]))], 250

((composable)),
bool,

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 45

FALSE](csets))))
=

wfar(compose(fcmp j
(EXISTS cset:

member(cset, csets)
AND cmp = compose(cset))g))

ca component: THEOREM 260
composable(gen union(extend[setof [((comp t[ST, AG]))],

((composable)),
bool,
FALSE](csets)))

IMPLIES
compose(gen union(extend[setof [((comp t[ST, AG]))],

((composable)),
bool,
FALSE](csets)))

= 270
compose(fcmp j

(EXISTS cset:
member(cset, csets) AND cmp = compose(cset))g)

END compose associative

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

46
CDRL A020

Composition Theorem

Section 10
Composition Theorem

The composition theorem is:

Suppose a collection of componentsS1 satisfies a propertyP , and a “bigger” set of com-
ponents S2 is such that its actions are “tolerable” with respect toS1’s environmental
assumptions. Then, P holds for S2, also.

A typical use of this theorem would be to chooseS1 to be a set of previously analyzed components
and S2 to be S1 with some additional components added. Then, the theorem can be used
to demonstrate that properties proved of S1 hold for S2, too, as long as the environmental
assumptions tolerate the new components.

THEORY cmp thm

cmp thm[ST : NONEMPTY TYPE, AG: NONEMPTY TYPE]: THEORY
BEGIN

IMPORTING cmp thm aux[ST, AG]

cset1, cset2: VAR setof [(comp t)]

p: VAR prop t

cmp thm base: THEOREM 10
contains(cset1, cset2)

AND tolerates(cset1, cset2)
AND composable(cset1) AND satisfies(compose(cset1), p)

IMPLIES (composable(cset2) IMPLIES satisfies(compose(cset2), p))

cmp thm base disj: THEOREM
contains(cset1, cset2)

AND tolerates disj(cset1, cset2)
AND composable(cset1) AND satisfies(compose(cset1), p)

IMPLIES (composable(cset2) IMPLIES satisfies(compose(cset2), p)) 20

cmp thm: THEOREM
subset?(cset1, cset2)

AND tolerates(cset1, cset2)
AND composable(cset2)

AND cset1 == emptyset AND satisfies(compose(cset1), p)
IMPLIES satisfies(compose(cset2), p)

cmp thm disj: THEOREM
subset?(cset1, cset2) 30

AND tolerates disj(cset1, cset2)
AND cset1 == emptyset

AND composable(cset2) AND satisfies(compose(cset1), p)
IMPLIES satisfies(compose(cset2), p)

END cmp thm

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 47

In the above, it is implicitly assumed that both S1 and S2 are composable. By a collection of
components satisfying a property, we simply mean that the property holds for the composite of
the collection of components. In the simplest case, “bigger” simply refers to a subset relation
between the sets. However, we are actually able to prove a more general version of the theorem
in which S2 being bigger than S1 means that for each element, cmp1 of S1, there exists an
element cmp2 of S2 such that:

cmp contains(cmp2; cmp1)

where cmp contains is as defined at the end of Section 5. Since cmp contains(cmp; cmp) holds
for any component, cmp, whenever S1 is a subset of S2, the above notion of “bigger” is satisfied
by choosing cmp2 to be cmp1 for each cmp1 in S1.

THEORY contains

contains[ST : NONEMPTY TYPE, AG: NONEMPTY TYPE]: THEORY
BEGIN

IMPORTING cmp contains[ST, AG]

cmp, cmp1, cmp2: VAR (comp t)

cset1, cset2: VAR setof [(comp t)]

contains(cset1, cset2): bool = 10
(FORALL cmp1:

member(cmp1, cset1)
IMPLIES

(EXISTS cmp2: member(cmp2, cset2) AND cmp contains(cmp2, cmp1)))

END contains

The last detail of the composition theorem that needs to be addressed is the notion of the actions
of a collection of components being tolerable with respect to the environmental assumptions of
another collection of components.

First, we define tolerates cmp(S1; cmp2) to hold exactly when for each transition incmp2’s guar
either:

there exists a component in S1 whose guar contains the transition, or

for each component in S1, either the transition violates hidd for the component or the
transition is an element of rely for the component.

In the first case, a step of cmp2 is acceptable to S1 because some component in S1 could perform
the step itself. In the second case, a step of cmp2 is acceptable to S1 because it does not violate
any of the environmental assumptions of elements ofS1 (in the sense that whenever the step is
consistent with the interface specified byhidd, then the step is consistent with the assumption
captured by rely).

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

48
CDRL A020

Composition Theorem

Given the definition of tolerates cmp(S1; cmp2) we define tolerates(S1; S2) to hold whenever
tolerates cmp(S1; cmp2) holds for each element cmp2 of S2. In many cases, a stronger rela-
tion can be shown to hold between two sets of components. In particular, it is not uncommon
for the agent sets of the components in S1 to be non-overlapping with the agent sets of the
components in S2. Then, it is not possible for an element of the guar for a component in S2 to
also be an element of the guar for a component in S1. Consequently, the demonstration that
S1 tolerates S2 requires showing the second case in the definition of tolerates cmp. We define
tolerates disj (S1; S2) to hold when this stronger notion of tolerance holds. Two even stronger
notions are also defined:

tolerates stutter(S1; S2) — the guar transitions of components inS2, when restricted by the
hidd of components in S1 are stuttering steps with respect to theview of S1 components.

tolerates cags(S1; S2) — the hidd relations of components in S1 allow only stuttering steps
for agents of components in S2.

The latter is particularly useful when applicable since no guar transitions need be consid-
ered. This concept and the associated theorem tolerates cags stronger play a central role in the
example worked later in this report.

THEORY tolerates

tolerates[ST : NONEMPTY TYPE, AG: NONEMPTY TYPE]: THEORY
BEGIN

IMPORTING component[ST, AG]

cset, cset1, cset2, cset3: VAR setof [(comp t)]

cmp, cmp1, cmp2: VAR (comp t)

st, st1, st2: VAR ST 10

ag: VAR AG

ags: VAR setof [AG]

tran: VAR transition

tolerates cmp(cset1, cmp2): bool =
(FORALL tran:

member(tran, guar(cmp2)) 20
IMPLIES

((EXISTS cmp1: member(cmp1, cset1) AND member(tran, guar(cmp1)))
OR

(FORALL cmp1:
member(cmp1, cset1) AND member(tran, hidd(cmp1))

IMPLIES member(tran, rely(cmp1)))))

tolerates cmp disj(cset1, cmp2): bool =
(FORALL tran:

member(tran, guar(cmp2)) 30
IMPLIES

((FORALL cmp1:
member(cmp1, cset1) AND member(tran, hidd(cmp1))

IMPLIES member(tran, rely(cmp1)))))

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 49

tolerates cmp stutter(cset1, cmp2): bool =
(FORALL st1, st2, ag, cmp1:

member(cmp1, cset1) AND member((st1, st2, ag), guar(cmp2))
AND member((st1, st2, ag), hidd(cmp1))

IMPLIES member((st1, st2), view(cmp1))) 40

tolerates cmp cags(cset1, cmp2): bool =
(FORALL st1, st2, ag, cmp1:

member(cmp1, cset1) AND member(ag, cags(cmp2))
AND member((st1, st2, ag), hidd(cmp1))

IMPLIES member((st1, st2), view(cmp1)))

tolerates cmp disj stronger: THEOREM
tolerates cmp disj(cset1, cmp2) IMPLIES tolerates cmp(cset1, cmp2)

50
tolerates cmp stutter stronger: THEOREM

tolerates cmp stutter(cset1, cmp2) IMPLIES tolerates cmp disj(cset1, cmp2)

tolerates cmp cags stronger: THEOREM
tolerates cmp cags(cset1, cmp2) IMPLIES tolerates cmp stutter(cset1, cmp2)

tolerates cmp cags stronger2: THEOREM
tolerates cmp cags(cset1, cmp2) IMPLIES tolerates cmp disj(cset1, cmp2)

tolerates(cset1, cset2): bool = 60
(FORALL cmp2: member(cmp2, cset2) IMPLIES tolerates cmp(cset1, cmp2))

tolerates prop: THEOREM
tolerates(cset1, cset2) AND subset?(cset, cset2)

IMPLIES tolerates(cset1, cset)

tolerates union: THEOREM
tolerates(cset1, cset2)

AND tolerates(cset1, cset3)
AND cset = union(cset2, cset3) 70

=> tolerates(cset1, cset)

tolerates disj(cset1, cset2): bool =
(FORALL cmp2: member(cmp2, cset2) IMPLIES tolerates cmp disj(cset1, cmp2))

tolerates stutter(cset1, cset2): bool =
(FORALL cmp2: member(cmp2, cset2) IMPLIES tolerates cmp stutter(cset1, cmp2))

tolerates cags(cset1, cset2): bool =
(FORALL cmp2: member(cmp2, cset2) IMPLIES tolerates cmp cags(cset1, cmp2)) 80

tolerates cags help: THEOREM
(FORALL cmp1, cmp2, st1, st2, ag :

(cset1(cmp1) AND hidd(cmp1)(st1, st2, ag)
=> ags(ag) OR view(cmp1)(st1, st2))

AND (cset2(cmp2) AND cags(cmp2)(ag) => NOT ags(ag)))
IMPLIES

tolerates cags(cset1, cset2)

tolerates disj stronger: THEOREM 90
tolerates disj(cset1, cset2) IMPLIES tolerates(cset1, cset2)

tolerates stutter stronger: THEOREM
tolerates stutter(cset1, cset2) IMPLIES tolerates(cset1, cset2)

tolerates cags stronger: THEOREM
tolerates cags(cset1, cset2) IMPLIES tolerates(cset1, cset2)

tolerates disj prop2: THEOREM

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

50
CDRL A020

Composition Theorem

tolerates disj(cset1, cset2) AND subset?(cset, cset2) 100
IMPLIES tolerates disj(cset1, cset)

END tolerates

The key to the proof of the composition theorem is to show:

cmp contains(compose(S2); compose(S1))

Then, theorem satis�es contains prop from Section 7 ensures that any property satisfied by
compose(S1) is also satisfied by compose(S2). Demonstrating the cmp contains relation holds
requires showing that:9

init, rely, hidd, and view for S2 are smaller than their counterparts forS1.

Since these fields of a component are intersected when components are composed, this
requirement holds wheneverS2 is bigger than S1. Intersection can only make sets smaller,
so the more sets that are intersected together, the smaller the result.

cags, wfar, and sfar for S1 are smaller than their counterparts forS2.

These fields of a component are unioned when components are composed. Thus, this
requirement, too, holds whenever S2 is bigger than S1. Union can only make sets bigger,
so the more sets that are unioned together, the bigger the result.

guar for S2 is smaller than steps for S1.

This is the hard part of the proof. We assume that tran is an element of S2’s guar and
give a chain of reasoning that demonstrates tran is an element of either guar or rely for
S1 (which means tran is an element of steps for S1).

– For each cmp1 in S1, tran is an element of either guar or hidd for cmp1.
Let cmp1 be an arbitrary element of S1. By definition, contains(S1; S2) requires that
there exists a cmp2 in S2 such that cmp contains(cmp2; cmp1). Then, the definition of
cmp contains implies:

� guar(cmp2) � steps(cmp1) = guar(cmp1) [rely(cmp1), and
� hidd(cmp2) � hidd(cmp1)

Consequently, guar(cmp2)[hidd(cmp2) � guar(cmp1)[rely(cmp1)[hidd(cmp1). Since
a component’s hidd always contains its rely, the union of terms for cmp1 reduces to
simply guar(cmp1)[hidd(cmp1). In summary, for each cmp1, there exists a cmp2 such
that guar(cmp2) [hidd(cmp2) � guar(cmp1) [hidd(cmp1).
To complete the proof of this step, it suffices to show that tran is an element of
guar(cmp2) [hidd(cmp2). This follows immediately from the definition of the guar
field of the composition.

– If tran is an element of guar for some component in S1, then tran is an element of
guar for S1. This completes the proof for this case since any element of guar is also
an element of steps.

9The proof given here follows a hierarchical structure. The top-level bullets provide a sketch of the proof of the
containment relationship. Text under a bullet provides a proof of the assertion in the bullet. Lower level bullets
indicate more detailed steps of the proof.

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 51

This step follows immediately from the definition of guar for the composite; tran is
assumed to be an element of guar for a component in S1 and the previous step of the
proof showed that tran is an element of either guar or hidd for each component in S1.

– Otherwise, tran is not an element of the guar for any component in S1. Then tran is
an element of hidd for every component in S1.
The first step of the proof showed that tran is an element of either guar or hidd of
each component in S1. So, if tran is not an element of guar for any component in S1,
it must be an element of hidd for every component in S1.

– tran is an element of rely for S1. This completes the proof since any element of rely is
an element of steps.
From the previous steps of the proof, we can assume that tran is not an element of
guar for any component in S1 but is an element of hidd for every component in S1.
Then, the definition of tolerates implies the desired result.

THEORY cmp thm aux

cmp thm aux[ST : NONEMPTY TYPE, AG: NONEMPTY TYPE]: THEORY
BEGIN

IMPORTING compose[ST, AG]

IMPORTING cprops[ST, AG]

IMPORTING contains[ST, AG]

IMPORTING tolerates[ST, AG] 10

cset, cset1, cset2: VAR setof [(comp t)]

cmp1, cmp2: VAR (comp t)

tran: VAR [ST, ST, AG]

st, st1, st2: VAR ST

ag: VAR AG 20

key composable: THEOREM
subset?(cset1, cset2) AND cset1 == emptyset AND composable(cset2)

IMPLIES composable(cset1)

key init: THEOREM
contains(cset1, cset2)

AND composable(cset2) AND member(st, init(compose(cset2)))
IMPLIES

(composable(cset1) IMPLIES member(st, init(compose(cset1)))) 30

key guar1: THEOREM
contains(cset1, cset2)

AND composable(cset2) AND member(tran, guar(compose(cset2)))
IMPLIES member(tran, gen intersection(guar or hidds for(cset1)))

key guar2: THEOREM
composable(cset2)

AND member(tran, guar(compose(cset2))) AND tolerates(cset1, cset2)
IMPLIES 40

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

52
CDRL A020

Composition Theorem

(member(tran, gen union(guars for(cset1)))
OR

(FORALL cmp1:
member(cmp1, cset1) AND member(tran, hidd(cmp1))

IMPLIES member(tran, rely(cmp1))))

key guar3: THEOREM
NOT member(tran, gen union(guars for(cset1)))

AND member(tran, gen intersection(guar or hidds for(cset1)))
IMPLIES member(tran, gen intersection(hidds for(cset1))) 50

key guar4: THEOREM
member(tran, gen intersection(hidds for(cset1)))

AND
(FORALL cmp1:

member(cmp1, cset1) AND member(tran, hidd(cmp1))
IMPLIES member(tran, rely(cmp1)))

IMPLIES member(tran, gen intersection(relys for(cset1)))

key guar: THEOREM 60
contains(cset1, cset2)

AND tolerates(cset1, cset2)
AND composable(cset2) AND member(tran, guar(compose(cset2)))

IMPLIES
(composable(cset1) IMPLIES member(tran, steps(compose(cset1))))

key rely: THEOREM
contains(cset1, cset2)

AND composable(cset2) AND member(tran, rely(compose(cset2)))
IMPLIES 70

(composable(cset1) IMPLIES member(tran, rely(compose(cset1))))

key hidd: THEOREM
contains(cset1, cset2)

AND composable(cset2) AND member(tran, hidd(compose(cset2)))
IMPLIES

(composable(cset1) IMPLIES member(tran, hidd(compose(cset1))))

key view: THEOREM
contains(cset1, cset2) 80

AND composable(cset2) AND member((st1, st2), view(compose(cset2)))
IMPLIES

(composable(cset1) IMPLIES member((st1, st2), view(compose(cset1))))

tranc: VAR TRANSITION CLASS

key wfar: THEOREM
contains(cset1, cset2)

AND composable(cset1) AND member(tranc, wfar(compose(cset1)))
IMPLIES 90

(composable(cset2) IMPLIES member(tranc, wfar(compose(cset2))))

key sfar : THEOREM
contains(cset1, cset2)

AND composable(cset1) AND member(tranc, sfar(compose(cset1)))
IMPLIES

(composable(cset2) IMPLIES member(tranc, sfar(compose(cset2))))

key cags: THEOREM
contains(cset1, cset2) 100

AND composable(cset1) AND member(ag, cags(compose(cset1)))
IMPLIES

(composable(cset2) IMPLIES member(ag, cags(compose(cset2))))

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 53

key: THEOREM
contains(cset1, cset2)

AND tolerates(cset1, cset2)
AND composable(cset2)

AND cmp2 = compose(cset2)
AND composable(cset1) AND cmp1 = compose(cset1) 110

IMPLIES cmp contains(cmp2, cmp1)

END cmp thm aux

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

54
CDRL A020

Distinction between hidd and rely

Section 11
Distinction between hidd and rely

In this section we provide an example illustrating the importance of including bothhidd and
rely rather than simply rely in the framework. For our example, we suppose that we have
two concurrently executing processes that both increment a shared variable namedvalue to
indicate when they have completed some task. For purposes of the example we are interested
in only the correct setting of value and do not model the processing associated with the task
performed by each process. We assume that the processes cannot atomically incrementvalue.
For example, while value might be a remote variable that each process can atomically read
or write, incrementing value would require atomically reading, adding 1, and writing the new
value. Doing so correctly in the face of concurrency requires some type of mutual exclusion
protocol to be used. For purposes of the example, we assume a simple locking protocol. The
variable locked? is checked by each process before accessing value. If locked? is not set, the
process sets locked? and reads the contents of value into a local variable. Next, the process
adds one to its local variable, writes the result tovalue, and clears locked?. After this point, no
further processing is performed by the process.

11.1 State

We name the processes ONE and TWO. In addition to value and locked?, the system state for
our example also contains the following variables:

locker — set to ONE or TWO depending on which process last set locked?; the value of
this variable is only meaningful when locked? is set

v — an array indexed by processes that denotes each process’s local variable; for example,
v(ONE) denotes the local variable for process ONE

pc — an array of “program counters” indexed by processes that denotes where each process
is in its processing; for example,pc(ONE) indicates where process ONE is in its processing

Possible values for the program counter are:

– READ — the initial value indicating that the process has yet to readvalue

– WRITE — the second value indicating that the process has read but not yet written
value

– DONE — the third and final value indicating the process is finished

THEORY state

state: THEORY
BEGIN

AGENT: TYPE = fONE, TWOg

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 55

STEP: TYPE = fREAD, WRITE, DONEg

STATE:
TYPE =

[# locked?: bool, 10
locker: AGENT,
value: nat,
v: [AGENT �> nat],
pc: [AGENT �> STEP] #]

END state

11.2 Component Specification

The set of initial states for a process p are those states in which:

locked? is cleared,

value is set to 0, and

pc(p) is READ

The set of agents for each component is the singleton set containing only the process.

The locked?, locker, and value variables are included in the view for each process. Only a
process’s own elements of v and pc are included in that process’s view. For example, the view
of process ONE contains v(ONE) and pc(ONE) as well as locked?, locker, and value.

The assumptions made by each process, captured by therely for each process, are:

1. The other process does not modify the first process’s elements ofv and pc.

2. If the first process has locked? set, then the second process cannot change locked?, locker,
or value.

We consider two definitions for the definition of hidd for a process. The first definition for each
is the “ideal” definition in that:

hidd captures the requirement that each process cannot modify the other process’s ele-
ments of v and pc. This is assumption 1 of the definition of rely.

If this requirement is not included inhidd, then ensuring a process’s private variables are
private can only be accomplished by constraining the second process’sguar to not modify
those variables. In this particular example, that is not possible without expanding the
view of each process to be the entire state. For example, the guar for process TWO cannot
specify that v(ONE) is not modified unless process TWO’s view is expanded to include
v(ONE). From a maintainability standpoint, including private variables of one component
in the view for a second component is undesirable. First, as new components are specified
for the system, the specifications of other components must be updated to recognize
those variables as private. Second, replacing one component with a second component
that is equivalent from the standpoint of its interface could still require changes in the
other components since the two versions of the component could include different private
variables.

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

56
CDRL A020

Distinction between hidd and rely

Aside from indicating which variables can and cannot be altered by the environment,
hidd places no restrictions on how variables are changed.

Using such a minimal definition of hidd results in a proof obligation being generated
for showing that composition is “correct”. This proof obligation requires showing that
each component’s guar when restricted by hidd of the second component contains only
transitions that are included in rely of the second component. If a more restrictive
definition is used for hidd, the proof obligation for “correct” composition can become
trivial at the expense of not being forced to consider potential inconsistencies between
the components. For example, if hidd is chosen to be the same as rely, then the proof
obligation is trivially true regardless of howguar is defined. In summary, ifhidd is defined
too strongly, errors in the guar for one component that cause it to be inconsistent with
rely for another component cannot be brought to light by the proof obligations.

THEORY common

common: THEORY
BEGIN

IMPORTING state

st, st1, st2: VAR STATE

ag, ag1: VAR AGENT

pinit(ag): setof [STATE] = 10
fst j locked?(st) = FALSE AND value(st) = 0 AND pc(st)(ag) = READg

pcags(ag): setof [AGENT] = fag1 j ag = ag1g

pview base(ag): setof [[STATE, STATE]] =
fst1, st2 j
locked?(st1) = locked?(st2)

AND locker(st1) = locker(st2)
AND value(st1) = value(st2)

AND v(st1)(ag) = v(st2)(ag) AND pc(st1)(ag) = pc(st2)(ag)g 20

pview base ref : THEOREM reflexive?(pview base(ag))

pview base sym: THEOREM symmetric?(pview base(ag))

pview base tran: THEOREM transitive?(pview base(ag))

pview base equiv: THEOREM equivalence?(pview base(ag))

pview(ag): (equivalence?[STATE]) = 30
fst1, st2 j
locked?(st1) = locked?(st2)

AND locker(st1) = locker(st2)
AND value(st1) = value(st2)

AND v(st1)(ag) = v(st2)(ag) AND pc(st1)(ag) = pc(st2)(ag)g

phidd(ag): setof [[STATE, STATE, AGENT]] =
fst1, st2, ag1 j
ag1 == ag AND v(st1)(ag) = v(st2)(ag) AND pc(st1)(ag) = pc(st2)(ag)g

40
prely(ag): setof [[STATE, STATE, AGENT]] =
fst1, st2, ag1 j

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 57

ag1 == ag
AND phidd(ag)(st1, st2, ag1)

AND
(locked?(st1) AND locker(st1) = ag

IMPLIES locked?(st2) = locked?(st1)
AND locker(st2) = locker(st1) AND value(st2) = value(st1))g

ST WITNESS: STATE = 50
(# locked? := FALSE,

locker := ONE,
value := 0,
v := (LAMBDA ag: 0),
pc := (LAMBDA ag: READ) #)

pinit thm: THEOREM pinit(ag) == emptyset

END common
60

Our first definition for hidd is simply that a process assumes that its private variables are not
modified by the other process. Our second definition for hidd is as being equivalent to rely
defined above. Below, we will show that the second definition of hidd allows correct operation
of the composite to be shown even if a crucial precondition ofguar is omitted.

The correct definition of guar for a process p should be that it allows the following transitions:

stuttering transitions that do not change the view for the process,

transitions in which either:

– initially pc(p) = READ and locked? is clear, and

– in the new state locked? is set, locker = p, value is unchanged, v(p) = value, and pc(p)
= WRITE

or

– initially pc(p) = WRITE, locked? is set, and locker = p and

– in the new state locked? is clear, locker = p, value = v(p)+1, and pc(p) = DONE

Note that once pc(p) = DONE only stuttering transitions are permitted.

THEORY ex

ex: THEORY
BEGIN

IMPORTING state

IMPORTING common

comp: LIBRARY = "=home=cmt=rev=dtos=docs=compose="

IMPORTING comp@cmp thm[STATE, AGENT] 10

IMPORTING comp@compose idempotent[STATE, AGENT]

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

58
CDRL A020

Distinction between hidd and rely

IMPORTING comp@preds[STATE, AGENT]

ag, ag1: VAR AGENT

st, st1, st2: VAR STATE

pguar(ag): setof [[STATE, STATE, AGENT]] = 20
fst1, st2, ag1 j
ag1 = ag

AND
(pview(ag)(st1, st2)

OR
(pc(st1)(ag) = READ

AND NOT locked?(st1)
AND locked?(st2)

AND locker(st2) = ag
AND value(st2) = value(st1) 30

AND v(st2)(ag) = value(st1) AND pc(st2)(ag) = WRITE)
OR

(pc(st1)(ag) = WRITE
AND locked?(st1)

AND locker(st1) = ag
AND NOT locked?(st2)

AND locker(st2) = ag
AND value(st2) = v(st1)(ag) + 1

AND pc(st2)(ag) = DONE))g
40

mk cmp(ag): (comp t) =
(# init := pinit(ag),

cags := pcags(ag),
view := pview(ag),
hidd := phidd(ag),
rely := prely(ag),
guar := pguar(ag),
wfar := emptyset,
sfar := emptyset #)

50
END ex

Our second definition of guar for a process p differs from that above only in that locked? is
not required to be clear for a transition to be made from pc(p) = READ to pc(p) = WRITE.
Intuitively, this should result in the composite operating incorrectly since even if one process
currently has locked? set, the other process can set locked? and concurrently access value.
However, as we will discuss next, the second definition of hidd is strong enough to allow the
composite to be proved correct even with the error in the second definition ofguar. This is our
illustration that errors in the component of theguar of a component can be masked if hidd for
another component is specified too strongly.

THEORY ex1

ex: THEORY
BEGIN

IMPORTING state

IMPORTING common

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 59

comp: LIBRARY = "=home=cmt=rev=dtos=docs=compose="

IMPORTING comp@cmp thm[STATE, AGENT] 10

IMPORTING comp@compose idempotent[STATE, AGENT]

IMPORTING comp@preds[STATE, AGENT]

ag, ag1: VAR AGENT

st, st1, st2: VAR STATE

pguar(ag): setof [[STATE, STATE, AGENT]] = 20
fst1, st2, ag1 j
ag1 = ag

AND
(pview(ag)(st1, st2)

OR
(pc(st1)(ag) = READ

AND locked?(st2)
AND locker(st2) = ag

AND value(st2) = value(st1)
AND v(st2)(ag) = value(st1) AND pc(st2)(ag) = WRITE) 30

OR
(pc(st1)(ag) = WRITE

AND locked?(st1)
AND locker(st1) = ag

AND NOT locked?(st2)
AND locker(st2) = ag

AND value(st2) = v(st1)(ag) + 1
AND pc(st2)(ag) = DONE))g

mk cmp(ag): (comp t) = 40
(# init := pinit(ag),

cags := pcags(ag),
view := pview(ag),
hidd := prely(ag),
rely := prely(ag),
guar := pguar(ag),
wfar := emptyset,
sfar := emptyset #)

END ex 50

11.3 Correctness

Our goal is to show that the composite is such that:

In any state in which pc(ONE) and pc(TWO) are both DONE, value is 2.

Since each process individually executes code that incrementsvalue by 1 and value is initially
0, this requires that each process is guaranteed exclusive access tovalue while it executes.

We consider two compositions; the first has the components defined using the first definitions
for hidd and guar while the second composition uses the second set of definitions. The first
composition can be seen to satisfy the above property by noting that each process individually

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

60
CDRL A020

Distinction between hidd and rely

increments value and the use of locked? prevents the scenario in which both processes concur-
rently read a value of 0 and then set the new value to 1. Since both the read transition and
the write transition can update one of locked?, locker, or value, the definition of rely causes a
proof obligation to be generated that neither transition can occur whenlocked? is set by the
other process. This proof obligation is trivial to discharge since both transitions explicitly check
locked?.

Now, consider the second set of definitions. Since the specification of the read transition does
not check locked?, it seems that a process can successfully execute the read transition even if
the other process has locked? set. Although this scenario would allow value to incorrectly end
up being set to 1 rather than 2, it is possible to show this scenario cannot occur in the second
composition since the guar for the composite is obtained by intersecting one component’sguar
with the other component’s hidd. With the second set of definitions, hidd is the same as rely.
Suppose that process ONE currently has locked? set and consider whether process TWO can
execute the read transition. Since guar in the second set of definitions does not require the
read transition to check locked?, the read transition from the given state is inguar for process
TWO. However, the read transition would change locker to TWO violating the requirement in
rely for process ONE that process TWO not be able to change locker when process ONE has
locked? set. In summary, the definition of guar for the composite is such that the composite is
prevented from reaching the bad state in which both processes have simultaneously setlocked?
even if guar is defined incorrectly as long as hidd is defined restrictively enough. In other
words, the constraints inhidd represent scoping assumptions about variables and the stronger
these assumptions are the more likely it is that the analysis will fail to detect an inconsistency
between the guar for one component and the rely for another component.

THEORY thms

thms: THEORY
BEGIN

IMPORTING ex

IMPORTING common2

st, st1, st2: VAR STATE

ag: VAR AGENT 10

cmp12 rr (st): bool =
NOT locked?(st)

AND value(st) = 0 AND pc(st)(ONE) = READ AND pc(st)(TWO) = READ

cmp12 rw(st): bool =
locked?(st)

AND locker(st) = TWO
AND value(st) = 0

AND v(st)(TWO) = 0 AND pc(st)(ONE) = READ AND pc(st)(TWO) = WRITE 20

cmp12 rd(st): bool =
NOT locked?(st)

AND value(st) = 1 AND pc(st)(ONE) = READ AND pc(st)(TWO) = DONE

cmp12 wr(st): bool =
locked?(st)

AND locker(st) = ONE
AND value(st) = 0

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 61

AND v(st)(ONE) = 0 AND pc(st)(ONE) = WRITE AND pc(st)(TWO) = READ 30

cmp12 wd(st): bool =
locked?(st)

AND locker(st) = ONE
AND value(st) = 1

AND v(st)(ONE) = 1 AND pc(st)(ONE) = WRITE AND pc(st)(TWO) = DONE

cmp12 dr(st): bool =
NOT locked?(st)

AND value(st) = 1 AND pc(st)(ONE) = DONE AND pc(st)(TWO) = READ 40

cmp12 dw(st): bool =
locked?(st)

AND locker(st) = TWO
AND value(st) = 1

AND v(st)(TWO) = 1 AND pc(st)(ONE) = DONE AND pc(st)(TWO) = WRITE

cmp12 dd(st): bool =
NOT locked?(st)

AND value(st) = 2 AND pc(st)(ONE) = DONE AND pc(st)(TWO) = DONE 50

cmp12 inv: STATE PRED =
(LAMBDA st:

cmp12 rr (st)
OR cmp12 rw(st)

OR cmp12 rd(st)
OR cmp12 wr(st)

OR cmp12 wd(st)
OR cmp12 dr(st) OR cmp12 dw(st) OR cmp12 dd(st))

60
steps thm: THEOREM

member((st1, st2, ag), steps(cmp12))
=

((member((st1, st2, ag), guar(cmp1))
AND member((st1, st2, ag), hidd(cmp2)))

OR
(member((st1, st2, ag), guar(cmp2))

AND member((st1, st2, ag), hidd(cmp1)))
OR

(member((st1, st2, ag), rely(cmp1)) 70
AND member((st1, st2, ag), rely(cmp2))))

rr step: THEOREM
member((st1, st2, ag), steps(cmp12)) AND cmp12 rr (st1)

IMPLIES (cmp12 rw(st2) OR cmp12 wr(st2) OR cmp12 rr (st2))

rw step: THEOREM
member((st1, st2, ag), steps(cmp12)) AND cmp12 rw(st1)

IMPLIES (cmp12 rd(st2) OR cmp12 rw(st2))
80

rd step: THEOREM
member((st1, st2, ag), steps(cmp12)) AND cmp12 rd(st1)

IMPLIES (cmp12 wd(st2) OR cmp12 rd(st2))

wr step: THEOREM
member((st1, st2, ag), steps(cmp12)) AND cmp12 wr(st1)

IMPLIES (cmp12 dr(st2) OR cmp12 wr(st2))

wd step: THEOREM
member((st1, st2, ag), steps(cmp12)) AND cmp12 wd(st1) 90

IMPLIES (cmp12 dd(st2) OR cmp12 wd(st2))

dr step: THEOREM

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

62
CDRL A020

Distinction between hidd and rely

member((st1, st2, ag), steps(cmp12)) AND cmp12 dr(st1)
IMPLIES (cmp12 dw(st2) OR cmp12 dr(st2))

dw step: THEOREM
member((st1, st2, ag), steps(cmp12)) AND cmp12 dw(st1)

IMPLIES (cmp12 dd(st2) OR cmp12 dw(st2))
100

dd step: THEOREM
member((st1, st2, ag), steps(cmp12)) AND cmp12 dd(st1)

IMPLIES cmp12 dd(st2)

cmp12 init: THEOREM init satisfies(cmp12, cmp12 inv)

cmp12 steps: THEOREM steps satisfy(cmp12, stable(cmp12 inv))

cmp12 thm: THEOREM satisfies(cmp12, alwayss(cmp12 inv))
110

final: STATE PRED =
(LAMBDA st:

pc(st)(ONE) = DONE AND pc(st)(TWO) = DONE IMPLIES value(st) = 2)

final thm: THEOREM satisfies(cmp12, alwayss(final))

END thms

11.4 Summary

The fact that inconsistencies might not be detected in a specification could be viewed as sug-
gesting that the framework is flawed. Instead, we view it as simply being a trade-off between
the power of the framework and soundness. If an analyst chooses to do so, he can definehidd
to make no assumptions at all. Then, each component’s guar must be defined to respect the
rely of other components for the proof obligations to be discharged. At the other extreme, if
an analyst does not want to be bothered with proof obligations, he can choosehidd to be the
same as rely. By doing so, the analyst is taking the risk of inconsistencies betweenguar and
rely. As a compromise, the analyst can choose to pick hidd strongly enough to capture which
variables are accessible by each component but weakly enough to cause proof obligations to be
generated about how those variables are modified. We feel this provides a good compromise
by allowing maintainable specifications to be written that still cause meaningful proof obliga-
tions to be generated. Although it is possible that inconsistencies could remain betweenguar
and rely if one component’s guar modifies a variable specified as being inaccessible by another
component’s hidd, we feel it is relatively simple to avoid such inconsistencies. For example, it
is a relatively simple matter to note that process TWO does not reference a private variable of
process ONE (such as v(ONE)). In contrast, it is more difficult to notice a “semantic” error such
as the omission of the check of locked? in the read transition.

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 63

Section 12
Correctness of Definition

It is interesting to note that the composition theorem would hold for many other definitions
of composition. In particular, the theorem holds for any definition of composition such that
the set of behaviors for the composite is a subset of the intersection of the behaviors for the
components. Consequently, the composition theorem by itself is somewhat meaningless. To be
of use, the definition of composition must satisfy an intuitive notion of composition as well as
satisfy the composition theorem.

We propose the following as an intuitive requirement on composition:

The composition of a collection of components is meaningful if the behaviors of the
composite are exactly those behaviors that are acceptable to each of the components.

Another way of stating this requirement is that composition is essentially “conjunction” of
components in that the behaviors of the composite are those that are acceptable to the first
component, and the second component, …, and the last component. In the Abadi-Lamport
work, composition is actually defined simply as conjunction. Our approach here is slightly
different in that we define composition in terms of structure we have imposed on components
and then “test” whether a given composition of components is meaningful by checking whether
the result is simply conjunction. Rather than directly testing whether a given composition is
equivalent to conjunction, we use the following theorem:

If each component in a collection of components satisfies the environmental assump-
tions of each of the other components, then the composition of the components is
meaningful.

Here, the meaning of “satisfies the environmental assumptions” is as it was in Section 10. The
proof consists of the following steps:

Each behavior acceptable to the composite is acceptable to each individual component.

This follows from the composition theorem using the set containing only the individual
component for S1 and the entire collection of components as S2. Then, the composition
theorem ensures that any property of the component is a property of the composite. From
the definition of a component satisfying a property, we can conclude that the behaviors
accepted by the composite are a subset of those accepted by the component.

Each behavior acceptable to each individual component is acceptable to the composite.

To prove this step, let b be a behavior that is acceptable to each individual component and
consider an arbitrary step, tran, in b. By definition, tran is an element of either guar or
rely for each component.

– If tran is an element of rely for each component, then tran is an element of rely for
the composite and consequently in steps for the composite.

– Otherwise, tran is an element of guar for a non-zero number of components and an
element of rely for the remaining components. Since any component’srely is a subset

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

64
CDRL A020

Correctness of Definition

of its hidd, tran is an element of guar for at least one of the components and is an
element of either guar or hidd for every component. Consequently, tran is an element
of guar for the composite by definition.

– Since b is accepted by each component, sts(b)(0) is in each component’s init. By the
definition of composition, sts(b)(0) is in the composite’s init.

– By definition, b is accepted by the composite since it starts with a state in the
composite’s init and contains only transitions in the composite’ssteps.

THEORY compose right

compose right[ST : NONEMPTY TYPE, AG: NONEMPTY TYPE]: THEORY
BEGIN

IMPORTING cmp thm[ST,AG]

IMPORTING compose idempotent[ST,AG]

cset: VAR (composable[ST,AG])

b: VAR trace t[ST,AG] 10

cmp: VAR (comp t)

n: VAR nat

cr init: THEOREM (forall cmp: member(cmp,cset) implies
member(b,prop for(cmp))) implies initial okay(compose(cset),b)

cr rely: THEOREM (forall cmp: member(cmp,cset) implies
member(b,prop for(cmp)) and 20

member((sts(b)(n),sts(b)(n+1),ags(b)(n)),rely(cmp))) implies
member((sts(b)(n),sts(b)(n+1),ags(b)(n)),steps(compose(cset)))

cr guar: THEOREM (forall cmp: member(cmp,cset) implies
member(b,prop for(cmp))) and

(exists cmp: member(cmp,cset) and
not member((sts(b)(n),sts(b)(n+1),ags(b)(n)),rely(cmp))) implies

member((sts(b)(n),sts(b)(n+1),ags(b)(n)),steps(compose(cset)))

cr steps: THEOREM (forall cmp: member(cmp,cset) implies 30
member(b,prop for(cmp))) implies

steps okay(compose(cset),b)

cr wfar: THEOREM (forall cmp: member(cmp,cset) implies
member(b,prop for(cmp))) implies

is wfar(compose(cset),b)

cr sfar : THEOREM (forall cmp: member(cmp,cset) implies
member(b,prop for(cmp))) implies 40

is sfar(compose(cset),b)

cr aux: THEOREM (forall cmp: member(cmp,cset) implies
member(b,prop for(cmp))) implies

member(b,prop for(compose(cset)))

compose right: THEOREM (forall cmp: member(cmp,cset) implies

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 65

tolerates(singleton(cmp),cset)) implies
((forall cmp: member(cmp,cset) implies 50

member(b,prop for(cmp))) iff
member(b,prop for(compose(cset))))

END compose right

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

66
CDRL A020

Proving Liveness

Section 13
Proving Liveness

As discussed in Section 5, our definition of a component includes the notion of fairness assump-
tions for use in proving liveness properties. While the inclusion of these assumptions makes it
possible to prove liveness properties, in practice it is useful to have higher level proof rules for
liveness rather than doing proofs explicitly in terms of the fairness assumptions.

One starting point for developing such proof rules is the Abadi-Lamport work. However, we
chose to base our work on Chandy and Misra’s UNITY work [2] instead. We were aware of
UNITY from work we had previously done outside the context of DTOS and did some experi-
mentation with incorporating the UNITY work into the DTOS work on this other project. Given
that we had already done this work, the easiest approach for us to use on DTOS was to simply
finish integrating the UNITY work into the DTOS framework. Originally, we also believed
that the UNITY proof rules were somewhat simpler than the Abadi-Lamport rules. However,
further study of the Abadi-Lamport rules shows that the apparent additional complexity is due
to:

The UNITY proof rules are presented better. In particular, additional concepts are defined
that simplify the final statement of the proof rules.

The Abadi-Lamport proof rules address proving liveness properties of refinements. The
UNITY proof rules we incorporated into the DTOS framework do not address refinement
at all.

In summary, the UNITY work described here is almost identical to a subset of the Abadi-
Lamport work. This means that it is consistent with the Abadi-Lamport work, but not yet
complete. The remaining work to be done is in the area of refinement of systems which we have
generally ignored throughout this report.

In general, a liveness property asserts that something eventually happens. Here, we consider
only state predicates, so the liveness properties assert that certain classes of states are even-
tually reached. For example, we might assert that once a state is reached in which a kernel
service has been requested, then eventually a state is reached in which the service has been
provided.

The fairness assumptions ensure that as long as certain transition classes are enabled suffi-
ciently often, then a transition from one of those classes will eventually occur. Suppose that
q is a property that is desired to eventually hold and tranc and p are such that, whenever p
holds in a state, a transition from transition classtranc will result in q holding. Then, q can be
shown to eventually hold as long as a point is reached wherep is repeatedly true for successive
states, tranc is enabled sufficiently often, and a fairness assumption is made about tranc. The
key is that once p becomes true, it remains true until tranc occurs and causes q to become true.

Given state predicates sp1 and sp2, unless pred(sp1; sp2) is defined to be the action predicate
denoting that sp1 or sp2 holds in the final state whenever sp1 holds in the initial state and sp2
does not hold in the initial state. Thus,unless pred “recognizes” all transitions that either cause
sp1 to lead to sp2 or preserve sp1’s holding. In other words, the recognized transitions are those
that keep sp1 “stuck” on until sp2 becomes true.

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 67

We define unless(cmp; sp1; sp2) to denote that every transition in steps for cmp satisfies
unless pred(sp1; sp2). This function returns true exactly when cmp ’s allowable steps keep sp1
“stuck” on until sp2 becomes true.

UNITY defines ensures(cmp; sp1; sp2) to denote that unless(cmp; sp1; sp2) holds and there exists
a transition class, tranc, that causes sp2 to be true in the final state whenever sp1 is true and
sp2 is false in the initial state. Our definition of ensures must be slightly different because our
fairness assumptions are of a different nature than UNITY’s. In UNITY, transition classes
are considered to always be enabled and the only fairness assumption is that every transition
happens an infinite number of times. Transitions that are intended to occur only a finite
number of times are modeled as being no-ops whenever their enabling conditions do not hold.
Even though they “occur” infinitely many times more than intended, the extra occurrences are
no-ops that are not of concern. Our framework provides a notion of fairness for only those
transition classes identified in sfar and wfar . Consequently, our definition of ensures must
require tranc to be an element of either wfar or sfar . We actually define two versions of ensures:

wensuresb(cmp; sp1; sp2) corresponds to the UNITY notion of ensures with tranc being an
element of wfar(cmp)

ensuresb(cmp; sp1; sp2) corresponds to the UNITY notion of ensures with tranc being an
element of sfar(cmp)10

We define leads to(cmp; sp1; sp2) to denote that cmp is such that whenever sp1 holds in some
state, then sp2 holds in a later state. In other words, the function returns true whenevercmp
satisfies the property “whenever sp1 holds sp2 will eventually hold.”11 The following properties
of leads to are straightforward to prove:

(leads to1w) wensuresb(cmp; sp1 ^ enabled sp(tranc); sp2; tranc))
leads to(cmp; sp1 ^ enabled sp(tranc); sp2)

Here, enabled sp(tranc) is the state predicate indicating whether tranc is enabled in a
given state. This rule allows liveness properties to be derived from weak fairness as-
sumptions by showing that wensuresb holds. Since wensuresb requires consideration of
only transitions in isolation, this allows the proof of a temporal property (leads to) to be
reduced to analysis of individual transitions. The proof of the rule is as follows:

– wensuresb requires that once sp1 holds and tranc is enabled, sp1 and tranc being
enabled continues to hold until sp2 holds.

– So, sp2 eventually holds unless either sp1 and tranc being enabled never hold simul-
taneously or a point is reached from which they hold continuously.

– The former case can be ignored since the goal is to show that ifsp1 and tranc being
enabled both hold at some point, then eventually sp2 holds.

– In the latter case, the weak fairness assumption on tranc ensures tranc eventually
occurs. Then, wensuresb requires that it cause sp2 to become true.

(leads to1) ensuresb(cmp; sp1; sp2; tranc) ^ leads to(cmp; sp1; enabled sp(tranc)))
leads to(cmp; sp1; sp2).

This is the proof rule for proving liveness properties from strong fairness assumptions.
Here it is necessary to show that sp1 causes tranc to eventually be enabled in addition to
proving ensuresb holds. The proof of the rule is as follows:

10A better name for this function would be sensuresb.
11This would be formalized as2(sp1) 3sp2) in temporal logic.

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

68
CDRL A020

Proving Liveness

– Suppose sp1 is true at some point. Then we must show sp2 eventually holds.

– Assume sp2 never holds at or later than the point sp1 holds.

– ensuresb requires sp1 hold from that point on.

– The leads to assumption means tranc cannot be stuck disabled because for each of
the infinite number of states in the tail at which sp1 holds, tranc must be enabled at
that point or later.

– So, strong fairness implies tranc occurs infinitely often.

– ensuresb implies sp2 holds infinitely often.

– So, sp2 eventually holds after sp1.

(leads to2) (sp1) sp2) ^ leads to(cmp; sp2; sp)) leads to(cmp; sp1; sp)

Proof: If sp1 holds at any point, then sp2 is assumed to hold then, too. It is also assumed
that whenever sp2 holds, then sp eventually holds.

