
Providing Policy Control Over Object Operations
in a

Mach Based System

Spencer E. Minear
Secure Computing Corporation

2675 Long Lake Road,
Roseville, Minnesota 55113-2536

Email: minear@sctc.com

28 April 1995

Abstract

In both secure and safety-critical systems it
is desirable to have a very clear relationship
between the system’s mandatory security pol-
icy and its proven operational semantics. This
relationship is made clearer if the system ar-
chitecture provides strong separation between
the enforcement mechanisms and the policy
decisions, and if the policy decision software
is clearly identifiable in the system’s architec-
ture.

This paper describes a prototype Unix sys-
tem based on Mach which provides manda-
tory control over all kernel-supported opera-
tions. The prototype work modified the Mach
kernel by extending its limited control mech-
anisms based on the Mach port right. The
control extensions allow a mandatory control
policy to specify control over not only access to
an object via a port right, but over the indi-
vidual services supported by the object. The
mandatory security policy is implemented in
an external Security Server which provides
very strong separation between policy enforce-
ment and policy decision software. This makes
it possible to support a wide range of security
policies with no change to the kernel or appli-
cations.

1 Introduction

The fundamental tenet on which this work is
based is that high-integrity secure and safety-
critical systems benefit from an architecture
which possesses the following characteristics:

1. The system must have a clear, mandatory
security policy which defines its desired
operation,

2. The system’s enforcement mechanisms
must provide control over all system op-
erations,

3. The decision logic implementing the sys-
tem’s mandatory security policy must be
encapsulated in a very limited number of
system elements,

4. The system’s enforcement mechanism
must be simple and easy to locate, and

5. The system should consist of distinct ele-
ments which provide well-defined simple
services.

For both secure and safety-critical systems the
first three characteristics embody the key re-
quirements. Without a clearly defined security
policy1 it is generally not possible to know ex-

1Traditionally, secure systems have focused on privacy
aspects of security while safety-critical systems have fo-
cused on integrity aspects. More generally, the security
policy can address both privacy and integrity. However,
both application areas require a high degree of assurance
that the system operates as specified at all times.

1



actly how the system is supposed to operate.
If the enforcement mechanisms fail to provide
control over all system operations or lack suffi-
cient granularity in their control capabilities,
it becomes impossible to assure many aspects
of the system’s operation. Also, if the enforce-
ment mechanisms are complicated or hard to
identify in the system, it again becomes dif-
ficult to assure that the system operates in
agreement with the stated policy at all times.

Client-server and object-oriented systems
built on a microkernel, provide a structure
which addresses many aspects of the charac-
teristics listed above. These types of systems
are made of distinct elements which provide
well-defined simple services operating over
well-defined interfaces. The microkernel, in
such a system, is the base system element. It
provides a small number of well-defined funda-
mental objects and services which provide the
building blocks on which operating systems,
like UnixR, and other applications can be built.
Most microkernels focus on providing an Inter-
Process Communication (IPC) facility that can
be used as the foundation for object-oriented
or client-server systems. Objects are associ-
ated with the system’s IPC-provided commu-
nication connections. Control of objects is sup-
ported by the IPC control facilities provided by
the microkernel.

OSF’s Mach-based Unix, Sun’s Spring, and
Chorus Systèmes ChorusR-based Unix are
three examples of microkernel-based sys-
tems providing a Unix programming inter-
face. They all support communication-based
systems on which it is easy to build object-
oriented or client-server type systems. In
Mach and Chorus the base communication fa-
cility is called a port and in Spring it is called
a door. Each has different operational seman-
tics and control mechanisms and characteris-
tics, but all allow the use of their IPC mech-
anism to provide a “handle” through which
clients can obtain access to object services. In
addition to implementing the basic communi-
cation mechanisms, each implements a num-
ber of other kernel objects, normally only ac-
cessible via the IPC mechanism. In the case of
Mach, the list of these kernel objects includes
tasks, threads, and memory cache objects.

The work discussed in this paper has been
done by Secure Computing Corporation2 and
researchers at the Information Security Com-
puter Science Research Division of the De-
partment of Defense. The work is directed at
providing a prototype secure system that ad-
dresses the desired characteristics in the num-
bered list above. The focus is on having a sys-
tem in which all operations are controlled by
a mandatory security policy. The security pol-
icy is a replaceable system element distinct
from the system’s enforcement mechanisms.
The mandatory security policy ensures that
the system’s runtime operation is, at all times,
bound to the system specification and not to
the decisions made by the system users. The
usual example of a mandatory policy is one
that defines the rules of control over classified
documents within the Department of Defense.
A number of variations on this type of policy
are discussed in [12].

The following sections focus on the changes
made to the Mach kernel to provide fine-
grained enforcement mechanisms over all sys-
tem operations at the direction of a well-
defined system security policy. In particular,
Section 2 provides a summary of the baseline
Mach system, its basic structure and facilities.
Section 3 describes the existing control mech-
anisms present in Mach and their limitations
in the context of the desired characteristics
for secure systems discussed above. Section 4
presents an overview of the changes made to
the Mach kernel to provide the required fine-
grained control mechanisms and mandatory
policy’s control interface. Section 5 gives a
brief summary of the ongoing work to inte-
grate the additional control capabilities into
the Unix operating system personality. Sec-
tion 6 presents a summary of the current sta-
tus of the work.

