Defining Noninterferencein the Temporal Logic of Actions

Todd Fine
Secure Computing Corporation
2675 Long Lake Road,
Roseville, Minnesota 55113-2536

Email: fine@sctc.com

Abstract

Covert channels are a critical concern for multilevel se-
cure (MLS) systems. Due to their subtlety, it is desirable
to use formal methods to analyze MLS systems for the pres-
ence of covert channels. This paper describes an approach
for using Lamport’s TLA to specify noninterference proper-
ties. In addition to providing a more intuitive definition of
noninterference than previous attempts, this approach also
supports analysis of systems that do contain covert chan-
nels to demonstrate limitations on their exploitations. In
relating the definition of noninterference given hereto prior
definitions of noninterference, this paper discusses waysin
which other definitionsof noninterference can beformalized
in TLA, too. Finally, this paper discusses how prior work
on specification refinement and composition might be ap-
plied to the noninterference problem within the framework
provided by TLA.

1. Introduction

A multilevel secure (MLS) system isonein which processes
are assigned level s indicating the sensitivity of datathey are
trusted to access and files are assigned levels indicating the
sengitivity of data they contain. For example, a process
might have alevel such as SECRET whileafile might have
a level such as UNCLASSI FI ED. The levels are ordered
from least sensitive to most sensitive, and the goa of the
system isto ensure that processes cannot obtaininformation
for which they are not trusted. For example, a process with
level UNCLASSI FI EDshould not beableto accessinforma-
tion in a file with level SECRET. An obvious requirement
is the Smple Security Property which prohibits a process
from reading files at higher levels. A dightly less obvi-
ous requirement isthe x-Property which prohibitsa process
from writing files at lower levels; without this requirement,
amisbehaving high-level process might compromise datain

afileat itslevel by copyingitinto afile at alower level that
isaccessible to low-level processes. Typically, the concern
is that the high-level process is a Trojan horse that down-
grades information in the background without the user's
knowledge. For example, suppose a user with clearance to
SECRET isrunning aword processor at level SECRET that
has been modified without the user's knowledge to copy
SECRET information entered by the user into a file with
level UNCLASSI FI ED. The x-Property addresses this con-
cern by preventing the process running at level SECRET
from writing files with level UNCLASSI FI ED[6].
Unfortunately, the satisfaction of the Simple Security and *
properties does not ensure that low-level processes cannot
obtain data from high-level files. The term covert channel
is used to denote a mechanism by which a high-level pro-
cess can communicate data to alow-level process [6]. The
Simple Security and x properties can be circumvented by a
high-level process reading data from afile at its level and
communicating it to a low-level process via a covert chan-
nel. Once again, the concern istypically that the high-level
process is a Trojan horse that uses the covert channel to
downgrade information without the user’s knowledge.
There has been much prior work investigating techniques
to formalize the definition of a covert channel and use for-
mal methods to analyze a system model to identify covert
channels [2, 9, 3, 4, 7]. This paper proposes a definition
of noninterference that while similar to prior definitionsis
more intuitive. While much of the prior work has viewed
noninterference as an absolute criteria indicating whether
asystem is “secure”, the statement of noninterference pro-
posed here defines what it means for one entity to not be
able to interfere with another entity through the system.
Thisleaves open the possibility that other entitiesin the sys-
tem might be able to interfere with each other. In particular,
thestatement allowsfor the possibility that the system might
contain a covert channel and the goal isto demonstrate that
certain well-behaved entities do not exploit the channel.
Another advantage of the definition provided here isthat it

iscouched in Lamport’s Tempora Logic of Actions (TLA)
[1]. Lamport’s TLA work iswidely known and provides a
well-accepted model of computing. Stating noninterference
in terms of this model makes it accessible to the relatively
large number of people who are TLA-literate, alows TLA
proof rulesto beusedintheanalysisof the system, and opens
the possibility of applying TLA theories such as composi-
tion and refinement to the noninterference problem. Earlier
work has suggested that TLA isan inappropriate formalism
for studying the noninterference problem [5]. We discuss
here why TLA is an appropriate formalism for studying
noninterference even though the specific issuesidentified in
reference [5] is correct. In addition, we discuss how prior
definitions of noninterference can be incorporated into the
framework of TLA.