(leads to3) (sp1) sp2) ^ leads to(cmp; sp; sp1)) leads to(cmp; sp; sp2)

Proof: Similar to that for leads to2.

(leads to or) leads to(cmp; sp1; sp)^ leads to(cmp; sp2; sp)) leads to(cmp; sp1 _ sp2; sp)

Proof: If sp1 and sp2 both individually ensure that sp eventually holds, then sp is guaran-
teed to eventually hold if one of sp1 or sp2 holds.

(leads to tran) leads to(cmp; sp; sp1) ^ leads to(cmp; sp1; sp2)) leads to(cmp; sp; sp2)

Proof: sp guarantees thatsp1 eventually occurs which itself guarantees thatsp2 eventually
occurs.

(leads to true) If true leads to sp holding, then sp holds infinitely often.

Proof: Since true always holds, the assumption is that it is always true thatsp holds at a
later time. Thus, sp must hold an infinite number of times.

(leads to stable) If true leads to sp holding and every step allowed by cmp holds sp stable,
then eventually sp holds continuously.

Proof: Since true always holds, sp must hold eventually. Once it holds, it must continue
to hold forever since the steps allowed by cmp hold it stable.

(leads to invariant) If sp2 always holds and sp1 leads to sp, then sp1 ^ sp2 leads to sp, sp1
leads to sp ^ sp2, and sp1 ^ sp2 leads to sp ^ sp2.

Proof: Consider the first claim. Suppose sp1^ sp2 holds at some point. The goal is to show
that sp eventually holds. Whenever sp1 ^ sp2 holds, then sp1 obviously holds. Since sp1
leads to sp, sp must eventually hold. As a more complicated example, consider the second
claim. Suppose sp1 holds at some point. Then, the goal is to show that sp ^ sp2 holds at
a later point. By assumption, sp1 leads to sp. So, sp holds at a later point. Since sp2 is
assumed to always hold, sp ^ sp2 holds at the later point. The proof of the third claim is
similar.

(leads to invariant1) If sp2 always holds, and sp1 leads to sp, and sp3 and sp2 together
imply sp1, then sp3 leads to sp.

Proof: Suppose sp3 holds at some point. The goal is to show that sp holds at a later point.
Since sp2 is assumed to always hold, it holds at the point sp3 holds. Then, the assumption
is that sp1 holds, too. Finally, the assumption that sp1 leads to sp guarantees that sp
becomes true at a later point.

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 69

The above rules greatly simplify the proofs of liveness properties. Note, however, that liveness
properties are still fairly difficult to prove because:

To get from the fairness assumptions to a leads to relation, it is necessary to prove an
ensures relation. This in turn requires proving anunless relation which requires consid-
eration of every class of transitions. Thus, each transformation from fairness assumption
to leads to requires consideration of all of the different types of operations in the system.
While the proofs are straightforward, they are tedious and time consuming.

This issue seems to be an inherent difficulty. Often when a system fails to satisfy a
desired liveness property, investigation reveals that concurrently operating processes did
not follow the proper protocol. As a specific example, an implementation error might
result in a lock request made by a process being discarded. If the system requires a
resource to be locked before providing service, then the loss of the lock request could
result in service not being provided. If p is thought of as “the resource is locked” and
q is thought of as “service is provided”, then the intended design of the system is that
unless pred(p; q) hold. However, the transition that causes the lock request to be lost
violates this predicate. Ensuring that this does not occur requires considering all of the
transitions to see that they keep p true until q becomes true.

In many cases, the desired liveness property cannot be jumped to immediately. Instead, a
divide-and-conquer approach must be used in which it is shown thatsp1 leads to sp2 which
leads to sp3 …Since each of the intermediate steps involves proving a leads to relation
(which was argued to be non-trivial in the previous bullet), the proof of the overall liveness
property desired is non-trivial, too.

THEORY unity

unity[ST : NONEMPTY TYPE, AG: NONEMPTY TYPE]: THEORY
BEGIN

IMPORTING preds[ST, AG]

sp, sp1, sp2, sp3: VAR STATE PRED

cmp: VAR (comp t)

st, st1, st2: VAR ST 10

ag: VAR AG

tranc: VAR TRANSITION CLASS

t: VAR trace t

p1, p2: VAR prop t

pimplies(p1, p2): prop t = (LAMBDA t: member(t, p1) IMPLIES member(t, p2)) 20

por(p1, p2): prop t = (LAMBDA t: member(t, p1) OR member(t, p2))

negate sp(sp): STATE PRED = (LAMBDA st: NOT sp(st))

unless pred(sp1, sp2): ACTION PRED =
(LAMBDA st1, st2, ag:

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

70
CDRL A020

Proving Liveness

sand(sp1, negate sp(sp2))(st1) IMPLIES sor(sp1, sp2)(st2))

unless(cmp, sp1, sp2): bool = satisfies(cmp, alwaysa(unless pred(sp1, sp2))) 30

unless help: THEOREM
steps satisfy(cmp, unless pred(sp1, sp2)) IMPLIES unless(cmp, sp1, sp2)

i, j, k, l, m: VAR nat

ip: VAR [nat �> bool]

ip help: THEOREM
ip(m) 40

AND
(FORALL i : (FORALL j : m <= j AND j < i IMPLIES ip(j)) IMPLIES ip(i))

IMPLIES (FORALL k: (FORALL l : m <= l AND l <= k IMPLIES ip(l)))

ip help1: THEOREM
ip(m)

AND
(FORALL i : (FORALL j : m <= j AND j < i IMPLIES ip(j)) IMPLIES ip(i))

IMPLIES (FORALL k: m <= k IMPLIES ip(k))
50

unless prop1: THEOREM
unless(cmp, sp1, sp2)

IMPLIES
satisfies(cmp,

always(pimplies(stbp(sp1),
por(alwayss(sp1),

eventuallys(sp2)))))

unless prop2: THEOREM
unless(cmp, sp1, sp2) AND prop for(cmp)(t) AND sp1(sts(t)(i)) 60

IMPLIES
((FORALL j : sp1(sts(t)(i + j)))

OR
(EXISTS k:

sp2(sts(t)(i + k))
AND (FORALL l : l < k IMPLIES sp1(sts(t)(i + l)))))

ensuresb(cmp, sp1, sp2, tranc): bool =
unless(cmp, sp1, sp2)

AND member(tranc, sfar(cmp)) 70
AND

(FORALL st1, st2, ag:
(member((st1, st2, ag), tranc) AND sp1(st1) AND NOT sp2(st1))

IMPLIES sp2(st2))

ensures(cmp, sp1, sp2): bool =
unless(cmp, sp1, sp2) AND (EXISTS tranc: ensuresb(cmp, sp1, sp2, tranc))

wensuresb(cmp, sp1, sp2, tranc): bool =
unless(cmp, sp1, sp2) 80

AND member(tranc, wfar(cmp))
AND

(FORALL st1, st2, ag:
(member((st1, st2, ag), tranc) AND sp1(st1) AND NOT sp2(st1))

IMPLIES sp2(st2))

wensures(cmp, sp1, sp2): bool =
unless(cmp, sp1, sp2) AND (EXISTS tranc: wensuresb(cmp, sp1, sp2, tranc))

enabled sp(tranc): STATE PRED = (LAMBDA st: enabled(tranc, st)) 90

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 71

leads to(cmp, sp1, sp2): bool =
satisfies(cmp, always(pimplies(stbp(sp1), eventuallys(sp2))))

leads to1: THEOREM
ensuresb(cmp, sp1, sp2, tranc)

AND leads to(cmp, sp1, enabled sp(tranc))
IMPLIES leads to(cmp, sp1, sp2)

leads to1w: THEOREM 100
wensuresb(cmp, sand(enabled sp(tranc), sp1), sp2, tranc)

IMPLIES leads to(cmp, sand(enabled sp(tranc), sp1), sp2)

leads to 2: THEOREM
(FORALL st: simplies(sp1, sp2)(st)) AND leads to(cmp, sp2, sp)

IMPLIES leads to(cmp, sp1, sp)

leads to 3: THEOREM
(FORALL st: simplies(sp1, sp2)(st)) AND leads to(cmp, sp, sp1)

IMPLIES leads to(cmp, sp, sp2) 110

leads to or: THEOREM
leads to(cmp, sp1, sp) AND leads to(cmp, sp2, sp)

IMPLIES leads to(cmp, sor(sp1, sp2), sp)

leads to tran: THEOREM
leads to(cmp, sp, sp1) AND leads to(cmp, sp1, sp2)

IMPLIES leads to(cmp, sp, sp2)

true sp(st): bool = TRUE 120

leads to true: THEOREM
leads to(cmp, true sp, sp)

IMPLIES satisfies(cmp, always(eventuallys(sp)))

leads to stable: THEOREM
leads to(cmp, true sp, sp) AND steps satisfy(cmp, stable(sp))

IMPLIES satisfies(cmp, eventually(alwayss(sp)))

leads to invariant: THEOREM 130
leads to(cmp, sp1, sp) AND satisfies(cmp, alwayss(sp2))

IMPLIES leads to(cmp, sand(sp1, sp2), sp)
AND leads to(cmp, sp1, sand(sp, sp2))

AND leads to(cmp, sand(sp1, sp2), sand(sp, sp2))

leads to invariant1: THEOREM
leads to(cmp, sp1, sp) AND satisfies(cmp, alwayss(sp2))

IMPLIES
((FORALL st: simplies(sand(sp3, sp2), sp1)(st))

IMPLIES leads to(cmp, sp3, sp)) 140

END unity

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

72
CDRL A020

State and Agent Translation

Section 14
State and Agent Translation

It is typically the case that different components have different states and agents. This results
in the properties defined for the components being type incompatible. We address this using
translator functions that map elements of one type to another type. Such a function must
map each source element to a non-empty set of target elements in such a way that no two sets
of target elements overlap. We term any such function a weak translator. If in addition, a
function maps some element of the source type to each element of the target type, then we term
the function a translator.

Given a set s and a translator (or weak translator) t , we use tmap(t,s) to denote the set of
elements to which t maps some element of s. In other words, tmap “maps” the translation t

across the set s. The function tmap distributes over set union and intersection.

We allow the translators to return a set of values rather than a single value to address different
levels of abstraction. For example, a state might be mapped to a more detailed representation
in which some parts of the state are unconstrained by the components of the more abstract
state. Then, multiple more detailed states might correspond to each of the more abstract states.
With regard to agents, what appears to be a single agent at a certain level of abstraction might
be seen to be multiple agents at a lower level of abstraction. For example, the more abstract
model might view agents as being processes while a more detailed model might view agents as
being threads executing within the processes.

For convenience, we define:

trone(t ; x) to be an arbitrary element in the set to whicht maps x . This function is defined
for both translators and weak translators.

trinv(t ; y) to be an x (in fact, the unique x) that t maps to y . This function is defined only
for translators since in the case of weak translators there could be certainy values with
no corresponding x values.

Theorem inv trans prop demonstrates that if an element bt of base translator t is the “inverse”
of a projection function from Y to X that covers X , then bt is in translator t (and hence
weak translator t).

THEORY translators

translators[X: NONEMPTY TYPE, Y : NONEMPTY TYPE]: THEORY
BEGIN

base translator t: TYPE = [X �> setof [Y]]

inv translator t: TYPE = [Y �> X]

bt: VAR base translator t

it: VAR inv translator t 10

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 73

x, x1, x2: VAR X

y, y1, y2: VAR Y

weak translator t(bt): bool =
(FORALL x: bt(x) == emptyset)

AND
(FORALL x1, x2: x1 == x2 IMPLIES intersection(bt(x1), bt(x2)) = emptyset)

20
t: VAR (weak translator t)

translator t(t): bool = (FORALL y: (EXISTS x: member(y, t(x))))

t1: VAR (translator t)

r, s: VAR setof [X]

tmap(bt, s): setof [Y] = (LAMBDA y: (EXISTS x: member(x, s) AND
member(y, bt(x)))) 30

s1: VAR setof [Y]

help1: THEOREM s1 == emptyset IFF (EXISTS y: s1(y))

help2: THEOREM s == emptyset IMPLIES (EXISTS x: s(x))

help3: THEOREM t(x1)(y) AND t(x2)(y) IMPLIES x1 = x2

help4: THEOREM (EXISTS y: t(x)(y)) 40

help5: THEOREM (EXISTS x: t1(x)(y))

tmap union: THEOREM tmap(t, union(r, s)) = union(tmap(t, r), tmap(t, s))

tmap intersection: THEOREM
tmap(t, intersection(r, s)) = intersection(tmap(t, r), tmap(t, s))

trone(t, x): Y = choose(t(x))
50

trone def : THEOREM t(x)(trone(t, x))

trinv(t1, y): X = choose(LAMBDA x: member(y,t1(x)))

trinv def : THEOREM t1(trinv(t1, y))(y)

inv trans prop: THEOREM
(FORALL x:

bt(x) = fy j it(y) = xg
AND (EXISTS y: it(y) = x)) 60

=> weak translator t(bt) AND translator t(bt)

END translators

Theory id tran defines the identity translator idt . The expression idt(x) denotes fxg.

THEORY idtran

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

74
CDRL A020

State and Agent Translation

idtran[X: NONEMPTY TYPE]: THEORY
BEGIN

IMPORTING translators[X,X]

x, y : VAR X

idt: (translator t) =
(LAMBDA x: fy j y = xg)

10
END idtran

We use the expression brmap(t ; br) to denote the relation on the target elements to which t

maps a relation br . In other words, two elements y1 and y2 are related in the resulting relation
exactly when there exist x1 and x2 such that:

t maps x1 and x2 to, respectively, y1 and y2, and

x1 and x2 are related by br

If v is an equivalence relation, the expression vmap(t ; v) denotes the equivalence relation on
the target elements to which t maps v . The function vmap is simply a restriction of brmap to
equivalence relations. The brmap function distributes over set union and intersection, and the
vmap function distributes over set intersection.

Note that we only define brmap and vmap for translators. If t is a weak translator, then
vmap(t ; v) is not necessarily an equivalence relation even if v is. Requiring t be a translator,
however, is sufficient to ensure that vmap(t ; v) is an equivalence relation whenever v is.

THEORY translator views

translator views[X: NONEMPTY TYPE, Y : NONEMPTY TYPE]: THEORY
BEGIN

IMPORTING translators[X, Y]

IMPORTING views[X]

IMPORTING views[Y]

t: VAR (translator t) 10

v, v1, v2: VAR (VIEWS[X])

vy: VAR (VIEWS[Y])

br, br1, br2: VAR BASE RELATIONS[X]

x, x1, x2: VAR X

y, y1, y2: VAR Y 20

vmap(t, v): (VIEWS[Y]) =
(LAMBDA y1, y2:

(EXISTS x1, x2:
member((x1, x2), v) AND member(y1, t(x1)) AND member(y2, t(x2))))

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 75

brmap(t, br): BASE RELATIONS[Y] =
(LAMBDA y1, y2:

(EXISTS x1, x2:
member((x1, x2), br) AND member(y1, t(x1)) AND member(y2, t(x2)))) 30

brmap intersection: THEOREM
brmap(t, intersection(br1, br2))

= intersection(brmap(t, br1), brmap(t, br2))

brmap union: THEOREM
brmap(t, union(br1, br2)) = union(brmap(t, br1), brmap(t, br2))

vmap brmap: THEOREM vmap(t, v) = brmap(t, v)
40

vmap intersection: THEOREM
vmap(t, intersection(v1, v2)) = intersection(vmap(t, v1), vmap(t, v2))

END translator views

We use the expression tr ac(ap; xt ; yt) to denote the set of transitions to which xt and yt map
a set of transitions ap. The result is a set of transitions with states and agents of the types
mapped to by xt and yt . More specifically, a transition (x1; x2; y) is an element of the result
exactly when there exists a1, a2, and b such that:

xt maps a1 and a2 to, respectively, x1 and x2,

yt maps b to y , and

(a1; a2; b) is a transition in ap

The tr ac function distributes over both set union and intersection.

Note that we only define tr ac for xt that are translators. As noted previously in the discussion
of vmap, the mapping for the state function generally needs to be a translator rather than a
weak translator. In the definition of tr ac, we specify yt as a weak translator. However, using
a translator as yt is acceptable, too, since any translator is also a weak translator.

THEORY ac translators

ac translators[X1: NONEMPTY TYPE, Y1: NONEMPTY TYPE,
X: NONEMPTY TYPE, Y : NONEMPTY TYPE]:

THEORY
BEGIN

IMPORTING translators[X1, X]

IMPORTING translators[Y1, Y]

ap, ap1, ap2: VAR setof [[X1, X1, Y1]] 10

xt: VAR (translator t[X1, X])

yt: VAR (weak translator t[Y1, Y])

x1, x2: VAR X

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

76
CDRL A020

State and Agent Translation

y: VAR Y

a1, a2: VAR X1 20

b: VAR Y1

tr ac(ap, xt, yt): setof [[X, X, Y]] =
(LAMBDA x1, x2, y:

(EXISTS a1, a2, b:
member((a1, a2, b), ap)

AND member(x1, xt(a1))
AND member(x2, xt(a2)) AND member(y, yt(b))))

30
tr ac intersection: THEOREM

tr ac(intersection(ap1, ap2), xt, yt)
= intersection(tr ac(ap1, xt, yt), tr ac(ap2, xt, yt))

tr ac union: THEOREM
tr ac(union(ap1, ap2), xt, yt)

= union(tr ac(ap1, xt, yt), tr ac(ap2, xt, yt))

END ac translators
40

Similarly, we define tr tcs(tcs; xt ; yt) to translate a set of transition classes, tcs, using xt and
yt . The result is the set containing transition classes resulting from usingtr ac to translate
the transition classes in tcs.

Note that we only define tr tcs when xt is a translator (rather than a weak translator). The
rationale here is the same as that given previously under the discussion of the definition of
tr ac.

THEORY tcs translators

tcs translators[X1: NONEMPTY TYPE, Y1: NONEMPTY TYPE,
X: NONEMPTY TYPE, Y : NONEMPTY TYPE]:

THEORY
BEGIN

IMPORTING ac translators[X1, Y1, X, Y]

tca : VAR setof [[X1,X1,Y1]]

tcb : VAR setof [[X,X,Y]] 10

tcsa, tcsa1, tcsa2 : VAR setof [setof [[X1,X1,Y1]]]

xt: VAR (translator t[X1, X])

yt: VAR (weak translator t[Y1, Y])

tr tcs(tcsa, xt, yt): setof [setof [[X,X,Y]]] =
(LAMBDA tcb: (exists tca: member(tca,tcsa) and tr ac(tca,xt,yt) = tcb))

20
tr tcs union: THEOREM

tr tcs(union(tcsa1, tcsa2), xt, yt)
= union(tr tcs(tcsa1, xt, yt), tr tcs(tcsa2, xt, yt))

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 77

END tcs translators

A component can be translated to another state type and agent type by using translation
functions. The translation is fairly straightforward usingtmap, vmap, tr ac, and tr tcs. The
only twist is that the manner in which thehidd and rely fields of a component are mapped is
more complicated than simply using tr ac (see below). We use tr cmp(cmp1; xt ; yt) to denote
the translation of cmp1 using xt and yt . We define the result as follows:

init tmap(init(cmp1); xt)

cags tmap(cags(cmp1); yt)

view vmap(view(cmp1); xt)

guar tr ac(guar(cmp1); xt ; yt)

wfar tr tcs(wfar(cmp1); xt ; yt)

sfar tr tcs(sfar(cmp1); xt ; yt)

rely tr ac(rely(cmp1); xt ; yt)[env stutter(cmp1; xt ; yt)

Here, env stutter(cmp1; xt ; yt) returns the set of transitions (st1; st2; ag) such that yt does
not map any element of cags(cmp1) to ag and st1 and st2 are equivalent with respect to the
view resulting from mapping view(cmp1) with xt . Intuitively, the resulting set is the set
of stuttering steps by environment agents for the translated component. This set must be
added when the translation is done since yt could be a weak translator (as opposed to a
translator). When yt is a translator, env stutter adds nothing, and rely and hidd are really
just defined by tr ac. When yt is a weak translator, env stutter adds those stuttering steps
for the translated component that are not mapped to by any of the stuttering steps of the
original component (because the agent for the translated component has no representation
in the original component). To ensure that rely for the translated component contains all
of the stuttering steps for the environment, it is necessary to explicitly add them in. Doing
so does not alter the meaning of the component since it simply makes explicit that no-ops
by environment agents are acceptable regardless of whether they are by agents known to
the component.

hidd tr ac(hidd(cmp1); xt ; yt)[env stutter(cmp1; xt ; yt)

Given this definition, it is straightforward to show that any translation of a component satisfies
the requirements on components defined in Section 5. In other words, translating a component
always results in a component.

Note that we only define tr cmp when xt is a translator (rather than a weak translator). The
rationale here is the same as that given previously under the discussion of the definition of
tr ac.

THEORY cmp translators

cmp translators[X1: NONEMPTY TYPE, Y1: NONEMPTY TYPE,
X: NONEMPTY TYPE, Y : NONEMPTY TYPE]:

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

78
CDRL A020

State and Agent Translation

THEORY
BEGIN

IMPORTING translator views[X1, X]

IMPORTING tcs translators[X1, Y1, X, Y]

IMPORTING component[X1, Y1] 10

IMPORTING component[X, Y]

cmp1: VAR (comp t[X1, Y1])

xt: VAR (translator t[X1, X])

yt: VAR (weak translator t[Y1, Y])

x1, x2: VAR X 20
y: VAR Y

env stutter(cmp1,xt,yt): setof [[X,X,Y]] =
(LAMBDA x1,x2,y: not member(y,tmap(yt,cags(cmp1))) and

vmap(xt,view(cmp1))(x1,x2))

tr cmp(cmp1, xt, yt): base comp t[X, Y] =
(# init := tmap(xt, init(cmp1)),

cags := tmap(yt, cags(cmp1)),
view := vmap(xt, view(cmp1)), 30
hidd := union(tr ac(hidd(cmp1),xt, yt),env stutter(cmp1,xt,yt)),
rely := union(tr ac(rely(cmp1), xt, yt),env stutter(cmp1,xt,yt)),
guar := tr ac(guar(cmp1), xt, yt),
sfar := tr tcs(sfar(cmp1), xt, yt),
wfar := tr tcs(wfar(cmp1), xt, yt)

#)

tranc : VAR setof [[X1,X1,Y1]]
ag set : VAR setof [Y1]
v : VAR (VIEWS[X1]) 40

tr gen view restriction: THEOREM
gen view restriction(tranc,v) implies

gen view restriction(tr ac(tranc,xt,yt),vmap(xt,v))

tr gen stuttering restriction: THEOREM
gen stuttering restriction(ag set,tranc,v) implies

gen stuttering restriction(tmap(yt,ag set),tr ac(tranc,xt,yt),vmap(xt,v))

tr cmp init: THEOREM init restriction(tr cmp(cmp1, xt, yt)) 50

tr cmp guar: THEOREM guar restriction(tr cmp(cmp1, xt, yt))

tr cmp rely hidd: THEOREM rely hidd restriction(tr cmp(cmp1, xt, yt))

tr cmp hidd: THEOREM hidd restriction(tr cmp(cmp1, xt, yt))

tr cmp cags: THEOREM cags restriction(tr cmp(cmp1, xt, yt))

tr cmp view rely: THEOREM view rely restriction(tr cmp(cmp1, xt, yt)) 60

tr cmp view hidd: THEOREM view hidd restriction(tr cmp(cmp1, xt, yt))

tr cmp view guar: THEOREM view guar restriction(tr cmp(cmp1, xt, yt))

tr cmp view init: THEOREM view init restriction(tr cmp(cmp1, xt, yt))

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 79

tr cmp view wfar: THEOREM view wfar restriction(tr cmp(cmp1, xt, yt))

tr cmp view sfar: THEOREM view sfar restriction(tr cmp(cmp1, xt, yt)) 70

tr cmp guar stuttering: THEOREM
guar stuttering restriction(tr cmp(cmp1, xt,yt))

tr cmp rely stuttering: THEOREM
rely stuttering restriction(tr cmp(cmp1, xt,yt))

tr cmp type: THEOREM comp t(tr cmp(cmp1, xt, yt))

tran cmp(cmp1, xt, yt): (comp t[X, Y]) = tr cmp(cmp1, xt, yt) 80

END cmp translators

We use pmap(p1; sttran1; agtran1) to denote the behavior predicate to which behavior predicate
p1 is mapped by sttran1 and agtran1.

THEORY tprops

tprops[ST : NONEMPTY TYPE, ST1: NONEMPTY TYPE,
AG: NONEMPTY TYPE, AG1: NONEMPTY TYPE]:

THEORY
BEGIN

IMPORTING props[ST, AG]

IMPORTING props[ST1, AG1]

IMPORTING translators[ST1, ST] 10

IMPORTING translators[AG1, AG]

t1: VAR trace t[ST1, AG1]

t: VAR trace t[ST, AG]

p1: VAR prop t[ST1, AG1]

p2: VAR prop t[ST1,AG1] 20

p: VAR prop t[ST, AG]

sttran1: VAR (translator t[ST1, ST])

agtran1: VAR (weak translator t[AG1, AG])

n: VAR nat

bmap1 base(sttran1, agtran1): 30
[trace t[ST1, AG1] �> [trace t[ST, AG] �> bool]] =

(LAMBDA t1:
(LAMBDA t:

(FORALL n:
sttran1(sts(t1)(n))(sts(t)(n))

AND agtran1(ags(t1)(n))(ags(t)(n)))))

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

80
CDRL A020

State and Agent Translation

bmap1(sttran1, agtran1):
(weak translator t[(trace t[ST1, AG1]), (trace t[ST, AG])]) =

bmap1 base(sttran1, agtran1) 40

bmap1 strong: THEOREM
translator t(agtran1)
=> translator t[(trace t[ST1, AG1]), (trace t[ST, AG])](bmap1(sttran1,agtran1))

bmap(t1, sttran1, agtran1):
setof [trace t[ST, AG]] = bmap1(sttran1, agtran1)(t1)

pmap1(sttran1, agtran1): [prop t[ST1, AG1] �> prop t[ST, AG]] =
(LAMBDA p1: 50

(LAMBDA t:
(EXISTS t1: bmap(t1, sttran1, agtran1)(t) AND p1(t1))))

pmap(p1, sttran1, agtran1):
prop t[ST, AG] = pmap1(sttran1, agtran1)(p1)

END tprops

60

Theory tcprops provides several theorems regarding translated components and the properties
they satisfy. The following theorems are used later in the analysis of the example:

(tcprop1) If component cmp satisfies p1, p is the translation of p1 under sttran1 and
agtran1, and tcmp is the translation of cmp under sttran1 and agtran1, then the composite
of ftcmpg satisfies p.

(tolerates cags trans prop) If for every transition, (st1, st2, ag1), in hidd(cmp) either ag1 is
in the set ags or st1 and st2 look the same to view(cmp), then for every transition, (st3, st4,
ag2), in the hidd of the translation of cmp under sttran1 and agtran1 either ag2 is in the
translation of ags under agtran1 or st3 and st4 look the same to the view of the translated
cmp.

(disjoint cags) If ag2 is in cags of the translation of cmp under sttran1 and agtran1 and
ag2 is in the translation of a set of agents ags under agtran1, then there exists an agent
ag1 that is in cags(cmp) and in ags.

THEORY tcprops

tcprops[ST : NONEMPTY TYPE, ST1: NONEMPTY TYPE,
AG: NONEMPTY TYPE, AG1: NONEMPTY TYPE]:

THEORY
BEGIN

IMPORTING tprops

IMPORTING cprops

IMPORTING cmp translators 10

IMPORTING compose idempotent

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 81

tcmp: VAR (comp t[ST,AG])

cmp: VAR (comp t[ST1,AG1])

p1: VAR prop t[ST1, AG1]

p: VAR prop t[ST, AG] 20

t: VAR trace t[ST, AG]

t1: VAR trace t[ST1, AG1]

st1,st2: VAR ST1
st3,st4: VAR ST
ag1: VAR AG1
ag2: VAR AG
ags: VAR setof [AG1] 30

sttran1: VAR (translator t[ST1, ST])

agtran1: VAR (translator t[AG1, AG])

preimage initial okay : THEOREM
(bmap(t1, sttran1, agtran1)(t)

AND initial okay(tran cmp(cmp, sttran1, agtran1), t))
IMPLIES initial okay(cmp, t1) 40

preimage steps okay : THEOREM
(bmap(t1, sttran1, agtran1)(t)

AND steps okay(tran cmp(cmp, sttran1, agtran1), t))
IMPLIES steps okay(cmp, t1)

preimage is wfar : THEOREM
(bmap(t1, sttran1, agtran1)(t)

AND is wfar(tran cmp(cmp, sttran1, agtran1), t))
IMPLIES is wfar(cmp, t1) 50

preimage is sfar : THEOREM
(bmap(t1, sttran1, agtran1)(t)

AND is sfar(tran cmp(cmp, sttran1, agtran1), t))
IMPLIES is sfar(cmp, t1)

prop for preimage: LEMMA
prop for(tran cmp(cmp, sttran1, agtran1))(t)
=> (EXISTS (t1: trace t[ST1, AG1]): bmap(t1, sttran1, agtran1)(t)

AND prop for(cmp)(t1)) 60

tcprop1: LEMMA
satisfies(cmp, p1)

AND pmap(p1, sttran1, agtran1) = p
AND tcmp = tran cmp(cmp, sttran1, agtran1)

=> satisfies(compose(singleton(tcmp)), p)

tolerates cags trans prop: LEMMA
((FORALL st1, st2, ag1:

hidd(cmp)(st1, st2, ag1) 70
=> ags(ag1) OR view(cmp)(st1, st2)))

IMPLIES
(hidd(tran cmp(cmp,sttran1,agtran1))(st3, st4, ag2)

=> tmap(agtran1,ags)(ag2)
OR view(tran cmp(cmp,sttran1,agtran1))(st3, st4))

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

82
CDRL A020

State and Agent Translation

disjoint cags: LEMMA
(cags(tran cmp(cmp, sttran1, agtran1))(ag2)

AND tmap(agtran1, ags)(ag2))
=> (EXISTS ag1: 80

(cags(cmp)(ag1) AND ags(ag1)))

END tcprops

We prove the following theorems about translated predicates:

(sp tran) If ysp is the translation of xsp by sttran1, then stbp(ysp) is the translation of
stbp(xsp).

(always sp tran) If ysp is the translation of xsp by sttran1, then alwayss(ysp) is the trans-
lation of alwayss(xsp).

(always tmap) The translation of alwayss(xsp) by sttran1 and agtran1 equals alwayss
applied to the translation of xsp by sttran1.

(pimplies pmap) pmap distributes over pimplies.

(ap tran) If yap is the translation of xap by sttran1 and agtran1, then atbp(yap) is the
translation of atbp(xap).

(always ap tran) If yap is the translation of xap by sttran1 and agtran1, then alwaysa(yap)
is the translation of alwaysa(xap).

These theorems allows us to “compute” translations of behavior predicates in terms of trans-
lations of state and action predicates. In other words, proofs of state and action predicates for
a given component can be used in proofs of behavior predicates for translated components. In
the common case in which the translated components represent composite systems and pre-
translated components represents individual components of the composite, this means that
behavior predicates (including temporal properties) of the composite can be proved using as a
basis state and action predicates for the individual components. This allows global, temporal
properties to be proved by reasoning about individual transitions of individual components.

THEORY tpreds

tpreds[ST : NONEMPTY TYPE, ST1: NONEMPTY TYPE,
AG: NONEMPTY TYPE, AG1: NONEMPTY TYPE]:

THEORY
BEGIN

IMPORTING tprops[ST, ST1, AG, AG1]

IMPORTING ac translators[ST1, AG1, ST, AG]

IMPORTING preds[ST, AG] 10

IMPORTING preds[ST1, AG1]

IMPORTING unity

xsp: VAR STATE PRED[ST1, AG1]

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 83

ysp: VAR STATE PRED[ST, AG]

xap: VAR ACTION PRED[ST1, AG1] 20

yap: VAR ACTION PRED[ST, AG]

xp1, xp2: VAR prop t[ST1, AG1]

yp1, yp2: VAR prop t[ST, AG]

xst, xst1, xst2: VAR ST1

yst, yst1, yst2: VAR ST 30

xag: VAR AG1

yag: VAR AG

sttran1: VAR (translator t[ST1, ST])

agtran1: VAR (translator t[AG1, AG])

sp tran: THEOREM 40
(FORALL yst : tmap(sttran1, xsp)(yst) IFF ysp(yst))

IMPLIES pmap(stbp(xsp), sttran1, agtran1) = (stbp(ysp))

always sp tran: THEOREM
(FORALL yst : tmap(sttran1, xsp)(yst) IFF ysp(yst))

IMPLIES pmap(alwayss(xsp), sttran1, agtran1) = (alwayss(ysp))

always tmap: THEOREM
pmap(alwayss(xsp), sttran1, agtran1) = alwayss(tmap(sttran1, xsp))

50
pimplies pmap: THEOREM

pmap(pimplies(xp1, xp2), sttran1, agtran1)
= pimplies(pmap(xp1, sttran1, agtran1), pmap(xp2, sttran1, agtran1))

ap tran: THEOREM
(FORALL yst1, yst2, yag:

tr ac[ST1, AG1, ST, AG](xap, sttran1, agtran1)(yst1, yst2, yag)
IFF yap(yst1, yst2, yag))

IMPLIES pmap(atbp(xap), sttran1, agtran1) = (atbp(yap))
60

always ap tran: THEOREM
(FORALL yst1, yst2, yag:

tr ac[ST1, AG1, ST, AG](xap, sttran1, agtran1)(yst1, yst2, yag)
IFF yap(yst1, yst2, yag))

IMPLIES pmap(alwaysa(xap), sttran1, agtran1) = (alwaysa(yap))

END tpreds

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

84
CDRL A020

Composing Two Components

Section 15
Composing Two Components

We now illustrate the use of translator functions by defining an analogue ofcompose for a pair
of components that potentially have different state and agent types. We suppose that the first
component has types ST1 and AG1, the second component has types ST2 and AG2, and the
composition is to have types ST and AG . We also assume that there are:

translator functions sttran1 and sttran2 mapping ST1 and ST2 to ST , and

weak translator functions agtran1 and agtran2 mapping AG1 and AG2 to AG .

The approach is to use tr cmp and the translator functions to translate the two components to
components having types ST and AG . Then, the resulting components can be combined using
compose. We use:

compose2(cmp1; cmp2; sttran1; sttran2; agtran1; agtran2)

to denote this pairwise composition.12

We also state and prove a specialization of the general composition theorem described in
Section 10 to pairwise composition.

THEORY compose2

compose2[ST : NONEMPTY TYPE, ST1: NONEMPTY TYPE, ST2: NONEMPTY TYPE,
AG: NONEMPTY TYPE, AG1: NONEMPTY TYPE, AG2: NONEMPTY TYPE]: THEORY

BEGIN

IMPORTING cmp translators[ST1,AG1,ST,AG]
IMPORTING cmp translators[ST2,AG2,ST,AG]
IMPORTING compose[ST,AG]

cset: VAR setof [(comp t[ST,AG])]
10

cmp, cmpa, cmpb: VAR (comp t[ST,AG])

cmp1 : VAR (comp t[ST1,AG1])

cmp2 : VAR (comp t[ST2,AG2])

sttran1 : VAR (translator t[ST1,ST])
agtran1 : VAR (weak translator t[AG1,AG])

sttran2 : VAR (translator t[ST2,ST]) 20
agtran2 : VAR (weak translator t[AG2,AG])

12Actually, we define compose2 by defining init, cags, guar, …in terms of tmap, tr ac, …This gives a definition that
is analogous to the definition of pairwise composition given in previous versions of this report. Then, we prove that
the definition is equivalent to simply translating withtr cmp and applying compose to the result. This provides an
explicit connection between the work described in previous versions of this report and the work described here.

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 85

make two set(cmpa,cmpb) : setof [(comp t[ST,AG])] =
(LAMBDA cmp: cmp = cmpa or cmp = cmpb)

make two set tr (cmp1,cmp2,sttran1,sttran2,agtran1,agtran2) :
setof [(comp t[ST,AG])] =

make two set(tran cmp(cmp1,sttran1,agtran1),tran cmp(cmp2,sttran2,agtran2))

compose init2(cmp1, cmp2, sttran1, sttran2, agtran1, agtran2): 30
setof [ST] =

intersection(tmap(sttran1, init(cmp1)), tmap(sttran2, init(cmp2)))

compose init2 def : THEOREM
compose init(make two set tr (cmp1,cmp2,sttran1,sttran2,agtran1,agtran2)) =
compose init2(cmp1,cmp2,sttran1,sttran2,agtran1,agtran2)

compose guar2(cmp1, cmp2, sttran1, sttran2, agtran1, agtran2):
setof [[ST, ST, AG]] =

union(intersection(tr ac(guar(cmp1),sttran1,agtran1), 40
union(tr ac(hidd(cmp2),sttran2, agtran2),

env stutter(cmp2,sttran2,agtran2))),
union(intersection(tr ac(guar(cmp2),sttran2,agtran2),

union(tr ac(hidd(cmp1),sttran1,agtran1),
env stutter(cmp1,sttran1,agtran1))),

intersection(tr ac(guar(cmp1),sttran1,agtran1),
tr ac(guar(cmp2),sttran2,agtran2))))

compose guar2 def : THEOREM
compose guar(make two set tr (cmp1,cmp2,sttran1,sttran2,agtran1,agtran2)) = 50
compose guar2(cmp1,cmp2,sttran1,sttran2,agtran1,agtran2)

compose rely2(cmp1, cmp2, sttran1, sttran2, agtran1, agtran2):
setof [[ST, ST, AG]] =

intersection(union(tr ac(rely(cmp1),sttran1,agtran1),
env stutter(cmp1,sttran1,agtran1)),

union(tr ac(rely(cmp2), sttran2, agtran2),
env stutter(cmp2,sttran2,agtran2)))

compose rely2 def : THEOREM 60
compose rely(make two set tr (cmp1,cmp2,sttran1,sttran2,agtran1,agtran2)) =
compose rely2(cmp1,cmp2,sttran1,sttran2,agtran1,agtran2)

compose cags2(cmp1, cmp2, sttran1, sttran2, agtran1, agtran2):
setof [AG] = union(tmap(agtran1, cags(cmp1)), tmap(agtran2, cags(cmp2)))

compose cags2 def : THEOREM
compose cags(make two set tr (cmp1,cmp2,sttran1,sttran2,agtran1,agtran2)) =
compose cags2(cmp1,cmp2,sttran1,sttran2,agtran1,agtran2)

70
compose view2(cmp1, cmp2, sttran1, sttran2, agtran1, agtran2):

setof [[ST, ST]] =
intersection(vmap(sttran1, view(cmp1)), vmap(sttran2, view(cmp2)))

compose view2 def : THEOREM
compose view(make two set tr (cmp1,cmp2,sttran1,sttran2,agtran1,agtran2)) =
compose view2(cmp1,cmp2,sttran1,sttran2,agtran1,agtran2)

compose hidd2(cmp1, cmp2, sttran1, sttran2, agtran1, agtran2):
setof [[ST, ST,AG]] = 80

intersection(union(tr ac(hidd(cmp1),sttran1,agtran1),
env stutter(cmp1,sttran1,agtran1)),

union(tr ac(hidd(cmp2), sttran2, agtran2),
env stutter(cmp2,sttran2,agtran2)))

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

86
CDRL A020

Composing Two Components

compose hidd2 def : THEOREM
compose hidd(make two set tr (cmp1,cmp2,sttran1,sttran2,agtran1,agtran2)) =
compose hidd2(cmp1,cmp2,sttran1,sttran2,agtran1,agtran2)

compose wfar2(cmp1, cmp2,sttran1,sttran2,agtran1,agtran2): setof [TRANSITION CLASS[ST,AG]] = 90
union(tr tcs(wfar(cmp1), sttran1,agtran1),

tr tcs(wfar(cmp2), sttran2,agtran2))

compose wfar2 def : THEOREM
compose wfar(make two set tr (cmp1,cmp2,sttran1,sttran2,agtran1,agtran2)) =
compose wfar2(cmp1,cmp2,sttran1,sttran2,agtran1,agtran2)

compose sfar2(cmp1, cmp2,sttran1,sttran2,agtran1,agtran2): setof [TRANSITION CLASS[ST,AG]] =
union(tr tcs(sfar(cmp1), sttran1,agtran1),

tr tcs(sfar(cmp2), sttran2,agtran2)) 100

compose sfar2 def : THEOREM
compose sfar(make two set tr (cmp1,cmp2,sttran1,sttran2,agtran1,agtran2)) =
compose sfar2(cmp1,cmp2,sttran1,sttran2,agtran1,agtran2)

composable init2(cmp1, cmp2, sttran1, sttran2, agtran1, agtran2):
bool =

compose init2(cmp1, cmp2, sttran1, sttran2, agtran1, agtran2)
== emptyset

110
composable init2 def : THEOREM

agreeable start(make two set tr (cmp1,cmp2,sttran1,sttran2,agtran1,agtran2)) =
composable init2(cmp1,cmp2,sttran1,sttran2,agtran1,agtran2)

composable2(cmp1, cmp2, sttran1, sttran2, agtran1, agtran2): bool =
composable init2(cmp1, cmp2, sttran1, sttran2, agtran1, agtran2)

composable2 def : THEOREM
composable(make two set tr (cmp1,cmp2,sttran1,sttran2,agtran1,agtran2)) =
composable2(cmp1,cmp2,sttran1,sttran2,agtran1,agtran2) 120

c: VAR (composable2)

compose base2(c): base comp t[ST, AG] =
(# init := compose init2(c),

guar := compose guar2(c),
rely := compose rely2(c),
cags := compose cags2(c),
view := compose view2(c),
wfar := compose wfar2(c), 130
sfar := compose sfar2(c),
hidd := compose hidd2(c) #)

compose base2 def : THEOREM
compose base2(c) =

compose base(make two set tr (c))

compose2(c): (comp t[ST, AG]) = compose base2(c)

compose2 def : THEOREM compose2(c) = 140
compose(make two set tr (c))

END compose2

THEORY cmp thm2

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 87

cmp thm2[ST : NONEMPTY TYPE, ST1: NONEMPTY TYPE, ST2 : NONEMPTY TYPE,
AG: NONEMPTY TYPE, AG1: NONEMPTY TYPE, AG2: NONEMPTY TYPE]: THEORY

BEGIN

IMPORTING compose2[ST, ST1,ST2,AG,AG1,AG2]

IMPORTING compose idempotent[ST,AG]

IMPORTING cmp thm[ST, AG]
10

p: VAR prop t[ST, AG]

cmp1: VAR (comp t[ST1, AG1])

cmp2: VAR (comp t[ST2, AG2])

st, st1, st2: VAR ST

ag: VAR AG
20

sttran1 : VAR (translator t[ST1,ST])
agtran1 : VAR (translator t[AG1,AG])

sttran2 : VAR (translator t[ST2,ST])
agtran2 : VAR (translator t[AG2,AG])

respects restrictions1(cmp1, cmp2, sttran1, sttran2, agtran1, agtran2):
bool =

(FORALL st1, st2, ag:
member((st1,st2,ag),tr ac(guar(cmp1), sttran1, agtran1)) AND 30

not member((st1, st2, ag),tr ac(guar(cmp2), sttran2, agtran2)) and
member((st1, st2, ag),tr ac(hidd(cmp2), sttran2, agtran2)) implies

member((st1, st2, ag), tr ac(rely(cmp2), sttran2, agtran2)))

respects restrictions2(cmp1, cmp2, sttran1, sttran2, agtran1, agtran2):
bool =

(FORALL st1, st2, ag:
member((st1,st2,ag),tr ac(guar(cmp2), sttran2, agtran2)) AND

not member((st1, st2, ag),tr ac(guar(cmp1), sttran1, agtran1)) and
member((st1, st2, ag),tr ac(hidd(cmp1), sttran1, agtran1)) implies 40

member((st1, st2, ag), tr ac(rely(cmp1), sttran1, agtran1)))

respects and tolerates same2: THEOREM
respects restrictions2(cmp1,cmp2,sttran1,sttran2,agtran1,agtran2)

implies tolerates(singleton(tran cmp(cmp1,sttran1,agtran1)),
make two set tr (cmp1,cmp2,sttran1,sttran2,agtran1,

agtran2))

respects and tolerates same1: THEOREM
respects restrictions1(cmp1,cmp2,sttran1,sttran2,agtran1,agtran2) 50

implies tolerates(singleton(tran cmp(cmp2,sttran2,agtran2)),
make two set tr (cmp1,cmp2,sttran1,sttran2,agtran1,

agtran2))

compose thm1: THEOREM
composable2(cmp1, cmp2,sttran1,sttran2,agtran1,agtran2) AND

respects restrictions2(cmp1, cmp2,sttran1,sttran2,agtran1,agtran2)
IMPLIES

(satisfies(tran cmp(cmp1,sttran1,agtran1), p)
IMPLIES satisfies(compose2(cmp1, cmp2,sttran1,sttran2,agtran1,agtran2), p)) 60

compose thm2: THEOREM
composable2(cmp1, cmp2,sttran1,sttran2,agtran1,agtran2) AND

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

88
CDRL A020

Composing Two Components

respects restrictions1(cmp1, cmp2,sttran1,sttran2,agtran1,agtran2)
IMPLIES

(satisfies(tran cmp(cmp2,sttran2,agtran2), p)
IMPLIES satisfies(compose2(cmp1, cmp2,sttran1,sttran2,agtran1,agtran2), p))

compose thm: THEOREM
composable2(cmp1, cmp2,sttran1,sttran2,agtran1,agtran2) AND 70

respects restrictions1(cmp1, cmp2,sttran1,sttran2,agtran1,agtran2) and
respects restrictions2(cmp1, cmp2,sttran1,sttran2,agtran1,agtran2)

IMPLIES
((satisfies(tran cmp(cmp1,sttran1,agtran1), p) OR
satisfies(tran cmp(cmp2,sttran2,agtran2), p))

IMPLIES satisfies(compose2(cmp1,
cmp2,sttran1,sttran2,agtran1,agtran2), p))

END cmp thm2
80

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 89

Section 16
An Example

We now give an example of the use of this composition framework. We will specify seven com-
ponents including simplified versions of the DTOS kernel and a security server as well as five
components from a Cryptographic Subsystem [8] that clients may use to encrypt information
either to be sent across a network or used internal to the system (e.g., written to encrypted
media). An overview of the Crypto Subsystem components is provided in Section 20.