2 Mach Kernel Summary

Mach is a microkernel providing a set of ba-
sic facilities for use by operating systems and
other applications. It is designed around

2This work was supported in part by the Maryland Pro-
curement Office, contract MDA904-93-C-4209.



an Inter-Process Communication (IPC) facil-
ity based on a port. Mach and systems built on
Mach utilize Object Oriented Design concepts
by building on Mach’s port abstraction. A port
can be used as an object handle, through which
object methods are invoked or object service
requests are made. In addition to ports, Mach
provides several other types of kernel objects
including tasks, threads, and memory cache
objects[11]. Tasks provide an environment in
which all processing is done. All processing is
done by a specific thread, and each thread is
bound to a single task. Memory cache objects
provide memory in which to store and manip-
ulate data. In addition to these basic objects,
the Mach kernel supports other objects such
as devices, processors, and the kernel itself.
Each of the non-port objects has one or more
associated ports that are used to represent the
object and through which all operations on the
object are initiated.

An examination of the basic Mach structure
shows that it is made up, primarily, of two
parts; the IPC services provider and the set
of object servers implementing the services of
the non-port kernel objects. Mach uses its
own IPC facilities to provide tasks access to
its other types of objects. To request an oper-
ation on a non-port kernel object, a task sends
a request to that object via its associated port.
The IPC send operation is processed by the
kernel the same as any send operation. When
the send processing recognizes that the target
object is a kernel object, control is transferred
to that object’s kernel server for processing. If
the target object is managed by a task external
to the kernel, the request is provided to that
task via its use of the IPC receive operation
on the same port. Figure 1 shows the rela-
tionship between the kernel’s IPC services, the
kernel’s object servers, and the object servers
that operate as tasks external to the kernel.
Communication between clients and servers
is provided by communication connections im-
plemented in the kernel IPC services.

3 Mach Control Mechanism

As discussed in preceding sections, Mach’s use
of its IPC facility as the focus of all system op-
erations means it supports the desired struc-
tural aspects of both secure and safety-critical
systems. An important question, then, is the
extent of control provided through the IPC fa-
cilities and how well the characteristics listed
at the beginning of Section 1 are addressed.

Mach provides one primary control mecha-
nism which is based on a capability concept.
From the viewpoint of a task, a port is a
task specific name called a port right. The
task-specific port right embodies the capabil-
ity (rights) that the task has to the port named
by the port right. In Mach however, the range
of capabilities embodied in a port right is lim-
ited. Each Mach port right represents the ca-
pability to access one or more of the following
kernel-supported IPC-related operations:3

Send,
Send-Once, and
Receive

The following related operations deal with the
transfer of port rights between tasks:

The holder of a send right can, through
the use of a send operation on any send
or send-once right, have the kernel either
move or duplicate the send right to the
receiver of the message.
The holder of a send-once right can,
through the use of a send operation on
any send or other send-once right, have
the kernel move the send-once right to the
receiver of the message.
The holder of a receive right can, through
the use of a send operation on any send or
send-once right, have the kernel create a
send or send-once right for the receiver of
the message, or move the receive right to
the receiver.

There are two problems, each discussed in
more detail below, with these existing control

3A single port right can define either a send and/or a
receive right, or a send-once right.



Kernel Object Servers

 External Object Server tasksKernel Boundary

Client
Task

IPC Communication Connections

Object-3

Object-2

Object-1

Service-1
Service-2
Service-3
...

Service-1

Service-1
Object-3

Object-2

Object-1

Kernel
IPC

Services

Service-1
Service-2
Service-3
...

Service-1

Service-1

Figure 1: Mach Kernel Structure

mechanisms. The first is the limited control
over the transfer of port rights, and the second
is the complete lack of control over the object-
related services. These problems are not asso-
ciated with capabilities in general. The re-
quired characteristics of capabilities for use
in secure systems were outlined very clearly
by Karger and Herbert[7]. Previous works
have provided designs for capability machines
that do deal with the limitations present in
the Mach implementation. Examples are pro-
vided by HYDRA[17], SCAP[8] and ICAP[5]. A
common element in other systems is that a ca-
pability is necessary, but not sufficient to gain
access to an object. The fundamental fault in
Mach is that possession of a capability is suf-
ficient for full access to all operations on the
associated object. This makes it more difficult
to build a secure system on Mach or on any
other microkernel whose IPC lacks these con-
trol capabilities.

The intent of this work is to integrate the
concepts present in these other capability ma-
chines into Mach. The desired result is a sys-
tem that addresses the architecture character-
istics identified in Section 1. The system uti-
lizes the improved Mach kernel as the base
for a Unix operating system controlled by an
underlying mandatory control policy.