2. TLA and Composition

Thissection providesabrief overview of TLA and composi-
tiontheory [1]. The presentation here isadlight refinement
of the standard presentation of TLA with the differences
noted here. The TLA specification language is based on
dtate transitions. A state is a representation of a snap shot
of the system at some point intime. A state transitionisa
tripleconsisting of astarting state, anew state, and an agent.
The meaning of atripleisthat whenever the systemisinthe
starting state, the specified agent can cause atransitiontothe
new state. The agent of atransition can be either a system
entity or an environment entity. A behavior is an infinite
sequence of state transitions representing an execution his-
tory. A system is specified as a set of behaviors indicating
the execution histories possiblein the system.

Note that a“system” is often a component of a larger sys-
tem. Then, the component system’s environment consi sts of
other system components with which it interacts as well as
entitiesexternal tothe system. Also notethat abehavior can
also beviewed asan infinitesequence of states sts andanin-
finite sequence of agents ags. The correspondence between
this and a sequence of state transitions is that the i'" state
transition in the sequence is (sts(7), (sts(i + 1), ags(?)).
For convenience, we often use the representation as a pair
of sequences rather than the representation as a sequence of
transitionsin the following.

Lamport has demonstrated that any component can be spec-
ified asatriple(I, N, L), where:

o [specifies the set of initial statesfor the system.

e N specifies the alowed state transitions by both the
system and its environment.

o [gpecifiesliveness conditions. For example, L might
requirethat each component periodically be given the
opportunity to perform processing.

1 represents the set of states appearing as the first state in
some behavior while V representsthe set of statetransitions
appearing in some behavior.

For simplicity, we ignore L in the following and assume
every component can be specified as apair (I, N). Conse-
guently, the definition of noninterference provided in Sec-
tion 4 does not address liveness. Some prior definitions of
noninterference such as those in references [10] and [7] do
address liveness, so the definition provided hereis currently
deficient in this area by comparison. We expect that once
we extend our representation of TLA to address liveness,
the extension of our definition of noninterferenceto address
liveness will be straightforward.

Thedescriptionof N as specifyingthetransitionsof boththe
system and the environment is dightly misleading. Clearly,
the specification of a component will not completely de-
scribe the behavior of the environment. If it did so, then it
would be a specification of the component and the environ-
ment rather than simply a specification of the component.
Thetransitionsin N that correspond to environment agents
describe assumptions that a component makes about the
environment. For example, the assumption that the envi-
ronment never modifies a variable = would be captured by
not includingin N any transitions by the environment that
modified .

INTLA, astateactually correspondsto the state of the“ entire
universe’ rather than simply the system state. Consequently,
each component has a “view” of the state. We represent
views as equivalence relations on the state. Two states are
in the equivalence relation associated with a given compo-
nent only if thetwo states“look” the same to the component.
Components are required to aways allow “stuttering” with
respect to their view. In other words, given two states that
appear the same to acomponent, any agent must be allowed
to cause atransition from one state to the other. From the
perspective of thecomponent, the systemisstutteringin that
anull transition has been made. In redlity, a stuttering step
might actually perform modificationsto many variablesthat
are not visible to the component. This allows a system be-
havior to record operations performed by other components
in the system even though the variables atered by those
operations are unknown to the component.