After specifying the components we will

define a common state space for the components,

translate the components into that common space,

show that the translated components are composable and that they tolerate each other,

instantiate the composition theorem for the composite, and

perform a partial analysis of a property of the entire system.

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

90
CDRL A020

Kernel

Section 17
Kernel

This section provides a specification of the DTOS kernel. The specification provided here is
actually of a hypothetical, simpler kernel that is similar to the DTOS kernel. Using this simpler
specification here allows the study to focus on composability issues rather than being mired
in the details of DTOS. In addition to completely ignoring portions of DTOS, the description
given here also deviates from the behavior of DTOS in certain areas. These deviations will be
indicated in footnotes throughout this section.

17.1 State

17.1.1 Primitive Entities

The primitive entities in DTOS are:

Tasks — environments in which threads execute; a task consists of an address space, a port
name space, and a set of threads

Threads — active entities comprised of an instruction pointer and a local register state

Ports — unidirectional communication channels between tasks used to implement IPC

Messages — entities transmitted through ports

Security Identifiers (SIDs) — abstract labels attached to entities to indicate their security
attributes.

Permissions — the permissions that are verified by the kernel before it performs operations.

Names — the identifiers for ports.

Rights — capabilities to use ports for communicating in a particular direction (i.e., sending or
receiving).

Memories — memory objects representing shared memory

Pages — logical units of memory; either a unit of physical memory or provided by a memory

Devices — resources such as terminals and printers that can be used to transmit information
between the system and its environment

The last three of these will not be considered in this model.

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 91

17.1.2 Kernel Shared Information

Since virtually all components will interact with the kernel in some way we make certain data
types and constants globally available in the PVS specification. This includes the structure of
defined kernel requests, the state information shared by the kernel with each thread in the
system and the structure of information returned by the kernel in response to requests. This
section defines these data types and constants.

Each kernel receives requests from threads executing on the kernel. The setpending requests

denotes the requests that threads have initiated but for which the kernel has not yet started
processing. For this example, the pending requests are:

send message req(smth; smna; smop; smrna; smusr msg) — indicates that smth has made
a request to send a message to the port named by smna specifying smop, smrna, and
smusr msg as, respectively, the operation id, reply port, and message

receive message req(rmth; rmna) — indicates that rmth has made a request to receive a
message from the port named by rmna

provide access req(pact ; paop; pacav ; passport ; passi ; paosi ; parav ; parp) — indicates that the
kernel has received a request to load an access vector with:

– pact indicating the client thread,

– paop indicating the operation id of the request message,

– pacav indicating the access vector of the sender,

– passport indicating the port through which the message was received,

– (passi ; paosi ; parav) indicating the computation being provided , and

– parp indicating the reply port.

set ssp req(ssct ; ssop; ssav ; sssp; ssnp; ssrp) — indicates that the kernel has received a re-
quest to set the security server port13 with:

– ssct indicating the client thread,

– ssop indicating the operation id of the request message,

– ssav indicating the sending access vector,

– sssp indicating the host port (to which this request must be sent),

– ssnp indicating the port to which the security server port should be set, and

– ssrp indicating the reply port.

get ssp req(gsct ; gsop; gsav ; gssp; gsrp) — indicates that the kernel has received a request
to retrieve the security server port14 with:

– gsct indicating the client thread,

– gsop indicating the operation id of the request message,

– gsav indicating the sending access vector,

– gssp indicating the host port (to which this request must be sent), and

– gsrp indicating the reply port.
13In DTOS this request is actually only one option of a more general request to set a host special port.
14In DTOS this request is actually only one option of a more general request to retrieve a host special port.

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

92
CDRL A020

Kernel

The user messages referred to above contain auser data field indicating the data in the body of
the message and a user rights field indicating the sequence of name-right pairs denoting port
rights to be transferred in the message.

For each component there are certain pieces of kernel state to which it has access. These pieces
of data are collected in the typeKERNEL SHARED STATE . Note that each non-kernel compo-
nent will have its ownKERNEL SHARED STATE structure. These structures will be merged
when composing the components. The kernel’sKERNEL SHARED STATE structure will con-
tain all of the information in the component structures. TheKERNEL SHARED STATE con-
sists of

pending requests indicating requests that have been made to the kernel and that have not
yet been processed,

existing threads indicating the existing threads,

received info(thread) indicating the information returned by the last message receive re-
quest invoked by the thread, and

thread status(thread) indicating whether the thread is currently running or waiting for a
response to a kernel request (values are thread running and thread waiting).

The empty kst is defined to be the kernel shared state that has empty sets of existing threads
and pending requests and empty domains for the functionsreceived info and thread status.

The value of received info(thread) is of type RECEIVED INFO which is a structure containing
the following fields:15

service port — the port through which thread last received a message,

sending sid — the SID of the sender of the last message thread received,

sending av — the sending access vector associated with the last messagethread received,

user msg — the data and transferred rights in the last messagethread received,

op — the operation id specified in the last message thread received, and

reply name — the reply port specified in the last message thread received.

ri status — a flag indicating whether the thread has already processed the above infor-
mation; the two possible values are ri processed and ri unprocessed .

The defined permissions are:16

Task

– create task perm — indicates the permission to create a new task that is initiated in
the standard Mach style

15Rather than using a separate data structure, DTOS actually writes received messages into a task’s address space.
We introduce the received info data structure to avoid writing functions to map messages to sequences of bytes and
vice-versa. Also note that tasks in DTOS are responsible for keeping track themselves of whether they have processed
a message. For convenience in specifying components, we assume the presence of theri status field to indicate whether
a message has already been processed.
16DTOS defines many more permissions than are defined here.

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 93

– create task secure perm — indicates the permission to create a new task that is
initiated in the DTOS style

IPC

– xfer send perm — indicates the permission to transfer a send right in a message (see
Section 17.2.1)

– xfer receive perm — indicates the permission to transfer a receive right in a message
(see Section 17.2.1)

– send perm — indicates the permission to send a message (see Section 17.2.1)

– receive perm — indicates the permission to receive a message (see Section 17.2.2)

Host

– provide access perm — indicates the permission to load access vectors into the ker-
nel’s access vector cache (see Section 17.2.3)

– set ss perm — indicates the permission to set the master security server port (see
Section 17.2.5)

– get ss perm — indicates the permission to retrieve the master security server port
(see Section 17.2.6)

Editorial Note:
In comparison to the PVS theories in many of the later sections of this report, the theories in this section
are quite large. Experience has convinced us that it is generally better PVS style to use small theories.
It is easier to comprehend small theories, easier to intersperse text and PVS, and PVS seems to operate
more efficiently on a large collection of small theories than on a small collection of large theories.

THEORY dtos kernel shared state

dtos kernel shared state: THEORY
BEGIN

SID: NONEMPTY TYPE

sid witness : SID

PERMISSION: NONEMPTY TYPE

create task perm, create task secure perm: PERMISSION 10
xfer send perm, xfer receive perm, send perm, receive perm : PERMISSION
provide access perm, set ss perm, get ss perm : PERMISSION

ACCESS VECTOR: TYPE = setof [PERMISSION]

DATA: NONEMPTY TYPE

success data : DATA
null data : DATA

20

TIME: NONEMPTY TYPE

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

94
CDRL A020

Kernel

NAME: NONEMPTY TYPE

null name : NAME

IMPORTING finite sequence[NAME]
30

NAME SEQ : TYPE = FSEQ[NAME]

RIGHT : TYPE = fsend, receiveg

USER RIGHT : TYPE = [NAME, RIGHT]

IMPORTING finite sequence[USER RIGHT]

USER RIGHTS: TYPE = FSEQ[USER RIGHT] 40

name to send right : [NAME �> USER RIGHT]
name to send right seq: [NAME �> USER RIGHTS]

USER MSG: TYPE = [# user data: DATA, user rights: USER RIGHTS #]

null user msg: USER MSG =
(# user data := null data, user rights := null seq #)

50
OP: NONEMPTY TYPE

op witness : OP
provide access op, set host special port op, get host special port op : OP
request access op : OP

RI STATUS: TYPE = fri unprocessed, ri processedg

RECEIVED INFO:
TYPE = 60

[# service port: NAME,
sending sid: SID,
sending av: ACCESS VECTOR,
user msg: USER MSG,
op: OP,
reply name: NAME,
ri status: RI STATUS #]

ri witness : RECEIVED INFO =
(# service port := null name, 70

sending sid := sid witness,
sending av := emptyset[PERMISSION],
user msg := null user msg,
op := op witness,
reply name := null name,
ri status := ri processed #)

THREAD STATUS: TYPE = fthread waiting, thread runningg

THREAD: NONEMPTY TYPE 80

th: VAR THREAD

rna, na: VAR NAME

op: VAR OP

usr msg: VAR USER MSG

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 95

PORT: NONEMPTY TYPE 90

HOST SPECIAL PORT: TYPE

KERNEL REQ: DATATYPE
BEGIN

send message req(smth : THREAD, smna : NAME, smop : OP,
smrna : NAME, smusr msg : USER MSG) : send message req?

receive message req(rmth : THREAD, rmna : NAME) : receive message req?
provide access req(pact: THREAD, paop : OP, pacav : ACCESS VECTOR, passport : PORT,

passi : SID, paosi : SID, parav : ACCESS VECTOR, parp : PORT) : provide access req? 100
set ssp req(ssct : THREAD, ssop : OP, ssav : ACCESS VECTOR,

sssp : PORT, ssnp : PORT, ssrp : PORT) : set ssp req?
get ssp req(gsct : THREAD, gsop : OP, gsav : ACCESS VECTOR,

gssp : PORT, gsrp : PORT) : get ssp req?
END KERNEL REQ

KERNEL SHARED STATE:
TYPE =

[# pending requests: setof [KERNEL REQ], 110
existing threads: setof [THREAD],
received info: [(existing threads) �> RECEIVED INFO],
thread status: [(existing threads) �> THREAD STATUS] #]

empty kst : KERNEL SHARED STATE =
(# existing threads := emptyset[THREAD],

pending requests := emptyset[KERNEL REQ],
received info :=

(LAMBDA (x: (emptyset[THREAD])):
ri witness), 120

thread status :=
(LAMBDA (x: (emptyset[THREAD])):

thread running)
#)

k threads: (nonempty?[THREAD])

END dtos kernel shared state

130

When we compose components we must merge theirKERNEL SHARED STATE information.
The predicate kst mergable is true if the set of kernel states are not contradictory. This happens
when for every pair of kernel states in the set, either

the two kernel states do not share any threads, or

for each shared thread, the received info and thread status of that thread are the same in
both kernel states.

For any set of mergable states, the function kst merge returns the merged
KERNEL SHARED STATE . It has the following definition:

pending requests is the union of the pending requests in the states.

existing threads is the union of the existing threads in the states.

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

96
CDRL A020

Kernel

ri = received info(th) in the merged state if and only if ri = received info(th) in one of the
input states.

stat = thread status(th) in the merged state if and only if stat = thread status(th) in one of
the input states.

The predicate kst substate is true of the pair (kst1; kst2) if

the existing threads of kst1 is a subset of those in kst2,

the pending requests of kst1 is a subset of those in kst2, and

each of the functions received info(kst1) and thread status(kst1) can be extended to the
corresponding function in kst2.

A variety or results have been demonstrated regarding the merging of kernel shared states.
Key among these are

empty kst substate — The empty kernel shared state is a substate of every kernel shared
state.

kst substate re
 — Every kernel shared state is a substate of itself.

kst merge contains — Every kernel shared state in a setkm is a substate of kst merge(km).

kst mergable subset — If km1 is a mergable set of kernel shared states, then so is every
subset of km1.

kst mergable substates — If every kernel shared state in the set kstset is a substate of a
kernel shared state kst2, then the set containing kst2 plus all the elements of kstset is
mergable.

kst merge substates — If every kernel shared state in kstset is a kst substate of kst2, then
kst2 is equal to kst merge of the set containing kst2 plus all the elements of kstset .

Since the kernel shared state of each non-kernel component will be assumed to be a substate
of the kernel shared state of the kernel, these theorems will be useful in the analysis of the
composite system in Section 26.

THEORY kst merge

kst merge : THEORY

BEGIN

IMPORTING dtos kernel shared state
IMPORTING more set lemmas

th : VAR THREAD

kst : VAR KERNEL SHARED STATE 10

i,j : VAR nat

S,T : VAR setof [THREAD]

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 97

kst1, kst2 : VAR KERNEL SHARED STATE

kstset, kstset1, kstset2 : VAR setof [KERNEL SHARED STATE]
20

kst mergable(kstset): bool =
(FORALL th, kst1, kst2:

(kstset(kst1) AND kstset(kst2)
AND existing threads(kst1)(th)
AND existing threads(kst2)(th))

=> (received info(kst2)(th) = received info(kst1)(th)
AND thread status(kst2)(th) = thread status(kst1)(th)))

30

km, km1, km2 : VAR (kst mergable)
ri: VAR RECEIVED INFO
thst: VAR THREAD STATUS

%%% Note that if a thread is shared, it must have the same status
%%% and received info in all ksts for the merge to be successful.

kst merge(km1) : KERNEL SHARED STATE =
LET all threads : setof [THREAD] 40

= f th : THREAD j EXISTS (kst : (km1))
: existing threads(kst)(th)g IN

(# pending requests := f kr : KERNEL REQ
j EXISTS (kst : (km1)) : pending requests(kst)(kr)g,

existing threads := all threads,
received info :=

(LAMBDA (th : (all threads)) :
epsilon(fri j FORALL (kst : (km1)) :

existing threads(kst)(th)
IMPLIES ri = received info(kst)(th)g)), 50

thread status :=
(LAMBDA (th : (all threads)) :

epsilon(fthst j FORALL (kst : (km1)) :
existing threads(kst)(th)
IMPLIES thst = thread status(kst)(th)g))

#)

kst substate(kst1, kst2) : bool = 60
subset?(existing threads(kst1), existing threads(kst2))
AND subset?(pending requests(kst1), pending requests(kst2))
AND FORALL (th : (existing threads(kst1))) :

(received info(kst1)(th) = received info(kst2)(th)
AND thread status(kst1)(th) = thread status(kst2)(th))

empty kst substate: THEOREM
kst substate(empty kst, kst2)

kst substate refl: THEOREM 70
kst substate(kst1,kst1)

kst merge contains: THEOREM
km(kst) => kst substate(kst, kst merge(km))

kst mergable disjoint threads : THEOREM
(FORALL (kst1, kst2 : (kstset), th) :

existing threads(kst1)(th) AND existing threads(kst2)(th)

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

98
CDRL A020

Kernel

IMPLIES kst1 = kst2)
IMPLIES kst mergable(kstset) 80

kst mergable add : THEOREM
(FORALL (kst2 : (km2)) :

kst mergable(fkst j kst = kst1 or kst = kst2g))
IMPLIES kst mergable(add(kst1, km2))

kst mergable union : THEOREM
(FORALL (kst : (km1)) :

kst mergable(add(kst, km2)))
IMPLIES kst mergable(union(km1, km2)) 90

kst mergable subset: THEOREM
subset?(kstset, km1)
IMPLIES kst mergable(kstset)

kst mergable substates : THEOREM
(FORALL (kst1 : (kstset)) : kst substate(kst1, kst2))
IMPLIES kst mergable(add(kst2, kstset))

kst merge substates existing threads : THEOREM 100
(FORALL (kst1 : (kstset)) : kst substate(kst1, kst2))
IMPLIES existing threads(kst2) = existing threads(kst merge(add(kst2, kstset)))

kst merge substates pending requests : THEOREM
(FORALL (kst1 : (kstset)) : kst substate(kst1, kst2))
IMPLIES pending requests(kst2) = pending requests(kst merge(add(kst2, kstset)))

kst merge substates received info : THEOREM
(FORALL (kst1 : (kstset)) : kst substate(kst1, kst2))
IMPLIES received info(kst2) = received info(kst merge(add(kst2, kstset))) 110

kst merge substates thread status : THEOREM
(FORALL (kst1 : (kstset)) : kst substate(kst1, kst2))
IMPLIES thread status(kst2) = thread status(kst merge(add(kst2, kstset)))

kst merge substates : THEOREM
(FORALL (kst1 : (kstset)) : kst substate(kst1, kst2))
IMPLIES kst2 = kst merge(add(kst2, kstset))

END kst merge 120

17.1.3 Kernel Internal State

At any given time, only certain primitive entities are present in the system. The sets
existing tasks, existing threads, existing ports, existing messages denote the entities of each class
that are present in the current system state.

Each existing task has the following information associated with it:

task threads(task) — the collection of threads that execute within the context oftask .

task names(task) — the collection of names used by the task to denote ports.

dead names(task) — a set of names that are dead (i.e., no longer usable). These must be
disjoint from the names in task names(task).

named port(task) — a function that maps each name in task names(task) to the port
denoted by the name.

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 99

held rights(task) — a function that maps each name in task names(task) to the rights task
holds to the port named by that name in its IPC name space.

task sid(task) — the SID (Security ID) associated with task .

Each existing port has the following information associated with it:

port sid(port) — the SID associated with port

queue(port) — the message queue containing the messages that have been sent toport but
not yet received

The constant null port is used to denote a value of type PORT that never exists. We also use
the constant null name to denote a value of type name that is never associated with a port in a
task’s name space.

The kernel associates the following information with each message queued at a port:17

sending sid(msg) — the SID of the task that sentmsg

av(msg) — the access vector indicating the permission the sender ofmsg has to the port
to which msg is sent

op(msg) — the operation id specified by the sender ofmsg

sent data(msg) — the data contained in the body ofmsg

sent rights(msg)— the sequence of port rights transferred in the body ofmsg ; each element
is a (port ; right) pair

reply port(msg) — the reply port specified by the sender ofmsg

The constant k task is a value of type TASK that is used to indicate the kernel itself is the
receiver for a port.18 The constant k threads is used to indicate the kernel is the sender of a
message. 19

An access vector cache records allowed permissions on a SID-to-SID basis. We use
cached access(sid1; sid2) to denote the access vector (set of permissions), if any, cached for the
pair (sid1; sid2).20

Editorial Note:
The cache access function has been modeled here as a total function on SID pairs. It should probably
be a partial function to prohibit permission checks where the kernel has not obtained an access vector
from the security server for the relevant SIDs. This error is irrelevant to the results of the composability
study.

17DTOS also records a “receiving SID” with each message. In addition, Mach records more information about
messages than is described here. Also note that DTOS message bodies are typed rather than untyped as described
here. In particular, port rights transferred in the body of a message are part of the data in the body of the message
rather than being recorded separately.
18Although the kernel is not really a separate task in Mach, we model it as being an existing task here.
19Although it is not consistent with the DTOS implementation, we use a constant set of threads to denote kernel

agents.
20The DTOS cache also records information regarding the cachability of permissions and times at which permissions

become invalidated.

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

100
CDRL A020

Kernel

17.1.4 Host Special Ports

The kernel records a collection of special ports:21

ss name — the kernel’s name for a send right to the master security server port

host name — the kernel’s name for a receive right to the port through which the kernel
services host requests

Editorial Note:
The constants ss name and host name should really be elements of the kernel state rather than constants
in the model. This error is irrelevant to the results of the composition study.

17.1.5 Summary

The kernel state consists of the data structures described above, combined in the type
K INTERNAL STATE and stored in the int st field, plus its KERNEL SHARED STATE22,
ext st , containing all existing threads, pending requests, thread status, and received info infor-
mation for the system. The valid states are defined byK STATE . In a valid state, in addition
to the constraints described above as the data structures were described, the following must
hold:

The internal and external versions ofexisting threads are equal.

Every name in a task’s name space denotes a nonempty sets of rights for an existing port.

Every existing message is in the queue of an existing port.

All the data in K STATE is visible to the kernel.

THEORY k state

k state : THEORY

BEGIN
% =====

IMPORTING dtos kernel shared state

% PRIMITIVE ENTITIES
% ========= ========

10
TASK : TYPE+
k task : TASK

k port : PORT
null port : PORT
k port non null axiom : AXIOM NOT k port = null port

21The special ports currently supported in DTOS are the audit server, master and client security server, and host
control ports.
22The data type K EXTERNAL STATE is equivalent toKERNEL SHARED STATE .

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 101

MESSAGE : TYPE+

20
% OTHER ENTITIES
% ===== ========

host name : NAME
ss name : NAME
names distinct axiom : AXIOM (TRUE

AND NOT host name = ss name
AND NOT host name = null name
AND NOT null name = ss name

) 30

K RIGHT : TYPE = [PORT, RIGHT]
IMPORTING finite sequence[K RIGHT]
K RIGHTS : TYPE = FSEQ[K RIGHT]
null rights : K RIGHTS = null seq

IMPORTING finite sequence[MESSAGE]
MESSAGES : TYPE = FSEQ[MESSAGE] 40

% COMPOSITE ENTITIES
% ========= ========

K REQ : TYPE = KERNEL REQ
50

% THE EXTERNAL (SHARED) STATE
% === ======== ======== =====
%
% Can be seen by other components.

K EXTERNAL STATE : TYPE = KERNEL SHARED STATE

% THE INTERNAL STATE 60
% === ======== =====
%
% Cannot be changed by other components (note: this overlaps the shared
% state in existing threads. The overlapping elements are constrained to
% be the same in K STATE below).

K INTERNAL STATE BASE : TYPE =
[#

existing tasks : setof [TASK],
existing threads : setof [THREAD], 70
existing ports : setof [PORT],
existing messages : setof [MESSAGE],
task threads : [(existing tasks) �> setof [(existing threads)]],
task names : [(existing tasks) �> setof [NAME]],
dead names : [(existing tasks) �> setof [NAME]],
named port : [tk : (existing tasks) �> [(task names(tk)) �> PORT]],
held rights : [tk : (existing tasks) �> [(task names(tk)) �> setof [RIGHT]]],
task sid : [(existing tasks) �> SID],
port sid : [(existing ports) �> SID],
cached access : [SID, SID �> ACCESS VECTOR], 80
queue : [(existing ports) �> MESSAGES],

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

102
CDRL A020

Kernel

sending sid : [(existing messages) �> SID],
av : [(existing messages) �> ACCESS VECTOR],
op : [(existing messages) �> OP],
sent data : [(existing messages) �> DATA],
sent rights : [(existing messages) �> K RIGHTS],
reply port : [(existing messages) �> PORT]

#]

90
K INTERNAL STATE(base : K INTERNAL STATE BASE) : bool = (TRUE

AND existing tasks(base)(k task)
AND task names(base)(k task)(host name)
AND existing ports(base)(named port(base)(k task)(host name))
AND held rights(base)(k task)(host name)(receive)
AND task names(base)(k task)(ss name)
AND existing ports(base)(named port(base)(k task)(ss name))
AND held rights(base)(k task)(ss name)(send)
AND k threads = task threads(base)(k task)
AND (FORALL (th : (existing threads(base))) : 100

EXISTS (tk : (existing tasks(base))) : task threads(base)(tk)(th))
AND NOT existing ports(base)(null port)
AND (FORALL (tk : (existing tasks(base))) :

NOT task names(base)(tk)(null name))
AND (FORALL (tk : (existing tasks(base))) :

disjoint?(task names(base)(tk), dead names(base)(tk)))
AND (FORALL (tk : (existing tasks(base)), nm : (task names(base)(tk))) :

existing ports(base)(named port(base)(tk)(nm))
AND nonempty?(held rights(base)(tk)(nm)))

AND (FORALL (msg : (existing messages(base))) : 110
EXISTS (p : (existing ports(base))),

(n : nat j n > 0 AND n <= size(queue(base)(p))) :
elem(queue(base)(p))(n) = msg)

)

% THE KERNEL STATE
% === ====== =====

K STATE BASE : TYPE = 120
[#

int st : (K INTERNAL STATE),
ext st : K EXTERNAL STATE

#]

K STATE(base : K STATE BASE) : bool =
existing threads(int st(base)) = existing threads(ext st(base))

st1, st2: VAR (K STATE)
130

k view(st1, st2) : bool =
st1 = st2

END k state
% === =======

The theory k state witness exhibits a state that satisfies the requirements onK STATE .

Editorial Note:
While k state witness satisfies the requirements of K STATE , it does not satisfy all the requirements
that we would intuitively place on a kernel state. For example, ss name and host name both map to
the same port. It would be better if this were not the case. This is irrelevant for the results of the

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 103

composability study.

THEORY k state witness

k state witness: THEORY

BEGIN

IMPORTING k state

k external state witness : K EXTERNAL STATE =
(#

pending requests := emptyset[K REQ],
existing threads := k threads, 10
received info := (LAMBDA (th : (k threads)) : ri witness),
thread status := (LAMBDA (th : (k threads)) : thread running)

#)

k internal state witness : (K INTERNAL STATE) =
(#

existing tasks := ftk : TASK j tk = k taskg,
existing threads := k threads,
existing ports := fp : PORT j p = k port g, 20
existing messages := emptyset[MESSAGE],
task threads := (LAMBDA (tk : TASK j tk = k task) : k threads),
task names := (LAMBDA (tk : TASK j tk = k task) :

fnm : NAME j nm = host name OR nm = ss nameg),
dead names := (LAMBDA (tk : TASK j tk = k task) : emptyset[NAME]),
named port := (LAMBDA (tk : TASK j tk = k task) :

(LAMBDA (nm : NAME j nm = host name OR nm = ss name) : k port)
),
held rights := (LAMBDA (tk : TASK j tk = k task) :

(LAMBDA (nm : NAME j nm = host name OR nm = ss name) : 30
fr : RIGHT j r=send OR r=receiveg)

),
task sid := (LAMBDA (tk : TASK j tk = k task) : sid witness),
port sid := (LAMBDA (p : PORT j p = k port) : sid witness),
cached access := (LAMBDA (ssi : SID, osi : SID) : emptyset[PERMISSION]),
queue := (LAMBDA (p : PORT j p = k port) : null seq[MESSAGE]),
sending sid := (LAMBDA (msg : (emptyset[MESSAGE])) : sid witness),
av := (LAMBDA (msg : (emptyset[MESSAGE])) : emptyset[PERMISSION]),
op := (LAMBDA (msg : (emptyset[MESSAGE])) : op witness),
sent data := (LAMBDA (msg : (emptyset[MESSAGE])) : null data), 40
sent rights := (LAMBDA (msg : (emptyset[MESSAGE])) : null rights),
reply port := (LAMBDA (msg : (emptyset[MESSAGE])) : null port)

#)

k internal state witness prop : THEOREM
EXISTS (st : (K INTERNAL STATE)) : TRUE

k state witness : (K STATE) =
(# 50

int st := k internal state witness,
ext st := k external state witness

#)

k state witness prop : THEOREM

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

104
CDRL A020

Kernel

EXISTS (s : (K STATE)) : TRUE

END k state witness 60

17.2 Operations

This section describes the subset of kernel operations that are relevant to this example.

Editorial Note:
This section currently describes only successful processing of requests.

We first define several utility functions.23 The first argument of each of these is the
K INTERNAL STATE that is used in determining the return value of the function.

name to port(st ; name; right ; task)— If, in the name space of task , name denotes right right
to an existing port p, and the access vector for the SID of task and the SID of p contains
the appropriate transfer right permission, then the value isp. Otherwise, the value is
null port .

user to kernel(st ; u rt seq ; task) — models the kernel processing that converts a sequence
of user rights into a sequence of kernel rights. At the point where this is called we have
already checked that the sender holds at least one right for each name in the sequence.

kernel to user(ist ; task ; k rights) — models the kernel’s conversion of kernel rights (inter-
nal port references) to user rights (local name references) with respect to the name space
of task . The conditions imposed on this conversion (i.e., uniqueness of names in a name
space) are given as an axiom following the declaration.

In addition to the above utility functions, the following conversion functions are defined inde-
pendent of the system state:

data to sid sid av — models the interpretation of user specified data as a triple
(sid1; sid2; access vector).

sid sid to data — models the representation of a pair of SIDs by message data. (This is
used when the kernel sends a message to the security server requesting an access vector.)

op to reply op — models the relationship between an operation ID, and an ID that is
used to represent replies to that operation.

23A frequent construct in the PVS specifications is a long list of conjuncts or disjuncts. In this section the following
convention has been used for formatting such lists:

Long conjunctions are introduced by an open parenthesis followed by the key word TRUE.

Each conjunct appears on a line by itself, introduced by the key wordAND, and indented two spaces from the
introductory line.

Long disjunctions are introduced by an open parenthesis followed by the key wordFALSE.

Each disjunct appears on a line by itself, introduced by the key wordOR, and indented two spaces from the
introductory line.

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 105

Editorial Note:
The addition of the axiom kernel to user axiom introduces the question of soundness of the kernel
specification. We have not attempted to deal with this in any way in this report.

THEORY k utilities

k utilities : THEORY

BEGIN
% =====

% IMPORTS
% =======

IMPORTING k state 10

% UTILITIES
% =========

% name to port converts task's name into a port reference. If the reference is not
% given by a valid name in task's name space or if the port does not exist the
% return is null port.

name to port(20
st : (K INTERNAL STATE),
name : NAME,
right : RIGHT,
task : (existing tasks(st))

) : PORT =
IF (task names(st)(task)(name) AND existing ports(st)(named port(st)(task)(name)))
THEN

LET
port : PORT = named port(st)(task)(name),
av : ACCESS VECTOR = cached access(st)(task sid(st)(task), port sid(st)(port)), 30
hr : setof [RIGHT] = held rights(st)(task)(name)

IN
IF FALSE

OR (right = receive AND hr(right) AND av(xfer receive perm))
OR (right = send AND av(xfer send perm))

THEN port
ELSE null port
ENDIF

ELSE null port
ENDIF 40

% user to kernel models the kernel processing which converts a user right
% sequence into a kernel right sequence. At the point where this is called
% we have already checked that the sender holds at least one right for
% each name in the sequence.

user to kernel(
st : (K INTERNAL STATE), % The initial internal state
u rt seq : USER RIGHTS, % The user right sequence to be converted
task : (existing tasks(st)) % The owning task of the sending thread 50

) : K RIGHTS =
(#

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

106
CDRL A020

Kernel

size := size(u rt seq),
elem := (LAMBDA (x : nat j x > 0 AND x <= size(u rt seq)) :

(
name to port(st, proj 1(elem(u rt seq)(x)), proj 2(elem(u rt seq)(x)), task),
proj 2(elem(u rt seq)(x))

)
)

#) 60

% kernel to user is an unspecified function that models the kernel's
% conversion of kernel rights (internal port references) to user
% rights (local name references). The conditions imposed on this
% conversion (i.e., uniqueness of names in a namespace) are given
% as an axiom following the declaration.

kernel to user(
ist : (K INTERNAL STATE),
task : (existing tasks(ist)), 70
k rights : K RIGHTS

) : USER RIGHTS

kernel to user axiom : AXIOM
FORALL (

ist : (K INTERNAL STATE),
task : (existing tasks(ist)),
u rts : USER RIGHTS,
k rts : K RIGHTS j u rts = kernel to user(ist, task, k rts)) :

(TRUE 80
AND size(k rts) = size(u rts)
AND (FORALL (i1 : posnat, i2 : posnat j i1 <= size(k rts) AND i2 <= size(k rts)) :

proj 1(elem(k rts)(i1)) = proj 1(elem(k rts)(i2))
IFF
proj 1(elem(u rts)(i1)) = proj 1(elem(u rts)(i2))

)
AND (FORALL (i : posnat j i <= size(k rts)) :

LET
pt : PORT = proj 1(elem(k rts)(i)),
nm : NAME = proj 1(elem(u rts)(i)), 90
ps : setof [PORT] = fp : PORT j

EXISTS (x : (task names(ist)(task))) : p = named port(ist)(task)(x) g
IN TRUE

AND NOT dead names(ist)(task)(nm)
AND ps(pt) IMPLIES (task names(ist)(task)(nm) AND pt = named port(ist)(task)(nm))
AND task names(ist)(task)(nm) IMPLIES (ps(pt) AND existing ports(ist)(pt))

)
)

% This unspecified function models the (black box) conversion of user 100
% specified data into certain request parameters.

data to sid sid av : [DATA �> [SID, SID, ACCESS VECTOR]]

% This models the conversion of a sid pair to message data (used when the kernel sends
% a message to the security server requesting an access vector.)

sid sid to data : [SID, SID �> DATA]

% This unspecified function models the conversion of an op id into the corresponding 110
% id for the reply message.

op to reply op : [OP �> OP]

END k utilities
% === ===========

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 107

17.2.1 Send Message

The result of a task sending a message to a port is that the message is added to the sequence
of messages queued at the port.

The sender of the message may transfer port rights to the receiver of the message by inserting
the rights in the message. The sender may transfer a send right for any port to which it holds
either a send or a receive right. The effect of transferring a send right is to provide the receiver
a copy of the right while leaving a copy of the right in the sender’s IPC name space. To transfer
a receive right for a port, the sender must hold the receive right. The effect of transferring a
receive right is to provide the receiver a copy of the right while removing the copy from the
sender’s IPC name space.24

Theory k send message describes the changes made to IPC name spaces when task sends
user msg?. No changes are made to IPC name spaces for other tasks. The only changes made
to task ’s IPC name space are when user msg? contains a receive right. Then, the receive right
needs to be removed from held rights. If the task did not also hold a send right, then the name
must be removed from the domain of named port .

The kernel is responsible for translating the port names specified in the body of the message
into ports. While doing so, it is also responsible for checking that the sender has permission to
transfer the right. If the name does not specify an existing port or the sender does not have
permission to transfer the right, then the kernel maps the name to thenull port .25 If a task or
port does not exist, then any access computation required for it returns a null access vector.

After processing a request for a thread in the waiting state, the kernel returns the thread to
the running state. To enqueue a message at a port, the kernel must record the information
associated with the message and add the message to the queue associated with the port.26

In the theory k send message

ksm interp request verifies that the request being processed is a send message request
and extracts the information from theK REQ structure.

ksm task thread checks the existence of the thread, task and port involved in the request
and determines that the receiver for the port is not the kernel.

ksm sids checks that the task has permission to send to the port.

ksm name spaces checks that the cache contains an access vector for each right being
transferred and updates the name space of the sending task.

ksm message creates the kernel message and adds it to the queue of the destination port.

k send message calls the above functions to model the full processing of the request.

24This ignores many details of how rights are transferred in DTOS. For example, send-once rights are not addressed
and no facility is provided for the sender to specify a send right should be moved from its IPC name space rather than
copied.
25As specified here, the kernel’s access vector cache must contain information sufficient to check whether all of the

specified rights can be transferred. Due to the possibility of a cache entry being invalidated in the middle of the
processing, this is not how DTOS actually works.
26While specifying a reply port in Mach results in a send right for the reply port being transferred to the receiver,

the model described here requires the reply port to be explicitly added to the list of rights transferred in the message.

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

108
CDRL A020

Kernel

THEORY k send message

k send message : THEORY

BEGIN
% =====

% IMPORTS
% =======

IMPORTING k state 10
IMPORTING k utilities

ksm interp request(
est1, est2 : K EXTERNAL STATE, % The externally visible components
kreq : K REQ, % The kernel request being processed
thread : THREAD, % The client thread
name : NAME, % Where thread is sending the message
reply name : NAME, % Where to send reply message
op : OP, % NA (applies to k kernel request) 20
usr msg : USER MSG % The rights and data being sent

): bool =
% In this transition we process an old request without generating
% a new request. . .
NOT pending requests(est2)(kreq)
AND pending requests(est1) = add(kreq, pending requests(est2))
% and its a request to send a message. . .
AND send message req?(kreq)
% with these particular parameters:
AND thread = smth(kreq) 30
AND name = smna(kreq)
AND op = smop(kreq)
AND reply name = smrna(kreq)
AND usr msg = smusr msg(kreq)

ksm task thread(
ist1, ist2 : (K INTERNAL STATE), % The internal state components
est1, est2 : K EXTERNAL STATE, % The externally visible components
thread : THREAD, % The client thread 40
task : TASK, % Thread's owning task
name : NAME, % Where thread is sending the message
port : PORT % The port refered to by name

): bool = TRUE

%% Avoid generation of too many type check conditions in PVS
AND (FORALL (x1: (existing tasks(ist1)), y1: (existing tasks(ist2))):

existing tasks(ist1)(y1) AND existing tasks(ist2)(x1))
AND (FORALL (x1: (existing threads(ist1)), y1: (existing threads(ist2))): 50

existing threads(ist1)(y1) AND existing threads(ist2)(x1))
AND (FORALL (x1: (existing threads(est1)), y1: (existing threads(est2))):

existing threads(est1)(y1) AND existing threads(est2)(x1))
AND existing tasks(ist1)(k task)
AND existing tasks(ist1)(task)
AND existing tasks(ist2)(task)

% The thread exists. . .
AND existing threads(est1)(thread)
AND existing threads(est2)(thread) 60

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 109

AND existing threads(ist1)(thread)
AND existing threads(ist2)(thread)
AND existing threads(est2) = existing threads(est1)
% and had been waiting but now is running. . .
AND thread status(est1)(thread) = thread waiting
AND thread status(est2) = thread status(est1) WITH [(thread) := thread running]
% and thread belongs to an existing task. . .
AND task threads(ist1)(task)(thread)
AND task threads(ist2)(task)(thread)
AND existing tasks(ist2) = existing tasks(ist1) 70
AND task threads(ist2) = task threads(ist1)
% and name is in tasks name space. . .
AND task names(ist1)(task)(name)
% and refers to an existing port. . .
AND port = named port(ist1)(task)(name)
AND existing ports(ist1)(port)
AND existing ports(ist2)(port)
AND existing ports(ist2) = existing ports(ist1)
% and the receiver for port is not the kernel.
AND NOT (EXISTS (nm : (task names(ist1)(k task))) : TRUE 80

AND named port(ist1)(k task)(nm) = port
AND held rights(ist1)(k task)(nm)(receive)

)

ksm sids(
ist1, ist2 : (K INTERNAL STATE), % The internal state components
task : TASK, % Thread's owning task
port : PORT, % The port refered to by name
sending av : ACCESS VECTOR % The av associated with (task, port) 90

): bool = TRUE

%% Avoid generation of too many type check conditions in PVS
AND (FORALL (x1: (existing tasks(ist1)), y1: (existing tasks(ist2))):

existing tasks(ist1)(y1) AND existing tasks(ist2)(x1))
AND (FORALL (x1: (existing ports(ist1)), y1: (existing ports(ist2))):

existing ports(ist1)(y1) AND existing ports(ist2)(x1))
AND existing tasks(ist1)(task)
AND existing ports(ist1)(port) 100

% Nobody changes the SID assignments. . .
AND task sid(ist2) = task sid(ist1)
AND port sid(ist2) = port sid(ist1)
% so the sending access vector is
AND sending av = cached access(ist1)(task sid(ist1)(task), port sid(ist1)(port))
AND cached access(ist2) = cached access(ist1)
% and it contains permission to send.
AND sending av(send perm)

110

ksm name spaces(
ist1, ist2 : (K INTERNAL STATE), % The internal state components
usr msg : USER MSG, % The rights and data being sent
task : TASK, % Thread's owning task
rt seq : USER RIGHTS, % The sequence of rights being sent
xfer receive names : setof [NAME], % Receive rights being sent
no send names : setof [NAME] % Rights that task looses

): bool = TRUE
120

%% Avoid generation of too many type check conditions in PVS
AND (FORALL (x1: (existing tasks(ist1)), y1: (existing tasks(ist2))):

existing tasks(ist1)(y1) AND existing tasks(ist2)(x1))
AND existing tasks(ist1)(task)

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

110
CDRL A020

Kernel

AND existing tasks(ist2)(task)
AND (FORALL (nm: (task names(ist2)(task))): task names(ist1)(task)(nm))

% Task is using names from his name space and the cache contains
% av's for any live rights being sent in the message: 130
AND rt seq = user rights(usr msg)
AND (FORALL (n : nat j n > 0 AND n <= size(rt seq)) : TRUE

AND task names(ist1)(task)(proj 1(elem(rt seq)(n)))
AND existing ports(ist1)(named port(ist1)(task)(proj 1(elem(rt seq)(n)))) IMPLIES

LET
xname : NAME = proj 1(elem(rt seq)(n)),
xport : PORT = named port(ist1)(task)(xname),
psid : SID = port sid(ist1)(xport),
tsid : SID = task sid(ist1)(task)

IN 140
nonempty?(cached access(ist1)(tsid, psid))

)

% Name spaces have been updated.
% In particular, name spaces other than task's are unchanged. . .
AND (FORALL (x : (existing tasks(ist2))) :

(x = task OR (TRUE
AND existing tasks(ist1)(x)
AND (FORALL (x1: (task names(ist1)(x)), y1: (task names(ist2)(x))):

task names(ist1)(x)(y1) AND task names(ist2)(x)(x1)) 150
AND named port(ist2)(x) = named port(ist1)(x)
AND held rights(ist2)(x) = held rights(ist1)(x))

))

% nobody's dead name set changes. . .
AND dead names(ist2) = dead names(ist1)
% some of task's names have their receive rights removed. . .
AND xfer receive names =
f nm : (task names(ist1)(task)) j

EXISTS (i : nat j i > 0 AND i <= size(rt seq)) : 160
elem(rt seq)(i) = (nm, receive) g

% some names are removed from task's name space. . .
AND no send names =
f nm : NAME j xfer receive names(nm) AND NOT held rights(ist1)(task)(nm)(send) g

AND task names(ist2)(task) = difference(task names(ist1)(task), no send names)
% (remove the receive rights). . .
AND (FORALL (nm : (task names(ist2)(task))) :

task names(ist1)(task)(nm)
AND held rights(ist2)(task)(nm) = remove(receive, held rights(ist1)(task)(nm)))
AND named port(ist2)(task) = (LAMBDA (nm : (task names(ist2)(task))) : 170

named port(ist1)(task)(nm))
AND held rights(ist2)(task) = (LAMBDA (nm : (task names(ist2)(task))) :

held rights(ist1)(task)(nm))

ksm message(
ist1, ist2 : (K INTERNAL STATE), % The internal state components
reply name : NAME, % Where to send reply message 180
op : OP, % NA (applies to k kernel request)
usr msg : USER MSG, % The rights and data being sent
task : TASK, % Thread's owning task
port : PORT, % The port refered to by name
sending av : ACCESS VECTOR, % The av associated with (task, port)
rt seq : USER RIGHTS, % The sequence of rights being sent
msg : MESSAGE % The internal representation of the message

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 111

): bool = TRUE
190

%% Avoid generation of too many type check conditions in PVS
AND existing tasks(ist1)(task)
AND existing messages(ist2)(msg)
AND existing ports(ist1)(port)
AND existing ports(ist2)(port)

% The kernel enqueues a new message.
% The set of existing messages grows. . .
AND NOT existing messages(ist1)(msg) 200
AND existing messages(ist2) = add(msg, existing messages(ist1))
% the msg gets added to port's queue. . .
AND queue(ist2) = queue(ist1) WITH [port := tack on(msg, queue(ist1)(port))]
% the sending sid gets recorded. . .
AND sending sid(ist2) = sending sid(ist1) WITH [msg := task sid(ist1)(task)]

% the access vector gets recorded. . .
AND av(ist2) = av(ist1) WITH [msg := sending av]

% the operation gets recorded. . . 210
AND op(ist2) = op(ist1) WITH [msg := op]

% the data gets recorded. . .
AND sent data(ist2) = sent data(ist1) WITH [msg := user data(usr msg)]

% the reply port is determined from the reply name specified. . .
AND reply port(ist2) = (LAMBDA (x : (existing messages(ist2))) :

IF existing messages(ist1)(x) THEN
reply port(ist1)(x)

ELSIF task names(ist1)(task)(reply name) THEN 220
named port(ist1)(task)(reply name)

ELSE
null port

ENDIF
)
% the user rights are converted to kernel rights and recorded.
AND sent rights(ist2) = sent rights(ist1)

WITH [msg := user to kernel(ist1, rt seq, task)]

230
% THE k send message REQUEST
% === ============== =======
%
% k send message describes a transition in which a client has requested
% to send a message to a port for which the kernel is not the receiver.

k send message(
st1 : (K STATE), % The initial state of the transition
st2 : (K STATE), % The final state of the transition
ag : (k threads) % The mediating agent 240

) : bool =

EXISTS (
ist1, ist2 : (K INTERNAL STATE), % The internal state components
est1, est2 : K EXTERNAL STATE, % The externally visible components
kreq : K REQ, % The kernel request being processed
thread : THREAD, % The client thread
name : NAME, % Where thread is sending the message
reply name : NAME, % Where to send reply message
op : OP, % NA (applies to k kernel request) 250
usr msg : USER MSG, % The rights and data being sent
task : TASK, % Thread's owning task

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

112
CDRL A020

Kernel

port : PORT, % The port refered to by name
sending av : ACCESS VECTOR, % The av associated with (task, port)
rt seq : USER RIGHTS, % The sequence of rights being sent
xfer receive names : setof [NAME], % Receive rights being sent
no send names : setof [NAME], % Rights that task looses
msg : MESSAGE % The internal representation of the message

) : (TRUE
260

% Establish the state variables.
AND ist1 = int st(st1)
AND ist2 = int st(st2)
AND est1 = ext st(st1)
AND est2 = ext st(st2)

%% Avoid generation of too many type check conditions in PVS
AND (FORALL (x1: (existing threads(est1)), y1: (existing threads(est2))):

existing threads(est1)(y1) AND existing threads(est2)(x1))
270

AND ksm interp request(est1, est2, kreq, thread, name, reply name, op, usr msg)

AND ksm task thread(ist1, ist2, est1, est2, thread, task, name, port)

AND ksm sids(ist1, ist2, task, port, sending av)

AND ksm name spaces(ist1, ist2, usr msg, task, rt seq,
xfer receive names, no send names) 280

AND ksm message(ist1, ist2, reply name, op, usr msg, task, port,
sending av, rt seq, msg)

% The components of state not mentioned above remain unchanged:
AND received info(est2) = received info(est1)

)
290

END k send message
% === ==============

17.2.2 Receive Message

The result of a task receiving a message from a port is that the message is removed from the
sequence of messages queued at the port. The kernel is responsible for determining names
in the receiver’s IPC name space for each of the port rights contained in the message. Any
port for which the receiver already had a name is mapped to the existing name. New names
are assigned to ports new to the receiver and to ports that no longer exist.27 The kernel adds
each of the received rights to the receiver’s IPC name space by adding the received rights for
existing ports to held rights and the remaining names to dead names. To dequeue a message,
the kernel must delete the information it has recorded for the message and remove the message
from the queue. If the kernel is not the receiver of the message, then no new pending requests
are generated by the receipt of the message and the returned information is recorded for the
receiver in received info.