3.1 Port Right Transfer

The primary problem associated with the rules
for controlling the transfer of port rights is the
complete lack of kernel-provided mechanisms
or facilities to verify that once a transfer is
complete, the operational state of the system
is still in agreement with the system’s security
policy. This is particularly dangerous to both
secure and safety-critical systems. It means
that the kernel is unable to identify or stop a
task from accessing a port via a port right it ob-
tained as a result of an error or via malicious
action. Applications are left to resolve this
problem themselves without assistance from
the kernel. One design technique that can be
used is to inject a layer of indirection in the use
of all IPC operations. For example, in a nor-
mal Mach environment two tasks that are al-
lowed to communicate may do so directly with
the use of IPC. This means, however, that the
sending task can transfer any right it holds,
either intentionally or by accident, to the re-
ceiving task. If an application needs to assure
that rights cannot flow from the sender to the
receiver, then it is necessary to have an inter-
mediary task to filter messages to stop of the
transfer of port rights that violate the system’s
security policy. This approach can lead to suffi-
cient control for many applications but may re-
sult in undesirable performance penalties and
increased complexity in the application.



3.2 Service Control

Because the Mach port right control facilities
have no association with object services acces-
sible via a port right, Mach provides no di-
rect control over object services. If an appli-
cation needs to provide control over individual
object services, it must address the problem
by binding groups of object services to ports,
essentially subdividing an object. The appli-
cation can then attempt to control access to
the services by controlling the distribution of
port rights to the various groups of services.

An example of the use of this approach can be
seen in the design of the Mach kernel itself.
One of the kernel objects is the kernel itself,
referred to as the host object. The range of op-
erations available for the manipulation of the
host object, however, are split into two groups:
the privileged operations, like host reboot
and host set time, and generally available
operations, like host info and host get time.
The designers of the kernel recognized that it
would be necessary to control access to the ker-
nel’s privileged operations independently from
the general operations. Thus, the host op-
erations were split into the two groups with
the privileged operations bound to the host-
privilege port and others to the host port.

There are two undesirable aspects of this ap-
proach for controlling services. The first is the
lack of flexibility. A grouping that is correct
for one application and security policy might
be incorrect for another application or security
policy. The lack of flexibility of the grouping
approach is particularly evident in the group-
ing of task object services. In total, there are
about 45 different task services available on
a task port and there is no ability to control
access to these services individually. Thus, a
holder of a send right to a task port has implicit
permission to all 45 task related services. It is
an all or none situation.

The second undesirable aspect of this approach
is that it does not scale well. If it were possible
to assign the operations to different ports, the
result might be a larger number of ports, espe-
cially in the case of objects with many services
such as the kernel’s task object. This leads
to complexity of the control aspects of the de-

sign. Unnecessary complexity of any type in
any system is undesirable. In the case of se-
cure and safety-critical systems, unnecessary
complexity is especially undesirable and must
be avoided wherever possible.

4 The Prototype

The prototype being developed by Secure Com-
puting Corporation consists of a modified
Mach kernel and an external Security Server.
The separation of policy decisions done in the
Security Server from enforcement done in the
kernel has proven successful in the LOCK
system[13] and was discussed in the context
of a Unix system by Walker, Kemmerer and
Popek in [16]. The prototype attempts to re-
solve the limitations in the base Mach control
mechanisms were outlined in the previous sec-
tion. To accomplish this, the prototype has
added two new control mechanisms not avail-
able in the base Mach kernel and added a new
interface to the kernel. The additions are, re-
spectively:

IPC Control — The prototype provides ex-
panded control over all aspects of port
right manipulations. This allows the pro-
totype’s kernel to enforce policy-directed
control over the transfer of port rights as
well as over the use of the basic IPC oper-
ations.

Object Service Control — The prototype
extends the port right capabilities to de-
fine policy directed control over the indi-
vidual object services. The prototype ker-
nel provides control over the individual
services related to all kernel objects.

Security Server — The prototype imple-
ments a new interface between the Mach
kernel and an external Security Server.
This allows very strong separation be-
tween the enforcement mechanisms and
the security-policy decisions. It allows the
prototype system to ensure that all port
right usage is in agreement with the cur-
rent state of the security policy at the time
of each usage. It also allows the system to



localize the security policy in a single sys-
tem element.

These additions address the control limita-
tions discussed in Section 3. They also provide
the system features necessary to support the
desired architectural characteristics listed in
Section 1. The two additional control mecha-
nisms ensure that all system operations are
subject to control. The new interface pro-
vides for the flow of control information from
a mandatory security policy implemented in
the Security Server to the enforcement mech-
anisms in the kernel and non-kernel object
servers.

The general approach used in the prototype
to add these new control mechanism is based
on the concept of a security fault. The se-
curity fault concept and its implementation
within the prototype are very similar to that
of Mach’s page fault processing and the use
of external pagers to implement memory ob-
jects. A security fault occurs when a task
attempts to use a port right for which there
is no readily available access-permission in-
formation. In response to the security fault,
the kernel interacts with the Security Server
to obtain the relevant permission information.
To minimize the costly interactions between
the kernel and the Security Server, the ker-
nel caches the permission information, in the
form of access vectors, for future reference, just
as the kernel caches data to minimize interac-
tions with pagers.