For convenience, we represent each component through the
following attributes:

e c_ags — the set of agents within the component

e view —theeguiva encerel ation defining which states
“look” the same to the component

e init — the set of allowable states for the component
when the system isfirst started

e guar — the set of transitionsthat can be caused by
agents in the component

e rely —theset of transitionsby agentsin the environ-
ment of the component that correspond to assump-
tions on the behavior of the environment

Theattributesc_ags andview areimplicitin TLA rather than
explicit asthey are here. Typicaly, thec_ags setsfor differ-
ent componentswill be digjoint. Then, the agent associated
with atransition indicates which component performed the
transition. The attribute init correspondsto TLA's I. The
attributes guar and rely provide a partitioningof TLA's N
based on whether the agent is within the component or an
environment agent. This partitioning and the terminology
“guarantee” and “rely” arebased on earlier work by Shankar
[11].

Werefer to the above asthe component form of a system and
use terms such as emp, empy, and emp» to denote specific
instances. Given the component form representation emp of
asystem, we use behs(cmp) to denote the set of behaviors
associated with emp. This is smply the set of behaviors
having an element of init(cmp) as their starting state and
having each transition being an element of either guar(cmyp)
or rely(emp).

We now describe an operation for composing components.
The composition operator described here is essentially that
described in reference [1] where composition of systems
involvessimply intersecting their sets of behaviors. In other
words, abehavior isaccepted for the systemif it isaccepted
by each of the componentsin isolation. We define our com-
position on component forms rather than sets of behaviors,
but the definition is really the same. In defining the op-
erator, we use subscripted component attributes to refer to
attributes of specific components. For example, c_ags, iS
c_ags for emp, and c_ags, iSc_ags for emps. Given two
componentsemp; and cimp,, wedefine emp, || emp, tobe
the foll owing component form:

e c_ags istheunionof c_ags, and c_ags,.

e view istheintersection of view; and views.

e init istheintersection of init; and inits.

e guar istheunion of guar, and guar,.

e rely istheintersection of rely, and rely,.
The intuition behind these definitionsis:

e Any agent of either component is an agent of the
overal system.

e Two states “look” the same to the composite system
exactly when they “look” the same to each of the
component systems.

e Theinitid state must be appropriate for each compo-
nent.

e Each system transition must be either a transition by
thefirst component or atransition by the second com-
ponent.

e Each transition of the composite system’s environ-
ment must satisfy the assumptions each component
makes of its environment.

To ensure that a composite specification is consistent, we
must ensure that the transitions specified for each com-
ponent (guar,;) satisfy the assumptions made by the other
component (represented by rely,_,). For example, if rely,
prohibitsthe environment of thefirst component from mod-
ifying variable x, then that component cannot meaningfully
be composed with a second component having guar, con-
taining a transition that modifies «. Notethat thisisalittle
different than the Abadi-Lamport work. They allow any two
componentsto be composed. However, their proof rulesfor
composite systems are only applicable when the composi-
tionisconsistent. In other words, they allow componentsto
be composed even when the result is inconsistent but they
avoid doing so in practice.

Although one approach would be to define components
as being composable as long as guar, C rely, and
guary C rely,, thishasthe unfortunate side-effect of often
terming a component as not being composable with itself.
For example, a component that modifies variable = itself
but assumes other components do not modify « would be
termed as not being composable with itself. In particular:

e guar; and guar, would bethe same and both contain
atransition that modifies

e rely, and rely, would be the same and both not con-
tain any transitionsthat modify «

e S0, guar, € rely,.

In Section 7 it isimportant to be able to compose a compo-
nent with itself. Thus, we dightly relax the conditions on
composability to:

o guar; C guar, Urely,
o guar, C guary; Urely;

This condition is clearly satisfied when guar, and guar,
arethesame, so any component can be composed withitself.
Intuitively, the condition on composition is that any transi-
tion performed by acomponent can bejointly performed by
the other component or isalowed by the other component’s
environment assumption. In caseswhen c_ags, and c_ags.,
are digoint, the congtraints on guar for each component
ensure there are no transitionsthat can be performed jointly
by both components. Then, the conditionson composability
reduce to guar, C rely, and guar, C rely, asoriginaly
proposed.