27As with sending messages, many details of DTOS are ignored here. Of particular interest is the omission of
permission checks on whether the receiver may hold a received right.

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 113

THEORY k receive message

k receive message : THEORY

BEGIN
% =====

% IMPORTS
% =======

IMPORTING k state 10
IMPORTING k utilities

% THE k receive message REQUEST
% === ================= =======
%
% k receive message describes a transition where a client requests to receive
% a message on a non�kernel port.

% utility 20

krm names and rights(
task : TASK,
ist1, ist2 : (K INTERNAL STATE), % The internal state components
u rights : USER RIGHTS, % The sequence of rights being sent
k rights : K RIGHTS % The kernel version of u rights
) : bool = (TRUE

AND existing tasks(ist1)(task)
AND existing tasks(ist2)(task) 30
AND size(k rights) = size(u rights)

% Other name spaces do not change. . .
AND (FORALL (x : (existing tasks(ist1))) :

x = task OR (TRUE
AND existing tasks(ist2)(x)
AND task names(ist2)(x) = task names(ist1)(x)
AND named port(ist2)(x) = named port(ist1)(x)
AND held rights(ist2)(x) = held rights(ist1)(x)
AND dead names(ist2)(x) = dead names(ist1)(x)) 40

)

% But task's name space does change if rights were sent.
% In particular, task names gains a name for each live port right sent. . .
AND (FORALL (nm : NAME) :

task names(ist2)(task)(nm)
IFF
(FALSE

OR task names(ist1)(task)(nm)
OR EXISTS (i : nat j i > 0 AND i <= size(k rights)) : (TRUE 50

AND proj 1(elem(u rights)(i)) = nm
AND existing ports(ist2)(proj 1(elem(k rights)(i))))

))
% and dead names gains a name for each dead port right sent. . .
AND (FORALL (nm : NAME) :

dead names(ist2)(task)(nm)
IFF
(FALSE

OR dead names(ist1)(task)(nm)
OR EXISTS (i : nat j i > 0 AND i <= size (k rights)) : (TRUE 60

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

114
CDRL A020

Kernel

AND proj 1(elem(u rights)(i)) = nm
AND NOT existing ports(ist2)(proj 1(elem(k rights)(i))))

))
% and the name=port correspondence grows. . .
AND (FORALL (nm : (task names(ist2)(task)), pt : PORT) :

named port(ist2)(task)(nm) = pt
IFF
(FALSE

OR (task names(ist1)(task)(nm) AND named port(ist1)(task)(nm) = pt)
OR EXISTS (i : nat j i > 0 AND i <= size(k rights)) : (TRUE 70

AND proj 1(elem(u rights)(i)) = nm
AND proj 1(elem(k rights)(i)) = pt)

))
% and the held rights for task grows.
AND (FORALL (nm : (task names(ist2)(task)), rt : RIGHT) :

held rights(ist2)(task)(nm)(rt)
IFF
(FALSE

OR (task names(ist1)(task)(nm) AND held rights(ist1)(task)(nm)(rt))
OR EXISTS (i : nat j i > 0 AND i <= size(u rights)) : (TRUE 80

AND proj 1(elem(u rights)(i)) = nm
AND proj 2(elem(u rights)(i)) = rt)

))
)

k receive message(
st1 : (K STATE), % The initial state of the transition
st2 : (K STATE), % The final state of the transition
ag : (k threads) % The mediating agent

) : bool = 90

EXISTS (
ist1, ist2 : (K INTERNAL STATE), % The internal state components
est1, est2 : K EXTERNAL STATE, % The externally visible components
kreq : K REQ, % The kernel request being processed
thread : THREAD, % The client thread
name : NAME, % Where thread is receiving the message
task : TASK, % Thread's owning task
port : PORT, % The port refered to by name
receiving av: ACCESS VECTOR, % The av associated with (task, port) 100
u rights : USER RIGHTS, % The sequence of rights being sent
k rights : K RIGHTS, % The kernel version of u rights
new info : RECEIVED INFO, % The message content being received
msg : MESSAGE % The internal representation of the message

) : (TRUE

% Establish some variables.
AND ist1 = int st(st1)
AND ist2 = int st(st2)
AND est1 = ext st(st1) 110
AND est2 = ext st(st2)

%% Avoid generation of too many type check conditions in PVS
AND (FORALL (x1: (existing tasks(ist1)), y1: (existing tasks(ist2))):

existing tasks(ist1)(y1) AND existing tasks(ist2)(x1))
AND (FORALL (x1: (existing threads(ist1)), y1: (existing threads(ist2))):

existing threads(ist1)(y1) AND existing threads(ist2)(x1))
AND (FORALL (x1: (existing ports(ist1)), y1: (existing ports(ist2))):

existing ports(ist1)(y1) AND existing ports(ist2)(x1))
120

% In this transformation we process an old kernel request without
% generating a new request. . .
AND NOT pending requests(est2)(kreq)
AND pending requests(est1) = add(kreq, pending requests(est2))

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 115

% and its a request to receive a message. . .
AND receive message req?(kreq)
% with these particular parameters:
AND thread = rmth(kreq)
AND name = rmna(kreq)

130
% The thread exists. . .
AND existing threads(est1)(thread)
AND existing threads(est2)(thread)
AND existing threads(ist1)(thread)
AND existing threads(est2) = existing threads(est1)
% and had been waiting but now is running. . .
AND thread status(est1)(thread) = thread waiting
AND thread status(est2) = thread status(est1) WITH [(thread) := thread running]
% and thread belongs to an existing task. . .
AND existing tasks(ist1)(task) 140
AND existing tasks(ist2)(task)
AND task threads(ist1)(task)(thread)
AND existing tasks(ist2) = existing tasks(ist1)
AND task threads(ist2) = task threads(ist1)
% and name is in task's name space. . .
AND task names(ist1)(task)(name)
% and refers to an existing port. . .
AND port = named port(ist1)(task)(name)
AND existing ports(ist1)(port)
AND existing ports(ist2)(port) 150
AND existing ports(ist2) = existing ports(ist1)
% and the kernel is not the receiver for port.
AND existing tasks(ist1)(k task)
AND NOT (EXISTS (nm : (task names(ist1)(k task))) : (TRUE

AND named port(ist1)(k task)(nm) = port
AND held rights(ist1)(k task)(nm)(receive)

))

% Nobody changes the SID assignments. . .
AND task sid(ist2) = task sid(ist1) 160
AND port sid(ist2) = port sid(ist1)
% so the receiving access vector is
AND receiving av =

cached access(ist1)(task sid(ist1)(task), port sid(ist1)(port))
AND cached access(ist2) = cached access(ist1)
% and it contains permission to receive.
AND receiving av(receive perm)

% Thread has an ri status of ri processed
AND ri status(received info(est1)(thread)) = ri processed 170

% There is a message on port's queue. . .
AND 1 <= size(queue(ist1)(port))
% which the kernel records. . .
AND msg = elem(queue(ist1)(port))(1)
% it exists. . .
AND existing messages(ist1)(msg)
% so the kernel uses it to construct task's new received info. . .
AND k rights = sent rights(ist1)(msg)
AND u rights = kernel to user(ist1, task, k rights) 180
AND size(k rights) = size(u rights)
AND new info =

(#
service port := name,
sending sid := sending sid(ist1)(msg),
sending av := av(ist1)(msg),
user msg :=

(#

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

116
CDRL A020

Kernel

user data := sent data(ist1)(msg),
user rights := u rights 190

#),
op := op(ist1)(msg),
reply name :=

LET
reply set : setof [nat] = fi : nat j (i > 0 AND i <= size(k rights))

AND proj 1(elem(k rights)(i)) = reply port(ist1)(msg)g
IN
IF nonempty?(reply set) THEN

proj 1(elem(u rights)(choose(reply set)))
ELSE 200

null name
ENDIF,

ri status := ri unprocessed
#)

AND received info(est2) = received info(est1) WITH [(thread) := new info]
% and then deletes it from port's queue. . .
AND nonemptyfseq(queue(ist1)(port))
AND queue(ist2)(port) = pop(queue(ist1)(port))
% leaving all other queues unchanged.
AND (FORALL (x : (existing ports(ist1))) : 210

port = x OR
(existing ports(ist2)(x) AND queue(ist2)(x) = queue(ist1)(x)))

% The msg dies. . .
AND existing messages(ist2) = remove(msg, existing messages(ist1))
% so the kernel updates the message functions:
AND (FORALL (x : (existing messages(ist2))) : TRUE

AND existing messages(ist1)(x)
AND sending sid(ist2)(x) = sending sid(ist1)(x)
AND av(ist2)(x) = av(ist1)(x) 220
AND op(ist2)(x) = op(ist1)(x)
AND sent data(ist2)(x) = sent data(ist1)(x)
AND sent rights(ist2)(x) = sent rights(ist1)(x)
AND reply port(ist2)(x) = reply port(ist1)(x)

)

AND krm names and rights(task,ist1,ist2,u rights,k rights)

)
230

END k receive message
% === =================

If the kernel is the receiver of the message, then the request denoted by the message is recorded
in pending requests. The possible requests that could get recorded are:

provide access if the operation id specified in the message is provide access op

set special port if the operation id specified in the message is set host special port op

get special port if the operation id specified in the message is get host special port op

THEORY k kernel request

k kernel request : THEORY

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 117

BEGIN
% =====

% IMPORTS
% =======

IMPORTING k state 10
IMPORTING k utilities

% THE k kernel request REQUEST
% === ================ =======
%
% k kernel request describes a transition in which a client sends a message
% to a kernel port and generates a new pending request.

k kernel request(20
st1 : (K STATE), % The initial state of the transition
st2 : (K STATE), % The final state of the transition
ag : (k threads) % The mediating agent

) : bool =

EXISTS (
ist1, ist2 : (K INTERNAL STATE), % The internal state components
est1, est2 : K EXTERNAL STATE, % The externally visible components
kreq : K REQ, % The kernel request being processed
new req : K REQ, % The request derived from the message 30
thread : THREAD, % The client thread
name : NAME, % Where thread is sending the message
op : OP, % The operation being requested by the client
reply name : NAME, % Clients name for reply port
reply port : PORT, % Where to enqueue the reply message
usr msg : USER MSG, % The rights and data being sent
task : TASK, % Thread's owning task
port : PORT, % The port refered to by name
sending av : ACCESS VECTOR, % The av associated with (task, port)
u rights : USER RIGHTS, % The sequence of rights being sent 40
k rights : K RIGHTS % The kernel version of u rights

) : (TRUE

% Establish some variables.
AND ist1 = int st(st1)
AND ist2 = int st(st2)
AND est1 = ext st(st1)
AND est2 = ext st(st2)

%% Avoid excess TCCs 50
AND (FORALL (x1: (existing tasks(ist1)), y1: (existing tasks(ist2))):

existing tasks(ist1)(y1) AND existing tasks(ist2)(x1))
AND (FORALL (x1: (existing threads(ist1)), y1: (existing threads(ist2))):

existing threads(ist1)(y1) AND existing threads(ist2)(x1))
AND (FORALL (x1: (existing threads(est1)), y1: (existing threads(est2))):

existing threads(est1)(y1) AND existing threads(est2)(x1))
AND (FORALL (x1: (existing ports(ist1)), y1: (existing ports(ist2))):

existing ports(ist1)(y1) AND existing ports(ist2)(x1))

% In this transition we process an old request. . . 60
AND difference(pending requests(est1), pending requests(est2)) =
f x : K REQ j x = kreq g

% and its a request to send a message. . .
AND send message req?(kreq)
% with these particular parameters:

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

118
CDRL A020

Kernel

AND thread = smth(kreq)
AND name = smna(kreq)
AND op = smop(kreq)
AND reply name = smrna(kreq)
AND usr msg = smusr msg(kreq) 70

% The thread exists. . .
AND existing threads(est1)(thread)
AND existing threads(est2)(thread)
AND existing threads(ist1)(thread)
AND existing threads(est2) = existing threads(est1)
% and had been waiting. . .
AND thread status(est1)(thread) = thread waiting
% and continues to wait until processing of the request
% produces a reply message. . . 80
AND thread status(est2) = thread status(est1)
% and thread belongs to an existing task. . .
AND existing tasks(ist1)(task)
AND existing tasks(ist2)(task)
AND task threads(ist1)(task)(thread)
AND existing tasks(ist2) = existing tasks(ist1)
AND task threads(ist2) = task threads(ist1)
% and name is in tasks name space. . .
AND task names(ist1)(task)(name)
% and refers to an existing port. . . 90
AND port = named port(ist1)(task)(name)
AND existing ports(ist1)(port)
AND existing ports(ist2)(port)
AND existing ports(ist2) = existing ports(ist1)
% and the receiver for port is the kernel.
AND existing tasks(ist1)(k task)
AND (EXISTS (nm : (task names(ist1)(k task))) : (TRUE

AND named port(ist1)(k task)(nm) = port
AND held rights(ist1)(k task)(nm)(receive)

)) 100

% Nobody changes the SID assignments. . .
AND task sid(ist2) = task sid(ist1)
AND port sid(ist2) = port sid(ist1)
% so the sending access vector is
AND sending av = cached access(ist1)(task sid(ist1)(task), port sid(ist1)(port))
AND cached access(ist2) = cached access(ist1)
% and it contains permission to send.
AND sending av(send perm)

110
% Moreover, task is using names from his name space and the cache contains
% av's for any live rights being sent in the message:
% NOTE: The user rights is only needed in the case of a set host special port
% request, but I think the kernel checks the validity of any rights that are
% present prior to construction of the actual request, so the following
% check is needed in the general case.
AND u rights = user rights(usr msg)
AND (FORALL (n : nat j n>0 AND n <= size(u rights)) : TRUE

AND task names(ist1)(task)(proj 1(elem(u rights)(n)))
AND existing ports(ist1)(named port(ist1)(task)(proj 1(elem(u rights)(n)))) IMPLIES 120

LET
xname : NAME = proj 1(elem(u rights)(n)),
xport : PORT = named port(ist1)(task)(xname),
psid : SID = port sid(ist1)(xport),
tsid : SID = task sid(ist1)(task)

IN
nonempty?(cached access(ist1)(tsid, psid))

)
% the user rights are converted to kernel rights.

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 119

AND k rights = user to kernel(ist1, u rights, task) 130

% Name spaces do not change.
AND (FORALL (tk : (existing tasks(ist2))) : TRUE

AND existing tasks(ist1)(tk)
AND task names(ist2)(tk) = task names(ist1)(tk)
AND named port(ist2)(tk) = named port(ist1)(tk)
AND held rights(ist2)(tk) = held rights(ist1)(tk)
AND dead names(ist2)(tk) = dead names(ist1)(tk)

)
140

% The parameters for the new kernel request are obtained from the user message
% and the other send message req parameters:
% The operation must be one of the three we are specifying. . .
AND (FALSE

OR op = provide access op
OR op = set host special port op
OR op = get host special port op

)
% the reply port is determined from the reply name
AND reply port = 150

IF task names(ist1)(task)(reply name) THEN
named port(ist1)(task)(reply name)

ELSE
null port

ENDIF

% The other parameters are request specific:

% provide access req
AND (op = provide access op IMPLIES 160

new req =
LET

(sid1, sid2, pav) = data to sid sid av(user data(usr msg))
IN

provide access req(thread, op, sending av, port, sid1, sid2, pav, reply port)
)

% set ssp req
AND (op = set host special port op IMPLIES (TRUE

AND size(k rights) = 1 170
AND proj 2(elem(k rights)(1)) = send
AND new req =

LET
npt : PORT = proj 1(elem(k rights)(1))

IN
set ssp req(thread, op, sending av, port, npt, reply port)

)
)

% get ssp req 180
AND (op = get host special port op IMPLIES

new req =
get ssp req(thread, op, sending av, port, reply port)

)

% The new pending requests set contains new req as a unique
% element not in the old set:
AND difference(pending requests(est2), pending requests(est1)) =
fkr : K REQ j kr = new reqg

190
% The components of state not mentioned above remain unchanged:
AND received info(est2) = received info(est1)

)

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

120
CDRL A020

Kernel

END k kernel request
% === ================

17.2.3 Provide Access

The provide access request is used to load access vectors into the kernel’s access vector
cache.28 The request specifies a SID-SID-vector triple that should be added to the cache.
Assuming the client has provide access perm to the host name, the triple is added to the access
vector cache. A reply message is sent indicating whether the request was successful and the
request to which the reply message is a response. The latter is indicated by specifying the
operation id of the reply message to be a function, op to reply op, of the operation id of the
request message. In Mach, the op to reply op function is implemented by adding a constant
to the operation id in the request message. 29

THEORY k provide access

k provide access : THEORY

BEGIN
% =====

% IMPORTS
% =======

IMPORTING k state 10
IMPORTING k utilities

% THE k provide access REQUEST
% === ================ =======
%
% k provide access describes a transition where a client has requested
% to add an access vector to the kernel's cache.

k provide access (20
st1 : (K STATE), % The initial state of the transition
st2 : (K STATE), % The final state of the transition
ag : (k threads) % The mediating agent

) : bool =

EXISTS (
ist1, ist2 : (K INTERNAL STATE), % The internal state components
est1, est2 : K EXTERNAL STATE, % The externally visible components
kreq : K REQ, % The kernel request being processed

28Note that this is specified as being processed through the host name port although DTOS actually processes the
request through a “kernel reply port”. Also note that in the model presented here, the only change made to the cache
is the addition of the provided access to the cache. In DTOS, it is also possible that an existing cache entry will be
reclaimed to make space for the new entry.
29The current DTOS system does not send a reply message since this request is actually only called as a Security

Server response to an earlier kernel request for an access computation. Also note thatprovide access op is the same as
op to reply op(request access op) since the Security Server response to a request from the kernel to compute access
must be interpreted by the kernel as a request to load an access vector.

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 121

client : THREAD, % The client thread 30
op : OP, % The operation; redundant (= provide access op)
client av : ACCESS VECTOR, % The av associated with (client, svc port)
svc port : PORT, % The port on which the request was received
ssid : SID, % The input subject sid
osid : SID, % The input object sid
new av : ACCESS VECTOR, % The input access vector
reply port : PORT, % The port where reply message is enqueued
msg : MESSAGE % The reply message enqueued at reply port

) : (TRUE
40

% Establish some variables.
AND ist1 = int st(st1)
AND ist2 = int st(st2)
AND est1 = ext st(st1)
AND est2 = ext st(st2)

%% Avoid generation of too many type check conditions in PVS
AND (FORALL (x1: (existing tasks(ist1)), y1: (existing tasks(ist2))):

existing tasks(ist1)(y1) AND existing tasks(ist2)(x1))
AND (FORALL (x1: (existing ports(ist1)), y1: (existing ports(ist2))): 50

existing ports(ist1)(y1) AND existing ports(ist2)(x1))
AND (FORALL (x1: (existing threads(est1)), y1: (existing threads(est2))):

existing threads(est1)(y1) AND existing threads(est2)(x1))

% Many components are invariant:
AND existing threads(est2) = existing threads(est1)
AND existing tasks(ist2) = existing tasks(ist1)
AND task threads(ist2) = task threads(ist1)
AND existing ports(ist2) = existing ports(ist1)
AND task sid(ist2) = task sid(ist1) 60
AND port sid(ist2) = port sid(ist1)
AND received info(est2) = received info(est1)
AND (FORALL (x : (existing tasks(ist2))) : TRUE

AND existing tasks(ist1)(x)
AND task names(ist2)(x) = task names(ist1)(x)
AND named port(ist2)(x) = named port(ist1)(x)
AND held rights(ist2)(x) = held rights(ist1)(x)
AND dead names(ist2)(x) = dead names(ist1)(x)

)
70

% In this transformation we process a kernel request. . .
AND NOT pending requests(est2)(kreq)
AND pending requests(est1) = add(kreq, pending requests(est2))
% and its a request to provide access vector information. . .
AND provide access req?(kreq)
% with these particular parameters:
AND client = pact(kreq)
AND op = paop(kreq)
AND client av = pacav(kreq)
AND svc port = passport(kreq) 80
AND ssid = passi(kreq)
AND osid = paosi(kreq)
AND new av = parav(kreq)
AND reply port = parp(kreq)

% The client is an existing thread. . .
AND existing threads(ist1)(client)
AND existing threads(ist2)(client)
AND existing threads(est1)(client)
AND existing threads(est2)(client) 90
% and reply port is an existing port. . .
AND existing ports(ist1)(reply port)
% and client av contains permission to provide access. . .

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

122
CDRL A020

Kernel

AND client av(provide access perm)
% and the client had been waiting but now is running. . .
AND thread status(est1)(client) = thread waiting
AND thread status(est2) = thread status(est1) WITH [(client) := thread running]
% and the request was received on the correct port. . .
AND existing tasks(ist1)(k task)
AND task names(ist1)(k task)(host name) 100
AND svc port = named port(ist1)(k task)(host name)
% and the cache gets updated.
AND cached access(ist2) = cached access(ist1) WITH

[((ssid, osid)) := new av]

% The kernel enqueues the reply message at replyport:
% The set of existing messages grows. . .
AND NOT existing messages(ist1)(msg)
AND existing messages(ist2) = add(msg, existing messages(ist1))
% the msg gets added to reply port's queue. . . 110
AND queue(ist2) = (LAMBDA (pt : (existing ports(ist1))) :

IF (pt = reply port) THEN
tack on(msg, queue(ist1)(reply port))

ELSE
queue(ist1)(pt)

ENDIF
)
% the sending sid gets recorded. . .
AND sending sid(ist2) = (LAMBDA (x : (existing messages(ist2))) :

IF existing messages(ist1)(x) THEN 120
sending sid(ist1)(x)

ELSE
sid witness

ENDIF
)
% no access vector is sent. . .
AND av(ist2) = (LAMBDA (x : (existing messages(ist2))) :

IF existing messages(ist1)(x) THEN
av(ist1)(x)

ELSE 130
emptyset[PERMISSION]

ENDIF
)
% the operation gets recorded. . .
AND op(ist2) = (LAMBDA (x : (existing messages(ist2))) :

IF existing messages(ist1)(x) THEN
op(ist1)(x)

ELSE
op to reply op(op)

ENDIF 140
)
% the data (indicating success) gets recorded. . .
AND sent data(ist2) = (LAMBDA (x : (existing messages(ist2))) :

IF existing messages(ist1)(x) THEN
sent data(ist1)(x)

ELSE
success data

ENDIF
)
% the reply port is the same as the port where the message is enqueued. . . 150
AND reply port(ist2) = (LAMBDA (x : (existing messages(ist2))) :

IF existing messages(ist1)(x) THEN
reply port(ist1)(x)

ELSE
reply port

ENDIF
)

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 123

% no rights are sent.
AND sent rights(ist2) = (LAMBDA (x : (existing messages(ist2))) :

IF existing messages(ist1)(x) THEN 160
sent rights(ist1)(x)

ELSE
null seq

ENDIF
)

)

END k provide access
% === ================

170

17.2.4 Request Access

The request access transition is used to request access vectors from the Security Server.30

This is modeled as simply the addition of a new pending request to send a message to the
Security Server requesting an access vector.

THEORY k request access

k request access : THEORY

BEGIN
% =====

% IMPORTS
% =======

IMPORTING k state 10
IMPORTING k utilities

% THE k request access REQUEST
% === ================ =======
%
% k request access describes a transition where the kernel sends a message
% to the security server requesting an access vector computation on a pair
% of sid's.

20
k request access (

st1 : (K STATE), % The initial state of the transition
st2 : (K STATE), % The final state of the transition
ag : (k threads) % The mediating agent

) : bool =

EXISTS (
ist1, ist2 : (K INTERNAL STATE), % The internal state components
est1, est2 : K EXTERNAL STATE, % The externally visible components
new req : K REQ, % The new kernel request produced 30
sid1 : SID, % The sids for which the kernel is requesting
sid2 : SID % an access vector

) : (TRUE

30Note that although this is modeled as if the kernel can request access vectors at whim, the only time the DTOS
kernel actually requests access vectors is when they are needed to process a pending request.

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

124
CDRL A020

Kernel

% Establish some variables.
AND ist1 = int st(st1)
AND ist2 = int st(st2)
AND est1 = ext st(st1)
AND est2 = ext st(st2)

40
% Almost all components are invariant:
AND existing tasks(ist2) = existing tasks(ist1)
AND existing threads(est2) = existing threads(est1)
AND received info(est2) = received info(est1)
AND thread status(est2) = thread status(est1)
AND existing ports(ist2) = existing ports(ist1)
AND existing messages(ist2) = existing messages(ist1)
AND task threads(ist2) = task threads(ist1)
AND task names(ist2) = task names(ist1)
AND dead names(ist2) = dead names(ist1) 50
AND named port(ist2) = named port(ist1)
AND held rights(ist2) = held rights(ist1)
AND task sid(ist2) = task sid(ist1)
AND port sid(ist2) = port sid(ist1)
AND cached access(ist2) = cached access(ist1)
AND queue(ist2) = queue(ist1)
AND sending sid(ist2) = sending sid(ist1)
AND av(ist2) = av(ist1)
AND op(ist2) = op(ist1)
AND sent data(ist2) = sent data(ist1) 60
AND reply port(ist2) = reply port(ist1)
AND sent rights(ist2) = sent rights(ist1)

% In this transformation we produce a new request. . .
AND NOT pending requests(est1)(new req)
AND pending requests(est2) = add(new req, pending requests(est1))
% and its a send message request to the security server.
AND new req = send message req(

ag, % The active agent, a kernel thread, is making the request
ss name, % The message is going to the security server 70
request access op,% The operation is a request for an access vector
ss name, % The reply name is the same
null user msg WITH [(user data) :=

sid sid to data(sid1, sid2)] % The user message being sent
)

)

END k request access
% === ================

17.2.5 Set Security Server Port

The set security server request is used to set the master security server port. If the request
succeeds, the port associated with ss name is modified.

THEORY k set ss port

k set ss port : THEORY

BEGIN
% =====

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 125

% IMPORTS
% =======

IMPORTING k state 10
IMPORTING k utilities

% THE k set ss port REQUEST
% === ============= =======
%
% k set ss port describes a transition where a client has requested
% to set the kernels security server port.

k set ss port (20
st1 : (K STATE), % The initial state of the transition
st2 : (K STATE), % The final state of the transition
ag : (k threads) % The mediating agent

) : bool =

EXISTS (
ist1, ist2 : (K INTERNAL STATE), % The internal state components
est1, est2 : K EXTERNAL STATE, % The externally visible components
kreq : K REQ, % The kernel request being processed
client : THREAD, % The client thread 30
op : OP, % The operation; redundant (= set ss op)
client av : ACCESS VECTOR, % The av associated with (client, svc port)
svc port : PORT, % The port on which the request was received
new port : PORT, % The new security server port
reply port : PORT, % The port where reply message is enqueued
msg : MESSAGE % The reply message enqueued at reply port

) : (TRUE

% Establish some variables.
AND ist1 = int st(st1) 40
AND ist2 = int st(st2)
AND est1 = ext st(st1)
AND est2 = ext st(st2)

%% Avoid excess TCCs
AND (FORALL (x1: (existing tasks(ist1)), y1: (existing tasks(ist2))):

existing tasks(ist1)(y1) AND existing tasks(ist2)(x1))
AND (FORALL (x1: (existing ports(ist1)), y1: (existing ports(ist2))):

existing ports(ist1)(y1) AND existing ports(ist2)(x1))
AND (FORALL (x1: (existing threads(est1)), y1: (existing threads(est2))): 50

existing threads(est1)(y1) AND existing threads(est2)(x1))

% Many components are invariant:
AND existing threads(est2) = existing threads(est1)
AND existing tasks(ist2) = existing tasks(ist1)
AND task threads(ist2) = task threads(ist1)
AND existing ports(ist2) = existing ports(ist1)
AND task sid(ist2) = task sid(ist1)
AND port sid(ist2) = port sid(ist1)
AND received info(est2) = received info(est1) 60
AND cached access(ist2) = cached access(ist1)

% In this transformation we process a kernel request. . .
AND NOT pending requests(est2)(kreq)
AND pending requests(est1) = add(kreq, pending requests(est2))
% and it's a request to set the kernel's security server port
AND set ssp req?(kreq)
% with these particular parameters:

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

126
CDRL A020

Kernel

AND client = ssct (kreq)
AND op = ssop(kreq) 70
AND client av = ssav(kreq)
AND svc port = sssp(kreq)
AND new port = ssnp(kreq)
AND reply port = ssrp(kreq)

% The client is an existing thread. . .
AND existing threads(ist1)(client)
AND existing threads(est1)(client)
AND existing threads(est2)(client)
% and reply port is an existing port. . . 80
AND existing ports(ist1)(reply port)
% and new port is an existing port. . .
AND existing ports(ist1)(new port)
% and client av contains permission to set the ss port. . .
AND client av(set ss perm)
% and the client had been waiting but now is running. . .
AND thread status(est1)(client) = thread waiting
AND thread status(est2) = thread status(est1) WITH [(client) := thread running]
% and the request was received on the correct port. . .
AND existing tasks(ist1)(k task) 90
AND task names(ist1)(k task)(host name)
AND svc port = named port(ist1)(k task)(host name)
% and the kernel's name space gets updated.
AND existing tasks(ist2) = existing tasks(ist1)
AND FORALL (x : (existing tasks(ist2))) : (TRUE

AND existing tasks(ist1)(x)
AND task names(ist2)(x) = task names(ist1)(x)
AND (FALSE

OR (TRUE
AND x = k task 100
AND task names(ist2)(k task)(ss name)
AND named port(ist2)(k task) = named port(ist1)(k task) WITH

[(ss name) := new port]
)
OR named port(ist2)(x) = named port(ist1)(x)

)
AND held rights(ist2)(x) = held rights(ist1)(x)
AND dead names(ist2)(x) = dead names(ist1)(x)

)
110

% The kernel enqueues the reply message at replyport:
% The set of existing messages grows. . .
AND NOT existing messages(ist1)(msg)
AND existing messages(ist2) = add(msg, existing messages(ist1))
% the msg gets added to reply port's queue. . .
AND queue(ist2) = (LAMBDA (pt : (existing ports(ist1))) :

IF (pt = reply port) THEN
tack on(msg, queue(ist1)(reply port))

ELSE
queue(ist1)(pt) 120

ENDIF
)
% the sending sid gets recorded. . .
AND sending sid(ist2) = (LAMBDA (x : (existing messages(ist2))) :

IF existing messages(ist1)(x) THEN
sending sid(ist1)(x)

ELSE
sid witness

ENDIF
) 130
% no access vector is sent. . .
AND av(ist2) = (LAMBDA (x : (existing messages(ist2))) :

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 127

IF existing messages(ist1)(x) THEN
av(ist1)(x)

ELSE
emptyset[PERMISSION]

ENDIF
)
% the operation gets recorded. . .
AND op(ist2) = (LAMBDA (x : (existing messages(ist2))) : 140

IF existing messages(ist1)(x) THEN
op(ist1)(x)

ELSE
op to reply op(op)

ENDIF
)
% the data (indicating success) gets recorded. . .
AND sent data(ist2) = (LAMBDA (x : (existing messages(ist2))) :

IF existing messages(ist1)(x) THEN
sent data(ist1)(x) 150

ELSE
success data

ENDIF
)
% the reply port is the same as the port where the message is enqueued. . .
AND reply port(ist2) = (LAMBDA (x : (existing messages(ist2))) :

IF existing messages(ist1)(x) THEN
reply port(ist1)(x)

ELSE
reply port 160

ENDIF
)
% no rights are sent.
AND sent rights(ist2) = (LAMBDA (x : (existing messages(ist2))) :

IF existing messages(ist1)(x) THEN
sent rights(ist1)(x)

ELSE
null seq

ENDIF
) 170

)

END k set ss port
% === =============

17.2.6 Get Security Server Port

The get security server request is used to retrieve the master security server port.

THEORY k get ss port

k get ss port : THEORY

BEGIN
% =====

% IMPORTS
% =======

IMPORTING k state 10

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

128
CDRL A020

Kernel

IMPORTING k utilities

% THE k get ss port REQUEST
% === ============= =======
%
% k get ss port describes a transition where a client has requested
% to get the kernels security server port.

k get ss port (20
st1 : (K STATE), % The initial state of the transition
st2 : (K STATE), % The final state of the transition
ag : (k threads) % The mediating agent

) : bool =

EXISTS (
ist1, ist2 : (K INTERNAL STATE), % The internal state components
est1, est2 : K EXTERNAL STATE, % The externally visible components
kreq : K REQ, % The kernel request being processed
client : THREAD, % The client thread 30
op : OP, % The operation; redundant (= get ss op)
client av : ACCESS VECTOR, % The av associated with (client, svc port)
svc port : PORT, % The port on which the request was received
reply port : PORT, % The port where reply message is enqueued
msg : MESSAGE % The reply message enqueued at reply port

) : (TRUE

% Establish some variables.
AND ist1 = int st(st1)
AND ist2 = int st(st2) 40
AND est1 = ext st(st1)
AND est2 = ext st(st2)

%% Avoid excess TCCs
AND (FORALL (x1: (existing tasks(ist1)), y1: (existing tasks(ist2))):

existing tasks(ist1)(y1) AND existing tasks(ist2)(x1))
AND (FORALL (x1: (existing ports(ist1)), y1: (existing ports(ist2))):

existing ports(ist1)(y1) AND existing ports(ist2)(x1))
AND (FORALL (x1: (existing threads(est1)), y1: (existing threads(est2))):

existing threads(est1)(y1) AND existing threads(est2)(x1)) 50

% Many components are invariant:
AND existing threads(est2) = existing threads(est1)
AND existing tasks(ist2) = existing tasks(ist1)
AND task threads(ist2) = task threads(ist1)
AND existing ports(ist2) = existing ports(ist1)
AND task sid(ist2) = task sid(ist1)
AND port sid(ist2) = port sid(ist1)
AND received info(est2) = received info(est1)
AND cached access(ist2) = cached access(ist1) 60
AND task names(ist2) = task names(ist1)
AND named port(ist2) = named port(ist1)
AND held rights(ist2) = held rights(ist1)
AND dead names(ist2) = dead names(ist1)

% In this transformation we process a kernel request. . .
AND NOT pending requests(est2)(kreq)
AND pending requests(est1) = add(kreq, pending requests(est2))
% and its a request to get the kernel's security server port
AND get ssp req?(kreq) 70
% with these particular parameters:
AND client = gsct(kreq)
AND op = gsop(kreq)
AND client av = gsav(kreq)

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 129

AND svc port = gssp(kreq)
AND reply port = gsrp(kreq)

% The client is an existing thread. . .
AND existing threads(ist1)(client)
AND existing threads(est1)(client) 80
AND existing threads(est2)(client)
% and reply port is an existing port. . .
AND existing ports(ist1)(reply port)
% and client av contains permission to get the ss port. . .
AND client av(get ss perm)
% and the client had been waiting but now is running. . .
AND thread status(est1)(client) = thread waiting
AND thread status(est2) = thread status(est1) WITH [(client) := thread running]
% and the request was received on the correct port. . .
AND existing tasks(ist1)(k task) 90
AND task names(ist1)(k task)(host name)
AND task names(ist1)(k task)(ss name)
AND svc port = named port(ist1)(k task)(host name)

% The kernel enqueues the reply message at replyport:
% The set of existing messages grows. . .
AND NOT existing messages(ist1)(msg)
AND existing messages(ist2) = add(msg, existing messages(ist1))
% the msg gets added to reply port's queue. . .
AND queue(ist2) = (LAMBDA (pt : (existing ports(ist1))) : 100

IF (pt = reply port) THEN
tack on(msg, queue(ist1)(reply port))

ELSE
queue(ist1)(pt)

ENDIF
)
% the sending sid gets recorded. . .
AND sending sid(ist2) = (LAMBDA (x : (existing messages(ist2))) :

IF existing messages(ist1)(x) THEN
sending sid(ist1)(x) 110

ELSE
sid witness

ENDIF
)
% no access vector is sent. . .
AND av(ist2) = (LAMBDA (x : (existing messages(ist2))) :

IF existing messages(ist1)(x) THEN
av(ist1)(x)

ELSE
emptyset[PERMISSION] 120

ENDIF
)
% the operation gets recorded. . .
AND op(ist2) = (LAMBDA (x : (existing messages(ist2))) :

IF existing messages(ist1)(x) THEN
op(ist1)(x)

ELSE
op to reply op(op)

ENDIF
) 130
% the data (indicating success) gets recorded. . .
AND sent data(ist2) = (LAMBDA (x : (existing messages(ist2))) :

IF existing messages(ist1)(x) THEN
sent data(ist1)(x)

ELSE
success data

ENDIF
)

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

130
CDRL A020

Kernel

% the reply port is the same as the port where the message is enqueued. . .
AND reply port(ist2) = (LAMBDA (x : (existing messages(ist2))) : 140

IF existing messages(ist1)(x) THEN
reply port(ist1)(x)

ELSE
reply port

ENDIF
)
% ss port is sent back
AND sent rights(ist2) = (LAMBDA (x : (existing messages(ist2))) :

IF existing messages(ist1)(x) THEN
sent rights(ist1)(x) 150

ELSE
(#

size := 1,
elem := (LAMBDA (x : nat j x > 0 AND x <= 1) :

(named port(ist1)(k task)(ss name), send)
)

#)
ENDIF

)
) 160

END k get ss port
% === =============

17.2.7 Summary of Operations

A kernel operation consists of any transition with a kernel thread serving as the agent such
that the start and final states of the transition are either consistent with one of the operations
defined above or look the same with respect to k view .

THEORY k ops

k ops : THEORY

BEGIN
% =====

% IMPORTS
% =======

IMPORTING k send message 10
IMPORTING k receive message
IMPORTING k kernel request
IMPORTING k provide access
IMPORTING k request access
IMPORTING k set ss port
IMPORTING k get ss port

% VARIABLES
% ========= 20

st1, st2 : VAR (K STATE)

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 131

thread : VAR THREAD
th: VAR (k threads)

% THE OPERATIONS
% === ==========

k op(st1, st2, th) : bool = FALSE 30
OR k send message(st1, st2, th)
OR k receive message(st1, st2, th)
OR k kernel request(st1, st2, th)
OR k provide access(st1, st2, th)
OR k request access(st1, st2, th)
OR k set ss port(st1, st2, th)
OR k get ss port(st1, st2, th)

k guar(st1,st2,thread) : bool =
k threads(thread) AND 40

(k view(st1, st2)
OR k op(st1, st2,thread))

END k ops
% === =====

17.3 Environment Assumptions

The environment to the kernel is constrained as follows:

The only portions of the kernel state that can be modified by agents other than those in
kernel thread are pending requests, thread status, and received info.

The only change allowed to pending requests is the addition of a send or receive message
request in the name of the active agent. This active agent can be either the kernel itself
or a thread executing on the kernel.

The only change allowed to thread status is the changing of the active agent’s status
from thread running to thread waiting to indicate it is waiting for the kernel to process a
message.

The only change allowed to received info is the changing of the active agent’s ri status

field from ri unprocessed to ri processed to indicate it has processed the information.

The submission of a kernel request by thread is modeled as the simultaneous addition of a
request by thread to pending requests and the changing of thread status(thread) to thread waiting .
A thread thread may change received info(thread) to ri processed whenever it chooses. We take
hidd for the kernel to be identical to rely . This is equivalent to assuming that it is not possible
for any component to violate the environment assumptions of the kernel. This approach has
the advantage that it reduces the number of proof obligations when the tolerance analysis
is performed; the obligations to show that no component violates the kernel’s assumptions
essentially disappear since we can prove the obligations based only upon thehidd and rely of the
kernel. The disadvantage is that we might miss errors in the other component specifications.
It is probably reasonable to assume that in the implementation no component can violate the
assumptions of the kernel as outlined above. Thus, these would be errors in the specification
of a component which cannot be duplicated in the component’s implementation.

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

132
CDRL A020

Kernel

We note that taking hidd = rely results in a specification similar to those used by Shankar.
However, whereas in Shankar’s framework the equivalence is required for all components, we
can choose to make this equivalence for individual components.

THEORY k rely

k rely : THEORY

BEGIN
% =====

% IMPORTS
% =======

IMPORTING k state 10

% VARIABLES
% =========

st1, st2 : VAR (K STATE)
ist1, ist2 : VAR (K INTERNAL STATE)
est1, est2 : VAR K EXTERNAL STATE
ag, thread : VAR THREAD
kern req : VAR KERNEL REQ 20

% ENVIRONMENTAL ASSUMPTIONS
% ============= ===========

% 1. Nobody else changes my internal state:
k rely internal(ist1, ist2) : bool =

ist1 = ist2

% 2. Nobody changes the set of existing threads: 30
k rely existing threads(est1, est2) : bool =

existing threads(est1) = existing threads(est2)

% 3. The only change allowed to pending requests is the addition
% of a send or receive message request by the active agent:

k rely pending requests(est1, est2, ag) : bool =
FORALL kern req : (TRUE

AND pending requests(est1)(kern req) => pending requests(est2)(kern req)
AND (NOT pending requests(est1)(kern req)

AND pending requests(est2)(kern req) 40
=> (FALSE

OR (send message req?(kern req) AND smth(kern req) = ag)
OR (receive message req?(kern req) AND rmth(kern req) = ag)

)))

% 4. The only change allowed to thread status is the changing of the active agent's
% status from thread running to thread waiting:

k rely thread status(est1, est2, ag) : bool =
FORALL (thread : THREAD) : (FALSE

OR NOT existing threads(est1)(thread) 50
OR NOT existing threads(est2)(thread)
OR thread status(est1)(thread) = thread status(est2)(thread)
OR (TRUE

AND thread status(est1)(thread) = thread running

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 133

AND thread status(est2)(thread) = thread waiting
AND thread = ag

)
)

% 5. The only change allowed to received info is the changing of the active agent's 60

% ri status from ri unprocessed to ri processed.
k rely received info(est1, est2, ag) : bool =

FORALL (thread : THREAD) : (FALSE
OR NOT existing threads(est1)(thread)
OR NOT existing threads(est2)(thread)
OR received info(est1)(thread) = received info(est2)(thread)
OR (TRUE

AND ri status(received info(est1)(thread)) = ri unprocessed
AND ri status(received info(est2)(thread)) = ri processed
AND thread = ag 70

)
)

% THE ENVIRONMENTAL ASSUMPTIONS
% === ============= ===========

k rely(st1, st2, ag) : bool = TRUE
AND NOT k threads(ag)
AND k rely internal(int st(st1), int st(st2))
AND k rely existing threads(ext st(st1), ext st(st2)) 80

AND k rely pending requests(ext st(st1), ext st(st2), ag)
AND k rely thread status(ext st(st1), ext st(st2), ag)
AND k rely received info(ext st(st1), ext st(st2), ag)

k rely refl: THEOREM
k threads(ag) OR k rely(st1,st1,ag)

%% HIDD 90

%% ====

%% We assume that clients of the kernel are unable to violate the
%% environment assumptions made above by the kernel.
k hidd(st1,st2,ag) : bool =

k rely(st1, st2, ag)

END k rely
% === ====== 100

17.4 Component Specification

We use the set initial k states to denote the valid initial states for the kernel. A valid initial
state has the following properties:

There are no pending requests in the initial state.