To implement the new control mechanisms fol-
lowing the ideas laid out by the security fault
concept, five specific types of changes were
made to the Mach kernel:

1. The addition of identification information
on kernel objects to support the policy-
based access decisions,

2. The addition of permission checks and
security-fault detection in the kernel’s IPC
processing software,

3. The addition of permission checks and
security-fault detection in the kernel’s ob-
ject service processing software,

4. The addition of an access vector cache to
minimize interactions between the kernel
and Security Server, and

5. The extension of the kernel interface:

The addition of a new interface for
the Security Server. It allows the ker-
nel to obtain object access-permission
information from the Security Server
and allows the Security Server to in-
validate previously granted permis-
sions.
The extension of the existing IPC fa-
cilities to provide identification and
permission information to external
object servers along with a service re-
quest. The identification and permis-
sion information are available to the
kernel IPC services from the kernel’s
access vector cache.

Figure 2 shows the structure of the extended
Mach kernel and its interaction with the Se-
curity Server. It shows that the permission
checks are done in the IPC processing to con-
trol the use of all IPC related services. It also
shows that permission checking is done in the
kernel’s service processing software to provide
control over individual object services. Before
a kernel object’s server initiates a requested
service, both of these permission checks must
be passed successfully.

Searches in the kernel’s access vector cache are
based on a pair of identifiers, bound to the rel-
evant kernel objects. The first identifier is the
Source Security ID (SSID) which embodies the
control-relevant identity of the task making
the request. The second identifier is the Target
Security ID (TSID) which embodies the control
identity of the object being accessed. When no
entry is found in the cache, the current thread
takes a security fault and the kernel makes
a permission information request to the Se-
curity Server task. The kernel provides the
(SSID,TSID) pair of identifiers and the permis-
sion being checked to the Security Server. The
Security Server responds with the required ac-
cess vector information that reflects the per-
missions based on the current state of the sys-
tem’s security policy.

Figure 3 shows the flow of identify and per-
mission information from the kernel’s access
vector cache to a receiver of a request. The
IPC processing binds the requester’s SSID and



Kernel
IPC

Services

Kernel Object Servers

Extended Kernel Boundary

Client
Task

IPC 
Checks

Service
Checks

Access Vector
Cache

Service
Switch

Service-1
Service-2
Service-3
...

Service-1
Service-1

IPC Connections

Kernel Processing Sequence

Permission Check Information flow

Security Server

Permission
Checks

Figure 2: Kernel Control Mechanisms

access vector to the request message. Because
the message receive operation is a direct com-
munication between the kernel and a server,
the object server can rely on the integrity of
this identity and permission information and
make object-specific policy-enforcement deci-
sions as required. With the assumed proper
operation of the kernel, the information is cor-
rect and was provided by the system’s Security
Server. This results in a system that naturally
meets the desired design characteristics stated
in Section 1. Each object server, whether in or
out of the kernel, has a very simple enforce-
ment operation that is easy to test and ver-
ify. Other enforcement related processing in
the kernel is straightforward processing which
binds information to relevant structures and
reports the bound information correctly.

The Security Server is the central point in the
system where all policy decisions, the most
complicated and critical part of any secure or
safety-critical system, are made. If the sys-
tem’s security policy cannot be assessed for cor-
rectness in the context of the single Security
Server, it is highly unlikely that the security
policy could be assured correct in any other

implementation.4

The following sections discuss various aspects
of the specific changes that were made to the
Mach kernel.

4.1 Additional Identifiers

To support the split of enforcement from policy
decision, it is necessary to bind identifiers to
all kernel objects. Within the Security Server,
the identifiers are bound to policy-specific at-
tributes such as user name, data type, security
level, etc. In the kernel’s policy-enforcement
operations, the identifiers are simply numbers
associated with objects that are to be passed as
parameters to permission checks. This makes
the split between enforcement and policy very
clean. The kernel and other server enforce-
ment software is completely independent of
the security policy. This makes it possible to
use the same kernel and applications in sys-

4We recognize that there are multiple aspects of many
system control policies and that not all of them should be
centralized in all systems. What we are referring to here
is the basic security policy which defines the fundamental
operation of a system. Specific servers are free to extend
this base policy. For example, a file system server is the
proper place for a Discretionary Access Control (DAC) pol-
icy such as Access Control Lists (ACL).



External Object Server tasks

Kernel Boundary

Client
Task

Object-3

Object-2

Object-1

Kernel
IPC

Services

IPC 
Check

Access Vector
Cache

Permission
Checks

Service-1
Service-2
Service-3
...Service-1

Service-2
Service-3
...Service-1

Service-2
Service-3
...Service

Checks

IPC Connections
Permission Check

Identity and Permission Information Flow

Figure 3: External Object Server Control

tems that must operate according to very dif-
ferent security policies.

The list of objects that were labeled with secu-
rity identifiers includes:

Tasks (SSID),
Ports (TSID), and
Memory Cache Objects (TSID).