3. Covert Channelsand Noninterference

A well-known exampl e of apossiblecovert channd inMLS
variants of Unix isthe access timechannel. Each filehasan
accesstimeassociated withitthat indicatesthetimeat which
thefilewaslast read. When ahigh-level processreadsalow-
levd file, theaccesstimeisupdated. A low-level processcan
receive a bit of information by usingthest at command to
determine whether the access time of the low-level file has
changed. Although the Simple Security Property prohibits
thehigh-level processfromwritinginformationintothelow-
leve file, it does not prohibit thefile's meta-datafrom being
updated.!

Informally, anoninterferencepolicy requiresthat the“view”
alow-level process has of the system is the same regardless
of whether a high-level process is executing. Note that
“view” here is not necessarily the same as the notion of
a component’s view defined in the previous section. One
attempt at a more rigorous definition of noninterferenceis:

e Let seq bean arbitrary sequence of instructions exe-
cuted by processes (low-level aswell ashigh-level) in
the system.

e Letseq’ beseq withtheinstructionsexecuted by high-
level processes removed.

e Then, the execution of seq on the system should
“look” the same to low-level processes as the exe-
cution of seq’.

This definition detects the access time channel by choosing
seq to be ahigh-level read of afile followed by alow-level
st at . Then, seq’ issimply thelow-level st at . Thevalue
returned by st at is different in each sequence since the
high-level read changes the access time of thefile.
Approaches that have previoudy been used to formalize
“look the same” include:

e Theoutputsgenerated by the system must bethe same
for each sequence.

This approach detects the access time channel by de-
tecting adifferent value output from st at inseq and
seq’.

e The states resulting from the execution of each se-
guence “look” the same.

This approach detects the access time channe by
defining two states to “look” the same to low-level
processes if the access times associated with all low-
level files are the same. Since seq and seq’ resultin

10ne way to close this channel in an MLS system is to change the
semanticsof the read operation so the accesstime is not updated unless the
fileisat the same level as the reading process.

different access times being associated with the low-
leve file, the resulting states do not “look” the same.

Descriptionsof this class of approach can be found in refer-
ences[9] and [2].

Another class of approach is characterized by Thayer and
Johnson’s notion of correctability [3]. Essentially, this def-
inition of noninterferenceis:

e Let seq be an arbitrary sequence of system events
(including both inputs and outputs).

o Let seq’ bea“perturbed” sequencethat isidentical to
seq except for the addition or deletion of high-level
inputs.

e Then, there must be some “correction” of seq’ thatis:

— identical to seq’ except for the addition or dele-
tion of high-level outputs, and

— identical to seq in low-level inputsand outputs.

This approach detects the access time channel using as seq
the sequence consisting of a high-level read, a low-level
st at , and theoutput of thenew access time. Onechoicefor
seq’ isseq withthe high-level read removed.? Then, seq’ is
not avalid behavior of the system since thelow-level st at
must return thefil€ soriginal access timerather than the new
access time. Thereisno way to construct a“ correction” by
adding or removing high-level outputs, so the system does
not satisfy the requirements of correctability.

The main difference between this approach and that de-
scribed above isthat it allows for nondeterministic system
models. In other words, it is not required that there be a
unique new state for each operation and starting state.
There are severa other approaches based on considering
sequences of events. For example, reference [10] defines
noninterferencein terms of sequences of events accepted by
the system. In the case of deterministic systems, the policy
requires that given any sequence seq with seq; containing
only thelow-level eventsin seq, the set of low-level events
thesystem acceptsafter seq isthesameastheset of low-level
events the system accepts after seq;. Thispolicy detectsthe
accesstimechannel withseq =< reads , > andseq; =<>
(the empty sequence). Then, the low-level event returning
thecurrent timein responsetoast at call isaccepted after
seq but isnot accepted after seq; whenthest at call would
have to return the previous access time for thefile.