There are no messages queued at ports in the initial state.

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

134
CDRL A020

Kernel

A kernel is a component having state type K STATE , satisfying initial constraint
initial k states, and executing only the transitions defined in Section 17.2.

THEORY k spec

k spec : THEORY

BEGIN
% =====

% IMPORTS
% =======

IMPORTING k state 10
IMPORTING k ops
IMPORTING k rely
IMPORTING k state witness
IMPORTING component aux[(K STATE), THREAD]

% VARIABLES
% =========

st, st1, st2 : VAR (K STATE) 20
ag : VAR THREAD

% COMPONENT DEFINITIONS
% ========= ===========

% 1. init���Initial conditions (must be non�empty, so we need a witness):
initial k states(st) : bool =

FORALL (p : PORT j existing ports(int st(st))(p)) : queue(int st(st))(p)=null seq[MESSAGE]
AND empty?(pending requests(ext st(st))) 30

% NOTE: Ought to be more conditions here. E.g., AVC should contain
% permissions for the kernel to the security server and vice versa,
% and no other permissions; need to specify that tasks for the other
% components exist. Then need to update the initial state witness.

k state witness initial : THEOREM
initial k states(k state witness)

40
% THE KERNEL COMPONENT
% === ====== =========

base k comp : base comp t =
(# init := initial k states,

guar := k guar,
rely := k rely,
hidd := k hidd,
cags := k threads, 50
view := k view,
wfar := emptyset[TRANSITION CLASS[(K STATE), THREAD]],
sfar := emptyset[TRANSITION CLASS[(K STATE), THREAD]] #)

k view eq: THEOREM view eq(base k comp)

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 135

k comp init: THEOREM init restriction(base k comp)

k comp guar: THEOREM guar restriction(base k comp)
60

k comp rely hidd: THEOREM rely hidd restriction(base k comp)

k comp hidd: THEOREM hidd restriction(base k comp)

k comp rely: THEOREM rely restriction(base k comp)

k comp cags: THEOREM cags restriction(base k comp)

k comp guar stuttering: THEOREM guar stuttering restriction(base k comp)
70

k comp rely stuttering: THEOREM rely stuttering restriction(base k comp)

k comp : (comp t) = base k comp

END k spec
% === ======

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

136
CDRL A020

Common Transitions

Section 18
Common Transitions

In this section we define some utility functions that will be used in the specifications
of later components to describe the ways in which they manipulate their kernel inter-
face. The function e�ects on kernel state limits the changes that components make to their
KERNEL SHARED STATE . Components can update the pending requests and thread status

portions of the system state by introducing requests in the name of their threads. The only
other change a component can make to the kernel state is the updating of received info to
indicate that it has processed a request it previously received.31

Two other utility functions help define specific modifications that components make to their
KERNEL SHARED STATE :

an agent (thread) of a component can mark its received information as processed via
function process request(thread ; thread info1; thread info2),

an agent of a component can process a received message and then reply to it
by submitting a kernel request via function make service request(cags, service ports,
reply port ; requested op, needed perm, user msg1, user msg2, kst1, kst2) where

– the agent is in cags,

– user msg1 is the received message,

– the message was received on a port in service ports,

– requested op is the operation in the received message,

– needed perm is a permission that the component requires in order to perform its
service and send the reply and which must be in the access vector contained in the
message,

– user msg2 is the reply message,

– the reply is sent to the reply name in the received message, it has an operation based
upon the operation of the received message, and its reply port is the reply port sent
in the reply message,

– kst1 and kst2 are the component’s kernel state in the starting and final states of the
transition, respectively,

– the reply message is added to pending requests,

– the agent waits for its pending request to be processed.

Editorial Note:
The utility function make service request could have been used a little more often in the Crypto Sub-
system example. However, it turns out that there are relatively few transitions in the subsystem in

31Since e�ects on kernel state is used to constrain the steps of all non-kernel components in this report, the as-
sumption that hidd and rely are equal for the kernel could probably be removed without a tremendous increase in
the complexity of the tolerance proofs. We could demonstrate that any component that obeys e�ects on kernel state

satisfies the kernel’s environment assumptions. Of course, the use of e�ects on kernel state in defining a compo-
nent means that any transition of that component that is erroneously specified in a way that is inconsistent with
e�ects on kernel state will not actually end up as a transition of the component.

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 137

which a component receives a request and in the same transition can send the reply. More commonly, a
component will first make requests of other components and wait for the responses before replying to the
original request.

THEORY dtos kernel shared ops

dtos kernel shared ops: THEORY
BEGIN

%% Note that the restrictions on transition described here apply
%% only within a component's part of the kernel shared state. The
%% in the common state for the components we assume the kst of each
%% non�kernel component to be a substate of the kernel's shared
%% state. The hidd relations are used to ensure that components
%% being composed do not mess with another component's kst.

10
IMPORTING dtos kernel shared state

THREAD INFO:
TYPE =

[# existing threads: setof [THREAD],
received info: [(existing threads) �> RECEIVED INFO],
thread status: [(existing threads) �> THREAD STATUS] #]

thread info1, thread info2: VAR THREAD INFO
20

thread: VAR THREAD

ri, ri1, ri2: VAR RECEIVED INFO

process request(thread, thread info1, thread info2): bool =
existing threads(thread info1)(thread)

AND existing threads(thread info2) = existing threads(thread info1)
AND

(EXISTS ri1, ri2:
ri status(ri1) = ri unprocessed 30

AND (received info(thread info1))(thread) = ri1
AND ri status(ri2) = ri processed

AND received info(thread info2)
= received info(thread info1) WITH [thread := ri2])

kst, kst1, kst2: VAR KERNEL SHARED STATE

c ags: VAR setof [THREAD]

kernel req: VAR KERNEL REQ 40

requested op, op: VAR OP

name, reply port: VAR NAME

user msg, user msg1, user msg2: VAR USER MSG

null thread info: THREAD INFO

kst to ti(kst): THREAD INFO = 50
null thread info

WITH [existing threads := existing threads(kst),
received info := received info(kst),

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

138
CDRL A020

Common Transitions

thread status := thread status(kst)]

effects on kernel state(kst1, kst2, c ags): bool =
((pending requests(kst2) == pending requests(kst1)

OR existing threads(kst2) == existing threads(kst1)
OR thread status(kst2) == thread status(kst1))

IMPLIES 60
(EXISTS kernel req, thread:

pending requests(kst2)
= union(pending requests(kst1), fx: KERNEL REQ j kernel req = xg)
AND

((send message req?(kernel req) AND smth(kernel req) = thread)
OR

(receive message req?(kernel req) AND rmth(kernel req) = thread))
AND c ags(thread)

AND existing threads(kst1)(thread)
AND existing threads(kst2)(thread) 70

AND thread status(kst1)(thread) = thread running
AND thread status(kst2)

= thread status(kst1) WITH [thread := thread waiting]))
AND

((existing threads(kst2) == existing threads(kst1)
OR received info(kst2) == received info(kst1))

IMPLIES
(EXISTS thread:

c ags(thread)
AND process request(thread, kst to ti(kst1), kst to ti(kst2)))) 80

service ports: VAR setof [NAME]

needed perm: VAR PERMISSION

ssi, osi: VAR SID

reply op(requested op): OP

make service request(c ags, service ports, reply port, 90
requested op, needed perm,
user msg1, user msg2, kst1, kst2):

bool =
(EXISTS thread, ri, ssi, osi, kernel req:

c ags(thread)
AND existing threads(kst1)(thread)

AND process request(thread, kst to ti(kst1), kst to ti(kst2))
AND thread status(kst1)(thread) = thread running

AND ri = received info(kst1)(thread)
AND service ports(service port(ri)) 100

AND ri status(ri) = ri unprocessed
AND sending av(ri)(needed perm)

AND op(ri) = requested op
AND user msg1 = user msg(ri)

AND kernel req
=

send message req(thread, reply name(ri),
reply op(op(ri)),
reply port, user msg2)

AND pending requests(kst2) 110
=

union(pending requests(kst1),
fx: KERNEL REQ j x = kernel reqg)

AND existing threads(kst2)
= existing threads(kst1)
AND existing threads(kst2)(thread)

AND thread status(kst2)

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 139

= thread status(kst1)
WITH [thread := thread waiting])

120
END dtos kernel shared ops

The theory messaging defines some utility functions for use by kernel client specifications in
receiving and sending messages. The functions are:

receive msg(kst1; kst2; thread ; name) — thread requests to receive a message on a port name
name changing its kernel shared state from kst1 to kst2.

receive request(thread ; ri ; op id ; perm; kst1; kst2) — thread checks permission perm and op-
eration op id on the received information in ri and then uses process request to mark ri

as processed.

send msg(kst1; kst2; thread ; to; op id ; reply port ;msg) — thread sends message (op id ;msg)
to port to with reply port reply port .

THEORY messaging

messaging: THEORY
BEGIN

IMPORTING dtos kernel shared ops

kst1, kst2: VAR KERNEL SHARED STATE

thread: VAR THREAD 10

ri: VAR RECEIVED INFO

op id: VAR OP

perm: VAR PERMISSION

name, reply port, to: VAR NAME

kernel req: VAR KERNEL REQ 20

msg: VAR USER MSG

%% "Thread" requests to receive a message on a port named "name"
%% in transition from kst1 to kst2.
receive msg(kst1, kst2, thread, name): bool =

existing threads(kst1)(thread)
AND existing threads(kst1) = existing threads(kst2)

AND received info(kst1) = received info(kst2)
AND thread status(kst1)(thread) = thread running 30
AND existing threads(kst2)(thread)

AND thread status(kst2)
= thread status(kst1) WITH [thread := thread waiting]
AND pending requests(kst2)

=

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

140
CDRL A020

Common Transitions

add(receive message req(thread, name),
pending requests(kst1))

% process a newly received request message
receive request(thread, ri, op id, perm, kst1, kst2): bool = 40

existing threads(kst1)(thread)
AND thread status(kst1)(thread) = thread running

AND ri = received info(kst1)(thread)
AND ri status(ri) = ri unprocessed

AND sending av(ri)(perm)
AND op(ri) = op id

AND
process request(thread,

kst to ti(kst1), kst to ti(kst2))
50

%% "Thread" sends message <op id, msg> to port "to" with
%% reply port "reply port" in transition from kst1 to kst2.
send msg(kst1, kst2, thread, to, op id, reply port, msg): bool =

existing threads(kst1) = existing threads(kst2)
AND existing threads(kst1)(thread)

AND thread status(kst1)(thread) = thread running
AND existing threads(kst2)(thread)

AND thread status(kst2)
= thread status(kst1) WITH [thread := thread waiting]
AND 60

(LET
kernel req = send message req(thread,

to, op id,
reply port, msg)

IN pending requests(kst2)
= add(kernel req, pending requests(kst1)))

send msg ops neq : LEMMA
(send msg(kst1, kst2, thread, to, op id, reply port, msg)

AND send message req?(kernel req) 70
AND smop(kernel req) == op id
AND pending requests(kst2)(kernel req))

IMPLIES pending requests(kst1)(kernel req)

receive msg not send : LEMMA
(receive msg(kst1, kst2, thread, name)

AND send message req?(kernel req)
AND pending requests(kst2)(kernel req))

IMPLIES pending requests(kst1)(kernel req)
80

END messaging

The environment of a component C is assumed to obey the following constraints. Note that
these constraints will be used in defining the rely of C and therefore apply only to agents
that do not belong to C . The parameters kst1 and kst2 will be instantiated with the local
KERNEL SHARED STATE of C .

Only the kernel may change the set of existing threads (functionexisting threads rely).

The status of a thread in C may not be changed from thread running to thread waiting ,
and only the kernel may change it from thread waiting to thread running (function
thread status rely).

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 141

The received info of a thread in C may not be modified unless it has been marked as
processed and the agent of the transition is a kernel thread (functionreceived info rely).

Only a kernel thread may remove a request frompending requests and no other component
can submit a request in the name ofC (function pending requests rely).

We also define here a common base for hidd . It states that only a kernel thread may modify
the kernel shared state of a component. Furthermore, the kernel never adds a request to the
pending requests of the component. The relationship between hidd base and environment base

is described by the theorems hidd base prop and hidd env prop.

THEORY dtos kernel shared rely

dtos kernel shared rely: THEORY
BEGIN

IMPORTING dtos kernel shared state

IMPORTING kst merge

c ags: VAR setof [THREAD]

thread, ag: VAR THREAD 10

kst, kst1, kst2: VAR KERNEL SHARED STATE

ri: VAR RECEIVED INFO

kernel req: VAR KERNEL REQ

%% The following assume a context where the kst's are local
%% to a single component. Thus, although other components may
%% alter their own kst's there is nothing they can do (with the 20
%% exception of the kernel) to the kst of the component being
%% defined.

existing threads rely(ag, kst1, kst2): bool =
existing threads(kst1) = existing threads(kst2)
OR k threads(ag)

thread status rely(ag, kst1, kst2): bool =
(FORALL thread: 30

(existing threads(kst1)(thread) AND existing threads(kst2)(thread))
IMPLIES

(thread status(kst1)(thread) = thread running
IMPLIES thread status(kst2)(thread) = thread running)

AND
(thread status(kst1)(thread) = thread waiting

AND thread status(kst2)(thread) = thread running
IMPLIES k threads(ag)))

received info rely(ag, kst1, kst2): bool = 40
(FORALL thread, ri:

existing threads(kst1)(thread)
AND received info(kst1)(thread) = ri

AND existing threads(kst2)(thread)
IMPLIES

(received info(kst2)(thread) = ri

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

142
CDRL A020

Common Transitions

OR (ri status(ri) = ri processed
AND k threads(ag))))

pending requests rely(ag, kst1, kst2): bool = 50
(FORALL kernel req:

(pending requests(kst1)(kernel req)
AND NOT pending requests(kst2)(kernel req)
IMPLIES k threads(ag))

AND
(pending requests(kst2)(kernel req)

=> pending requests(kst1)(kernel req))
)

environment base(ag, kst1, kst2): bool = 60
existing threads rely(ag, kst1, kst2)
AND thread status rely(ag, kst1, kst2)

AND received info rely(ag, kst1, kst2)
AND pending requests rely(ag, kst1, kst2)

environment base refl: THEOREM
environment base(ag, kst1, kst1)

hidd base(ag, kst1, kst2): bool = 70
(kst1 = kst2 OR k threads(ag))
AND (FORALL kernel req:

(pending requests(kst2)(kernel req)
=> pending requests(kst1)(kernel req))

)

hidd base prop: THEOREM
environment base(ag, kst1, kst2)

=> hidd base(ag, kst1, kst2)
80

hidd env prop: THEOREM
hidd base(ag, kst1, kst2)

AND (FORALL thread:
(existing threads(kst1)(thread) AND existing threads(kst2)(thread))

IMPLIES
(thread status(kst1)(thread) = thread running

IMPLIES thread status(kst2)(thread) = thread running))
AND (FORALL thread, ri:

existing threads(kst1)(thread)
AND received info(kst1)(thread) = ri 90

AND existing threads(kst2)(thread)
IMPLIES

(received info(kst2)(thread) = ri
OR ri status(ri) = ri processed))

=> environment base(ag, kst1, kst2)

END dtos kernel shared rely

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 143

Section 19
Security Server

This section describes the DTOS Security Server. The role of the Security Server is to provide
an interpretation of SIDs as persistent security contexts and to perform security computations
on SIDs.

19.1 State

The Security Server for each node manages a set,valid sids, of security identifiers representing
the valid security contexts for the node. This set is partitioned into valid object sids and
valid subject sids. The Security Server maps each SID to a class denoted bysid class(sid). One
class is subject class. For each SID having class subject class, the Security Server records a
domain and a level, sid to ssc(sid), for the SID. For all other valid SIDs, the Security Server
records a type and a level for the SID, sid to osc(sid).

The Security Server maintains a Domain Definition Table (DDT) that indicates the accesses
recorded for each domain-type pair. In the implementation, each set of accesses is specified
as a collection of four access vectors (sets of permissions). These four vectors represent each
of the possible results of the MLS comparison (levels are the same, subject level is strictly
higher, object level is strictly higher, or the levels are incomparable). Here, we simply use
ddt(dmn; lvl1; typ; lvl2) to denote the access vector indicating the permissions a subject in domain
dmn and at level lvl1 has to an object with type typ at level lvl2.

The Security Server maintains a cache of interpretations of AIDs as users received from the
Authentication Server. The expression cached aids denotes the set of AIDs for which an inter-
pretation has been cached, and aid to user(aid) denotes the user associated with aid in the
cache. To service a request for a security computation that depends on the AIDs, the Security
Server must map the AIDs associated with the relevant SIDs to users; the AID-relevant se-
curity computations in the Security Server are defined in terms of users. The Security Server
maintains a set of known users denoted by known user . It records the allowable security con-
texts for each known user. In particular, each user has an associated set of allowable domains,
allowed domains(user), and an associated set of allowable levels, allowed levels(user). When a
new task is created, it typically inherits its user from that of the creating subject. However,
certain domains are privileged to set the user associated with the new task. We denote this set
by ccu privileged .

The Security Server records a set of names,ss service ports, through which it provides service.
Similarly, the Security Server records its name for the host name port,ss host name, and its
name for the port through which it expects to receive reply messages,ss reply port .

We use ss threads to denote the constant set of threads executing within the Security Server.32

The Security Server state consists of the data structures described above as well as its
KERNEL SHARED STATE , kst , containing existing threads, pending requests, thread status,
and received info. The valid states are defined by SS STATE . In a valid state,
32DTOS does not require this set of threads to be constant. For convenience, we are using threads to represent

agents. Since our framework requires the set of agents associated with a component to be static, we requiress thread

to be constant.

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

144
CDRL A020

Security Server

valid object sids is the set of all valid sids with a sid class other than subject class,

valid subject sids is the set of all valid sids with a sid class equal to subject class, and

the existing threads in kst are all in ss threads.

THEORY security server state

security server state: THEORY
BEGIN

IMPORTING dtos kernel shared ops

CLASS: NONEMPTY TYPE

subject class: CLASS

DOMAIN: NONEMPTY TYPE 10

domain witness: DOMAIN

TYP: NONEMPTY TYPE

typ witness: TYP

LEVEL: NONEMPTY TYPE

level witness: LEVEL 20

SSC: TYPE = [# dmn: DOMAIN, lvl: LEVEL #]

ssc witness: SSC = (# dmn := domain witness, lvl := level witness #)

OSC: TYPE = [# typ: TYP, lvl: LEVEL #]

osc witness: OSC = (# typ := typ witness, lvl := level witness #)

AID: NONEMPTY TYPE 30

aid witness: AID

USER: NONEMPTY TYPE

user witness: USER

ss threads: setof [THREAD]

ss threads nonempty: AXIOM ss threads == emptyset 40

ss threads witness: (ss threads)

SS STATE BASE:
TYPE =

[# valid sids: setof [SID],
valid object sids: setof [SID],
valid subject sids: setof [SID],
sid class: [(valid sids) �> CLASS],
sid to ssc: [(valid subject sids) �> SSC], 50
sid to osc: [(valid object sids) �> OSC],
sid to aid: [(valid sids) �> AID],

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 145

ddt: [[DOMAIN, LEVEL, TYP, LEVEL] �> ACCESS VECTOR],
cached aids: setof [AID],
aid to user: [(cached aids) �> USER],
known users: setof [USER],
allowed levels: [(known users) �> setof [LEVEL]],
allowed domains: [(known users) �> setof [DOMAIN]],
ccu privileged: setof [DOMAIN],
ss service ports: setof [NAME], 60
ss host name: NAME,
ss reply port: NAME,
kst : KERNEL SHARED STATE #]

ssstb: VAR SS STATE BASE

sid: VAR SID

SS STATE(ssstb): bool =
(valid sids(ssstb) 70

= union(valid object sids(ssstb), valid subject sids(ssstb))
AND valid object sids(ssstb)

=
(LAMBDA sid:

valid sids(ssstb)(sid) AND sid class(ssstb)(sid) == subject class)
AND valid subject sids(ssstb)

=
(LAMBDA sid:

valid sids(ssstb)(sid)
AND sid class(ssstb)(sid) = subject class) 80

AND subset?(existing threads(kst(ssstb)), ss threads))

sst1, sst2: VAR (SS STATE)

ss threads prop: THEOREM
subset?(existing threads(kst(sst1)), ss threads)

ss view(sst1,sst2) : bool =
sst1 = sst2

90
sss: VAR (SS STATE)

valid subject sid def : LEMMA
valid subject sids(sss)(sid)

= (valid sids(sss)(sid) AND sid class(sss)(sid) = subject class)

valid object sid def : LEMMA
valid object sids(sss)(sid)

= (valid sids(sss)(sid) AND sid class(sss)(sid) == subject class)
100

END security server state

THEORY security server state witness

security server state witness: THEORY

BEGIN

IMPORTING security server state

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

146
CDRL A020

Security Server

ss state witness: (SS STATE) =
(# valid sids := emptyset[SID],

valid object sids := emptyset[SID],
valid subject sids := emptyset[SID], 10
sid class := (LAMBDA (x: (emptyset[SID])): subject class),
sid to ssc := (LAMBDA (x: (emptyset[SID])): ssc witness),
sid to osc := (LAMBDA (x: (emptyset[SID])): osc witness),
sid to aid := (LAMBDA (x: (emptyset[SID])): aid witness),
ddt :=

(LAMBDA (x: [DOMAIN, LEVEL, TYP, LEVEL]):
emptyset[PERMISSION]),

cached aids := emptyset[AID],
aid to user := (LAMBDA (x: (emptyset[AID])): user witness),
known users := emptyset[USER], 20
allowed levels := (LAMBDA (x: (emptyset[USER])): emptyset[LEVEL]),
allowed domains := (LAMBDA (x: (emptyset[USER])): emptyset[DOMAIN]),
ccu privileged := emptyset[DOMAIN],
ss service ports := emptyset[NAME],
ss host name := null name,
ss reply port := null name,
kst := empty kst
#)

ss state witness prop: THEOREM (EXISTS (ssstb: (SS STATE)): TRUE) 30

END security server state witness

19.2 Operations

This section describes the subset of Security Server transitions that are relevant to this exam-
ple. The following transitions are defined:

ss receive request — submit a kernel request to receive a message on a service port,

ss compute access — receive a request for an access vector, determine the vector and
send it in a reply message, and

ss load user — receive a message containing the user associated with a given AID and
store the user in the cache.

Editorial Note:
This section currently describes only successful processing of requests.

The valid sids, sid class, valid subject sids, sid to ssc, valid object sids, sid to osc,
known users, allowed levels, sid to aid , ddt , allowed domains, ccu privileged , ss service ports,
ss host name, and ss reply port components of the Security Server state are not altered by any
transitions.33

At any time when the Security Server has a thread that is not already waiting for a message
operation to be performed, that thread can receive a request through a Security Server service
port (function ss receive request). The thread initiates this processing by setting its pending
request to be a message receive and changing its state tothread waiting .

33This requirement is much more stringent than that for the actual DTOS which allows the policy to be changed.

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 147

In response to a compute access request, the Security Server computes the permissions
allowed for the specified subject and object SIDs. The result is sent to the kernel in a message.

The expression allowed(ssi ; osi) denotes the access vector the Security Server database defines
for ssi to osi . The major portion of the computation consists of mapping ssi and osi to secu-
rity contexts and using them to index into ddt . In the case of subject creation (permissions
create task perm and create task secure perm on an object of class subject class) it is also nec-
essary to ensure that the users are the same or the creating domain is in the setccu privileged .
These are the AID-relevant permissions and thus require checks based on the users.34 Note
that allowed(ssi ; osi) is undefined if some permissions for osi ’s class are AID-relevant and
aid to user does not contain the interpretation of the associated AIDs as users. In this case,
the computation of the access vector cannot proceed untilaid to user is updated to contain the
necessary information.

Editorial Note:
The PVS specification is not consistent with the above paragraph sinceallowed is a total function. This
error is irrelevant to the results of the composability study.

When it receives a load user request, the Security Server records the indicated binding
between an AID and a user.

A Security Server operation consists of any one of the operations defined above. The guar of
the Security Server consists of those transitions with a Security Server thread serving as the
agent such that the start and final states of the transition satisfyss step and ss op or look the
same with respect to ss view .

THEORY security server ops

security server ops: THEORY
BEGIN

IMPORTING security server state

st, st1, st2: VAR (SS STATE)

ag: VAR THREAD

ss static(st1, st2): bool = 10
valid sids(st1) = valid sids(st2)

AND sid class(st1) = sid class(st2)
AND valid subject sids(st1) = valid subject sids(st2)

AND sid to ssc(st1) = sid to ssc(st2)
AND valid object sids(st1) = valid object sids(st2)

AND sid to osc(st1) = sid to osc(st2)
AND known users(st1) = known users(st2)

AND allowed levels(st1) = allowed levels(st2)
AND sid to aid(st1) = sid to aid(st2)

AND ddt(st1) = ddt(st2) 20
AND allowed domains(st1) = allowed domains(st2)

AND ccu privileged(st1) = ccu privileged(st2)
AND ss service ports(st1) = ss service ports(st2)

AND ss host name(st1) = ss host name(st2)

34Other permissions besides create task perm and create task secure perm are AID-relevant in the actual DTOS
system.

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

148
CDRL A020

Security Server

AND ss reply port(st1) = ss reply port(st2)

ss step(st1, st2): bool =
ss static(st1, st2)

AND effects on kernel state(kst(st1), kst(st2), ss threads)
30

thread: VAR THREAD

name: VAR NAME

ss receive request(st1, st2): bool =
ss step(st1, st2)

AND cached aids(st1) = cached aids(st2)
AND aid to user(st1) = aid to user(st2)

AND existing threads(kst(st1)) = existing threads(kst(st2))
AND received info(kst(st1)) = received info(kst(st2)) 40

AND
(EXISTS thread, name:

ss threads(thread)
AND ss service ports(st1)(name)

AND existing threads(kst(st1))(thread)
AND thread status(kst(st1))(thread) = thread running

AND existing threads(kst(st2))(thread)
AND thread status(kst(st2))

= thread status(kst(st1))
WITH [thread := thread waiting] 50
AND pending requests(kst(st2))

=
add(receive message req(thread, name),

pending requests(kst(st1))))

ssi, osi: VAR SID

base allowed(ssi, osi, st): ACCESS VECTOR =
IF (valid subject sids(st)(ssi) AND valid object sids(st)(osi))

THEN LET ssc: SSC = sid to ssc(st)(ssi), osc: OSC = sid to osc(st)(osi) 60
IN ddt(st)(dmn(ssc), lvl(ssc), typ(osc), lvl(osc))

ELSE emptyset[PERMISSION]
ENDIF

perm: VAR PERMISSION

allowed(ssi, osi, st): ACCESS VECTOR =
IF NOT valid object sids(st)(osi)

OR (valid sids(st)(osi) AND sid class(st)(osi) == subject class)
OR NOT valid subject sids(st)(ssi) 70

THEN base allowed(ssi, osi, st)
ELSIF (valid sids(st)(ssi) AND NOT cached aids(st)(sid to aid(st)(ssi)))

OR
(valid sids(st)(osi) AND NOT cached aids(st)(sid to aid(st)(osi)))

THEN emptyset[PERMISSION]
ELSIF aid to user(st)(sid to aid(st)(ssi))

== aid to user(st)(sid to aid(st)(osi))
AND NOT ccu privileged(st)(dmn(sid to ssc(st)(ssi)))

THEN
(LAMBDA perm: 80

base allowed(ssi, osi, st)(perm)
AND perm == create task perm AND perm == create task secure perm)

ELSE base allowed(ssi, osi, st)
ENDIF

compute access op: OP

compute access perm: PERMISSION

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 149

sid sid to data: [[SID, SID] �> DATA] 90

sid sid av to data: [[SID, SID, ACCESS VECTOR] �> DATA]

av: VAR ACCESS VECTOR

compute access msg(ssi, osi): USER MSG =
null user msg

WITH [user data := sid sid to data(ssi, osi), user rights := null seq]

provide access msg(ssi, osi, av): USER MSG = 100
null user msg

WITH [user data := sid sid av to data(ssi, osi, av),
user rights := null seq]

ss compute access(st1, st2): bool =
ss step(st1, st2)

AND
(EXISTS ssi, osi:

(NOT valid sids(st1)(ssi) OR cached aids(st1)(sid to aid(st1)(ssi)))
AND (NOT valid sids(st1)(osi) 110

OR cached aids(st1)(sid to aid(st1)(osi)))
AND make service request(ss threads, ss service ports(st1),

ss reply port(st1),
compute access op, compute access perm,
compute access msg(ssi, osi),
provide access msg(ssi, osi,

allowed(ssi, osi, st1)),
kst(st1), kst(st2)))

AND cached aids(st1) = cached aids(st2)
AND aid to user(st1) = aid to user(st2) 120

load user op: OP

load user perm: PERMISSION

aid user to data: [[AID, USER] �> DATA]

aid, aid1: VAR AID

user: VAR USER 130

load user msg(aid, user): USER MSG =
null user msg

WITH [user data := aid user to data(aid, user), user rights := null seq]

ri: VAR RECEIVED INFO

ss load user(st1, st2): bool =
(EXISTS thread, ri, aid, user:

ss threads(thread) 140
AND

process request(thread, kst to ti(kst(st1)), kst to ti(kst(st2)))
AND existing threads(kst(st2)) = existing threads(kst(st1))

AND thread status(kst(st2)) = thread status(kst(st1))
AND existing threads(kst(st1))(thread)

AND thread status(kst(st1))(thread) = thread running
AND ri = received info(kst(st1))(thread)

AND ss service ports(st1)(service port(ri))
AND ri status(ri) = ri unprocessed

AND sending av(ri)(load user perm) 150
AND op(ri) = load user op

AND load user msg(aid, user) = user msg(ri)

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

150
CDRL A020

Security Server

AND cached aids(st2)
= union(cached aids(st1), fx: AID j x = aidg)
AND cached aids(st2)(aid)

AND aid to user(st2)
= aid to user(st1) WITH [aid := user]
AND pending requests(kst(st2))

= pending requests(kst(st1)))
160

ss op(st1, st2) : bool =
ss receive request(st1,st2) or

ss compute access(st1,st2) or
ss load user(st1,st2)

ss guar(st1,st2,ag) : bool =
ss threads(ag) AND

(ss view(st1, st2)
OR (ss step(st1, st2) AND ss op(st1, st2))) 170

END security server ops

19.3 Environment Assumptions

The environment of the Security Server is assumed to alter no Security Server state information
other than kst and to obey the constraints on changing kst that are given in environment base

on page 140. The hidd of the Security Server is defined similarly usinghidd base.

THEORY security server rely

security server rely : THEORY

BEGIN

IMPORTING dtos kernel shared rely

IMPORTING security server state

st1, st2 : VAR (SS STATE)
10

ag : VAR THREAD

ss environment(st1,st2,ag) : bool =
environment base(ag,kst(st1),kst(st2)) and
st1 with [kst := kst(st2)] = st2

ss environment refl: THEOREM
ss environment(st1,st1,ag)

ss hidd(st1,st2,ag) : bool = 20
NOT ss threads(ag)

AND hidd base(ag, kst(st1), kst(st2))
AND st2 = st1 WITH [kst := kst(st2)]

ss hidd prop: THEOREM
ss hidd(st1,st2,ag)

=> k threads(ag) OR ss view(st1,st2)

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 151

ss rely(st1,st2,ag) : bool = 30
not ss threads(ag) AND
ss environment(st1,st2,ag)

END security server rely

19.4 Component Specification

We use the set initial ss states to denote the valid initial states for the Security Server. The
constraints on initial states are as follows:

There are no cached AIDs.

No kernel requests are pending for any Security Server thread and no messages are
waiting to be processed.

Editorial Note:
Additional constraints ought to be placed on the initial states. Examples include:

at least one Security Server thread is in the running state,

the DDT is configured correctly (e.g., allows the kernel to request computations, the Security Server
to provide computations, the Authentication Server to load aid-to-user interpretations).

These constraints are not really needed for the example as it appears here, but they would be necessary
in a real specification of the Security Server.

All the data in SS STATE BASE is visible to the Security Server.

A Security Server is a component having state SS STATE , satisfying initial constraint
initial ss states, and executing only the transitions defined in Section 19.2.

THEORY security server spec

security server spec : THEORY
BEGIN

IMPORTING dtos kernel shared state
IMPORTING security server ops
IMPORTING security server rely
IMPORTING security server state witness
IMPORTING component aux[(SS STATE),THREAD]

sst, sst1, sst2 : VAR (SS STATE) 10
ag : VAR THREAD

%% This is only a partial definition. In particular we need to place
%% requirements on ddt to ensure that the system components can work
%% together.
initial ss states(sst) : bool =

cached aids(sst) = emptyset[AID]
AND pending requests(kst(sst)) = emptyset[KERNEL REQ]
AND (FORALL ag :

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

152
CDRL A020

Security Server

existing threads(kst(sst))(ag) => 20
ri status(received info(kst(sst))(ag)) = ri processed)

ss state witness initial: THEOREM
initial ss states(ss state witness)

base ss comp : base comp t =
(# init := initial ss states,

guar := ss guar,
rely := ss rely,
hidd := ss hidd, 30
cags := ss threads,
view := ss view,
wfar := emptyset[TRANSITION CLASS[(SS STATE), THREAD]],
sfar := emptyset[TRANSITION CLASS[(SS STATE), THREAD]] #)

ss view eq: THEOREM view eq(base ss comp)

ss comp init: THEOREM init restriction(base ss comp)

ss comp guar: THEOREM guar restriction(base ss comp) 40

ss comp rely hidd: THEOREM rely hidd restriction(base ss comp)

ss comp hidd: THEOREM hidd restriction(base ss comp)

ss comp rely: THEOREM rely restriction(base ss comp)

ss comp cags: THEOREM cags restriction(base ss comp)

ss comp guar stuttering: THEOREM guar stuttering restriction(base ss comp) 50

ss comp rely stuttering: THEOREM rely stuttering restriction(base ss comp)

ss comp : (comp t) = base ss comp

ss comp hidd prop: THEOREM
hidd(ss comp)(sst1, sst2, ag)
=> k threads(ag) OR view(ss comp)(sst1, sst2)

END security server spec 60

Editorial Note:
The Z version of this specification includes the proofs of several properties of the Security Server. These
properties have not been translated and proven in PVS.

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 153

Section 20
Overview of the Cryptographic
Subsystem

The Cryptographic Subsystem enables clients to encrypt information either to be sent across
a network or used internal to the system (e.g., written to encrypted media). The encryption
and key generation mechanisms are determined by a security service usage policy. There are
several components that are part of (or are closely related to) the Cryptographic Subsystem.
They include the following:

Security Service Usage Policy Server (SSUPS) — Contains the security service usage
policy. Other components request decisions from this server regarding the encryption
algorithms and key mechanisms that may be used in particular situations. This com-
ponent serves an analogous function for the Cryptographic Subsystem as the security
server does for the node as a whole by making policy decisions that are enforced by
separate policy-neutral servers.

Cryptographic Controller (CC) — Coordinates the actions of the other components of the
Cryptographic Subsystem. It receives requests for cryptographic contexts, sends requests
to other components of the subsystem in a attempt to create the context and, if the context
is successfully created, returns a port right that may be used to encrypt information
according to the context.

Protection Tasks (PT) — Encrypt and/or sign data according to particular algorithms. The
subsystem will typically contain numerous protection tasks. A single cryptographic con-
text will typically involve a sequence of protection tasks invoked in some fixed order.

Key Servers (KS) — Supply keys for use by the protection tasks. The subsystem will typically
contain numerous key servers, and each cryptographic context will typically use several
of them.

Clients — A client could be one of many types of components including a driver for encrypted
media, a network server or a negotiation server (a system component that negotiates with
its peer on another node to agree on the encryption and key mechanisms to be used). We
will only model a very abstract client.

The basic operation of the system is as follows:

A client sends a request to the SSUPS to use a particular sequence of protection mecha-
nisms (encryption and keying algorithms) for a given cryptographic situation.

If the mechanisms are acceptable to the SSUPS in the situation, it returns a handle (port)
to the client.

The client sends the handle in a request to the CC to initialize a cryptographic context.

The CC sends a message to the handle asking for the sequence of protection mechanisms.

The SSUPS sends the sequence in a reply message.

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

154
CDRL A020

Overview of the Cryptographic Subsystem

The CC uses this information to send requests to key servers to get handles for obtaining
keys.

The handles are used, together with the sequence of mechanisms, to assemble a request
to the first protection task to begin initializing a pipeline of protection tasks to implement
the sequence of mechanisms.

The protection tasks communicate to establish the pipeline. They also use the key server
handles to obtain keys. When done, the first protection task returns a handle to the CC
representing the start of the pipeline.

The CC forwards the handle in a reply to the client.

The client now sends protection requests to the handle.

Each protection request is sent through the pipeline with each protection task doing its
job.

The final protection task in the pipeline sends the protected data in a reply message to
the client.

The client receives the reply message and stores the protected data. (We have left un-
specified what the client might actually do with the protected data. In a specification of a
particular type of client we could describe additional processing.)

To simplify the specification and analysis, we have ignored some of the flexibility of the Cryp-
tographic Subsystem. For example, the CC allows the following two types of context creation
requests:

Those where an SSUPS handle is provided (described above).

Those where no SSUPS handle is provided. This indicates that approval for the protection
family has not yet been obtained from the SSUPS. The CC must determine an appropriate
protection family and obtain approval before establishing the context.

We will consider only the first path.

There are several data types that are used by multiple components of the Cryptographic Sub-
system, and we define them here. A value of type SITUATION denotes the information that is
relevant for determining how particular data needs to be protected. A situation is the input in
a policy request to the SSUPS. It may include the security context of the client, the destination
address if the information is to be sent over the network and the type of socket (i.e., stream,
datagram). For our purposes we simply define a given type SITUATION . A value of type
PROTECTION is an association between an encryption mechanism, a key mechanism and a
security protocol.35 A value of type PROT FAMILY is a sequence of protections and a value of
type PROT FAMILY SEQ is a sequence of protection families. The output of the SSUPS is a
PROT FAMILY SEQ . The functions sit pf to data and pf to data return the representations
of situations and protection families as message data. The requests that the various compo-
nents service are declared here, but we will discuss them in later sections when we specify
their behaviors.

35For the components of the subsystem specified in this report we only need the first two parts of this association.

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 155

Editorial Note:
While preparing the final version of this report a fairly pervasive error was discovered in the sending of
messages in this example. The kernel specification requires that a send right be explicitly included in
the list of transferred rights for any reply port supplied in the message. Most of the transitions below
that send a message neglect to do this. In a complete analysis it is possible that such an oversight could
mean that the safety properties proved really only hold because the processing “dies” as soon as a reply
is sent (the reply name might not be in the replier’s name space). However, this is unlikely. To ensure
that this is not the case, analysts could state and prove “sanity check” properties such as “if a message
with a non-NULL reply name is received, then the receiver must have send rights to the reply name. In
any case, this is all irrelevant to the composition issues being explored in this study.

THEORY crypto shared state

crypto shared state: THEORY
BEGIN

IMPORTING dtos kernel shared state
IMPORTING fseq functions
IMPORTING more set lemmas

SITUATION : NONEMPTY TYPE
10

SEC PROTOCOL: NONEMPTY TYPE

KEY MECH: NONEMPTY TYPE

ENCRYPT MECH: NONEMPTY TYPE

KEY : NONEMPTY TYPE

TEXT : NONEMPTY TYPE
20

SEED : NONEMPTY TYPE

null text : TEXT

key witness: KEY

key mech witness : KEY MECH

encrypt mech witness : ENCRYPT MECH
30

generate key : [KEY MECH, SEED �> KEY]

protect text : [ENCRYPT MECH, KEY, TEXT �> TEXT]

% Don't use security protocol at this time
PROT : TYPE =

[# key mech : KEY MECH,
encrypt mech : ENCRYPT MECH,
sec protocol : SEC PROTOCOL #]

40
IMPORTING finite sequence[PROT]

PROT FAMILY : TYPE = FSEQ[PROT]
null prot family : PROT FAMILY = finite sequence[PROT].null seq

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

156
CDRL A020

Overview of the Cryptographic Subsystem

IMPORTING finite sequence[PROT FAMILY]

PROT FAMILY SEQ: TYPE = FSEQ[PROT FAMILY]
null prot family seq : PROT FAMILY SEQ = finite sequence[PROT FAMILY].null seq 50

sit pf to data: [[SITUATION, PROT FAMILY] �> DATA]

pf to data: [PROT FAMILY �> DATA]

key to data: [KEY �> DATA]

text to data: [TEXT �> DATA]
60

k1, k2 : VAR KEY

key to data inj: AXIOM
key to data(k1) = key to data(k2)

IMPLIES k1 = k2

x,n : VAR posnat 70

null name seq(x) : NAME SEQ

null name seq ax : AXIOM
size(null name seq(x)) = x
AND (FORALL n : (n > 0 and n <= size(null name seq(x)))

=> elem(null name seq(x))(n) = null name)

80
prot family: VAR PROT FAMILY
sit: VAR SITUATION
name: VAR NAME
name seq : VAR NAME SEQ
data: VAR DATA
text: VAR TEXT
dest: VAR NAME
key : VAR KEY

90
%%%

% SSUPS ops

% Request port indicating permission to a given protfamily
select prot family op : OP
select prot family perm : PERMISSION

select prot family msg(sit, prot family): USER MSG =
null user msg 100

WITH [(user data) := sit pf to data(sit, prot family)]

provide pf handle op : OP
provide pf handle perm : PERMISSION

provide pf handle msg(name): USER MSG =
null user msg

WITH [(user rights) := name to send right seq(name)]

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 157

% Retrieve a previously negotiated prot family 110

%% a retrieve prot family msg = null msg, so we do not need to declare it.

retrieve prot family op : OP
retrieve prot family perm : PERMISSION

% Reply with the previously negotiated prot family
provide prot family msg(prot family): USER MSG =

null user msg 120
WITH [(user data) := pf to data(prot family)]

provide prot family op : OP
provide prot family perm : PERMISSION

%%%

% CC ops

%% A client requests a crypto context 130
create crypto context msg(sit, name, prot family): USER MSG =

(# user data := sit pf to data(sit, prot family),
user rights := name to send right seq(name) #)

create crypto context op : OP
create crypto context perm : PERMISSION

%% Reply from create crypto context with a handle for a protection task. 140
provide crypto context msg(name): USER MSG =

null user msg
WITH [(user rights) := name to send right seq(name)]

provide crypto context op : OP
provide crypto context perm : PERMISSION

%%%
150

%% PROTECTION TASK OPS

init crypto context msg(name seq): USER MSG =
null user msg

WITH [(user rights) := map(name to send right, name seq)]

init crypto context op : OP
init crypto context perm : PERMISSION

160

provide crypto handle msg(name): USER MSG =
null user msg

WITH [(user rights) := name to send right seq(name)]

provide crypto handle op : OP
provide crypto handle perm : PERMISSION

170
protect msg(text, dest): USER MSG =

(# user data := text to data(text),
user rights := name to send right seq(dest) #)

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

158
CDRL A020

Overview of the Cryptographic Subsystem

protect op : OP
protect perm : PERMISSION

provide protected data msg(text): USER MSG =
null user msg 180

WITH [(user data) := text to data(text)]

provide protected data op : OP
provide protected data perm : PERMISSION

%%%

% KEY SERVER OPS
190

%% init key retrieval msg = null msg
init key retrieval op : OP
init key retrieval perm : PERMISSION

provide key port msg(name): USER MSG =
null user msg

WITH [(user rights) := name to send right seq(name)]

200
provide key port op : OP
provide key port perm : PERMISSION

retrieve key op : OP
retrieve key perm : PERMISSION

provide key op : OP
provide key perm : PERMISSION

provide key msg(key): USER MSG = 210
null user msg

WITH [(user data) := key to data(key)]

%%

%% Specify which OPs must be distinct. In general these constraints
%% are NOT necessary in all implementations of the model since any
%% two distinct operations frequently go to distinct servers.
%% However, these assumptions simplify the proofs. 220

ks provide ops distinct: AXIOM
provide key port op == provide key op

op1, op2: VAR OP
f : VAR [OP �> int]

%% Make distinctness proofs easier
self congruence : LEMMA 230

op1 = op2 IMPLIES f (op1) = f (op2)

%% Define a function from some ops to distinct integers.
%% Distinctness follows from the fact that it is a function.
%% See 'congruence' in the prelude.