The close relationship between Mach kernel
objects as well as some practical performance
issues lead to a decision to make some secu-
rity identifiers derivable from the identifier of
a closely related object. An initial approach,
driven by a desire to keep policy issues out
of the kernel, was to have the kernel pro-
vide the base object’s identifier to the Security
Server and have the Security Server provide
the proper TSID value in return to the kernel.
This was rejected primarily to avoid the obvi-
ous performance impact and simplify both the
kernel and the Security Server. In addition,
there is no loss in generality at the policy level
if some of the identifiers are derived from other
identifiers. The decision was made to use the
high byte of each security identifier to indi-
cate the class of object it is bound to. For ex-
ample, one value indicates that the identifier
is bound to a task’s task port, while another

indicates the identifier is bound to a thread
port. The remaining bits of the security iden-
tifier are bound to the associated object’s secu-
rity attributes within the Security server. The
security-identifier classification values are de-
fined in the kernel-Security Server interface
specification.

An example is the relationship between the
identifier of a task and that of its associated
task port. Each task is identified with a SSID
since it is viewed as being the source of opera-
tion requests. A task’s task port, like all ports,
must be labeled with a TSID. The task port’s
identifier is produced by replacing the value in
the high byte of the task’s identifier with the
task port-identifier classification value. This
operation is very simple and very fast. Be-
cause these relationships must be common to
the kernel and Security Server, the relation-
ships are defined in their interface specifica-
tion.

4.2 Access Vectors

For the kernel or any object server to actu-
ally enforce a policy decision, it is necessary
for the enforcement software to have access to
current permission information at each point



where a security fault may occur. The permis-
sion information is provided in the form of an
access vector which is computed based on the
relevant (SSID, TSID) pair of identifiers. Each
access vector defines the current state of per-
missions that the SSID has to all operations
supported by the object bound to the TSID.

The structure of access vectors within the pro-
totype is based on the two aspects of the con-
trol mechanisms: the IPC and object specific
services. Figure 4 shows this basic two-part
structure of an access vector. The fields in the
IPC portion of the access vector are common
to all access vectors because all services are
accessed via IPC operations. The service part
of the access vector, however, is viewed as a
union of all possible object-specific access vec-
tors. Within the prototype, service vectors for
each of nine types of kernel objects supported
by the Mach kernel have been defined. The ad-
dition of other service vectors has no impact on
the kernel as service checks are always done
in the context of the specific object.

IPC Permissions Service Permissions

Access Vector

Send, Receive, etc. Object-Specific Service Control

Figure 4: Access Vector Structure

This approach results in very simple, easy-to-
assure enforcement software. It consists of a
simple test of the appropriate field of an ac-
cess vector. This approach is also very easy
to extend to include the specification of control
over application level objects as additions to
the system’s security policy.

Because all access vectors include the asso-
ciated IPC permissions, the kernel continues
to be the enforcer of the IPC permissions
for all object accesses on the system. This
means that the kernel—the unbypassable sys-
tem element—is capable of enforcing the sys-
tem security policy’s definition of allowed task
interactions.

4.3 Interface Extensions

Another aspect of the prototype kernel work is
the modification of the Mach kernel interface.
A key requirement levied on the prototype
work was that all changes to the Mach kernel
interface would maintain backward compati-
bility with the existing interface. To satisfy
this requirement, all changes to the interface
are in the form of one of two types of exten-
sions.

1. Extensions to provide tasks with visibility
of security relevant information, and

2. Extensions to support the kernel-Security
Server interactions. These interactions
resolve security faults and respond to
policy state changes within the Security
Server.

In making security relevant information visi-
ble to tasks, eight new entries were added to
the kernel interface. Each is closely associated
with an existing kernel interface and differs
only in that extra parameters are accepted or
provided. The additional entries are:

Allow the cre-
ation of kernel entities, tasks, ports, and
memory cache objects with specified iden-
tifiers, for example task create secure
and mach port allocate secure.
Allow applications to obtain identifier
and access information about kernel enti-
ties, for example mach msg secure and
mach port type secure.

All of the existing kernel interfaces remained
syntactically the same, though their opera-
tional semantics may be affected by the policy
denying the required permissions.

The extensions to support the kernel-Security
Server interactions consist of one outcall from
the kernel to the Security Server and four ad-
ditional kernel services used by the Security
Server. The single new outcall is used by the
kernel when it needs to obtain an access vector
to complete the processing for a security fault.
The thread causing the security fault is forced
to wait until the response is provided by the



Security Server. The kernel provides the Secu-
rity Server with the appropriate (SSID,TSID)
pair and indicates which permission is being
checked. The Security Server responds with
the same pair of identifiers, the current state
of the associated access vector and cache con-
trol information. The response is sent on the
thread’s Remote Procedure Call (RPC) reply
port which is controlled by the kernel.5

Two additional services were added to the ker-
nel’s host object, accessible on the generally
available host port.6 These additional services
allow the Security Server to:

1. Register the port which the kernel uses to
send permission requests to the Security
Server, and

2. Tell the kernel to flush all or part of its
access vector cache.

The Security Server uses the first new service
to notify the kernel that it is operational and to
identify the port to use for sending permission
check requests. Prior to the point in time, dur-
ing system startup, when the Security Server
becomes operational, the kernel must be able
to make permission decisions on its own. As
part of the prototype development, a list of
the permissions for the operations done during
system startup was developed and integrated
into the kernel as the initial state of the access
vector cache. This means that the initial oper-
ation of the system is done in agreement with
this limited security policy statement. This
part of the design is important to help estab-
lish the integrity of the system’s initial state
which is a key issue in the operation of any
secure or safety-critical system. The system
could disable all permission checks until the
Security Server is operational. It is better,
however, to specify correct operation even dur-

5The kernel-provided information of which permission
is being checked and the Security Server’s cache control
information were added to the interface to support the
use of policies which determine the current permissions
based on the history of previous accesses to the associated
objects.