A similar policy was presented in reference [7]. The ap-
proach there wasto define noninterferencein terms of deter-
minism. The system under consideration is“merged” with
arbitrary high-level behavior. Then, all of the high-level

2In this approach, requests processes make of the system are viewed as
system inputs.

behavior is “hidden”. The policy requiresthat the resulting
behavior is deterministic. The intuitionisthat the next low-
level event accepted isalwaysafunction of only theprevious
low-level behavior. Covert channels show up asinstancesin
which the system can nondeterministically choose the next
low-level event based on the high-level behavior that was
hidden. To clarify this, consider the access time example.
The merging with arbitrary high-level behavior means that
afile'saccess time can be updated to the current time at any
point. When this behavior is hidden, the resulting system
can nondeterministically choose to update a file's access
time at any point. Then, the output seen at the low-level is
not a function of previouslow-level behavior.

Thefina class of definitionsof noninterferencethat we dis-
cuss here is those using an equivalence relation on states
to explicitly specify restrictions on state transitions. The
equiva ence relation defines what it means for two states to
“look” the same to low-level processes and the restrictions
are essentially:

e The starting and new states for transitions by high-
level processes “look” the same.

e Given two starting states that “look” the same, an
operation executed by a low-level process leads to
two new states that “look” the same.

Thisapproach woul d detect theaccesstimechannel by defin-
ing two states to “look” the same if the access times for all
low-level files are the same. Then, a read operation per-
formed by a high-level process on a low-level file violates
thefirst of the above restrictionsby changing the accesstime
of thelow-level file. Reference [4] describes an example of
this class of approach.

Of the various definitions, the ones stated in terms of se-
guences of events or operationsare the most intuitive. How-
ever, there are many subtleties involved. For example, al-
though correctability is somewhat intuitive, it actualy is a
flawed statement of noninterferencethat Thayer and Johnson
fixed in avariant called forward correctability [3]. Thefina
class of statements provides more design guidance through
the explicit restrictions on transitions, but does not provide
an abstract statement of the resulting noninterference prop-
erty. Consequently, it isdifficult to determininewhat the se-
curity requirement really meansinthisapproach. Ideally, an
unwindingtheorem [9] can be proved demonstrating that the
conditionson individual transitionsare sufficient conditions
to establish a moreintuitive definition of noninterferencein
terms of system behaviors.

Another disadvantage of most of the prior definitionsisthat
they are absolute statements; a system satisfies them or it
does not. In practice, covert channels are usually unavoid-
able. For example, aUnix-likeMLS system that is required
to satisfy Unix semantics would not be able to avoid the

access time channel. Then, the real goa of the analysisis
to determine how each channel can be exploited. Once this
is done, countermeasures can be inserted to address intol-
erable exploitations. In these cases it is desirable to use
a conditional noninterference policy which states that the
system contains no covert channels except for certain ex-
ceptional cases. Of the policies described previously, only
reference [7] provides a statement of such a noninterfer-
ence policy. Thispolicy requiresthere be no signaling from
a high-level process to low-level processes as long as the
high-level processis constrained to a specified behavior [7].
However, even thisstatement of noninterferenceisnot quite
general enough since it is sometimes necessary to restrict
the behavior of the low-level processes, too. For example,
it might be acceptable for arbitrary high-level processes to
signal to certain trusted low-level processes.

4. Proposed New Statement

This section proposesa“new” statement of noninterference
in terms of TLA. Although thereisa great dea of similar-
ity between the definition proposed here and the statements
overviewed in the preceding section, there are some signifi-
cant differences:

e The proposed statement corresponds more closey
with theinformal definition of noninterference.

e The proposed statement is a property of process-
process-system triples rather than a property of sys-
tems. In other words, the statement defines what it
means for a system to prohibit a process from inter-
feringwith a second processrather than what it means
for the system to prohibit interference from high-level
to low-level.

e The proposed statement is defined in terms of com-
position rather than in terms of purging or perturbing
high-level inputs. Note, however, that the definition
of noninterference providedin reference [7] issimilar
inthisregard.