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 159

cc op num : [OP �> int]

cc op ax : AXIOM 240
cc op num(retrieve prot family op) = 1
AND cc op num(init crypto context op) = 2
AND cc op num(init key retrieval op) = 3
AND cc op num(provide crypto context op) = 4

cc ops distinct: LEMMA
retrieve prot family op == init crypto context op
AND retrieve prot family op == init key retrieval op
AND retrieve prot family op == provide crypto context op 250
AND init crypto context op == init key retrieval op
AND init crypto context op == provide crypto context op
AND init key retrieval op == provide crypto context op

END crypto shared state

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

160
CDRL A020

Cryptographic Controller

Section 21
Cryptographic Controller

This section describes the Synergy Cryptographic Controller (CC). The role of the CC is to
coordinate the actions of the other components of the Cryptographic Subsystem. It receives
requests for cryptographic contexts and, if the context is successfully created, returns a port
right that may be used to encrypt information according to the context.

21.1 State

The CC for each node manages a set active ccc of elements of type RECEIVED INFO denoting
the set of cryptographic context creation requests that are active. Anactive ccc may have a
protection family associated with it by the function ccc prot family . When a context has been
successfully created, a port representing the context is associated with theactive ccc by the
function ccc handle.

The CC also maintains several port names for use in its protocol:

ssups is a name for the port that the CC uses to send requests to the Security Service
Usage Policy Server (SSUPS).

service ports is a set of ports upon which the CC will receive requests for creation of
cryptographic contexts.

avail port is a set of ports that the CC may use as reply ports when making requests of
other Cryptographic Subsystem components.

retrieve pf port is a set of ports on which the CC is expecting a reply from the SSUPS
containing a protection family. pending retrieve pf denotes the active ccc to be associated
with the reply when received.

key init port is a set of ports on which the CC is expecting a reply from a key server
containing a port to use in requesting keys for the given context.pending key init denotes
the active ccc and the element of the protection family associated with thatactive ccc that
are to be associated with the reply when received.

context port is a set of ports on which the CC is expecting a reply from a protec-
tion task containing a port to use for requesting encryptions within the given context.
pending context port denotes the active ccc to be associated with the reply when received.

ccc init cc args(ac) denotes the key ports that have been obtained at any given time for
use in the context being created for theactive ccc, ac.

A protection family specifies key and encryption mechanisms that must be used when the
family is applied within a context. The CC maintains mappings key mech server and
encrypt mech server from these mechanisms to the ports that it will use in establishing a
context that uses the mechanisms.

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 161

We use cc threads to denote the constant set of threads executing within the CC.36

The CC state consists of the data structures described above as well as its
KERNEL SHARED STATE , kst , containing existing threads, pending requests, thread status,
and received info. The valid states are defined by CC STATE . In a valid state,

the sets retrieve pf port , key init port , context port and service ports are each disjoint
from avail port ,

for each ccc the size of the ccc init cc args for ccc is the same as the size of the protection
family for ccc, and

the existing threads in kst are all in cc threads.

All the data in CC STATE is visible to the CC.

THEORY cc state

cc state : THEORY
BEGIN

IMPORTING crypto shared state

cc threads: setof [THREAD]

cc threads nonempty: AXIOM cc threads == emptyset
10

cc threads witness: (cc threads)

CC STATE BASE: TYPE =
[# % requests I am processing. Index by this rather than situation

% because two clients with the same situation could request
% different preferred prot families.
active ccc: setof [RECEIVED INFO],

ssups: NAME, % where I send ssups requests
service ports: setof [NAME], % where I receive my requests 20

avail port: setof [NAME], % my supply of reply ports

% ports on which I'm expecting a selected protection family
% from ssups
retrieve pf port: setof [NAME],
pending retrieve pf : [(retrieve pf port) �> RECEIVED INFO],

%the selected family; only used for active ccc's 30
ccc prot family: [RECEIVED INFO �> PROT FAMILY],

%the obtained crypto context handle
ccc handle: [RECEIVED INFO �> NAME],

% ports on which I'm expecting a key port from a key server
key init port: setof [NAME],
pending key init: [(key init port) �> [RECEIVED INFO, posnat]],

36As with ss threads this is not a requirement on an implementation of the CC but rather a convenience given that
our framework requires the set of agents associated with a component to be static.

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

162
CDRL A020

Cryptographic Controller

% Key ports received so far; only used for active ccc's 40
ccc init cc args: [RECEIVED INFO �> NAME SEQ],

% ports on which I'm expecting a crypto context port from a
% protection task
context port: setof [NAME],
pending context port: [(context port) �> RECEIVED INFO],

% mapping mechanisms to port names
key mech server: [KEY MECH �> NAME],
encrypt mech server: [ENCRYPT MECH �> NAME], 50

kst : KERNEL SHARED STATE
#]

ccstb : VAR CC STATE BASE

ccc : VAR RECEIVED INFO

CC STATE(ccstb): bool =
disjoint?(avail port(ccstb), retrieve pf port(ccstb)) 60

AND disjoint?(avail port(ccstb), key init port(ccstb))
AND disjoint?(avail port(ccstb), context port(ccstb))
AND disjoint?(avail port(ccstb), service ports(ccstb))
AND (FORALL ccc: (active ccc(ccstb)(ccc)) IMPLIES

size(ccc prot family(ccstb)(ccc))
= size(ccc init cc args(ccstb)(ccc)))

AND subset?(existing threads(kst(ccstb)), cc threads)

st1, st2: VAR (CC STATE)
70

cc threads prop: THEOREM
subset?(existing threads(kst(st1)), cc threads)

cc view(st1,st2) : bool =
st1 = st2

END cc state

THEORY cc state witness

cc state witness: THEORY

BEGIN

IMPORTING cc state

cc state witness: (CC STATE) =
(# active ccc := emptyset[RECEIVED INFO],

ssups := null name, 10
service ports := emptyset[NAME],
avail port := emptyset[NAME],
retrieve pf port := emptyset,
pending retrieve pf := (LAMBDA (x: (emptyset[NAME])): ri witness),
ccc prot family := (LAMBDA (x: RECEIVED INFO): null prot family),
ccc handle := (LAMBDA (x: RECEIVED INFO): null name),
key init port := emptyset,

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 163

pending key init := (LAMBDA (x: (emptyset[NAME])): (ri witness, 1)),
ccc init cc args := (LAMBDA (x: RECEIVED INFO): null name seq(1)),
context port := emptyset, 20
pending context port := (LAMBDA (x: (emptyset[NAME])): ri witness),
key mech server := (LAMBDA (km: KEY MECH): null name),
encrypt mech server := (LAMBDA (em: ENCRYPT MECH): null name),
kst := empty kst
#)

cc state witness prop : THEOREM
(EXISTS (ccstb : (CC STATE)) : TRUE)

END cc state witness 30

21.2 Operations

This section describes the subset of CC operations that are relevant to this example.

Editorial Note:
This section currently describes only successful processing of requests.

We first define several utility functions:

cc step defines the components of the CC state that are invariant in all transitions
performed by CC agents. This includes key mech server , encrypt mech server , ssups,
service ports and existing threads. Furthermore, when manipulating kst , the CC threads
are assumed to use the correct protocol as described in e�ects on kernel state in Sec-
tion 17.1.2.

retrieve pf inv , key init inv , context port inv , respectively, state that the ports on which
the CC is waiting for a protection family, a key server handle or a context handle do not
change.

receive request denotes a state transition where a CC thread has received a request for a
CC service and the sending av indicates the sender of the request has permission to make
the request. The request message (i.e., received info) is marked as processed.

send msg denotes a transition in which a thread sends a message.

THEORY cc ops base

cc ops base: THEORY
BEGIN

IMPORTING cc state

IMPORTING dtos kernel shared ops

%%This should probably be in dtos kernel shared ops
IMPORTING messaging

10
st, st1, st2: VAR (CC STATE)

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

164
CDRL A020

Cryptographic Controller

%%local state invariants
cc static(st1, st2): bool =

key mech server(st2) = key mech server(st1)
AND encrypt mech server(st2) = encrypt mech server(st1)

AND ssups(st2) = ssups(st1)
AND service ports(st2) = service ports(st1)

AND existing threads(kst(st2)) = existing threads(kst(st1))
20

%a step must obey local invariants and only make allowed
% mods to kernel state.
cc step(st1, st2): bool =

cc static(st1, st2)
AND effects on kernel state(kst(st1), kst(st2), cc threads)

retrieve pf inv(st1, st2): bool =
retrieve pf port(st2) = retrieve pf port(st1)

AND pending retrieve pf (st2) = pending retrieve pf (st1)
30

key init inv(st1, st2): bool =
key init port(st2) = key init port(st1)

AND pending key init(st2) = pending key init(st1)

context port inv(st1, st2): bool =
context port(st2) = context port(st1)

AND pending context port(st2) = pending context port(st1)

thread: VAR THREAD
40

prot family: VAR PROT FAMILY

ri: VAR RECEIVED INFO

op id: VAR OP

perm: VAR PERMISSION

name, reply port, to: VAR NAME
50

kernel req: VAR KERNEL REQ

ccc: VAR RECEIVED INFO

msg: VAR USER MSG

% UTILITY FUNCTIONS

% processing a newly received CC request 60
receive request(thread, ri, op id, perm, st1, st2): bool =

cc step(st1, st2)
AND cc threads(thread)

AND existing threads(kst(st1))(thread)
AND thread status(kst(st1))(thread) = thread running

AND ri = received info(kst(st1))(thread)
AND ri status(ri) = ri unprocessed

AND sending av(ri)(perm)
AND op(ri) = op id

AND 70
process request(thread,

kst to ti(kst(st1)), kst to ti(kst(st2)))

%% "Thread" sends message <op id, msg> to port "to" with
%% reply port "reply port" in transition from st1 to st2.

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 165

send msg(st1, st2, thread, to, op id, reply port, msg): bool =
send msg(kst(st1), kst(st2), thread, to, op id, reply port, msg)

END cc ops base
80

At any time when the CC has a thread that is not already waiting for a message operation to
be performed, that thread can request to receive a message from a port. The thread initiates
this processing by setting its pending request to be a message receive and changing its state to
thread waiting .

THEORY cc receive request

cc receive request: THEORY
BEGIN

IMPORTING cc ops base

st1, st2: VAR (CC STATE)

thread: VAR THREAD

name: VAR NAME 10

cc receive request aux1(st1, st2): bool =
ccc handle(st2) = ccc handle(st1)

AND ccc init cc args(st2) = ccc init cc args(st1)
AND avail port(st2) = avail port(st1)

cc receive request aux2(st1, st2): bool =
retrieve pf inv(st1, st2)

AND key init inv(st1, st2) AND context port inv(st1, st2)
20

cc receive request submit(st1, st2): bool =
EXISTS thread, name:

cc threads(thread)
AND existing threads(kst(st1))(thread)

AND thread status(kst(st1))(thread) = thread running
AND existing threads(kst(st2))(thread)

AND thread status(kst(st2))
= thread status(kst(st1)) WITH [thread := thread waiting]
AND pending requests(kst(st2))

= 30
add(receive message req(thread, name),

pending requests(kst(st1)))

cc receive request(st1, st2): bool =
cc step(st1, st2)

AND active ccc(st1) = active ccc(st2)
AND ccc prot family(st1) = ccc prot family(st2)

AND existing threads(kst(st1)) = existing threads(kst(st2))
AND received info(kst(st1)) = received info(kst(st2))

AND cc receive request aux1(st1, st2) 40
AND cc receive request aux2(st1, st2)

AND cc receive request submit(st1, st2)

END cc receive request

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

166
CDRL A020

Cryptographic Controller

In response to a create crypto context request containing an SSUPS handle port, the CC

records the request as a new active ccc,

assigns an available port as the retrieve pf port for this request and

sends a retrieve prot family request to the SSUPS handle, passing the newly assigned
retrieve pf port as the reply port.

THEORY cc create context from port

cc create context from port: THEORY
BEGIN

IMPORTING cc ops base

% VARIABLES

st1, st2: VAR (CC STATE) 10

thread: VAR THREAD

name: VAR NAME

prot family : VAR PROT FAMILY

sit: VAR SITUATION

ri: VAR RECEIVED INFO 20

reply port : VAR NAME

kernel req : VAR KERNEL REQ

mark retrieve pf port(st1, st2, reply port, ri) : bool =
avail port(st2) = remove(reply port, avail port(st1))

AND retrieve pf port(st2) = add(reply port, retrieve pf port(st1))
AND retrieve pf port(st2)(reply port) 30
AND pending retrieve pf (st2) = pending retrieve pf (st1)

WITH [(reply port) := ri]

cc create context from port(st1, st2): bool =
(EXISTS thread, ri, sit, name, prot family, reply port, kernel req:

cc step(st1, st2)

AND receive request(thread, ri, create crypto context op,
create crypto context perm, st1, st2) 40

AND create crypto context msg(sit, name, prot family) = user msg(ri)
AND service ports(st1)(service port(ri))
AND name == null name
AND prot family = null prot family
AND avail port(st1)(reply port)

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 167

% This says we should not currently be processing an identical ri.
% Is this correct?
AND NOT active ccc(st1)(ri)

50
AND active ccc(st2) = add(ri, active ccc(st1))
AND existing threads(kst(st2)) = existing threads(kst(st1))

AND ccc prot family(st2) = ccc prot family(st1)
AND ccc handle(st2) = ccc handle(st1)
AND ccc init cc args(st2) = ccc init cc args(st1)

AND key init inv(st1, st2)
AND context port inv(st1,st2)

60
AND send msg(st1, st2, thread, name, retrieve prot family op,

reply port, null user msg)

AND mark retrieve pf port(st1, st2, reply port, ri)
)

END cc create context from port

Upon receiving a provide prot family message on a retrieve pf port for request ccc, the CC

stores the received protection family with ccc,

initializes ccc init cc args(ccc) to be a sequence of null names with the same length as
the protection family, and

disassociates the retrieve pf port from ccc.

THEORY cc provide prot family

cc provide prot family: THEORY
BEGIN

IMPORTING cc ops base

% VARIABLES

st1, st2: VAR (CC STATE) 10

thread: VAR THREAD

svc port : VAR NAME

prot family : VAR PROT FAMILY

ri: VAR RECEIVED INFO

kernel req : VAR KERNEL REQ 20

ccc: VAR RECEIVED INFO

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

168
CDRL A020

Cryptographic Controller

unmark retrieve pf port(st1, st2, svc port) : bool =
avail port(st2) = add(svc port, avail port(st1))
AND retrieve pf port(st2) = remove(svc port, retrieve pf port(st1))

AND pending retrieve pf (st2) =
(LAMBDA (port : (retrieve pf port(st2))) :

pending retrieve pf (st1)(port))
30

% start processing the protection family by storing it and
% initializing ccc init cc args.
start process prot family(thread, ccc, prot family, st1, st2): bool =

active ccc(st1)(ccc)
AND active ccc(st2) = active ccc(st1)

AND ccc prot family(st2)
= ccc prot family(st1) WITH [ccc := prot family]
AND size(prot family) > 0

AND ccc init cc args(st2) 40
= ccc init cc args(st1)
WITH [ccc := null name seq(size(prot family))]
% ccc handle is still null name from initial state.
AND ccc handle(st2) = ccc handle(st1)

AND existing threads(kst(st1))(thread)
AND existing threads(kst(st2)) = existing threads(kst(st1))

cc provide prot family(st1, st2): bool
= (EXISTS thread, ri, prot family, svc port, kernel req, ccc:

receive request(thread, ri, provide prot family op, 50
provide prot family perm, st1, st2)

AND provide prot family msg(prot family) = user msg(ri)
AND svc port = service port(ri)
AND retrieve pf port(st1)(svc port)
AND ccc = pending retrieve pf (st1)(svc port)

AND key init inv(st1, st2)
AND context port inv(st1,st2)
AND pending requests(kst(st2)) = pending requests(kst(st1))

60
AND start process prot family(thread, ccc, prot family, st1, st2)

AND unmark retrieve pf port(st1, st2, svc port)
)

END cc provide prot family

If there is a protection in the protection family ofccc that does not yet have a key server handle,
the CC can do the following:

assign an available port as the key init port for that protection and

send an init key retrieval request to the port for the key server associated with the
key mechanism specified in the protection, passing the newly assignedkey init port as
the reply port.

THEORY cc init key retrieval

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 169

cc init key retrieval : THEORY
BEGIN

IMPORTING cc ops base

st1, st2 : VAR (CC STATE)

thread: VAR THREAD 10

to, reply port, key svr, port: VAR NAME

n : VAR posnat

ccc : VAR RECEIVED INFO

prot : VAR PROT

prot family : VAR PROT FAMILY 20

kernel req : VAR KERNEL REQ

op : VAR OP

msg : VAR USER MSG

%% Some utility functions.

mark key init port(st1, st2, reply port, ccc, n) : bool = 30
avail port(st1)(reply port)

AND avail port(st2) = remove(reply port, avail port(st1))
AND key init port(st2) = add(reply port, key init port(st1))
AND key init port(st2)(reply port)
AND pending key init(st2) = pending key init(st1)

WITH [(reply port) := (ccc, n)]

need key init port(st1, st2, ccc, n, prot) : bool =
(EXISTS prot family: 40

active ccc(st1)(ccc)
AND prot family = ccc prot family(st1)(ccc)
AND (n > 0 AND n <= size(prot family))
AND prot = (elem(prot family))(n)
AND (n > 0 AND n <= size(ccc init cc args(st1)(ccc)))
AND (elem(ccc init cc args(st1)(ccc)))(n) = null name
AND NOT (EXISTS port :

key init port(st1)(port)
AND pending key init(st1)(port) = (ccc, n)))

50

%% send an init key retrieval request to a key server
%% if we haven't already done so for this ccc.
cc init key retrieval(st1, st2) : bool =

(EXISTS thread, key svr, reply port, ccc, n, prot :

cc step(st1, st2)

AND need key init port(st1, st2, ccc, n, prot) 60

AND active ccc(st2) = active ccc(st1)
AND ccc prot family(st2) = ccc prot family(st1)
AND ccc init cc args(st2) = ccc init cc args(st1)
AND existing threads(kst(st2)) = existing threads(kst(st1))

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

170
CDRL A020

Cryptographic Controller

AND ccc handle(st2) = ccc handle(st1)

AND retrieve pf inv(st1, st2)
AND context port inv(st1,st2) 70

%% send init key retrival to key server
AND key svr = key mech server(st1)(key mech(prot))
AND send msg(st1, st2, thread, key svr, init key retrieval op,

reply port, null user msg)

%% mark reply port as being used for (ccc, n)
AND mark key init port(st1, st2, reply port, ccc, n)
) 80

END cc init key retrieval

Upon receiving a provide key port request on a key init port for protection n of the protec-
tion family of ccc (where no such request has previously been processed for protectionn), the
CC

stores the provided key server handle in positionn of ccc init cc args(ccc),

disassociates the key init port from ccc.

THEORY cc provide key port

cc provide key port: THEORY
BEGIN

IMPORTING crypto shared state
IMPORTING cc ops base

% VARIABLES
10

st1, st2: VAR (CC STATE)

thread: VAR THREAD

svc port : VAR NAME

key port,port : VAR NAME

ri: VAR RECEIVED INFO
20

ccc: VAR RECEIVED INFO

cc args : VAR NAME SEQ

n : VAR posnat

unmark key init port(st1, st2, svc port) : bool =

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 171

avail port(st2) = add(svc port, avail port(st1))
AND key init port(st2) = remove(svc port, key init port(st1))
AND pending key init(st2) = 30

(LAMBDA (port : (key init port(st2))) :
pending key init(st1)(port))

%% record a key port from a provide key port message.

cc provide key port(st1, st2): bool =
(EXISTS thread, ri, svc port, ccc, cc args, key port, n:

receive request(thread, ri, provide key port op,
provide key port perm, st1, st2) 40

%%preconditions
AND provide key port msg(key port) = user msg(ri)
AND svc port = service port(ri)
AND key init port(st1)(svc port)
AND (ccc, n) = pending key init(st1)(svc port)
AND active ccc(st1)(ccc)
AND cc args = ccc init cc args(st1)(ccc)
AND (n > 0 AND n <= size(cc args))
AND elem(cc args)(n) = null name 50
AND existing threads(kst(st1))(thread)

%% invariants
AND active ccc(st2) = active ccc(st1)
AND avail port(st2) = avail port(st1)
AND ccc prot family(st2) = ccc prot family(st1)
AND existing threads(kst(st2)) = existing threads(kst(st1))

AND ccc handle(st2) = ccc handle(st1)
60

AND retrieve pf inv(st1, st2)
AND context port inv(st1,st2)
AND pending requests(kst(st2)) = pending requests(kst(st1))

AND (n > 0 AND n <= size(cc args))
AND ccc init cc args(st2) = ccc init cc args(st1)

WITH [ccc :=
(# size := size(cc args),

elem := elem(cc args) WITH
[(n) := key port] #)] 70

AND unmark key init port(st1, st2, svc port)
)

END cc provide key port

If a key server handle has been stored for all protections in the protection family ofccc, the CC
can do the following:

assign an available port as the context port for ccc and

send an init crypto context request to the port associated with the encryption mech-
anism of the first protection in the protection family of ccc, passing the newly as-
signed context port as the reply port. The request contains a sequence of port names
k1; p2; k2; : : : ; pn ; kn where pi is the port associated with the encryption mechanism of the
i-th protection in the protection family of ccc, and ki is the key server handle in position
i of ccc init cc args(ccc).

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

172
CDRL A020

Cryptographic Controller

THEORY cc init crypto context

cc init crypto context : THEORY
BEGIN

IMPORTING cc ops base

st, st1, st2 : VAR (CC STATE)

thread: VAR THREAD 10

first prot task, reply port : VAR NAME

n, i : VAR posnat

ccc : VAR RECEIVED INFO

prot, first prot : VAR PROT

prot family : VAR PROT FAMILY 20

kernel req : VAR KERNEL REQ

key port seq, name seq : VAR NAME SEQ

%% Some utility functions.

prot to prot task(st, prot) : NAME = 30
encrypt mech server(st)(encrypt mech(prot))

mark context port(st1, st2, reply port, ccc) : bool =
avail port(st1)(reply port)

AND avail port(st2) = remove(reply port, avail port(st1))
AND context port(st2) = add(reply port, context port(st1))
AND context port(st2)(reply port)
AND pending context port(st2) = pending context port(st1)

WITH [(reply port) := ccc] 40

%% Assemble list of alternating prot task ports and key ports
%% omitting first prot task and starting with a key port.
merged seq(st, prot family, key port seq, name seq) : bool =

(EXISTS (f : [fi j i>0 and i <= 2 � size(prot family) � 1g �> NAME]) :
(size(name seq) > 0

AND size(name seq) = 2 � size(prot family) � 1)
AND elem(name seq) = f
AND (FORALL n :

(n > 1 and n <= size(prot family)) IMPLIES 50
f (2�n�2) = prot to prot task(st,elem(prot family)(n)))

AND (size(name seq) > 0
AND size(name seq) = 2 � size(key port seq) � 1)

AND (FORALL n :
(n > 0 and n <= size(key port seq)) IMPLIES
f (2�n�1) = elem(key port seq)(n)))

assemble crypto context info(st1, st2, ccc, first prot task,
name seq) : bool = 60

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 173

(EXISTS prot family, first prot :
active ccc(st1)(ccc)

AND prot family = ccc prot family(st1)(ccc)
AND (FORALL n :

(n > 0 AND n <= size(ccc init cc args(st1)(ccc)))
IMPLIES (elem(ccc init cc args(st1)(ccc)))(n) == null name)

AND (1 > 0 and 1 <= size(prot family))
AND first prot = (elem(prot family))(1)
AND first prot task = prot to prot task(st1, first prot)
AND merged seq(st1, prot family, ccc init cc args(st1)(ccc), name seq)) 70

%% send an init crypto context request to the first prot task
%% in the selected prot family for a ccc. All key ports
%% must already be obtained.

cc init crypto context(st1, st2) : bool =
(EXISTS thread, reply port, ccc, first prot task, name seq :

80
cc step(st1, st2)

AND assemble crypto context info(st1, st2, ccc, first prot task,
name seq)

AND active ccc(st2) = active ccc(st1)
AND ccc prot family(st2) = ccc prot family(st1)
AND ccc init cc args(st2) = ccc init cc args(st1)
AND existing threads(kst(st2)) = existing threads(kst(st1))

90
AND ccc handle(st2) = ccc handle(st1)

AND retrieve pf inv(st1, st2)
AND key init inv(st1, st2)

%% send init crypto context to prot task
AND send msg(st1, st2, thread, first prot task, init crypto context op,

reply port,
init crypto context msg(name seq))

100
%% mark reply port as being used for this context initialization
AND mark context port(st1, st2, reply port, ccc)
)

END cc init crypto context

Upon receiving a provide crypto handle request on a context port for request ccc, the CC

stores the received handle with ccc,

sends a provide crypto context message containing the handle to the reply port that
was specified in the ccc request, and

disassociates the context port from ccc.

THEORY cc provide crypto handle

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

174
CDRL A020

Cryptographic Controller

cc provide crypto handle: THEORY
BEGIN

IMPORTING cc ops base

% VARIABLES

st1, st2: VAR (CC STATE) 10

thread: VAR THREAD

port, name: VAR NAME

ccc, ri: VAR RECEIVED INFO

svc port : VAR NAME

20
unmark context port(st1, st2, svc port) : bool =

avail port(st2) = add(svc port, avail port(st1))
AND context port(st2) = remove(svc port, context port(st1))
AND pending context port(st2) =

(LAMBDA (port : (context port(st2))) :
pending context port(st1)(port))

cc provide crypto handle(st1, st2): bool =
(EXISTS thread, ri, name, svc port, ccc: 30

receive request(thread, ri, provide crypto handle op,
provide crypto handle perm, st1, st2)

AND provide crypto handle msg(name) = user msg(ri)
AND name == null name
AND svc port = service port(ri)
AND context port(st1)(svc port)
AND ccc = pending context port(st1)(svc port)
AND active ccc(st1)(ccc)
AND ccc handle(st1)(ccc) = null name 40

AND active ccc(st2)(ccc)
AND ccc handle(st2) = ccc handle(st1)

WITH [(ccc) := name]

AND active ccc(st2) = active ccc(st1)
AND ccc prot family(st2) = ccc prot family(st1)
AND ccc init cc args(st2) = ccc init cc args(st1)

AND retrieve pf inv(st1, st2) 50
AND key init inv(st1, st2)

AND existing threads(kst(st2)) = existing threads(kst(st1))

AND send msg(st1, st2, thread, reply name(ccc),
provide crypto context op, null name,
provide crypto context msg(name))

AND unmark context port(st1, st2, svc port)
) 60

END cc provide crypto handle

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 175

A CC operation consists of any one of the operations defined above. Theguar of the CC consists
of those transitions with a CC thread serving as the agent such that the start and final states
of the transition satisfy cc step and cc op or look the same with respect to cc view .

THEORY cc ops

cc ops: THEORY
BEGIN

IMPORTING cc receive request
IMPORTING cc create context from port
IMPORTING cc init crypto context
IMPORTING cc init key retrieval
IMPORTING cc provide prot family
IMPORTING cc provide key port 10
IMPORTING cc provide crypto handle

st1, st2 : VAR (CC STATE)

ag: VAR THREAD

cc op(st1, st2) : bool =
cc receive request(st1, st2)
OR cc create context from port(st1, st2)
OR cc provide prot family(st1, st2) 20
OR cc init key retrieval(st1, st2)
OR cc provide key port(st1, st2)
OR cc init crypto context(st1, st2)
OR cc provide crypto handle(st1, st2)

cc guar(st1,st2,ag) : bool =
cc threads(ag) AND

(cc view(st1, st2)
OR (cc step(st1, st2) AND cc op(st1, st2)))

30
END cc ops

21.3 Environment Assumptions

The environment of the CC is assumed to alter no CC state information other thankst and to
obey the constraints on changing kst that are given in environment base on page 140. The hidd
of the CC is defined similarly using hidd base.

THEORY cc rely

cc rely : THEORY

BEGIN

IMPORTING dtos kernel shared rely

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

176
CDRL A020

Cryptographic Controller

IMPORTING cc state

st1, st2 : VAR (CC STATE)
10

ag : VAR THREAD

cc environment(st1,st2,ag) : bool =
environment base(ag,kst(st1),kst(st2)) and
st1 with [kst := kst(st2)] = st2

cc environment refl: THEOREM
cc environment(st1,st1,ag)

cc hidd(st1,st2,ag) : bool = 20
NOT cc threads(ag)

AND hidd base(ag, kst(st1), kst(st2))
AND st2 = st1 WITH [kst := kst(st2)]

cc hidd prop: THEOREM
cc hidd(st1,st2,ag)

=> k threads(ag) OR cc view(st1,st2)

cc rely(st1,st2,ag) : bool = 30
not cc threads(ag) AND
cc environment(st1,st2,ag)

END cc rely

21.4 Component Specification

We use the set initial cc states to denote the valid initial states for the CC. A valid initial state
has the following properties:

There are no active requests and no recorded protection families, cryptographic handles
and init CC args.

The sets retrieve pf port , key init port and context port are all empty.

No kernel requests are pending for any CC thread and no messages are waiting to be
processed.

A CC is a component having state typeCC STATE , satisfying initial constraint initial cc states,
and executing only the transitions defined in Section 21.2.

THEORY cc spec

cc spec : THEORY
BEGIN

IMPORTING dtos kernel shared state
IMPORTING cc ops
IMPORTING cc rely
IMPORTING cc state witness
IMPORTING component aux[(CC STATE),THREAD]

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 177

st, st1, st2 : VAR (CC STATE) 10
ag : VAR THREAD

initial cc states(st) : bool =
active ccc(st) = emptyset[RECEIVED INFO]
AND retrieve pf port(st) = emptyset
AND ccc prot family(st) = (LAMBDA (x : RECEIVED INFO) : null prot family)
AND ccc handle(st) = (LAMBDA (x : RECEIVED INFO) : null name)
AND key init port(st) = emptyset
AND ccc init cc args(st) = (LAMBDA (x : RECEIVED INFO) : null name seq(1))
AND context port(st) = emptyset 20
AND pending requests(kst(st)) = emptyset[KERNEL REQ]
AND (FORALL ag :

existing threads(kst(st))(ag) =>
ri status(received info(kst(st))(ag)) = ri processed)

cc state witness initial: THEOREM
initial cc states(cc state witness)

base cc comp : base comp t =
(# init := initial cc states, 30

guar := cc guar,
rely := cc rely,
hidd := cc hidd,
cags := cc threads,
view := cc view,
wfar := emptyset[TRANSITION CLASS[(CC STATE), THREAD]],
sfar := emptyset[TRANSITION CLASS[(CC STATE), THREAD]] #)

cc view eq: THEOREM view eq(base cc comp)
40

cc comp init: THEOREM init restriction(base cc comp)

cc comp guar: THEOREM guar restriction(base cc comp)

cc comp rely hidd: THEOREM rely hidd restriction(base cc comp)

cc comp hidd: THEOREM hidd restriction(base cc comp)

cc comp rely: THEOREM rely restriction(base cc comp)
50

cc comp cags: THEOREM cags restriction(base cc comp)

cc comp guar stuttering: THEOREM guar stuttering restriction(base cc comp)

cc comp rely stuttering: THEOREM rely stuttering restriction(base cc comp)

cc comp : (comp t) = base cc comp

cc comp hidd prop: THEOREM
hidd(cc comp)(st1, st2, ag) 60
=> k threads(ag) OR view(cc comp)(st1, st2)

END cc spec

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

178
CDRL A020

Protection Tasks

Section 22
Protection Tasks

This section describes the Synergy Protection Tasks Component (PT). The role of the each
protection task is to encrypt and/or sign data according to some particular algorithm. The
subsystem will typically contain numerous protection tasks.37 A single cryptographic context
will typically involve a sequence of protection tasks invoked in some fixed order.

22.1 State

The state type for this component will be defined in two parts, the internal state specific to each
individual protection task, and the combined kernel interfaces of all the tasks. We begin with
the task-specific portion, specified in typePT THREAD STATE .

Each individual protection task has a service port on which it receives init cc requests, and it
implements a particular protection mechanism indicated byencrypt mech. Each task maintains
a set pt handles of port names that represent handles it has given out to provide access to its
particular step in the use of a cryptographic context. The following information is associated
with each handle:

pt reply to — where to send the handle when the downstream context is ready,

pt args — a list of port names passed in as arguments in the init cc request representing
the ports to be used for the downstream protection tasks,

pt key server reply port — the name of a port where the protection task is waiting to
receive a key for use with its step in the cryptographic context associated with the handle.

The set pt keyed represents the set of handles for which a key has been received. The expression
pt key(h) denotes the key associated with handle h. If pt args(h) is nonempty, then, once a
key has been received for h, an init cc request will be sent to the service port of the next
protection task. Assuming the CC is operating correctly, this port will be named by the second
element of pt args. In this request, a reply port is provided and the reply port name is stored
in pt next pt reply port(h). Once a reply has been received from the next protection task, the
port name in the reply is stored inpt next pt(h) and h is added to the set pt pipeline initialized .

Each protection task also maintains a set,avail port , of ports that are available for use as reply
ports and handles.

All of the above state information, defined by the typePT THREAD STATE , is maintained by
each element of pt threads. In a valid PT THREAD STATE ,
37This component was specified before the current version of the framework containing n-way composition was

written. The earlier versions of the framework contained a composition operator that applied to only a pair of
components. With this operator it was important for practical considerations to have a small, fixed set of components.
For this reason, all the protection tasks have been modeled as a single component. One disadvantage of this is that the
model does not clearly capture the separation of the protection tasks into separate system components as completely
as one might like. For example, the hidd of the PT component restricts only non-PT agents, and the view does not
prevent one PT thread from seeing the state of all the others. With the new version of the framework, it is feasible to
define and compose an array of protection task components. Time did not allow us to convert the definition of the PT
component to an array of components in this way. Similar comments apply to the Key Servers Component.

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 179

pt handles is disjoint from avail port ,

pt keyed and pt pipeline initialized are subsets of pt handles and

the service port is not in avail port .

A PT state consists of a mapping thst from the pt threads to their associated
PT THREAD STATE as well as the KERNEL SHARED STATE , kst . The latter contains
existing threads, pending requests, thread status, and received info. The valid states for the pro-
tection tasks component are defined byPT STATE . In a valid state, the existing threads must
be a subset of pt threads.

All the data in PT STATE is visible to the PT.

THEORY pt state

pt state : THEORY
BEGIN

IMPORTING crypto shared state

pt threads: (nonempty?[THREAD])

pt threads witness: (pt threads)
10

pt threads nonempty: AXIOM pt threads == emptyset

% Each thread is a separate protection task with the following state information
PT THREAD STATE BASE : TYPE =

[# service port: NAME, % where I receive my init cc requests

encrypt mech : ENCRYPT MECH, % mechanism I provide to clients

avail port: setof [NAME], % my supply of unused handles 20

pt handles : setof [NAME], % handles I've given out.

pt reply to : [(pt handles) �> NAME], % where to send the handle

pt args : [(pt handles) �> NAME SEQ], % names passed in as arguments

pt key server reply port : [(pt handles) �> NAME], % where to receive the key.

pt keyed : setof [NAME], % handles for which I have a key 30

pt key : [(pt keyed) �> KEY], % the key for each handle

pt next pt reply port : [(pt keyed) �> NAME], % where to receive handle
% from next pt.

pt pipeline initialized : setof [NAME], % the handles for which the pipeline
% has been initialized.

pt next pt : [(pt pipeline initialized) �> NAME] % handle for next prot task
40

#]

ptths : VAR PT THREAD STATE BASE

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

180
CDRL A020

Protection Tasks

PT THREAD STATE(ptths) : bool =
disjoint?(avail port(ptths), pt handles(ptths))

AND NOT avail port(ptths)(service port(ptths))
AND subset?(pt keyed(ptths), pt handles(ptths))
AND subset?(pt pipeline initialized(ptths), pt handles(ptths))

50

PT STATE BASE : TYPE =
[# thst : [(pt threads) �> (PT THREAD STATE)],

kst : KERNEL SHARED STATE
#]

ptstb : VAR PT STATE BASE

PT STATE(ptstb): bool = 60
subset?(existing threads(kst(ptstb)), pt threads)

st1, st2: VAR (PT STATE)

pt view(st1,st2) : bool =
st1 = st2

END pt state

THEORY pt state witness

pt state witness: THEORY

BEGIN

IMPORTING pt state

th,th1,th2 : VAR (pt threads)

pt thread state witness: (PT THREAD STATE) =
(# service port := null name, 10

encrypt mech := encrypt mech witness,
avail port := emptyset[NAME],
pt handles := emptyset[NAME],
pt reply to := (LAMBDA (x: (emptyset[NAME])): null name),
pt args := (LAMBDA (x: (emptyset[NAME])): null name seq(1)),
pt key server reply port := (LAMBDA (x: (emptyset[NAME])): null name),
pt keyed := emptyset[NAME],
pt key := (LAMBDA (x: (emptyset[NAME])): key witness),
pt next pt reply port := (LAMBDA (x: (emptyset[NAME])): null name),
pt pipeline initialized := emptyset[NAME], 20
pt next pt := (LAMBDA (x: (emptyset[NAME])): null name)
#)

pt state witness: (PT STATE) =
(# thst := (LAMBDA th : pt thread state witness),

kst := empty kst
#)

pt state witness prop : THEOREM
(EXISTS (ptstb : (PT STATE)) : TRUE) 30

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 181

END pt state witness

22.2 Operations

This section describes the subset of PT operations that are relevant to this example.

Editorial Note:
This section currently describes only successful processing of requests.

We first define several utility functions:

pt static — defines the following state invariants: service port and encrypt mech do not
change for any thread, and the set of existing threads does not change.

pt step — a PT thread obeys pt static, only makes allowed modifications to kernel state
and does not modify the thst of any other thread.

pt handles inv(st1; st2) — pt handles, pt reply to, pt args, and pt key server reply port do
not change for any thread.

pt keyed inv(st1; st2) — the key information and pt next pt reply port do not change for
any thread.

pt pipeline initialized inv(st1; st2) — pt pipeline initialized and pt next pt do not change
for any thread.

pt initialize pipeline(st1; st2; thread ; handle; next pt) — handle is added to the set of initial-
ized pipelines with next protection task next pt , and a provide crypto handle message is
sent to pt reply to(handle).

pt receive request util(thread ; ri ; op id ; perm; st1; st2) — thread checks permission perm and
operation op id on the received information in ri and then uses process request to mark ri

as processed.

THEORY pt ops base

pt ops base: THEORY
BEGIN

IMPORTING pt state

IMPORTING dtos kernel shared ops

IMPORTING messaging

st1, st2: VAR (PT STATE) 10

thread, th, th1, th2 : VAR (pt threads)

%%local state invariants
pt static(st1, st2): bool =

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

182
CDRL A020

Protection Tasks

(FORALL th: service port(thst(st2)(th)) = service port(thst(st1)(th))
AND encrypt mech(thst(st2)(th)) = encrypt mech(thst(st1)(th)))

AND existing threads(kst(st2)) = existing threads(kst(st1))
20

%a step must obey local invariants and only make allowed
% mods to kernel state or its own thst.
pt step(st1, st2, thread): bool =

pt static(st1, st2)
AND effects on kernel state(kst(st1), kst(st2), pt threads)
AND (FORALL th:

(NOT (th = thread) IMPLIES
thst(st1)(th) = thst(st2)(th)))

30
ri: VAR RECEIVED INFO

op id: VAR OP

perm: VAR PERMISSION

next pt, handle: VAR NAME

40
% UTILITY FUNCTIONS

pt handles inv(st1, st2): bool =
(FORALL th:

pt handles(thst(st2)(th)) = pt handles(thst(st1)(th))
AND pt reply to(thst(st2)(th)) = pt reply to(thst(st1)(th))
AND pt args(thst(st2)(th)) = pt args(thst(st1)(th))
AND pt key server reply port(thst(st2)(th)) = pt key server reply port(thst(st1)(th))

)
50

pt keyed inv(st1, st2): bool =
(FORALL th:

pt keyed(thst(st2)(th)) = pt keyed(thst(st1)(th))
AND pt key(thst(st2)(th)) = pt key(thst(st1)(th))
AND pt next pt reply port(thst(st2)(th))

= pt next pt reply port(thst(st1)(th)))

pt pipeline initialized inv(st1, st2): bool =
(FORALL th: 60

pt pipeline initialized(thst(st2)(th)) = pt pipeline initialized(thst(st1)(th))
AND pt next pt(thst(st2)(th))

= pt next pt(thst(st1)(th)))

pt initialize pipeline(st1, st2, thread, handle, next pt): bool =
pt pipeline initialized(thst(st2)(thread)) =

add(handle, pt pipeline initialized(thst(st1)(thread)))
AND pt next pt(thst(st2)(thread)) =

pt next pt(thst(st2)(thread)) WITH [handle := next pt] 70

AND pt handles(thst(st1)(thread))(handle)
AND send msg(kst(st1), kst(st2), thread, pt reply to(thst(st1)(thread))(handle),

provide crypto handle op,
null name, provide crypto handle msg(handle))

% processing a newly received request
pt receive request util(thread, ri, op id, perm, st1, st2): bool =

receive request(thread, ri, op id, perm, kst(st1), kst(st2)) 80

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 183

END pt ops base

At any time when the PT has a thread that is not already waiting for a message operation to
be performed, that thread can request to receive a message from a port. The thread initiates
this processing by setting its pending request to be a message receive and changing its state to
thread waiting .

THEORY pt receive request

pt receive request: THEORY
BEGIN

IMPORTING pt ops base

st1, st2: VAR (PT STATE)

thread: VAR (pt threads)

name: VAR NAME 10

pt receive request submit(st1, st2, thread): bool =
EXISTS name:

receive msg(kst(st1), kst(st2), thread, name)

pt receive request(st1, st2, thread): bool =
thst(st2) = thst(st1)

AND pt receive request submit(st1, st2, thread)

END pt receive request 20

When a protection task thread receives a validinit crypto context op request on its service port ,
it

allocates an available port to serve as a new handleh,

sets pt reply to(h) to the reply port provided in the request,

stores the arguments of the request inpt args(h),

allocates another available port to serve as the reply port in aretrieve key op request to
a key server, and

sends a retrieve key op request to the first name in the argument list.

THEORY pt init crypto context

pt init crypto context: THEORY

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

184
CDRL A020

Protection Tasks

BEGIN

IMPORTING pt ops base

% VARIABLES

st1, st2: VAR (PT STATE) 10

thread: VAR (pt threads)

name seq: VAR NAME SEQ

ri: VAR RECEIVED INFO

key server, new handle, reply port : VAR NAME

20
initialize handle(st1, st2, thread, new handle, ri, name seq, reply port) : bool =

avail port(thst(st1)(thread))(new handle)
AND avail port(thst(st2)(thread)) = remove(new handle, avail port(thst(st1)(thread)))
AND pt handles(thst(st2)(thread)) = add(new handle, pt handles(thst(st1)(thread)))
AND pt handles(thst(st2)(thread))(new handle)
AND pt reply to(thst(st2)(thread)) =

pt reply to(thst(st1)(thread)) WITH [(new handle) := reply name(ri)]
AND pt args(thst(st2)(thread)) =

pt args(thst(st1)(thread)) WITH [(new handle) := name seq]
30

AND avail port(thst(st1)(thread))(reply port)
AND avail port(thst(st2)(thread)) = remove(reply port, avail port(thst(st1)(thread)))
AND pt key server reply port(thst(st2)(thread)) =

pt key server reply port(thst(st1)(thread)) WITH [(new handle) := reply port]

pt init crypto context(st1, st2, thread): bool =
(EXISTS ri, reply port, key server, new handle, name seq:

40
pt receive request util(thread, ri, init crypto context op,

init crypto context perm, st1, st2)
AND init crypto context msg(name seq) = user msg(ri)
AND service port(thst(st1)(thread)) = service port(ri)
AND 1 <= size(name seq)
AND key server = elem(name seq)(1)

AND initialize handle(st1, st2, thread, new handle, ri, name seq, reply port)

AND existing threads(kst(st2)) = existing threads(kst(st1)) 50
AND pt keyed inv(st1, st2)
AND pt pipeline initialized inv(st1, st2)

AND send msg(kst(st1), kst(st2), thread, key server, retrieve key op,
reply port, null user msg)

)

END pt init crypto context

When a protection task thread receives a validprotect op request, containing text and dest , on
one of its handle ports h, it

encrypts text according to its encrypt mech using pt key(h) yielding protected text , and

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 185

if pt next pt(h) is not null name

– it sends a protect op message containing protected text and dest to pt next pt(h),

– otherwise, it sends a provide protected data op message containing protected text to
dest .