6With the base Mach control concept these operations
would have to be split between the host privilege port and
the host port. The prototype relies instead on the policy-
defined control to specify which tasks in the system are
allowed to request the specific operations.

ing startup and ensure that permission check-
ing is always enabled.

The Security Server uses the second new ker-
nel service to control the state of the kernel
access vector cache. This facility allows the
prototype kernel to support Security Servers
which implement a variety of dynamic security
policies where access permissions change dur-
ing the operation of the system for any number
of policy-controlled reasons.

4.4 Performance Issues

Throughout the development of the prototype
the resulting performance of the system was
a critical concern. As stated above, the addi-
tion of a kernel resident access vector cache
was done primarily to minimize the number of
time consuming interactions between the ker-
nel and the Security Server. Within the kernel
this cache was implemented at two levels. The
bottom level is a straightforward cache which
stores access vectors so that they can be found
based on the (SSID, TSID) pair. The second
level consists of a change to the Mach ker-
nel’s port right structure to include a pointer to
the relevant access vector in the cache storage
area. Thus, once a port right is used by a task,
subsequent references to that port right have
direct access to the associated access vector. In
this case, even the cost of the cache lookup is
avoided. To avoid the problem of stale point-
ers, provisions were made to ensure that stale
access vectors are detected and security fault
processing is initiated.

5 Unix Issues

Though the focus of the prototype work dis-
cussed in this paper has been the Mach ker-
nel, work is being done at the Information
Security Computer Science Research Division
of the Department of Defense and at Secure
Computing Corporation. to define and de-
velop a Unix-like Application Program Inter-
face (API) over the prototype microkernel. The
operating system design uses a multi-server
model[6] in which operating system services



such as the file system, process management
and network management are implemented
within separate Mach tasks. The initial pro-
totype described in this paper makes use of
single-server Unix operating systems while
the multi-server work continues. The initial
work is making use of both CMU’s UX and the
Lites operating systems. The plan calls for
migration to the Hurd, being developed by the
Free Software Foundation.

The security of this system architecture is in-
creased by making use of both aspects of the
prototype’s extended control capability: con-
trol of the basic IPC operations and control of
individual services associated with a specific
object accessible via a port. In this system
model nearly all operations depend on the use
of the kernel’s underlying IPC facilities. With
the association of the proper security label to
each process, the prototype kernel, under the
direction of the mandatory security policy, pro-
vides assured separation of tasks. Thus, appli-
cations that should be separated are assured
to have no access to each other. Also, specific
types of applications can be isolated from op-
erating system services to which they should
have no access.

Control over object services allows the secu-
rity policy to go beyond the simple issue of iso-
lation to the question of how processes may
interact. For example, because the kernel
enforces all access to kernel object services,
a process may be allowed to duplicate itself,
through the use of task create. But the same
process is not allowed to create a task in a
new security context by refusing it access to
the task create secure service. The same
concept is readily applicable to both operat-
ing system servers and other trusted appli-
cations that benefit from having control over
object services.

The prototype work is providing a very sim-
ple demonstration database system which im-
plements service-level control over operations
on objects in the database. The demonstra-
tion system consists of a user interface ap-
plication that is instantiated with security
identifiers identifying the various user roles
such as doctors, nurses and business manage-
ment. Access to the database is controlled by

a database-entry server. Application-specific
control policy ensures that the database-entry
server is the only task on the system with
direct access to the database server. The
application-specific security policy also spec-
ifies the services each user role is allowed. Se-
curity decisions for this policy are made in the
Security Server and enforced by database en-
try server task.

The changes to the Unix system and to poten-
tial specialized secure applications are similar
to the general change model discussed relative
to the Mach kernel itself:

Unix objects, such as files and processes,
require security identifiers,
The Unix interface requires extension to
allow applications to specify and obtain
identifiers of objects, and
Object servers must reference the access
information provided with each request
and enforce the policy-defined permis-
sions.

These changes are largely transparent and
have a minimum impact on applications ex-
ecuting on the system.

6 Results

At this time the prototype is operational. It is
being used to carry out further research into
adaptive security policies and is being made
available to other research organizations in-
terested in this work.

The prototype kernel has demonstrated strong
backward compatibility with the baseline
Mach releases (MK83) from Carnegie Mel-
lon University (CMU). The Unix server and
Unix emulator operate on the prototype ker-
nel with no change, as will the rest of the
CMU-provided Unix daemons and Unix envi-
ronment binaries. To facilitate further experi-
mentation and assessment of the operation of
the kernel, the Unix server in the prototype
has been extended to support the creation of
Unix processes that operate in tasks which are
labeled with a SSID.