Before stating the proposed definition of noninterference, it
is first necessary to define a couple more concepts. First,
we need to represent a process cmyp executing on a system
sys. We view each as peers cooperating to perform a task.
Thus, we use emp || sys to denote the process represented
by emp executing on sys.

Second, we need to define a process “view” of a system
(as opposed to its view of the system state). We define
cmpy Remp, cmp, to denotethat emp, and emp, “look”
the same to emps. Thisrelationisdefined as follows:

1. The set of states that “look” the same (with respect
to views) as some state in init; isequa to the set of
states that “look” the same as some statein inits.

2. Each agentin c_agss isinboth c_ags, and c_ags,.

3. If(st1,sty’, ag) isatransitionallowed by one compo-
nent and st, “looks’ the same as st; (with respect to
views), thenthereexistsast»’ suchthat (st2, sta’, ag)
isatransition allowed by the other component and st
“looks’ thesame as st;’.

An alternative (and perhaps more intuitive) way to define
cmpy Remp, CMps is through behaviors. Essentidly, the
requirement is that for each behavior beh; of one compo-
nent, there exists a behavior beh, of the other component
such that the corresponding states of beh; and behs “1ook”
the same with respect to views. By thetwo behaviorslook-
ing the same, we simply mean that the :** state of beh; is
equivalent to the :*" state of beho with respect to views.
Given emp, and cmp, we define:

cmpy 7553/5 Cmpy =
((empy || emp,) || sys) emp, (emp, || sys)

Then, the intuitive statement of “cmp, executing by itsalf
on the system ‘looks' the same to ¢mp, as emp, executing
concurrently with emp,” isformalized as:

cmpq 7553/5 CMp,

Atthislevel, the statement appearsidentical to someexisting
statements of noninterference. For example, this definition
appears similar to that used by Rushby in reference [9].
However, there is a significant difference. In prior defi-
nitions, cmp, and emp, would be either the identity of a
process or a security attribute of a process. For example,
Rushby defines MLS noninterference in a form similar to
that used here but with~- defined as arelation on sensitivity
levelsrather than processes. By defining ~» to be arelation
on processes, the definition of noninterference can take into
account the behavior of the processes.

To clarify this point, consider the access time channel. By
defining emp, to be a high-level process that reads low-
level files and defining cmp, to be alow-level process that
performs st at operations on the same files, it is clear that
cmpy ~sys cmp,. NOW, suppose cmp; is defined instead
to beahigh-level process that only accesses high-level files.
Then, cmp, sys cmp,. Since sys has not been changed,
it ill contains a covert channel through access times. But,
there is no interference from emp, to cmp, through sys
since no high-level process reads low-level files. Whereas
many prior statements of noninterference have defined “se-
curity” as an absolute (either there are channels or there are
not channels), the statement proposed here acknowledges
the possibility that there are channels in the system and al-
lows for a precise statement as to how the channels can
be exploited. Once a set of exploitations has been identi-
fied and demonstrated to be compl ete, it suffices to develop

countermeasures for each of the exploitations. While the
countermeasures might involve closing the channel, they
also might involve leaving the channel in the system and
auditing its use or introducing noise or delays. Many prior
statements of noninterference cannot deal with the latter
case since the channel is still in the system. The proposed
statement of noninterference addresses theissueby alowing
for a precise definition to be made of the processes in the
system that can signal through any residua channels.

Note that other conditional noninterference policies have
also allowed for exceptions to pure noninterference to be
identified. Typically, these policies have only allowed for
restrictionsto be placed on the sending subject. For exam-
ple, the conditional noninterference policy in reference [7]
provides a means for stating that there is no flow of in-
formation to the receiver as long as the sender behaves in
a specified fashion. The noninterference policy described
here isafurther generalization that allows restrictionsto be
placed on thereceiving process, too. For example, we could
just aswell change cmp-, to not check the accesstimeonfiles
accessed by cmp, . Then, therewouldbeno flow fromemp,
to emp, through sys even though the system contains the
access time channel and c¢mp, accesses low-level files. Itis
expected that this generalization will be useful in precisely
defining theinformation flowsin systemsthat (for example)
collect global system information in data structures that are
only accessible to trusted processes. Then, the policy could
be used to identify flow from higher level processes to the
trusted processes as being aright.