THEORY pt protect

pt protect: THEORY
BEGIN

IMPORTING pt ops base

% VARIABLES

st1, st2: VAR (PT STATE) 10

thread: VAR (pt threads)

ri: VAR RECEIVED INFO

handle, dest, next pt : VAR NAME

protected text, text : VAR TEXT

20
pt more protecters(st1, st2, thread, handle, protected text, dest): bool =

pt pipeline initialized(thst(st1)(thread))(handle)
AND pt next pt(thst(st1)(thread))(handle) == null name

AND send msg(kst(st1), kst(st2), thread, pt next pt(thst(st1)(thread))(handle),
protect op, null name,
protect msg(protected text, dest))

pt last protecter(st1, st2, thread, handle, protected text, dest): bool = 30
pt pipeline initialized(thst(st1)(thread))(handle)
AND pt next pt(thst(st1)(thread))(handle) = null name

AND send msg(kst(st1), kst(st2), thread, dest,
provide protected data op, null name,
provide protected data msg(protected text))

40
pt protect(st1, st2, thread): bool =

(EXISTS ri, handle, protected text, text, dest:

pt receive request util(thread, ri, protect op,
protect perm, st1, st2)

AND protect msg(text, dest) = user msg(ri)
AND handle = service port(ri)
AND pt handles(thst(st1)(thread))(handle)
AND pt keyed(thst(st1)(thread))(handle)
AND pt pipeline initialized(thst(st1)(thread))(handle) 50

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

186
CDRL A020

Protection Tasks

AND existing threads(kst(st2)) = existing threads(kst(st1))
AND pt handles inv(st1, st2)
AND pt keyed inv(st1, st2)
AND pt pipeline initialized inv(st1, st2)

AND protected text =
protect text(encrypt mech(thst(st1)(thread)),

pt key(thst(st1)(thread))(handle),
text) 60

AND (pt more protecters(st1, st2, thread, handle, protected text, dest)
OR pt last protecter(st1, st2, thread, handle, protected text, dest))

)

END pt protect

When a protection task thread receives a valid provide crypto handle op request on a port
pt next pt reply port(h) for one of its handles h, it initializes the pipeline associated with h

(see the utility function pt initialize pipeline).

THEORY pt provide crypto handle

pt provide crypto handle: THEORY
BEGIN

IMPORTING pt ops base

% VARIABLES

st1, st2: VAR (PT STATE) 10

thread: VAR (pt threads)

ri: VAR RECEIVED INFO

handle, next pt : VAR NAME

pt provide crypto handle(st1, st2, thread): bool =
(EXISTS ri, handle, next pt: 20

pt receive request util(thread, ri, provide crypto handle op,
provide crypto handle perm, st1, st2)

AND provide crypto handle msg(next pt) = user msg(ri)
AND pt keyed(thst(st1)(thread))(handle)
AND pt next pt reply port(thst(st1)(thread))(handle) = service port(ri)

AND existing threads(kst(st2)) = existing threads(kst(st1))
AND pt handles inv(st1, st2)
AND pt keyed inv(st1, st2) 30

AND pt initialize pipeline(st1, st2, thread, handle, next pt)
)

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 187

END pt provide crypto handle

When a protection task thread receives a valid provide key op request on a port
pt key server reply port(h) for one of its handles h, then

if pt args(h) has length of at least 2, it

– stores the key,

– allocates a reply port which is stored inpt next pt reply port(h), and

– sends an init crypto context op request (supplying an argument list consisting of its
own pt args(h) with the first two names stripped off) to the second name inpt args(h);

otherwise, it

– stores the key,

– sets pt next pt reply port(h) to be null name, and

– initializes the pipeline associated withh (with itself as the final task in the pipeline).

THEORY pt provide key

pt provide key: THEORY
BEGIN

IMPORTING pt ops base

% VARIABLES

st1, st2: VAR (PT STATE) 10

thread: VAR (pt threads)

args: VAR NAME SEQ

ri: VAR RECEIVED INFO

key: VAR KEY

handle, reply port, next pt reply port : VAR NAME 20

pt store key(st1, st2, thread, handle, key, next pt reply port) : bool =
pt keyed(thst(st2)(thread)) = add(handle, pt keyed(thst(st1)(thread)))
AND pt key(thst(st2)(thread)) = pt key(thst(st1)(thread)) WITH [handle := key]
AND pt next pt reply port(thst(st2)(thread)) =

pt next pt reply port(thst(st1)(thread))
WITH [handle := next pt reply port]

30

pt more pts(st1, st2, thread, handle, key): bool =
(EXISTS reply port, args:

pt handles(thst(st1)(thread))(handle)

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

188
CDRL A020

Protection Tasks

AND args = pt args(thst(st1)(thread))(handle)
AND 2 <= size(args)

AND pt store key(st1, st2, thread, handle, key, reply port)

AND pt pipeline initialized inv(st1, st2) 40

AND avail port(thst(st1)(thread))(reply port)
AND avail port(thst(st2)(thread)) = remove(reply port, avail port(thst(st1)(thread)))

AND send msg(kst(st1), kst(st2), thread, elem(args)(2), init crypto context op,
reply port, init crypto context msg(pop(pop(args))))

)

pt last pt(st1, st2, thread, handle, key): bool =
(EXISTS args: 50

pt handles(thst(st1)(thread))(handle)
AND args = pt args(thst(st1)(thread))(handle)
AND size(args) = 1
AND pt store key(st1, st2, thread, handle, key, null name)

AND pt initialize pipeline(st1, st2, thread, handle, null name)
)

pt provide key(st1, st2, thread): bool =
(EXISTS ri, handle, key: 60

pt receive request util(thread, ri, provide key op,
provide key perm, st1, st2)

AND provide key msg(key) = user msg(ri)
AND pt handles(thst(st1)(thread))(handle)
AND pt key server reply port(thst(st1)(thread))(handle) = service port(ri)

AND existing threads(kst(st2)) = existing threads(kst(st1))
AND pt handles inv(st1, st2)

70
AND (pt more pts(st1, st2, thread, handle, key)

OR pt last pt(st1, st2, thread, handle, key))
)

END pt provide key

A PT operation consists of any one of the operations defined above. The guar of the PT consists
of those transitions with a PT thread serving as the agent such that the start and final states
of the transition satisfy pt step and pt op or look the same with respect to pt view .

THEORY pt ops

pt ops: THEORY
BEGIN

IMPORTING pt receive request
IMPORTING pt init crypto context
IMPORTING pt provide key
IMPORTING pt provide crypto handle
IMPORTING pt protect

10

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 189

st1, st2 : VAR (PT STATE)
thread : VAR THREAD
th: VAR (pt threads)

pt op(st1, st2, th) : bool =
pt receive request(st1, st2, th)

OR pt init crypto context(st1, st2, th)
OR pt provide key(st1, st2, th)
OR pt provide crypto handle(st1, st2, th)
OR pt protect(st1, st2, th) 20

pt guar(st1,st2,thread) : bool =
pt threads(thread) AND
(pt view(st1,st2)

OR (pt step(st1, st2, thread) AND
pt op(st1, st2, thread)))

END pt ops

22.3 Environment Assumptions

The environment of the PT is assumed to alter no PT state information other thankst and to
obey the constraints on changing kst that are given in environment base on page 140. The hidd
of the PT is defined similarly using hidd base.

THEORY pt rely

pt rely : THEORY

BEGIN

IMPORTING dtos kernel shared rely

IMPORTING pt state

st1, st2 : VAR (PT STATE)
10

ag : VAR THREAD

pt environment(st1,st2,ag) : bool =
environment base(ag,kst(st1),kst(st2)) and
st1 with [kst := kst(st2)] = st2

pt environment refl: THEOREM
pt environment(st1,st1,ag)

pt hidd(st1,st2,ag) : bool = 20
NOT pt threads(ag)

AND hidd base(ag, kst(st1), kst(st2))
AND st2 = st1 with [kst := kst(st2)]

pt hidd prop: THEOREM
pt hidd(st1,st2,ag)

=> k threads(ag) OR pt view(st1,st2)

pt rely(st1,st2,ag) : bool = 30
not pt threads(ag) AND

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

190
CDRL A020

Protection Tasks

pt environment(st1,st2,ag)

END pt rely

22.4 Component Specification

We use the set initial pt states to denote the valid initial states for the PT. A valid initial state
has the following properties:

No PT thread has an active handle.

No kernel requests are pending for any PT thread and no messages are waiting to be
processed.

A PT is a component having state typePT STATE , satisfying initial constraint initial pt states,
and executing only the transitions defined in Section 22.2.

THEORY pt spec

pt spec : THEORY
BEGIN

IMPORTING dtos kernel shared state
IMPORTING pt ops
IMPORTING pt rely
IMPORTING pt state witness
IMPORTING component aux[(PT STATE), THREAD]

10
st, st1, st2 : VAR (PT STATE)
ag : VAR THREAD
thread : VAR (pt threads)

initial pt states(st) : bool =
(FORALL thread:

pt handles(thst(st)(thread)) = emptyset[NAME]
AND pending requests(kst(st)) = emptyset[KERNEL REQ]
AND (FORALL ag :

existing threads(kst(st))(ag) => 20
ri status(received info(kst(st))(ag)) = ri processed))

pt state witness initial: THEOREM
initial pt states(pt state witness)

base pt comp : base comp t =
(# init := initial pt states,

guar := pt guar,
rely := pt rely,
hidd := pt hidd, 30
cags := pt threads,
view := pt view,
wfar := emptyset[TRANSITION CLASS[(PT STATE), THREAD]],
sfar := emptyset[TRANSITION CLASS[(PT STATE), THREAD]] #)

pt view eq: THEOREM view eq(base pt comp)

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 191

pt comp init: THEOREM init restriction(base pt comp)

pt comp guar: THEOREM guar restriction(base pt comp) 40

pt comp rely hidd: THEOREM rely hidd restriction(base pt comp)

pt comp hidd: THEOREM hidd restriction(base pt comp)

pt comp rely: THEOREM rely restriction(base pt comp)

pt comp cags: THEOREM cags restriction(base pt comp)

pt comp guar stuttering: THEOREM guar stuttering restriction(base pt comp) 50

pt comp rely stuttering: THEOREM rely stuttering restriction(base pt comp)

pt comp : (comp t) = base pt comp

pt comp hidd prop: THEOREM
hidd(pt comp)(st1, st2, ag)
=> k threads(ag) OR view(pt comp)(st1, st2)

END pt spec 60

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

192
CDRL A020

Key Servers

Section 23
Key Servers

This section describes the Synergy Key Servers (KS). The role of each key server is to provide
keys to the protection tasks according to a given key generation algorithm.

23.1 State

As for the PT component the state type for this component will be defined in two parts, the
internal state specific to each individual key server, and the combined kernel interfaces of all
the tasks. We begin with the task-specific portion, specified in typeKS THREAD STATE .

Each individual key server has aservice port on which it receives init key retrieval op requests,
and it implements a particular key generation algorithm indicated byserver mech. Each task
maintains a set key handles of port names that represent handles it has given out to provide
access to its services to a given protection task within a given cryptographic context. A key is
associated with each handle by the functionhandle to key .

Each key server also maintains a set,avail port , of ports that are available for use as handles.

All of the above state information, defined by the typeKS THREAD STATE , is maintained by
each element of ks threads. In a valid KS THREAD STATE ,

the set key handles is disjoint from avail port and

the service port is not in avail port .

A KS state consists of a mapping thst from the ks threads to their associated
KS THREAD STATE as well as the KERNEL SHARED STATE , kst . The latter contains
existing threads, pending requests, thread status, and received info. The valid states for the pro-
tection tasks component are defined byKS STATE . In a valid state, the existing threads must
be a subset of ks threads.

All the data in KS STATE is visible to the KS.

THEORY ks state

ks state : THEORY
BEGIN

IMPORTING crypto shared state

ks threads: setof [THREAD]

ks threads nonempty: AXIOM ks threads == emptyset
10

ks threads witness: (ks threads)

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 193

% Each thread is a separate key server with the following state information
KS THREAD STATE BASE : TYPE =

[# service port: NAME, % where I receive my requests

server mech: KEY MECH, % mechanism I provide to clients

avail port: setof [NAME], % my supply of unused handles
20

key handles : setof [NAME], % handles I've given out.

handle to key : [(key handles) �> KEY] % the key associated with each handle

#]

ksths : VAR KS THREAD STATE BASE

KS THREAD STATE(ksths) : bool =
disjoint?(avail port(ksths), key handles(ksths)) 30

AND NOT avail port(ksths)(service port(ksths))

KS STATE BASE : TYPE =
[# thst : [(ks threads) �> (KS THREAD STATE)],

kst : KERNEL SHARED STATE
#]

ksstb : VAR KS STATE BASE 40

KS STATE(ksstb): bool =
subset?(existing threads(kst(ksstb)), ks threads)

st1, st2: VAR (KS STATE)

ks view(st1,st2) : bool =
st1 = st2

END ks state 50

THEORY ks state witness

ks state witness: THEORY

BEGIN

IMPORTING ks state

th,th1,th2 : VAR (ks threads)

ks thread state witness: (KS THREAD STATE) =
(# service port := null name, 10

server mech := key mech witness,
avail port := emptyset[NAME],
key handles := emptyset[NAME],
handle to key := (LAMBDA (x: (emptyset[NAME])): key witness)
#)

ks state witness: (KS STATE) =
(# thst := (LAMBDA th : ks thread state witness),

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

194
CDRL A020

Key Servers

kst := empty kst
#) 20

ks state witness prop : THEOREM
(EXISTS (ksstb : (KS STATE)) : TRUE)

END ks state witness

23.2 Operations

This section describes the subset of KS operations that are relevant to this example.

Editorial Note:
This section currently describes only successful processing of requests.

We first define several utility functions:

ks static — defines the following state invariants: service port and server mech do not
change for any thread, and the set of existing threads does not change.

ks step — a KS thread obeys ks static, only makes allowed modifications to kernel state
and does not modify the thst of any other thread.

ks handles inv(st1; st2) — key handles and handle to key do not change for any thread.

ks receive request util(thread ; ri ; op id ; perm; st1; st2) — thread checks permission perm and
operation op id on the received information in ri and then uses process request to mark ri

as processed.

THEORY ks ops base

ks ops base: THEORY
BEGIN

IMPORTING ks state

IMPORTING dtos kernel shared ops

IMPORTING messaging

st1, st2: VAR (KS STATE) 10

th, th1, th2 : VAR (ks threads)

thread: VAR THREAD

%%local state invariants
ks static(st1, st2): bool =

(FORALL th: service port(thst(st2)(th)) = service port(thst(st1)(th))
AND server mech(thst(st2)(th)) = server mech(thst(st1)(th)))

AND existing threads(kst(st2)) = existing threads(kst(st1)) 20

%a step must obey local invariants and only make allowed

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 195

% mods to kernel state or its own thst.
ks step(st1, st2, thread): bool =

ks static(st1, st2)
AND effects on kernel state(kst(st1), kst(st2), ks threads)
AND (FORALL th:

(NOT (th = thread) IMPLIES
thst(st1)(th) = thst(st2)(th)))

30

key handle inv(st1, st2): bool =
(FORALL th:

key handles(thst(st2)(th)) = key handles(thst(st1)(th))
AND handle to key(thst(st2)(th)) = handle to key(thst(st1)(th)))

ri: VAR RECEIVED INFO

op id: VAR OP
40

perm: VAR PERMISSION

% UTILITY FUNCTIONS

% processing a newly received request
ks receive request util(thread, ri, op id, perm, st1, st2): bool =

receive request(thread, ri, op id, perm, kst(st1), kst(st2)) 50

END ks ops base

At any time when the KS has a thread that is not already waiting for a message operation to
be performed, that thread can request to receive a message from a port. The thread initiates
this processing by setting its pending request to be a message receive and changing its state to
thread waiting .

THEORY ks receive request

ks receive request: THEORY
BEGIN

IMPORTING ks ops base

st1, st2: VAR (KS STATE)

thread: VAR (ks threads)

name: VAR NAME 10

ks receive request submit(st1, st2, thread): bool =
EXISTS name:

receive msg(kst(st1), kst(st2), thread, name)

ks receive request(st1, st2, thread): bool =
thst(st2) = thst(st1)

AND ks receive request submit(st1, st2, thread)

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

196
CDRL A020

Key Servers

END ks receive request 20

When a key server thread receives a valid init key retrieval op request on its service port , it38

allocates an available port to serve as a new handleh,

generates a key which it associates withh, and

sends a provide key port op request containing h to the reply port in the
init key retrieval op request.

THEORY ks init key retrieval

ks init key retrieval: THEORY
BEGIN

%% The real crypto subsystem allows key servers to immediately retrieve a key to
%% be associated with the handle, wait until a key is actually requested
%% or fork a thread to retrieve a key to be associated with the handle.
%% For simplicity, we assume that the first option is always followed.

10
IMPORTING ks ops base

% VARIABLES

st1, st2: VAR (KS STATE)

thread: VAR (ks threads)

ri: VAR RECEIVED INFO 20

handle, reply port : VAR NAME

key: VAR KEY

seed : VAR SEED

new handle(st1, st2, handle, thread) : bool =
avail port(thst(st2)(thread)) = remove(handle, avail port(thst(st1)(thread))) 30

AND key handles(thst(st2)(thread)) = add(handle, key handles(thst(st1)(thread)))

assign key(st1, st2, handle, key, thread) : bool =
key handles(thst(st2)(thread))(handle)
AND handle to key(thst(st2)(thread)) = handle to key(thst(st1)(thread))

WITH [(handle) := key]

ks init key retrieval(st1, st2, thread): bool =
(EXISTS ri, reply port, handle, key, seed:

38The real Crypto Subsystem allows key servers to immediately retrieve a key to be associated with the handle, wait
until a key is actually requested or fork a thread to retrieve a key to be associated with the handle. For simplicity, we
have modeled only the first option.

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 197

40
ks receive request util(thread, ri, init key retrieval op,

init key retrieval perm, st1, st2)
AND null user msg = user msg(ri)
AND service port(thst(st1)(thread)) = service port(ri)
AND reply port = reply name(ri)
AND avail port(thst(st1)(thread))(handle)
AND key = generate key(server mech(thst(st1)(thread)), seed)

AND new handle(st1, st2, handle, thread)
AND assign key(st1, st2, handle, key, thread) 50

AND send msg(kst(st1), kst(st2), thread, reply port, provide key port op,
null name,
provide key port msg(handle))

)

END ks init key retrieval

When a key server thread receives a valid retrieve key op request on one of its handles h, it
responds by sending a provide key op message to the reply port containing the key associated
with h.

THEORY ks retrieve key

ks retrieve key: THEORY
BEGIN

%% The real crypto subsystem allows key servers to immediately retrieve a key to
%% be associated with the handle, wait until a key is actually requested
%% or fork a thread to retrieve a key to be associated with the handle.
%% For simplicity, we assume that the first option is always followed.

10
IMPORTING ks ops base

% VARIABLES

st1, st2: VAR (KS STATE)

thread: VAR (ks threads)

ri: VAR RECEIVED INFO 20

handle, reply port : VAR NAME

key: VAR KEY

ks retrieve key(st1, st2, thread): bool =
(EXISTS ri, reply port, handle, key:

ks receive request util(thread, ri, retrieve key op, 30
retrieve key perm, st1, st2)

AND null user msg = user msg(ri)
AND key handles(thst(st1)(thread))(service port(ri))

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

198
CDRL A020

Key Servers

AND reply port = reply name(ri)

AND key = handle to key(thst(st1)(thread))(service port(ri))
AND key handle inv(st1,st2)
AND avail port(thst(st2)(thread)) = avail port(thst(st1)(thread))

AND send msg(kst(st1), kst(st2), thread, reply port, provide key op, 40
null name,
provide key msg(key))

)

END ks retrieve key

A KS operation consists of any one of the operations defined above. Theguar of the KS consists
of those transitions with a KS thread serving as the agent such that the start and final states
of the transition satisfy ks step and ks op or look the same with respect to ks view .

THEORY ks ops

ks ops: THEORY
BEGIN

IMPORTING ks receive request
IMPORTING ks init key retrieval
IMPORTING ks retrieve key

st1, st2 : VAR (KS STATE)
th : VAR (ks threads) 10
thread: VAR THREAD

ks op(st1, st2, th) : bool =
ks receive request(st1, st2, th)

OR ks init key retrieval(st1, st2, th)
OR ks retrieve key(st1, st2, th)

ks guar(st1,st2,thread) : bool =
ks threads(thread) AND
(ks view(st1,st2) 20

OR (ks step(st1, st2, thread) AND
ks op(st1, st2, thread)))

END ks ops

23.3 Environment Assumptions

The environment of the KS is assumed to alter no KS state information other thankst and to
obey the constraints on changing kst that are given in environment base on page 140. The hidd
of the KS is defined similarly using hidd base.

THEORY ks rely

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 199

ks rely : THEORY

BEGIN

IMPORTING dtos kernel shared rely

IMPORTING ks state

st1, st2 : VAR (KS STATE)
10

ag : VAR THREAD

ks environment(st1,st2,ag) : bool =
environment base(ag,kst(st1),kst(st2)) and
st1 with [kst := kst(st2)] = st2

ks environment refl: THEOREM
ks environment(st1,st1,ag)

ks hidd(st1,st2,ag) : bool = 20
NOT ks threads(ag)

AND hidd base(ag, kst(st1), kst(st2))
AND st2 = st1 with [kst := kst(st2)]

ks hidd prop: THEOREM
ks hidd(st1,st2,ag)

=> k threads(ag) OR ks view(st1,st2)

ks rely(st1,st2,ag) : bool = 30
not ks threads(ag) AND
ks environment(st1,st2,ag)

END ks rely

23.4 Component Specification

We use the set initial ks states to denote the valid initial states for the KS. A valid initial state
has the following properties:

There are no active key handles.

No kernel requests are pending for any KS thread and no messages are waiting to be
processed.

A KS is a component having state typeKS STATE , satisfying initial constraint initial ks states,
and executing only the transitions defined in Section 23.2.

THEORY ks spec

ks spec : THEORY
BEGIN

IMPORTING dtos kernel shared state
IMPORTING ks ops
IMPORTING ks rely

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

200
CDRL A020

Key Servers

IMPORTING ks state witness
IMPORTING component aux[(KS STATE),THREAD]

st, st1, st2 : VAR (KS STATE) 10
ag : VAR THREAD
thread : VAR (ks threads)

initial ks states(st) : bool =
(FORALL thread:

key handles(thst(st)(thread)) = emptyset[NAME]
AND handle to key(thst(st)(thread)) = (LAMBDA (x : (emptyset[NAME])) : key witness)
AND pending requests(kst(st)) = emptyset[KERNEL REQ]

AND (FORALL ag : 20
existing threads(kst(st))(ag) =>

ri status(received info(kst(st))(ag)) = ri processed))

ks state witness initial: THEOREM
initial ks states(ks state witness)

base ks comp : base comp t =
(# init := initial ks states,

guar := ks guar,
rely := ks rely, 30
hidd := ks hidd,
cags := ks threads,
view := ks view,
wfar := emptyset[TRANSITION CLASS[(KS STATE), THREAD]],
sfar := emptyset[TRANSITION CLASS[(KS STATE), THREAD]] #)

ks view eq: THEOREM view eq(base ks comp)

ks comp init: THEOREM init restriction(base ks comp)
40

ks comp guar: THEOREM guar restriction(base ks comp)

ks comp rely hidd: THEOREM rely hidd restriction(base ks comp)

ks comp hidd: THEOREM hidd restriction(base ks comp)

ks comp rely: THEOREM rely restriction(base ks comp)

ks comp cags: THEOREM cags restriction(base ks comp)
50

ks comp guar stuttering: THEOREM guar stuttering restriction(base ks comp)

ks comp rely stuttering: THEOREM rely stuttering restriction(base ks comp)

ks comp : (comp t) = base ks comp

ks comp hidd prop: THEOREM
hidd(ks comp)(st1, st2, ag)
=> k threads(ag) OR view(ks comp)(st1, st2)

60
END ks spec

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 201

Section 24
Security Service Usage Policy Server

This section describes the Synergy Security Service Usage Policy Server (SSUPS) component.
The role of the SSUPS is to function as a security policy server for the use of cryptography. It
associates with each cryptographic situation a list of possible protection and keying mechanisms
that are acceptable for encrypting the data. Presumably, the network server would only send
data out onto the network if it has been protected consistently with the decisions of the SSUPS.

24.1 State

The SSUPS for each node maintains a set service port of ports on which it accepts
select prot family op requests and a set handles of port names to serve as identifiers for pro-
tection families that have already been selected. The expression handle pf (h) denotes the
protection family associated with handle h. The policy in the SSUPS is represented by the
function sit pfs which maps each SITUATION to a set of protection families. The SSUPS also
maintains a set avail port of port names available for use as handles.

The SSUPS state consists of the data structures described above as well as its
KERNEL SHARED STATE , kst , containing existing threads, pending requests, thread status,
and received info. The valid states are defined by SSUPS STATE . In a valid state,

the sets handles and service port are disjoint from avail port , and

existing threads must be a subset of ssups threads.

All the data in SSUPS STATE is visible to the SSUPS.

THEORY ssups state

ssups state : THEORY
BEGIN

IMPORTING crypto shared state

ssups threads: (nonempty?[THREAD])

ssups threads witness: (ssups threads)
10

ssups threads nonempty: THEOREM ssups threads == emptyset

SSUPS STATE BASE: TYPE =
[#

avail port: setof [NAME], % my supply of ports

service port : setof [NAME],

sit pfs : [SITUATION �> setof [PROT FAMILY]],

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

202
CDRL A020

Security Service Usage Policy Server

20
handles : setof [NAME],

handle pf : [(handles) �> PROT FAMILY],

kst : KERNEL SHARED STATE
#]

base : VAR SSUPS STATE BASE

SSUPS STATE(base): bool = 30
disjoint?(avail port(base), handles(base))

AND disjoint?(avail port(base), service port(base))
AND subset?(existing threads(kst(base)), ssups threads)

st1, st2: VAR (SSUPS STATE)

ssups view(st1,st2) : bool =
st1 = st2

END ssups state 40

THEORY ssups state witness

ssups state witness: THEORY

BEGIN

IMPORTING ssups state

ssups state witness: (SSUPS STATE) =
(# avail port := emptyset[NAME],

service port := emptyset[NAME], 10
sit pfs := (LAMBDA (s : SITUATION): emptyset[PROT FAMILY]),
handles := emptyset[NAME],
handle pf := (LAMBDA (h: (emptyset[NAME])): null prot family),
kst := empty kst
#)

ssups state witness prop : THEOREM
(EXISTS (s : (SSUPS STATE)) : TRUE)

20
END ssups state witness

24.2 Operations

This section describes the subset of SSUPS operations that are relevant to this example.

Editorial Note:
This section currently describes only successful processing of requests.

We first define several utility functions:

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 203

ssups static — defines the following state invariants: service port , sit pfs and
existing threads do not change.

ssups step — SSUPS transitions obey ssups static and only make allowed modifications
to kernel state.

ssups receive request util(thread ; ri ; op id ; perm; st1; st2) — thread checks permission perm

and operation op id on the received information in ri and then uses process request to
mark ri as processed.

THEORY ssups ops base

ssups ops base: THEORY
BEGIN

IMPORTING ssups state

IMPORTING dtos kernel shared ops

%%This should probably be in dtos kernel shared ops
IMPORTING messaging

10
st, st1, st2: VAR (SSUPS STATE)

%%local state invariants
ssups static(st1, st2): bool =

sit pfs(st2) = sit pfs(st1)
AND service port(st2) = service port(st1)

AND existing threads(kst(st2)) = existing threads(kst(st1))

%a step must obey local invariants and only make allowed
% mods to kernel state. 20
ssups step(st1, st2): bool =

ssups static(st1, st2)
AND effects on kernel state(kst(st1), kst(st2), ssups threads)

thread: VAR THREAD

prot family: VAR PROT FAMILY

ri: VAR RECEIVED INFO
30

op id: VAR OP

perm: VAR PERMISSION

name, reply port, to: VAR NAME

kernel req: VAR KERNEL REQ

msg: VAR USER MSG
40

% UTILITY FUNCTIONS

% processing a newly received request
ssups receive request util(thread, ri, op id, perm, st1, st2): bool =

receive request(thread, ri, op id, perm, kst(st1), kst(st2))

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

204
CDRL A020

Security Service Usage Policy Server

END ssups ops base
50

At any time when the SSUPS has a thread that is not already waiting for a message operation
to be performed, that thread can request to receive a message from a port. The thread initiates
this processing by setting its pending request to be a message receive and changing its state to
thread waiting .

THEORY ssups receive request

ssups receive request: THEORY
BEGIN

IMPORTING ssups ops base

st1, st2: VAR (SSUPS STATE)

thread: VAR (ssups threads)

name: VAR NAME 10

ssups receive request submit(st1, st2, thread): bool =
EXISTS name:

receive msg(kst(st1), kst(st2), thread, name)

ssups receive request(st1, st2, thread): bool =
avail port(st2) = avail port(st1)

AND handles(st2) = handles(st1)
AND handle pf (st2) = handle pf (st1)
AND ssups receive request submit(st1, st2, thread) 20

END ssups receive request

When the SSUPS receives a valid retrieve prot family op request on one of its handles h, it re-
sponds by sending a provide prot family op message to the reply port containing the protection
family associated with h.

THEORY ssups retrieve prot family

ssups retrieve prot family: THEORY
BEGIN

IMPORTING ssups ops base

% VARIABLES

st1, st2: VAR (SSUPS STATE) 10

thread: VAR THREAD

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 205

prot family : VAR PROT FAMILY

ri: VAR RECEIVED INFO

handle : VAR NAME

20

ssups retrieve prot family(st1, st2, thread): bool =
(EXISTS ri, prot family, handle:

ssups receive request util(thread, ri, retrieve prot family op,
retrieve prot family perm, st1, st2)

AND handle = service port(ri)
AND handles(st1)(handle)
AND prot family = handle pf (st1)(handle)

30
AND existing threads(kst(st2)) = existing threads(kst(st1))

AND avail port(st2) = avail port(st1)
AND handles(st2) = handles(st1)
AND handle pf (st2) = handle pf (st1)

AND send msg(kst(st1), kst(st2), thread, reply name(ri), provide prot family op,
null name, provide prot family msg(prot family))

) 40

END ssups retrieve prot family

When a key server thread receives a valid select prot family op request containing situation
sit and protection family prot family (where prot family is in sit pfs(sit)) on one of its handles
h, it

allocates a handle h,

associates prot family with h, and

sends a provide pf handle op message to the reply port containing the handleh.

THEORY ssups select prot family

ssups select prot family: THEORY
BEGIN

IMPORTING ssups ops base

% VARIABLES

st1, st2: VAR (SSUPS STATE) 10

thread: VAR THREAD

prot family : VAR PROT FAMILY

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

206
CDRL A020

Security Service Usage Policy Server

sit: VAR SITUATION

ri: VAR RECEIVED INFO

handle : VAR NAME 20

ssups select prot family(st1, st2, thread): bool =
(EXISTS ri, sit, prot family, handle:

ssups receive request util(thread, ri, select prot family op,
select prot family perm, st1, st2)

AND select prot family msg(sit, prot family) = user msg(ri)
AND service port(st1)(service port(ri)) 30
AND sit pfs(st1)(sit)(prot family)

AND existing threads(kst(st2)) = existing threads(kst(st1))

AND avail port(st1)(handle)
AND avail port(st2) = remove(handle, avail port(st1))
AND handles(st2) = add(handle, handles(st1))
AND handle pf (st2) = handle pf (st1) WITH [handle := prot family]

AND send msg(kst(st1), kst(st2), thread, reply name(ri), provide pf handle op, 40
null name, provide pf handle msg(handle))

)

END ssups select prot family

An SSUPS operation consists of any one of the operations defined above. Theguar of the SSUPS
consists of those transitions with an SSUPS thread serving as the agent such that the start
and final states of the transition satisfy ssups step and ssups op or look the same with respect
to ssups view .

THEORY ssups ops

ssups ops: THEORY
BEGIN

IMPORTING ssups receive request
IMPORTING ssups select prot family
IMPORTING ssups retrieve prot family

st1, st2 : VAR (SSUPS STATE)
thread : VAR (ssups threads) 10
ag: VAR THREAD

ssups op(st1, st2, thread) : bool =
ssups receive request(st1, st2, thread)

OR ssups select prot family(st1, st2, thread)
OR ssups retrieve prot family(st1, st2, thread)

ssups guar(st1,st2,ag) : bool =

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 207

ssups threads(ag) AND 20
(ssups view(st1, st2)

OR (ssups step(st1, st2) AND ssups op(st1, st2, ag)))

END ssups ops

24.3 Environment Assumptions

The environment of the SSUPS is assumed to alter no SSUPS state information other thankst
and to obey the constraints on changing kst that are given in environment base on page 140.
The hidd of the SSUPS is defined similarly using hidd base.

THEORY ssups rely

ssups rely : THEORY

BEGIN

IMPORTING dtos kernel shared rely

IMPORTING ssups state

st1, st2 : VAR (SSUPS STATE)
10

ag : VAR THREAD

ssups environment(st1,st2,ag) : bool =
environment base(ag,kst(st1),kst(st2)) and
st1 with [kst := kst(st2)] = st2

ssups environment refl: THEOREM
ssups environment(st1,st1,ag)

ssups hidd(st1,st2,ag) : bool = 20
NOT ssups threads(ag)

AND hidd base(ag, kst(st1), kst(st2))
AND st2 = st1 WITH [kst := kst(st2)]

ssups hidd prop: THEOREM
ssups hidd(st1,st2,ag)

=> k threads(ag) OR ssups view(st1,st2)

ssups rely(st1,st2,ag) : bool = 30
not ssups threads(ag) AND
ssups environment(st1,st2,ag)

END ssups rely

24.4 Component Specification

We use the set initial ssups states to denote the valid initial states for the SSUPS. A valid
initial state has the following properties:

There are no handles in use.

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

208
CDRL A020

Security Service Usage Policy Server

No kernel requests are pending for any SSUPS thread and no messages are waiting to be
processed.

The SSUPS is a component having state type SSUPS STATE , satisfying initial constraint
initial ssups states, and executing only the transitions defined in Section 24.2.

THEORY ssups spec

ssups spec : THEORY
BEGIN

IMPORTING dtos kernel shared state
IMPORTING ssups ops
IMPORTING ssups rely
IMPORTING ssups state witness
IMPORTING component aux[(SSUPS STATE),THREAD]

st, st1, st2 : VAR (SSUPS STATE) 10
ag : VAR THREAD
thread : VAR (ssups threads)

initial ssups states(st) : bool =
handles(st) = emptyset[NAME]

AND pending requests(kst(st)) = emptyset[KERNEL REQ]
AND (FORALL ag :

existing threads(kst(st))(ag) =>
ri status(received info(kst(st))(ag)) = ri processed)

20
ssups state witness initial: THEOREM

initial ssups states(ssups state witness)

base ssups comp : base comp t =
(# init := initial ssups states,

guar := ssups guar,
rely := ssups rely,
hidd := ssups hidd,
cags := ssups threads,
view := ssups view, 30
wfar := emptyset[TRANSITION CLASS[(SSUPS STATE), THREAD]],
sfar := emptyset[TRANSITION CLASS[(SSUPS STATE), THREAD]] #)

ssups view eq: THEOREM view eq(base ssups comp)

ssups comp init: THEOREM init restriction(base ssups comp)

ssups comp guar: THEOREM guar restriction(base ssups comp)

ssups comp rely hidd: THEOREM rely hidd restriction(base ssups comp) 40

ssups comp hidd: THEOREM hidd restriction(base ssups comp)

ssups comp rely: THEOREM rely restriction(base ssups comp)

ssups comp cags: THEOREM cags restriction(base ssups comp)

ssups comp guar stuttering: THEOREM guar stuttering restriction(base ssups comp)

ssups comp rely stuttering: THEOREM rely stuttering restriction(base ssups comp) 50

ssups comp : (comp t) = base ssups comp

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 209

ssups comp hidd prop: THEOREM
hidd(ssups comp)(st1, st2, ag)
=> k threads(ag) OR view(ssups comp)(st1, st2)

END ssups spec

60

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

210
CDRL A020

Cryptographic Client

Section 25
Cryptographic Client

This section describes a component acting as a client of the Synergy Cryptographic Subsystem.
We will call this the Client component. The Client interacts with the SSUPS to obtain a handle
for a selected a protection family. It then provides this handle in a request to the CC to establish
a cryptographic context. Once the protection handle is received back from the CC, the client
can send protection requests to the handle and receive the cyphertext in the reply messages.
Since we are focusing on the Crypto Subsystem itself rather then on application programs that
require encryption services, we just specify that the client stores the cyphertext in its state
rather than modeling actions such as sending the data across the network or writing it to
encrypted media.

25.1 State

We model the state of the Client component in the same way as the PT and KS components. That
is, we have multiple client threads functioning intuitively as separate Client subcomponents
within the actual Client component.

Each individual client maintains the following pieces of state information:

reply port — reply port name supplied in the client’s requests to the subsystem,

situation — situation in which it is operating,

requested prot family — protection family that it requests to use,

ssups — client’s name for an SSUPS service port,

cc — client’s name for a CC service port,

pf handle provided — a boolean flag indicating whether a protection family handle has
been received from the SSUPS (and forwarded to the CC),

handle — a handle received from CC for use in encrypting data according to the established
cryptographic context,

clear text sent — the text most recently sent to handle in a protection request. This is
null text until the first protection request has been sent.

reply received — a boolean flag, true if the cypher text has been received for the most
recently sent protection request. Should be true if no protection requests have been sent
yet.

cypher text received — the most recently received cypher text. Should benull text until a
reply to the first protection request has been processed.

All of the above state information, defined by the type CLIENT THREAD STATE , is main-
tained by each element of client threads. All values of type CLIENT THREAD STATE are

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 211

considered valid. A Client state consists of a mapping thst from the client threads to their asso-
ciated CLIENT THREAD STATE as well as the KERNEL SHARED STATE , kst . The latter
contains existing threads, pending requests, thread status, and received info. The valid states for
the Client component are defined by CLIENT STATE . In a valid state, the existing threads

must be a subset of client threads.

All the data in CLIENT STATE is visible to the client.

THEORY client state

client state : THEORY
BEGIN

IMPORTING crypto shared state

client threads: (nonempty?[THREAD])

client threads witness: (client threads)
10

client threads nonempty: THEOREM client threads == emptyset

% Each client thread can have a situation, selected protection family, crypto
% handle and active protection request.
CLIENT THREAD STATE BASE : TYPE =

[#
reply port: NAME, % where I wait for replies

situation : SITUATION, % my situation 20

requested prot family : PROT FAMILY, % pf I requested

ssups : NAME, % my name for an SSUPS service port

cc : NAME, % my name for a crypto controller service port

pf handle provided: bool, % have I received (and forwarded)
% a pf port?

30
handle: NAME, % crypto handle for my pf

clear text sent : TEXT, % most recent text that I asked to have encrypted
% Should be null text until first protection request
% is sent.

reply received : bool, % have I received back the cypher text for my
% most recent protection request? Should be
% true if no protection requests have been sent
% yet. 40

cypher text received: TEXT % most recently received cypher text
% Should be null text until reply
% to first protection request is received.

#]

thstate : VAR CLIENT THREAD STATE BASE

CLIENT THREAD STATE(thstate) : bool = true 50

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

212
CDRL A020

Cryptographic Client

CLIENT STATE BASE : TYPE =
[# thst : [(client threads) �> (CLIENT THREAD STATE)],

kst : KERNEL SHARED STATE
#]

base : VAR CLIENT STATE BASE

CLIENT STATE(base): bool = 60

subset?(existing threads(kst(base)), client threads)

st1, st2: VAR (CLIENT STATE)

client view(st1,st2) : bool =
st1 = st2

END client state

THEORY client state witness

client state witness: THEORY

BEGIN

IMPORTING client state

th: VAR (client threads)

client thread state witness: (CLIENT THREAD STATE) = 10

(# reply port := epsilon(fullset[NAME]),
situation := epsilon(fullset[SITUATION]),
requested prot family := epsilon(fullset[PROT FAMILY]),
ssups := epsilon(fullset[NAME]),
cc := epsilon(fullset[NAME]),
pf handle provided := false,
handle := null name,
clear text sent := null text,
reply received := true,
cypher text received := null text 20

#)

client state witness: (CLIENT STATE) =
(# thst := (LAMBDA th : client thread state witness),

kst := empty kst
#)

client state witness prop : THEOREM
(EXISTS (base : (CLIENT STATE)) : TRUE) 30

END client state witness

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 213

25.2 Operations

This section describes the subset of Client operations that are relevant to this example.

Editorial Note:
This section currently describes only successful processing of requests.

We first define several utility functions:

client static — defines the following state invariants: reply port , situation,
requested prot family , ssups and cc do not change for any thread and existing threads does
not change.

client step — Client transitions obey client static and make only allowed modifications to
kernel state, and no client can change the thst of any other client thread.

client receive request util(thread ; ri ; op id ; perm; st1; st2) — thread checks permission perm

and operation op id on the received information in ri and then uses process request to
mark ri as processed.

THEORY client ops base

client ops base: THEORY
BEGIN

IMPORTING client state

IMPORTING dtos kernel shared ops

IMPORTING messaging

st1, st2: VAR (CLIENT STATE) 10

th, th1, th2 : VAR (client threads)

thread: VAR THREAD

%%local state invariants
client static(st1, st2): bool =

(FORALL th: reply port(thst(st2)(th)) = reply port(thst(st1)(th))
AND situation(thst(st2)(th)) = situation(thst(st1)(th))
AND requested prot family(thst(st2)(th)) = requested prot family(thst(st1)(th)) 20
AND ssups(thst(st2)(th)) = ssups(thst(st1)(th))
AND cc(thst(st2)(th)) = cc(thst(st1)(th)))

AND existing threads(kst(st2)) = existing threads(kst(st1))

%a step must obey local invariants and only make allowed
% mods to kernel state or its own thst.
client step(st1, st2, thread): bool =

client static(st1, st2)
AND effects on kernel state(kst(st1), kst(st2), client threads)
AND (FORALL th: 30

(NOT (th = thread) IMPLIES
thst(st1)(th) = thst(st2)(th)))

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

214
CDRL A020

Cryptographic Client

ri: VAR RECEIVED INFO

op id: VAR OP

perm: VAR PERMISSION
40

% UTILITY FUNCTIONS

% processing a newly received request
client receive request util(thread, ri, op id, perm, st1, st2): bool =

receive request(thread, ri, op id, perm, kst(st1), kst(st2))

END client ops base 50

At any time when the Client has a thread that is not already waiting for a message operation
to be performed, that thread can request to receive a message from a port. The thread initiates
this processing by setting its pending request to be a message receive and changing its state to
thread waiting .

THEORY client receive request

client receive request: THEORY
BEGIN

IMPORTING client ops base

st1, st2: VAR (CLIENT STATE)

thread: VAR (client threads)

name: VAR NAME 10

client receive request submit(st1, st2, thread): bool =
EXISTS name:

receive msg(kst(st1), kst(st2), thread, name)

client receive request(st1, st2, thread): bool =
thst(st2) = thst(st1)

AND client receive request submit(st1, st2, thread)

END client receive request 20

If for some thread th, handle(th) is not null name and reply received(th) is true (i.e., a handle
has been obtained, and the thread is not waiting for an encryption request to complete), it may
send a protect op request to the handle containing clear texttext and destination reply port(th).
The text is stored in clear text sent(th) and reply received(th) is set to false.

THEORY client protect

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 215

client protect: THEORY
BEGIN

IMPORTING client ops base

% VARIABLES

st1, st2: VAR (CLIENT STATE) 10

thread: VAR (client threads)

text : VAR TEXT

client protect(st1, st2, thread): bool =
(EXISTS text :

handle(thst(st1)(thread)) == null name
AND reply received(thst(st1)(thread))

20
AND thst(st2)(thread) = thst(st1)(thread)

WITH [clear text sent := text,
reply received := false]

AND send msg(kst(st1), kst(st2), thread, handle(thst(st1)(thread)), protect op,
reply port(thst(st1)(thread)),
protect msg(text, reply port(thst(st1)(thread))))

)

30
END client protect

When a client thread th receives a provide crypto context op message containing crypto handle,
it stores the handle in handle(th). This transition is only enabled when handle(th) is null name
and clear text sent(th) is null text . Thus, we only consider clients that set up and use at most
one context.

THEORY client provide crypto context

client provide crypto context: THEORY
BEGIN

IMPORTING client ops base

% VARIABLES

st1, st2: VAR (CLIENT STATE) 10

thread: VAR (client threads)

ri : VAR RECEIVED INFO

crypto handle : VAR NAME

client provide crypto context(st1, st2, thread): bool =
(EXISTS ri, crypto handle :

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

216
CDRL A020

Cryptographic Client

20
client receive request util(thread, ri, provide crypto context op,

provide crypto context perm, st1, st2)
AND handle(thst(st1)(thread)) = null name
AND clear text sent(thst(st1)(thread)) = null text
AND provide crypto context msg(crypto handle) = user msg(ri)

AND thst(st2)(thread) = thst(st1)(thread) WITH [handle := crypto handle]

)
30

END client provide crypto context

When a client thread th receives a provide pf handle op message containing pf handle, it

sets pf handle provided(th) to true, and

sends a create crypto context op request to cc(th) containing its situation, the pf handle

and its requested prot family .

This transition is only enabled when pf handle provided(th) is false and clear text sent(th) is
null text .

THEORY client provide pf handle

client provide pf handle: THEORY
BEGIN

IMPORTING client ops base

% VARIABLES

st1, st2: VAR (CLIENT STATE) 10

thread: VAR (client threads)

ri : VAR RECEIVED INFO

pf handle : VAR NAME

client provide pf handle(st1, st2, thread): bool =
(EXISTS ri, pf handle :

20
client receive request util(thread, ri, provide pf handle op,

provide pf handle perm, st1, st2)
AND pf handle provided(thst(st1)(thread)) = false
AND clear text sent(thst(st1)(thread)) = null text
AND provide pf handle msg(pf handle) = user msg(ri)

AND thst(st2)(thread) = thst(st1)(thread) WITH [pf handle provided := true]

AND send msg(kst(st1), kst(st2), thread, cc(thst(st1)(thread)), create crypto context op,
reply port(thst(st1)(thread)), 30
create crypto context msg(situation(thst(st1)(thread)),

pf handle,
requested prot family(thst(st1)(thread))))

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 217

)

END client provide pf handle

When a client thread th receives a provide protected data op message containing text , it

sets reply received(th) to true, and

sets cypher text received to text .