The prototype’s Security Server implements a
security policy with two fundamental control
aspects. It provides control based on a non-
hierarchical integrity policy, developed by Se-
cure Computing Corporation, known as Type
Enforcement[1][15], and provides a hierarchi-
cal Mandatory Access Control (MAC) policy.
Work is continuing to investigate the proto-
type’s policy flexibility.

Little change was required to add these fea-
tures to Mach. Approximately 10% of the files
have required some form of modification. The
most typical changes are:

Permission checks in the IPC and service
processing, and
Initialization and maintenance of security
identity information.

Current lines-of-code counts indicate that the
size of the baseline Mach kernel code increased
by approximately 8%. The largest changes, in
terms of lines of code, are related to the ser-
vices that were added, with the access vector
cache being the largest single addition. Other
additions were generally duplications of an ex-
isting services, with minor changes to the logic
or the input or output parameters. In many
cases a duplicated routine could be merged
with the existing one. We chose to use the
duplicate approach to localize the changes and
ensure that the existing services continued to
operate.

6.1 Performance

System performance is being measured in two
ways: with a Mach performance test suite de-
veloped at the Worcester Polytechnic Institute
(WPI) Computer Science Department[3][4],
and a simple kernel compilation test. The later
measures system time to compile the IPC por-
tion of the Mach kernel. All tests were being
executed on a PC-clone with a 486DX2-66MHZ
processor, 8 MB of memory and a 1GB SCSI
disk.

The tests were run on the baseline Mach ker-
nel and each of the incremental versions of the
system during the development. Table 1 pro-
vides a summary of the results as run on the

baseline Mach kernel and the first version of
the completed prototype system. The test runs
on the prototype system included a best case
situation,(100% cache hits), and a worst case
situation, (0% cache hits). Table 1 provides a
summary of the test results.

In addition to gathering performance test
data, we instrumented the system to count
the number of permission checks and kernel-
Security Server interactions made during a
test. Each row, under Data Description, la-
beled Permission Checks in Table 1 indicates
the number of permission checks made dur-
ing the test. Each row labeled Security Server
Requests indicates the number of times the
kernel sent a permission check request to the
Security Server. It should be noted that the
difference between permission counts and Se-
curity Server interactions in the worst case re-
flects the fact that permission checks on Secu-
rity Server operations are not allowed to re-
sult in a security fault. The Security Server
is treated the same as all other tasks and
thus all of its operations are subject to policy-
defined permission checks. However, to avoid
a deadlock, the cache is provided with wired
access vectors that describe the allowed Secu-
rity Server operations. Thus there is no special
casing of permission checks within the kernel.

The three tests referenced in Table 1 are:

WPI Jigsaw: This test solves a mathematical
model of a jigsaw puzzle. The test was de-
signed to evaluate the performance of the
memory management features of the sys-
tem. The test was run with puzzle sizes
ranging from 8x8 to 64x64.

WPI Sdbase: This test uses TCP/IP sockets
to communicate between a single server
and multiple clients. The test analyzes
performance of a server client application.
The test was run using both 5 clients and
25 clients.

IPC Compilation: This test measures time
to compile the IPC portion of the baseline
Mach kernel.

Due to the fact that we see variation in test re-
sults for run to run, it is probably dangerous,



Table 1: Performance Results
Test Data Baseline Modified Kernel

Description Best Case Worst Case
WPI Sdbase

5 Clients Avg. Client Total Time(ms) 39344 40084 202278
Avg. Client Communication Time(ms) 16308 16670 23178
Avg. Server Time(ms) 27564 28628 187500
Permission Checks NA 110799 415086
Security Server Requests NA 0 108692

WPI Sdbase
25 Clients Avg. Client Total Time(ms) 205168 235434 1231272

Avg. Client Communication Time(ms) 20904 23469 81598
Avg. Server Time(ms) 180422 209395 1116058
Permission Checks NA 692010 2647666
Security Server Requests NA 0 682160

WPI Jigsaw Average Values Over 10 Runs
8 x 8 Time(ms) 19 21 24

12 x 12 Time(ms) 83 74 78
24 x 24 Time(ms) 185 181 186
32 x 32 Time(ms) 1941 1996 1998
40 x 40 Time(ms) 4320 4382 4381
48 x 48 Time(ms) 8130 8190 8233
55 x 55 Time(ms) 13061 13130 13233
64 x 64 Time(ms) 22100 22459 22433

Permission Checks NA 32630 66869
Security Server Requests NA 0 16337

IPC Compile Average Values Over 10 Runs
Real Time(sec) 987 1031 1787
User+Sys(Sec) 749 767 842
Percent Utilization 76 74 47
Permission Checks NA 436046 1457665
Security Server Requests NA 0 469294

at best, to try to draw narrow numeric conclu-
sions from these early test results. We have
seen time changes that can only be explained
as resulting from a change in the page align-
ment of kernel code. We also believe that test
results are influenced by the state of fragmen-
tation on the disk.