Although we have been using the term “process’ to refer
to ecmp, and emp,, it is important to note that they can
actually be any component. For example, cmp; might ac-
tually be a collection of processes executing on the system.
A pure MLS policy could be stated by grouping high-level
processes into cmp, and low-level processesinto emp, and
demonstrating the system prevents interference. It is also
possi blethat the components do not correspond to processes
at all. For example, ¢mp, might denote a particular profile
of traffic on one network while cmp, denotes a particular
profile of traffic on a second network. If the system is a
network guard, thiswould provide a policy statement con-
cerning the ways in which the first network can interfere
with the second network through the guard. In summary,
although we use the term “process’ for motivational rea
sons, the proposed statement of noninterference addresses
much more than simply interference between processes in
computing systems.

5. Discussion

The most common objection to using the Abadi-Lamport
work for noninterference is that noninterferenceis not pre-
served by arbitrary refinements. A refinement of a system

sys is any sys, whose allowed behaviors are a subset of
those dlowed by sys. In other words, a refinement can
further restrict the behavior of the system but cannot intro-
duce new behavior. For example, an abstract specification
of a sort procedure might simply indicate that at the com-
pletion of the sort, the elements in the input list have been
rearranged into the proper order. This abstract specification
might allow for the el ements to be magically reordered in a
single step, gradually reordered through bubble sort, grad-
ually reordered through quicksort, This specification
could be refined into a specification of a particular sorting
algorithm such as quicksort.

Allowing for specification refinement is one of the reasons
for requiring that components allow stuttering. The stutter-
ing steps can berefined into transitionsthat alter lower-level
variablesin the refinement. For example, what appears as a
stuttering step in the abstract specification of sorting might
be seen to be the setting of an index variable in the specifi-
cation of quicksort.

In the Abadi-Lamport work the term “property” is used to
denote a set of behaviors that is closed under stuttering.
Thus, properties are represented in the same manner as sys-
tems. A systemissaidto satisfy aproperty if every behavior
of the system is contained in the set of behaviors denoting
the property. A benefit of thisapproach isthat any property
that a system satisfies is also satisfied by any refinement of
the system. This alows a top-down development approach
to be used. Requirements are stated that ensure the desired
system properties hold. Then, these requirements are re-
fined into high-level design, low-level design, code, ... with
each successive refinement still ensuring the desired system
properties.

Unfortunately, noninterference is not preserved by refine-
ment when nondeterministicbehavior isallowed. For exam-
ple, supposethat theabstract specification of asystemallows
for either a0 or a1 tobe output to alow-level processfroma
given system state. Although thisbehavior, might not allow
covert signaing in the abstract specification, it is trivia to
congtruct refinements in which covert signaling is allowed.
For exampl e, suppose the specification isrefined so that abit
of data from a high-level fileis read and used to determine
whether to output a0 or a 1. Then, the transition outputs
data from a high-level file to a low-level process. Since
noninterferenceis not preserved by refinement, it cannot be
aproperty in the Abadi-Lamport sense. This has led others
to reject the use of the Abadi-Lamport theory for explor-
ing noninterference properties. For example, reference [5]
mentionsthat noninterferenceisnot aproperty inthe Abadi-
Lamport theory and then proceeds to study noninterference
within a different formalism.

However, it is still possible to state noninterference in the

temporal logic of actions as we have done in the previous
sections. As pointed out in reference [5], the definition

is technically a “property of Abadi- Lamport properties’
rather than an “Abadi-Lamport property” itself. Thismeans
the TLA proof rules do not necessarily apply to noninterfer-
ence. However, they do apply to safety properties such as
the Simple Security Property and thex-Property. By writing
specificationsin TLA, the existing theoriesfor TLA can be
used in the analysis of such properties. By using the state-
ment of noninterference proposed in the previous section,
the same system model can be used for the noninterference
analysis, too.