This transition is only enabled when reply received(th) is false.

THEORY client provide protected data

client provide protected data: THEORY
BEGIN

IMPORTING client ops base

% VARIABLES

st1, st2: VAR (CLIENT STATE) 10

thread: VAR (client threads)

ri : VAR RECEIVED INFO

text : VAR TEXT

client provide protected data(st1, st2, thread): bool =
(EXISTS ri, text : 20

client receive request util(thread, ri, provide protected data op,
provide protected data perm, st1, st2)

AND NOT reply received(thst(st1)(thread))
AND provide protected data msg(text) = user msg(ri)

AND thst(st2)(thread) = thst(st1)(thread)
WITH [reply received := true,

cypher text received := text]
30

)

END client provide protected data

At any time a client thread may send aselect prot family op request to ssups(th) containing its
situation and requested prot family .

THEORY client select prot family

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

218
CDRL A020

Cryptographic Client

client select prot family: THEORY
BEGIN

IMPORTING client ops base

% VARIABLES

st1, st2: VAR (CLIENT STATE) 10

thread: VAR (client threads)

client select prot family(st1, st2, thread): bool =
thst(st2)(thread) = thst(st1)(thread) AND
send msg(kst(st1), kst(st2), thread, ssups(thst(st1)(thread)), select prot family op,

reply port(thst(st1)(thread)),
select prot family msg(situation(thst(st1)(thread)),

requested prot family(thst(st1)(thread))))
20

END client select prot family

A Client operation consists of any one of the operations defined above. The guar of the Client
consists of those transitions with a Client thread serving as the agent such that the start and
final states of the transition satisfy client step and client op or look the same with respect to
client view .

THEORY client ops

client ops: THEORY
BEGIN

IMPORTING client receive request
IMPORTING client select prot family
IMPORTING client provide pf handle
IMPORTING client provide crypto context
IMPORTING client protect
IMPORTING client provide protected data 10

st1, st2 : VAR (CLIENT STATE)
thread : VAR THREAD
th: VAR (client threads)

client op(st1, st2, th) : bool =
client receive request(st1, st2, th)

OR client select prot family(st1, st2, th)
OR client provide pf handle(st1, st2, th)
OR client provide crypto context(st1, st2, th) 20
OR client protect(st1, st2, th)
OR client provide protected data(st1, st2, th)

client guar(st1,st2,thread) : bool =
client threads(thread) AND
(client view(st1,st2)

OR (client step(st1, st2, thread) AND
client op(st1, st2, thread)))

30

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 219

END client ops

25.3 Environment Assumptions

The environment of the Client is assumed to alter no Client state information other thankst
and to obey the constraints on changing kst that are given in environment base on page 140.
The hidd of the Client is defined similarly using hidd base.

THEORY client rely

client rely : THEORY

BEGIN

IMPORTING dtos kernel shared rely

IMPORTING client state

st1, st2 : VAR (CLIENT STATE)
10

ag : VAR THREAD

client environment(st1,st2,ag) : bool =
environment base(ag,kst(st1),kst(st2)) and
st1 with [kst := kst(st2)] = st2

client environment refl: THEOREM
client environment(st1,st1,ag)

client hidd(st1,st2,ag) : bool = 20
NOT client threads(ag)

AND hidd base(ag, kst(st1), kst(st2))
AND st2 = st1 with [kst := kst(st2)]

client hidd prop: THEOREM
client hidd(st1,st2,ag)

=> k threads(ag) OR client view(st1,st2)

client rely(st1,st2,ag) : bool = 30
not client threads(ag) AND
client environment(st1,st2,ag)

END client rely

25.4 Component Specification

We use the set initial client states to denote the valid initial states for the Client. A valid initial
state has the following properties:

For each thread, its pf handle provided is false, its handle is null name, its clear text sent

is null text and its reply received is true.

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

220
CDRL A020

Cryptographic Client

No kernel requests are pending for any Client thread and no messages are waiting to be
processed.

A Client is a component having state type CLIENT STATE , satisfying initial constraint
initial client states, and executing only the transitions defined in Section 25.2.

THEORY client spec

client spec : THEORY
BEGIN

IMPORTING dtos kernel shared state
IMPORTING client ops
IMPORTING client rely
IMPORTING client state witness
IMPORTING component aux[(CLIENT STATE),THREAD]

st, st1, st2 : VAR (CLIENT STATE) 10
ag : VAR THREAD
thread : VAR (client threads)

initial client states(st) : bool =
(FORALL thread:

pf handle provided(thst(st)(thread)) = false
AND handle(thst(st)(thread)) = null name
AND clear text sent(thst(st)(thread)) = null text
AND reply received(thst(st)(thread)) = true
AND pending requests(kst(st)) = emptyset[KERNEL REQ] 20
AND (FORALL ag :

existing threads(kst(st))(ag) =>
ri status(received info(kst(st))(ag)) = ri processed))

client state witness initial: THEOREM
initial client states(client state witness)

base client comp : base comp t =
(# init := initial client states,

guar := client guar, 30
rely := client rely,
hidd := client hidd,
cags := client threads,
view := client view,
wfar := emptyset[TRANSITION CLASS[(CLIENT STATE), THREAD]],
sfar := emptyset[TRANSITION CLASS[(CLIENT STATE), THREAD]] #)

client view eq: THEOREM view eq(base client comp)

client comp init: THEOREM init restriction(base client comp) 40

client comp guar: THEOREM guar restriction(base client comp)

client comp rely hidd: THEOREM rely hidd restriction(base client comp)

client comp hidd: THEOREM hidd restriction(base client comp)

client comp rely: THEOREM rely restriction(base client comp)

client comp cags: THEOREM cags restriction(base client comp) 50

client comp guar stuttering: THEOREM guar stuttering restriction(base client comp)

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 221

client comp rely stuttering: THEOREM rely stuttering restriction(base client comp)

client comp : (comp t) = base client comp

client comp hidd prop: THEOREM
hidd(client comp)(st1, st2, ag)
=> k threads(ag) OR view(client comp)(st1, st2) 60

END client spec

To demonstrate the use of the framework for reasoning about components and systems we de-
fine and prove a simple lemma about the Client component. This lemma will later be “lifted” to
a lemma regarding the entire system. The lifted lemma would constitute one small part of the
entire proof that the subsystem correctly encrypts data that it receives in protection requests.
This overall system property is formalized as the state predicate correct encryption pred . In-
formally, it requires that, in any state in which a client thread

has non-null text in clear text sent and

has set reply received to true,

the text in cypher text received is an encryption of the clear text with respect to the protection
family requested by the thread. Note that this property can be entirely stated in terms of the
Client state. This makes some sense in that the Crypto Subsystem is essentially a black box
from the Client’s perspective, yet the Client should, in principle, be able to independently verify
that the encryption is correct.

It is easy to prove (theorem correct encryption prop1) that this predicate is satisfied in the
initial state since clear text sent is required to be null text in the initial state of the Client
(i.e., have encrypted text is not satisfied in the initial state). We do not even need to consider
any system components other than Client. However, proving that the predicate is preserved
during transitions cannot be done without considering all of the system components. We must
show that every provide protected data op message sent to the Client will contain the correct
data. This requires proving properties of each system component, applying the appropriate
composition theorem to lift each of those properties to be a system property, and then showing
that the lifted properties imply that correct encryption pred is preserved by all transitions.

Since our goal in this report is only to demonstrate and test the use of the framework, we will
not perform this entire analysis. We will instead focus on one small lemma. We will show
that if we assume that all provide protected data op messages received by the client contain
correct encryptions then correct encryption pred is always true. This is formalized in theorem
correct encryption prop. This theorem is an easy consequence of correct encryption prop1 and
correct encryption prop steps. The latter constitutes the heart of the argument. It essentially
shows that whenever the Client component processes a provide protected data op message it
correctly extracts the cypher text and stores it incypher text received .

THEORY client props

client props: THEORY

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

222
CDRL A020

Cryptographic Client

BEGIN

IMPORTING client spec

IMPORTING more preds[(CLIENT STATE), THREAD]

IMPORTING unity

st, st1, st2 : VAR (CLIENT STATE) 10

pf : VAR PROT FAMILY

clear, cypher: VAR TEXT

p : VAR FSEQ[[ENCRYPT MECH, KEY]]

seed : VAR SEED

key mech : VAR KEY MECH 20

th: VAR (client threads)

t: VAR TEXT

ri: VAR RECEIVED INFO

%% Next two functions probably belong in crypto shared state.pvs
map protect(p, t): RECURSIVE TEXT =

IF nonemptyfseq(p) THEN 30
map protect(pop(p),protect text(PROJ 1(elem(p)(1)), PROJ 2(elem(p)(1)), t))

ELSE t
ENDIF

MEASURE size(p);

encrypted with pf (pf, clear, cypher): bool =
(EXISTS p:

cypher = map protect(p,clear)
AND size(p) = size(pf)
AND (FORALL (i: fi : nat j i>0 AND i <= size(pf)g): 40

PROJ 1(elem(p)(i)) = encrypt mech(elem(pf)(i))
AND (EXISTS seed, key mech:

PROJ 2(elem(p)(i)) = generate key(key mech, seed)
AND key mech = key mech(elem(pf)(i)))))

have encrypted text(st, pf, clear, cypher): bool =
EXISTS th:

requested prot family(thst(st)(th)) = pf 50
AND pf handle provided(thst(st)(th))
AND handle(thst(st)(th)) == null name
AND clear text sent(thst(st)(th)) = clear
AND clear == null text
AND cypher text received(thst(st)(th)) = cypher
AND reply received(thst(st)(th))

%%vvv DESIRED PROPERTY vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv 60
%%
%% This is the top�level desired property. We could try
%% to prove it by decomposing it into other properties
%% which eventually reduce to things you would prove about
%% a single component (using the composition theorems to

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 223

%% lift each result).

correct encryption pred : STATE PRED =
(LAMBDA st:

(FORALL pf, clear, cypher: 70
have encrypted text(st, pf, clear, cypher)
=> encrypted with pf (pf, clear, cypher)))

%% We can prove that it is satisfied in the initial state without
%% considering any component other than the client.

correct encryption prop1: THEOREM
init satisfies(client comp, correct encryption pred)

%% However, we cannot prove that the system steps satisfy 80
%% correct encryption pred without considering properties of the
%% entire system.
%%
%%ˆˆ

%% To demonstrate property lifting, we prove a lemma that says if
%% the ri of the client always has things that are correct
%% encryptions then encrypted with pf is satisfied

90
correct ppd def(st): bool =

(FORALL th, ri, cypher, pf, clear:
(NOT reply received(thst(st)(th))

AND existing threads(kst(st))(th)
AND received info(kst(st))(th) = ri
AND op(ri) = provide protected data op
AND provide protected data msg(cypher) = user msg(ri)
AND ri status(ri) = ri unprocessed
AND pf = requested prot family(thst(st)(th))
AND clear = clear text sent(thst(st)(th))) 100

=> encrypted with pf (pf, clear, cypher))

correct ppd pred: STATE PRED =
(LAMBDA st: correct ppd def(st))

correct encryption prop steps: THEOREM
steps satisfy(client comp,

stable assuming(correct ppd pred, correct encryption pred))

correct encryption prop: THEOREM 110
satisfies(client comp,

pimplies(alwayss(correct ppd pred),
alwayss(correct encryption pred)))

END client props

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

224
CDRL A020

Composing the Components

Section 26
Composing the Components

To compose the components we must

define a common state space,

define state translators to translate the seven components into the common state space,

show that the translators satisfy the requirements on translators

apply the translators obtaining seven new components,

show that the seven translated components are composable (i.e., that they have a common
initial state), and

apply the composition operator to obtain a specification of the system.

An agent translator is also needed in this process, but it is a simple identity translation since
we use the same agent type.

Theory system state defines the common state type along with several functions for dealing with
it. The function thset func maps each element of the set of component indicesCOMP INDEX

to the cags of the associated component. This function is used in axiom thset ax to declare the
cags sets to be disjoint.

The common state is SYSTEM STATE . It contains seven fields, one for each component of the
system. The function build system state base takes as arguments seven states of the respective
types and returns a SYSTEM STATE BASE record containing the states in the appropriate
fields. In a valid system state, stb, theKERNEL SHARED STATE within each of the component
states is a kst substate of the ext st of the kernel component state k(stb). Axiom substates ax

asserts that for every SYSTEM STATE , stb, there exists a KERNEL SHARED STATE ,
superstate, such that each KERNEL SHARED STATE in stb is a substate of superstate. This
axiom could be proven using axiom thsets ax , but for simplicity we have just asserted it. This
axiom is used in proving ksts mergable which states that the value of build system state base

always contains a mergable set ofKERNEL SHARED STATE values for the seven components.
We also assert as an axiom (k st ax) that for any KERNEL SHARED STATE , kst , there exists
a K STATE with an ext st field equal to kst . Proving this would require that we show how
to select an int st consistent with any given ext st . The theorem build system state base prop

demonstrates that if the K STATE supplied as the first argument of build system state base

has an ext st which is a kst merge of the KERNEL SHARED STATEs for any seven component
states, then the value of build system state base is a valid SYSTEM STATE . The function
build system state captures this in its type declaration. This function is used later in the proofs
that the translators satisfy the requirements on translators.

THEORY system state

system state: THEORY

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 225

BEGIN

IMPORTING k spec

IMPORTING cc spec

IMPORTING pt spec

IMPORTING ks spec 10

IMPORTING ssups spec

IMPORTING client spec

IMPORTING security server spec

IMPORTING kst merge

IMPORTING more set lemmas 20

IMPORTING disjoint sets

th: VAR THREAD
thset, thset1, thset2: VAR setof [THREAD]
kst : VAR KERNEL SHARED STATE

COMP INDEX : TYPE+ = fk ind, cc ind, pt ind, ks ind, ssups ind, client ind, ss indg

i : VAR COMP INDEX 30

thsets func: [COMP INDEX �> setof [THREAD]] =
(LAMBDA i :

CASES i OF
k ind: k threads,
cc ind: cc threads,
pt ind: pt threads,
ks ind: ks threads,
ssups ind: ssups threads,
client ind: client threads, 40
ss ind: ss threads

ENDCASES)

thsets ax: AXIOM
pairwise disjoint(thsets func)

thsets prop: LEMMA
k threads = thsets func(k ind)
AND cc threads = thsets func(cc ind)
AND pt threads = thsets func(pt ind) 50
AND ks threads = thsets func(ks ind)
AND ssups threads = thsets func(ssups ind)
AND client threads = thsets func(client ind)
AND ss threads = thsets func(ss ind)

%%% Define the composite state

SYSTEM STATE BASE:
TYPE = [# k: (K STATE), 60

cc: (CC STATE),
pt: (PT STATE),
ks: (KS STATE),
ssups: (SSUPS STATE),
client: (CLIENT STATE),

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

226
CDRL A020

Composing the Components

ss: (SS STATE) #]

stb: VAR SYSTEM STATE BASE

k st: VAR (K STATE) 70

cc st: VAR (CC STATE)

pt st: VAR (PT STATE)

ks st: VAR (KS STATE)

ssups st: VAR (SSUPS STATE)

client st: VAR (CLIENT STATE) 80

ss st: VAR (SS STATE)

kstset : VAR setof [KERNEL SHARED STATE]

build system state base(k st, cc st, pt st, ks st,
ssups st, client st, ss st): SYSTEM STATE BASE =

(# k:= k st,
cc:= cc st,
pt:= pt st, 90
ks:= ks st,
ssups:= ssups st,
client:= client st,
ss:= ss st #)

all ksts(stb) : setof [KERNEL SHARED STATE]
= fkst j kst = ext st(k(stb))

OR kst = kst(cc(stb))
OR kst = kst(pt(stb))
OR kst = kst(ks(stb)) 100
OR kst = kst(ssups(stb))
OR kst = kst(client(stb))
OR kst = kst(ss(stb))g

SYSTEM STATE(stb): bool =
(FORALL kst :

all ksts(stb)(kst) => kst substate(kst, ext st(k(stb))))
110

%% This axiom could be proven from disjointness of threads for the
%% components. For simplicity we will just assert that it is true.
substates ax: AXIOM

EXISTS (superstate: KERNEL SHARED STATE) :
(FORALL kst :

all ksts(stb)(kst) => kst substate(kst, superstate))

ksts mergable: THEOREM
kst mergable(all ksts(build system state base(k st,

cc st, pt st, 120
ks st, ssups st,
client st,
ss st)))

%% This could be proven by showing how to select intst(k st) so
%% that it is consistent with K STATE requirements and with the kst
%% chosen. Again, for simplicity we assert this.
k st ax: AXIOM

(EXISTS k st: ext st(k st) = kst)

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 227

130
build system state base prop: THEOREM

SYSTEM STATE(
build system state base(

choose(fk st1 : (K STATE) j ext st(k st1)
= kst merge(all ksts(build system state base(

k st, cc st, pt st, ks st,
ssups st, client st, ss st)))g),

cc st, pt st, ks st, ssups st, client st, ss st))

build system state(k st, cc st, pt st, ks st, 140
ssups st, client st, ss st): (SYSTEM STATE) =

build system state base(
choose(fk st1 : (K STATE) j ext st(k st1)

= kst merge(all ksts(build system state base(
k st, cc st, pt st, ks st,
ssups st, client st, ss st)))g),

cc st, pt st, ks st, ssups st, client st, ss st)

system state witness : (SYSTEM STATE) =
build system state base(k state witness, 150

cc state witness,
pt state witness,
ks state witness,
ssups state witness,
client state witness,
ss state witness)

system state nonempty: THEOREM (EXISTS (x: ((SYSTEM STATE))): TRUE)

160
END system state

Theory system trans defines the eight translators (seven state translator and one agent trans-
lator) needed in this example and demonstrates that each of them is a legal translator. It then
defines the translated components.

THEORY system trans

system trans: THEORY

BEGIN

IMPORTING system state

IMPORTING idtran

IMPORTING tcprops
10

st, st1, st2: VAR (SYSTEM STATE)
k st : VAR (K STATE)
ccst : VAR (CC STATE)
ptst : VAR (PT STATE)
ksst : VAR (KS STATE)
ssupsst : VAR (SSUPS STATE)
clientst : VAR (CLIENT STATE)
ssst : VAR (SS STATE)

%%% Define the translators 20

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

228
CDRL A020

Composing the Components

k2system sttran: (translator t[(K STATE), (SYSTEM STATE)]) =
(LAMBDA k st: fst j k(st) = k stg)

cc2system sttran: (translator t[(CC STATE), (SYSTEM STATE)]) =
(LAMBDA ccst : fst j cc(st) = ccstg)

pt2system sttran: (translator t[(PT STATE), (SYSTEM STATE)]) =
(LAMBDA ptst: fst j pt(st) = ptstg)

30
ks2system sttran: (translator t[(KS STATE), (SYSTEM STATE)]) =

(LAMBDA ksst : fst j ks(st) = ksstg)

ssups2system sttran: (translator t[(SSUPS STATE), (SYSTEM STATE)]) =
(LAMBDA ssupsst: fst j ssups(st) = ssupsstg)

client2system sttran: (translator t[(CLIENT STATE), (SYSTEM STATE)]) =
(LAMBDA clientst: fst j client(st) = clientstg)

ss2system sttran: (translator t[(SS STATE), (SYSTEM STATE)]) = 40
(LAMBDA ssst : fst j ss(st) = ssstg)

system agtran: (translator t[THREAD, THREAD]) = idt[THREAD]

%%% Translate the components

kt: (comp t[(SYSTEM STATE), THREAD]) =
tran cmp(k comp, k2system sttran, system agtran)

50
cct : (comp t[(SYSTEM STATE), THREAD]) =

tran cmp(cc comp, cc2system sttran, system agtran)

ptt: (comp t[(SYSTEM STATE), THREAD]) =
tran cmp(pt comp, pt2system sttran, system agtran)

kst : (comp t[(SYSTEM STATE), THREAD]) =
tran cmp(ks comp, ks2system sttran, system agtran)

ssupst: (comp t[(SYSTEM STATE), THREAD]) = 60
tran cmp(ssups comp, ssups2system sttran, system agtran)

clientt: (comp t[(SYSTEM STATE), THREAD]) =
tran cmp(client comp, client2system sttran, system agtran)

sst : (comp t[(SYSTEM STATE), THREAD]) =
tran cmp(ss comp, ss2system sttran, system agtran)

END system trans

Theory system defines the component system as the composite of the seven translated com-
ponents. To show that system is in fact a component we only need demonstrate a consistent
starting state. This is demonstrated by the theoremsystem agreeable start .

Now that the entire system has been defined as the composite of the seven translated systems
we want to reason about this composite. The composition framework provides a powerful
tool for doing this: the composition theorem. This theorem allows us to “lift” properties of
individual components to properties of the entire system. Before we can apply this theorem we
must perform a tolerance analysis of the seven translated components. That is, we must show
that no component violates the environment assumptions of any of its peer components (taking
the hidd of the peer into consideration).

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 229

In the worst case, this introduces O(n2) proof obligations, each of which may be quite large,
depending upon the complexity of the environment assumptions and the number of component
operations that must be considered. Fortunately, in this case (and, we think, many others)
many of these obligations can be collapsed into a small set of manageable proofs, and the worst
case is not a problem. The key factor here is the connectivity of the components. That is, how
directly do the components interact? In our example, all interactions are mediated through
the kernel. If component A can modify state that is visible to componentB then either A or
B is the kernel. This reduces 30 obligations (the number of pairs of non-kernel components)
to the six theorems with names of the form system tolerates *t1. Each of these can be proven
based solely upon the cags and hidd of the components involved. For example, the proof of
system tolerates cct1 relies upon the following:

hidd(cct) does not include any transitions by an agent not in k threads that change its
visible state.

No non-kernel component has an agent in k threads.

Next we consider the six obligations to show that the kernel does not violate the assumptions
of any other component. Here we are aided by the fact that for each non-kernel compo-
nent we used environment base and hidd base to define the assumptions about the manipu-
lation of the component’s KERNEL SHARED STATE . Thus, we start by proving the lemma
kernel tolerance help showing that for any kernel transition (a1; a2; b) and any kst substates,
kst1 and kst2 of a1 and a2, respectively, if hidd base allows agent b to make a transition
from kst1 to kst2 then so does environment base. This result is then used in proving the six
theorems system tolerates *t2. The six theorems system tolerates cct , system tolerates ptt ,
system tolerates kst , system tolerates ssupst , system tolerates clientt and system tolerates sst

combine the respective system tolerates *t1 and system tolerates *t2 results.

This leaves only the six obligations to show that all the non-kernel components satisfy the
environment assumptions of the kernel. In this case our specification of kernel makes these
obligations trivial. These tolerance obligations essentially have the form

guar(A) \ hidd(k comp) � rely(k comp)

for each non-kernel component A. We have defined hidd(k comp) = rely(k comp), making this
obligation true independent of A. See Section 17.3 for a discussion of the advantages and
disadvantages of doing this.

THEORY system

system: THEORY
BEGIN

IMPORTING system trans

IMPORTING cmp thm

cmp: VAR (comp t[(SYSTEM STATE), THREAD])

ag: VAR THREAD 10

tran: VAR [(SYSTEM STATE), (SYSTEM STATE), THREAD]

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

230
CDRL A020

Composing the Components

a1, a2, kst1, kst2: VAR KERNEL SHARED STATE

b: VAR THREAD

system cmps: setof [(comp t[(SYSTEM STATE), THREAD])] =
fcmp j cmp = kt

OR cmp = cct 20
OR cmp = ptt
OR cmp = kst
OR cmp = ssupst
OR cmp = clientt
OR cmp = sst

g

nonk cmps: setof [(comp t[(SYSTEM STATE), THREAD])] =
fcmp j cmp = cct

OR cmp = ptt 30
OR cmp = kst
OR cmp = ssupst
OR cmp = clientt
OR cmp = sst

g

nonk cmps ags: THEOREM
(nonk cmps(cmp) AND cags(cmp)(ag)

=> NOT tmap(system agtran, k threads)(ag))
40

system union: LEMMA
system cmps = union(singleton(kt), nonk cmps)

system agreeable start: THEOREM
agreeable start(system cmps)

system composable: THEOREM
composable(system cmps)

system: (comp t[(SYSTEM STATE), THREAD]) = 50
compose(system cmps)

%% TOLERANCE ANALYSIS

%% Start with nonk components since we can use tolerates cags for them

system tolerates cct1: THEOREM
tolerates(singleton(cct), nonk cmps)

60
system tolerates ptt1: THEOREM

tolerates(singleton(ptt), nonk cmps)

system tolerates kst1: THEOREM
tolerates(singleton(kst), nonk cmps)

system tolerates ssupst1: THEOREM
tolerates(singleton(ssupst), nonk cmps)

system tolerates clientt1: THEOREM 70
tolerates(singleton(clientt), nonk cmps)

system tolerates sst1: THEOREM
tolerates(singleton(sst), nonk cmps)

%% Now consider the kernel

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 231

%% First show the kernel does the right things for
%% its kst substates. 80

kernel tolerance help: THEOREM
LET a1 = ext st(k(PROJ 1(tran))),

a2 = ext st(k(PROJ 2(tran))) IN
guar(kt)(tran)

AND PROJ 3(tran) = b
AND kst substate(kst1, a1)
AND kst substate(kst2, a2)
AND hidd base(b, kst1, kst2)

IMPLIES environment base(b, kst1, kst2) 90

system tolerates cct2: THEOREM
tolerates(singleton(cct), singleton(kt))

system tolerates ptt2: THEOREM
tolerates(singleton(ptt), singleton(kt))

system tolerates kst2: THEOREM
tolerates(singleton(kst), singleton(kt)) 100

system tolerates ssupst2: THEOREM
tolerates(singleton(ssupst), singleton(kt))

system tolerates clientt2: THEOREM
tolerates(singleton(clientt), singleton(kt))

system tolerates sst2: THEOREM
tolerates(singleton(sst), singleton(kt))

110

%% Now use tolerates union to tie everything together.

system tolerates kt: THEOREM
tolerates(singleton(kt), system cmps)

system tolerates cct : THEOREM
tolerates(singleton(cct), system cmps)

120
system tolerates ptt: THEOREM

tolerates(singleton(ptt), system cmps)

system tolerates kst : THEOREM
tolerates(singleton(kst), system cmps)

system tolerates ssupst: THEOREM
tolerates(singleton(ssupst), system cmps)

system tolerates clientt: THEOREM 130
tolerates(singleton(clientt), system cmps)

system tolerates sst : THEOREM
tolerates(singleton(sst), system cmps)

END system

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

232
CDRL A020

Composing the Components

Theory system cmp thm instantiates the composition theorem, once for each component, to
obtain seven theorems that may be used to lift the properties of individual components to
properties of the entire system. For example, theorem system cmp thm k states that if the (un-
translated) kernel component k comp satisfies a propertykp and the state and agent translators
for the kernel component (i.e., k2system sttran and system agtran) translate kp to a property p

on the common state space, then the system satisfiesp.

THEORY system cmp thm

system cmp thm: THEORY
BEGIN

IMPORTING system

kp: VAR prop t[(K STATE), THREAD]

ccp: VAR prop t[(CC STATE), THREAD] 10

ptp: VAR prop t[(PT STATE), THREAD]

ksp: VAR prop t[(KS STATE), THREAD]

ssupsp: VAR prop t[(SSUPS STATE), THREAD]

clientp: VAR prop t[(CLIENT STATE), THREAD]

ssp: VAR prop t[(SS STATE), THREAD] 20

p: VAR prop t[(SYSTEM STATE), THREAD]

system cmp thm k: THEOREM
satisfies(k comp, kp)

AND pmap(kp, k2system sttran, system agtran) = p
IMPLIES satisfies(system, p)

system cmp thm cc: THEOREM
satisfies(cc comp, ccp) 30

AND pmap(ccp, cc2system sttran, system agtran) = p
IMPLIES satisfies(system, p)

system cmp thm pt: THEOREM
satisfies(pt comp, ptp)

AND pmap(ptp, pt2system sttran, system agtran) = p
IMPLIES satisfies(system, p)

system cmp thm ks: THEOREM
satisfies(ks comp, ksp) 40

AND pmap(ksp, ks2system sttran, system agtran) = p
IMPLIES satisfies(system, p)

system cmp thm ssups: THEOREM
satisfies(ssups comp, ssupsp)

AND pmap(ssupsp, ssups2system sttran, system agtran) = p
IMPLIES satisfies(system, p)

system cmp thm client: THEOREM
satisfies(client comp, clientp) 50

AND pmap(clientp, client2system sttran, system agtran) = p

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 233

IMPLIES satisfies(system, p)

system cmp thm ss: THEOREM
satisfies(ss comp, ssp)

AND pmap(ssp, ss2system sttran, system agtran) = p
IMPLIES satisfies(system, p)

END system cmp thm

Theory system props outlines the beginnings of a proof of an “interesting” system property.
The property is formalized in sys encrypts correctly and essentially states that if a client has
stored text cypher as the cypher text associated with textclear , then it is possible for cypher to
be a correct encryption of clear according to the protection family selected by the client. (See
client props for declarations of the functions used.) The proof of this property would require
much more analysis of the system than we have performed. However, to demonstrate the use
of the framework we have shown the following:

sys correct encryption pred is the translation of correct encryption pred (defined in
client props) under the translator client2system sttran.

The set of SYSTEM STATEs that satisfy correct ppd def on their client field is equal to
the translation of correct ppd pred under client2system sttran.

system satisfies the conditional correctness property. That is, if we consider only system be-
haviors in which sys correct ppd pred is always satisfied then sys correct encryption pred

is always satisfied.

To complete the proof of sys encrypts correctly prop we would have to prove the conjecture
sys correct ppd prop.

THEORY system props

system props: THEORY
BEGIN

IMPORTING system cmp thm

IMPORTING client props

IMPORTING ks props

IMPORTING more preds 10

IMPORTING tpreds

st, st1, st2 : VAR (SYSTEM STATE)

pf : VAR PROT FAMILY

clear, cypher: VAR TEXT

ri: VAR RECEIVED INFO 20

p : VAR FSEQ[[ENCRYPT MECH, KEY]]

seed : VAR SEED

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

234
CDRL A020

Composing the Components

key mech : VAR KEY MECH

th: VAR (client threads)

t: VAR TEXT 30

%% This is the top�level desired state predicate. We could try
%% to prove it by decomposing it into other properties
%% which eventually reduce to things you would prove about
%% a single component (using the composition theorem to
%% lift the result).

sys correct encryption pred : STATE PRED[(SYSTEM STATE),THREAD] =
(LAMBDA st:

(FORALL pf, clear, cypher: 40
have encrypted text(client(st), pf, clear, cypher)
=> encrypted with pf (pf, clear, cypher)))

sys correct encryption thm: THEOREM
sys correct encryption pred =

tmap(client2system sttran, correct encryption pred)

sys correct ppd pred: STATE PRED[(SYSTEM STATE),THREAD] =
(LAMBDA st: correct ppd def(client(st)))

50
sys correct ppd thm: THEOREM

sys correct ppd pred =
tmap(client2system sttran, correct ppd pred)

correct encryption prop: THEOREM
satisfies(system,

pimplies(alwayss(sys correct ppd pred),
alwayss(sys correct encryption pred)))

sys correct ppd prop: CONJECTURE 60
satisfies(system, alwayss(sys correct ppd pred))

sys encrypts correctly prop: THEOREM
satisfies(system, alwayss(sys correct encryption pred))

END system props

This section has demonstrated how to define a system as a composition of components within
the composition framework presented earlier in this report. It has also demonstrated the
tolerance analysis that is needed to apply the composition theorem. The theorem has been
used to lift a client property to a system property. Thus, all the primary types of analysis
required to apply the framework have been demonstrated.

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 235

Section 27
Conclusion

27.1 Achievements

This report has described a PVS framework for specifying and analyzing a system as a compo-
sition of components. The advantages of this analysis methodology are that it

reduces reasoning about a system to reasoning about its components,

allows reuse of assurance evidence, and

allows “plug-and-play” assurance analysis.

This report has demonstrated the first of these advantages, but we have not yet had an oppor-
tunity to demonstrate the second and third. The framework defines a structure for component
specifications that includes

a strong distinction between operations of the component and those of its environment,

agents (to support security reasoning), and

fairness conditions.

It also defines an n-ary composition operator that returns a component defined as an inter-
leaving of individual component transitions. It has been shown that under appropriate cir-
cumstances (i.e., tolerance) this composition operation is equivalent to intersection of behavior
sets for the components. An example of non-trivial size has been considered to help explore
scalability and practicality questions. The approach is scalable as long as the tolerance proof
obligations can be dealt with effectively. The worked example demonstrates that for systems
with a structure similar to that of the example, this can be done.

In terms of writing specifications, the framework described here seems quite usable. The
operations supported by each component can be specified in a “standard” state-machine manner,
and the framework can then be used to combine the individual operations into a component
specification.

There are two other contributions made by this study:

A definition of what it means for a composition operation to be intuitively “right”. This is
important since it recognizes that there are a range of possible definitions for composition,
all of which allow the Composition Theorem to be proved, but many of which do not
correspond to intuition about what it means to compose systems. While the Composition
Theorem places an upper bound on the set of behaviors that the composite can perform,
“composition is right” places a lower bound on that set of behaviors.

The identification and analysis of the “priv problem” along with a general solution us-
ing hidd . This has resulted in a general framework that can be used in analyzing and
comparing other approaches.

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

236
CDRL A020

Conclusion

Finally, we have not merely incorporated the work of others as axioms of our composition
framework. The framework has been built from basic definitions of concepts such ascomponent
and behavior using a mechanical proof checker (PVS). This increases the confidence in the
soundness of the framework.

27.2 Comparison to Prior Work

The approach used to accomplish the composition is a hybrid of the approaches advocated by
Abadi-Lamport[1] and Shankar[11]. This approach retains the following advantages of the
individual approaches:

Components must be proven to be appropriate for composition before reasoning about the
composite.

The introduction of new, private data structures in other components does not require
updates to be made to the environmental assumptions (i.e., rely) nor the guar of a com-
ponent. The hidd relation of each new component will constrain the manipulation of its
state by the existing components and all components subsequently added.

The framework makes a clear distinction between the initial states, allowed transitions,
and allowed environment transitions for each component. In addition, the framework
forces the specification of the agents that are permitted to cause each transition. Although
this may not be essential for general proofs of system functionality, it is important for an
analysis of security properties. We are not only concerned that a transition is correct, but
also that it is performed by an agent that is allowed to perform it.

Most of the reasoning about a composite system can be reduced to reasoning about indi-
vidual components.

27.3 Problems for Further Work

27.3.1 Analysis of System Properties

An obvious disadvantage of using the modular specification approach rather than specifying the
example as a monolithic entity is that it was necessary to specify how the individual components
interacted. The shared components of the state (i.e., the fields ofKERNEL SHARED STATE)
are used to model the communication protocol between the kernel and the other components.
This increases the size of the specifications. The indirectness of component interactions also
complicates the analysis of the system. Multiple system transitions (i.e., kernel and security
server transitions) occur for each interaction of the components of the Cryptographic Subsys-
tem. Furthermore, we cannot even talk about the port used by two components to communicate
without pulling in the kernel specification to resolve names to ports. The information needed
in performing proofs is distributed among several components in ways that are not always
convenient.

There is of course a trade-off between the accuracy of the model and the amount of effort
required to analyze the model. By explicitly modeling the communication between the compo-
nents, the correspondence between the model and the actual system is more obvious. It is also
important to note that the modular specification approach has advantages from a maintenance
standpoint. For example, suppose the security server were later replaced by a different security
server that satisfied the same properties used in the correctness proof of the overall system.

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 237

Then, the analysis of the system could be updated by simply reproving the security server
properties. It would not be necessary to reprove properties of the kernel.

We believe this problem can be addressed by specifying the “application-level” components
at two levels of abstraction and using refinement analysis to show that the lower level is
an implementation of the higher level and therefore satisfies all properties satisfied by the
higher level. The high-level specifications would incorporate any properties that arise from the
execution of the components on a secured kernel which are necessary for proving the desired
properties of the system. The kernel and security server would not be specified as high-level
components. Thus, at the high level, the applications police themselves and each other. At the
low level the kernel and security server do the policing. We hope to explore this approach in
future work.

We also note here that it can be difficult in some cases to separate system properties into
component properties. The example in Section 11 demonstrates this. We were unable to
find any obvious way to apply the composition theorem in demonstrating the desired system
property. Perhaps something could be done with the state information maintained to make this
easier.

27.3.2 Proof Obligations

There is a potential problem in the framework with the number of proof obligations for the
Composition Theorem when composing a large number of components. Forn components there
areO(n2) tolerance proof obligations. However, it appears likely that in practice this will not be
a problem. First, for particular architectures, we may be able to reduce the complexity due to
the structure of interactions between components. In our example, the non-kernel components
interact directly with only the kernel. In this case the number of non-trivial obligations is
reduced to O(n). For architectures in which the components are more tightly coupled (e.g.,
all components share and may modify a given region of memory), this reduction in obligations
is not so easily obtained. However, it does not seem unreasonable to require this amount
of reasoning about such a tightly coupled system. We are essentially trying to prove that
each component manipulates the shared memory according to the conventions agreed upon by
all the components. If this is not true, the system probably does not work anyway, and we
would like our analysis to uncover this flaw. Even in this case, if all components make the
same assumptions regarding the manipulation of the shared memory and they all select from
the same operations in manipulating that memory, the analysis could largely be reduced to a
comparison of the common assumptions and operations.

We should note here that there may be a tradeoff between the tightness of coupling in component
specifications and the level of abstraction as discussed in Section 27.3.1. Omitting the kernel
mediation most likely increases the coupling of the other specifications. However, depending
upon the assumptions made by the high-level components, this might not pose problems.

27.3.3 Translators

Finally, we note that the use of translators is rather clumsy. We have found that in almost
all cases (in fact, all cases use in this report) the translators are essentially trivial “inverse
projection” functions. Nevertheless,

the translators must be declared,

we must prove they really are translators, and

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

238
CDRL A020

Conclusion

a significant number of proof steps deal with the translators.

Furthermore, when a translator is used as a way to specify a component, the properties of
a component must also be translated. For the inverse projection translators, the translation
is the obvious one. However, if a translator that is not an inverse projection function is used
(perhaps by accident) the properties of the translated component might not be what is expected.
On another program, we are experimenting with a way to virtually avoid the need for inverse
projection translators.

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 239

Section 28
Notes

28.1 Acronyms

AID Authentication Identifier

AVC Access Vector Cache

CC Cryptographic Controller

CMU Carnegie Mellon University

DDT Domain Definition Table

DTOS Distributed Trusted Operating System

IPC Interprocess Communication

KS Key Servers

MLS Multi-Level Secure

OSF Open Software Foundation

PT Protection Tasks

SID Security Identifier

SSUPS Security Service Usage Policy Server

TLA Temporal Logic of Actions

28.2 Glossary

cags The agents of a component.

guar The transitions that a component can perform.

hidd A set of transitions specifying constraints on the interface the component provides to
other components.

init The set of allowed initial states for a component.

rely The assumptions of a component about the transitions that its environment will perform.

sfar The set of transition classes for which “strong” fairness assumptions are required

view A component’s view of a system is the portion of the system state that is observable by
the agents of the component.

wfar The set of transition classes for which “weak” fairness assumptions are required

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

240
CDRL A020

Bibliography

Appendix A
Bibliography

[1] Martı́n Abadi and Leslie Lamport. Conjoining specifications. Technical Report 118, Digital
Equipment Corporation, Systems Research Center, December 1993.

[2] K. M. Chandy and J. Misra. Parallel Program Design — A Foundation. Addison Wesley,
1988.

[3] Judy Crow, Sam Owre, Natarajan Shankar, and Mandayam Srivas. A tutorial introduc-
tion to PVS. Presented at WIFT ’95: Workshop on Industrial-Strength Formal Spec-
ification Techniques, Boca Raton, Florida, April 1995. Available from the WEB page
WWW://www.csl.sri.com/sri-csl-fm.html.

[4] Todd Fine. A framework for composition. In Proceedings of the Eleventh Annual Conference
on Computer Assurance, pages 199–212, June 1996.

[5] Keith Loepere. Mach 3 Kernel Interfaces. Open Software Foundation and Carnegie Mellon
University, November 1992.

[6] Keith Loepere. OSF Mach Kernel Principles. Open Software Foundation and Carnegie
Mellon University, May 1993.

[7] S. Owre, N. Shankar, and J.M. Rushby. The PVS Specification Language. Computer
Science Laboratory, SRI International, Menlo Park, CA 94025.

[8] R23 crypto subsystem WEB pages.

[9] O. Sami Saydjari, S. Jeffrey Turner, D. Elmo Peele, John F. Farrell, Peter A. Loscocco,
William Kutz, and Gregory L. Bock. Synergy: A distributed, microkernel-based security
architecture. Technical report, INFOSEC Research and Technology, R231, November
1993.

[10] Secure Computing Corporation. DTOS Kernel Interfaces Document. DTOS CDRL A003,
Secure Computing Corporation, 2675 Long Lake Road, Roseville, Minnesota 55113-2536,
January 1997.

[11] N. Shankar. A lazy approach to compositional verification. Technical Report TSL-93-08,
SRI International, December 1993.

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 241

Appendix B
Additional PVS Theories

The PVS theories more set lemmas and disjoint sets provide additional simple mathematical
definitions and theorems that are not available in the PVS prelude but were deemed useful in
performing proofs.

THEORY more set lemmas

more set lemmas [X: TYPE] : THEORY

BEGIN

a,b,s,t : VAR setof [X]

x : VAR X

nonempty union : LEMMA
nonempty?(a) AND nonempty?(b) IMPLIES nonempty?(union(a,b)) 10

%% This is useful when you are working with the "choose" function
%% so that you can set the domain restriction up to be automatically matched.
emptyset not nonempty? : LEMMA

a = emptyset IFF NOT nonempty?(a)

emptyset no members : LEMMA
a = emptyset IFF (FORALL (x: X): NOT member(x, a))

singleton epsilon: LEMMA 20
(EXISTS (x: X): TRUE) => epsilon(singleton(x)) = x

singleton not emptyset: LEMMA
singleton(x) == emptyset

subset singleton: LEMMA
a(x) => subset?(singleton(x), a)

END more set lemmas
30

THEORY disjoint sets

disjoint sets [X: TYPE, IDX: TYPE+] : THEORY

BEGIN

a,b,s,t : VAR setof [X]

x: VAR X

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

242
CDRL A020

Additional PVS Theories

n : VAR nat
10

i,j : VAR IDX

f : VAR [IDX �> setof [X]]

subsets disjoint : LEMMA
subset?(a,s) and subset?(b,t) and disjoint?(s,t)

IMPLIES disjoint?(a,b)

disjoint? commutative : LEMMA
disjoint?(a,b) IMPLIES disjoint?(b,a) 20

pairwise disjoint: setof [[IDX �> setof [X]]] =
fseq: [IDX �> setof [X]] j

(FORALL i, j, x :
seq(i)(x) AND seq(j)(x) => i = j)g

pairwise disjoint prop: LEMMA
pairwise disjoint(f)

AND f (i)(x) AND f (j)(x)
=> i = j 30

END disjoint sets

The theories �nite sequence and fseq functions define a type FSEQ of finite sequences for use in
the Crypto Subsystem example.

THEORY finite sequence

finite sequence[X : NONEMPTY TYPE] : THEORY
BEGIN

n : VAR nat

FSEQ : TYPE = [# size : nat, elem : [(LAMBDA n: n > 0 and n <= size)�>X] #]

null seq : FSEQ
null seq def : AXIOM size(null seq) = 0

10
nonemptyfseq(seq : FSEQ) : bool = (size(seq) > 0)

nseq : VAR (nonemptyfseq)
x: VAR nat

pop(nseq) : FSEQ =
(# size := size(nseq) � 1,

elem := (LAMBDA (x: posnat j x <= size(nseq) � 1) :
(elem(nseq))(x+1)) #)

20
tack on(e : X, s: FSEQ) : FSEQ

= (# size := size(s) + 1,
elem := (LAMBDA (n: posnat j n <= size(s) + 1) :

IF n <= size(s) THEN elem(s)(n)
ELSE e
ENDIF) #)

END finite sequence

84-0902045A000 Rev A
1.9, 27 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A020
Composability Study 243

THEORY fseq functions

fseq functions[t1,t2: NONEMPTY TYPE] : THEORY
BEGIN

IMPORTING finite sequence[t1]
IMPORTING finite sequence[t2]

n : VAR nat

map(f : [t1 �> t2], s: FSEQ[t1]) : FSEQ[t2] 10
= (# size := size(s),

elem := (LAMBDA (n: posnat j n <= size(s)) : f (elem(s)(n))) #)

END fseq functions

Secure Computing Corporation
CAGE Code 0HDC7

84-0902045A000 Rev A
1.9, 27 June 1997