Our initial assessment of the test results is
that the best-case performance of the proto-
type system tends to be slightly slower than
the baseline. Some best-case tests are faster
while others are slower. The worst case tests
show significant differences, but the range of
difference depend on the nature of the tests.
Over all the test result behavior is largely what
we anticipated;

Since the amount of code required to make
a permission check is small in comparison
to that involved in normal Mach kernel
processing, and
Context switching to the Security Server
is clearly more expensive and should be
avoided when possible,
The performance will be influenced more
by the effectiveness of the cache than the
fact that the checks are being made.

Applications like the SDBase which make
heavy use of IPC, results shows larger poten-
tial impact in the worst case, while the best
case is comparable to the baseline. Applica-
tions like the memory intensive JIGSAW test
shows little difference in the best case. And



since it has fewer permission checks per exe-
cution time the worst case test shows a smaller
amount of potential change.

Further testing using more operational sce-
narios is required before firm conclusions can
be made. At this early stage of prototype sys-
tem operation, the performance test results
are encouraging and confirm our opinion that
very fine grained security control can be done,
in many application areas, with a minimum
performance impact.

7 References

[1] W.E. Boebert and R.Y. Kain. A Practical
Alternative to Hierarchical Integrity Poli-
cies. In Proceedings of the 8th National
Computer Security Conference, Septem-
ber 1985.

[2] Ellis Cohen and David Jefferson. Pro-
tection in the Hydra Operating System.
In Proceedings of the Fifth Symposium
on Operating Systems Principles, Operat-
ing Systems Review 9,5, pages 141–160,
Austin, TX, November 1975.

[3] David Finkel, Robert E Kinicki, Aju John,
Bradford Nichols, and Somesh Rao. De-
veloping Benchmarks to Measure the Per-
formance of the Mach Operating Sys-
tem. In Proceedings of the USENIX Mach
Workshop, pages 83–100, 1990.

[4] David Finkel, Robert E Kinicki, Jonas A.
Lehmann, and Joseph CaraDonna. Com-
parisons of Distributed Operating Sys-
tem Performance Using the WPI Bench-
mark Suite. Technical Report WPI-CS-
TR-92-2, Department of Computer Sci-
ence, Worchester Polytechnic Institute,
Worcester, MA 10609, 1992.

[5] Li Gong. A Secure Identity-Based Ca-
pability System. In IEEE Symposium
on Computer Security and Privacy, pages
56–63. IEEE, 1989.

[6] Daniel P. Julin, Jonathan J. Chew, and
J. Mark Stevenson. Generalized Emula-
tion Services for Mach 3.0 — Overview,

Experiences and Current Status. In Pro-
ceedings of the USENIX Mach Sympo-
sium, pages 13–27, Monterey, California,
November 1991.

[7] P.A. Karger and A.J. Herbert. An Aug-
mented Capability Architecture to Sup-
port Lattice Security and Traceability
of Access. In Proceedings of the 1984
IEEE Symposium on Security and Pri-
vacy, pages 2–12, April 1984.

[8] Paul Ashley Karger. Improving Secu-
rity and Performance for Capability Sys-
tems. Technical Report 149, Univeristy of
Cambridge, Cambridge England, October
1988.

[9] John Knight and Bev Littlewood. Crit-
ical Task of Writing Dependable Soft-
ware. IEEE Software, 11(1):16–20, Jan-
uary 1994.

[10] Roy Levin, Ellis Cohen, William Corwin,
Fred Pollack, and William A. Wulf. Pol-
icy/Mechanism Separation in Hydra. In
Proceedings of the Fifth Symposium on
Operating Systems Principles, pages 132–
140, Austin, TX, November 1975.

[11] Keith Loepere. Mach 3 Kernel Interfaces.
Open Software Foundation and Carnegie
Mellon University, November 1992.

[12] Ravi S. Sandhu. Lattice-Based Access
Control Models. Computer, 26(11):9–19,
November 1993.

[13] O. Saydjari, J. Beckman, and J. Lea-
man. LOCK Trek: Navigating Uncharted
Space. In IEEE Symposium on Com-
puter Security and Privacy, pages 167–
175. IEEE, 1989.

[14] Daniel Jay Thomsen. Integrity Issues in
Secure Systems. Master’s thesis, Univer-
sity of Minnesota, May 1991.

[15] D.J. Thomsen and J.T. Haigh. A Com-
parison of Type Enforcement and Unix
Setuid, Implementation of Well Formed
Transactions. In Proceedings of the 1990
Computer Security Applications Confer-
ence, pages 304–312, December 1990.



[16] Bruce J. Walker, Richard A. Kemmerer,
and Gerald J. Popek. Specification and
Verification of the UCLA Unix Security
Kernel. Communications of the ACM,
23(2):118–131, February 1980.

[17] William A. Wulf, Ellis Cohen, William
Corwin, Anita K. Jones, Roy Levin,
C. Pierson, and F. Pollack. HYDRA:
The Kernel of a Multiprocessor Operat-
ing System. Communications of the ACM,
17(6):337–345, June 1974.