Furthermore, if the definition of noninterference can be re-
duced to a collection of unwinding conditions, the unwind-
ing conditionscan often beaddressed using TLA proof rules.
For example, the definitions in references [2, 9] can dso
be formalized in TLA as properties of properties. These
definitions of noninterference have associated “unwinding
theorems” that all ow verification of the noninterference pol-
icy to be reduced to verification of conditionson individual
instructions. Essentially, the conditions are:

e Operations by the transmitter do not change datavis-
ibleto the receiver.

e Operations by the receiver modify data visibleto the
receiver in amanner determined entirely by datavis-
ibleto the receiver.

Theformer conditionisarestriction on the set of transitions
that the system may allow. Consequently, it is a safety
conditionand isaproperty inthe Abadi-Lamport sense. The
second condition is generally a property of Abadi-Lamport
properties rather than an Abadi-Lamport property itself. A
more precise statement of the conditionis:

Givenany transition (sty, st} , ag) by thereceiver and
sto having the same data visible to the receiver asis
visiblein st;, there exists a transition (st2, sth, ag)
with st{ and st!, having the same data visible to the
receiver.

Rather than describing a set of alowed transitions, this con-
dition describes a class of sets of allowed transitions and
consequently is a property of properties rather than a prop-
erty itself. Thus, the TLA proof rules do not directly apply
to the second condition but do apply to thefirst condition.
In summary, the TLA proof rulesare not directly applicable
to noninterference, but the inference that noninterference
cannot be studied within the framework provided by TLA
is incorrect. Noninterference can be stated in TLA and
portions of the noninterference analysis as well as analysis
of any other safety properties of the system can be done
usingthe TLA proof rules.

There is a strong connection between the refinement issue
and determinism. Generally, the concern with refining sys-
tems satisfying a noninterference policy isthat the remova

of nondeterminism introduces covert channels through the
remova of noise. For example, consider the access time
channdl. If the system specification says that it can choose
to update the access time for any file at any time, then
actions taken by the sending process are hidden by noise
present in the system. When the receiving process detects
that the access time of afile has been changed, it has no way
to determine whether the time was updated by the sending
process or randomly by the system. Thus, the sending pro-
cess cannot interferewith thereceiving process. The system
that is obtained by removing all of the random system tran-
sitions updating the access times of filesis a refinement of
theinitial system since it contains no new transitions. How-
ever, this system does alow the sending process to signa
to the receiving process. Roscoe discusses the difficulties
of analyzing noninterference in nondeterminism systemsin
reference [7].

A similar concern with the definition of noninterference
given in the previous section is that even though a sys-
tem might prevent a sending process from interfering with
a recelving process, it might not prevent a refinement of
the sending process from interfering with a refinement of
a receiving process. For example, if the sending process
is defined to allow arbitrary transitions by the sender, then
composing the sending process with the system does not
congtrain the system in any way. Consequently, the com-
position of the receiver with the system is essentially the
same as the composition of the receiver with the system and
the sender, and it appears there is no information flow. A
refinement of the sender can constrain the behavior of the
system and possibly introduce information flows.

Oneway to addresstheseconcernsisto strengthen thedefini-
tion of noninterference sothat it requiresthat any refinement
of the system prohibits any refinement of the sender from
interfering with any refinement of the receiver.

A similar concern is that the sender and the receiver might
not specify thebehavior of al agentsinthesystem. Then, the
definition of noninterference alows noise to be introduced
by other system agents. For example, the sending process
might appear to not be able to use the access time channel to
signal to thereceiving process because any updateto afile's
access time caused by the sender could just as well have
been caused by the unspecified behavior of other agentsin
thesystem. Oneway to address thisconcern isto ensurethat
the sending and receiving processes describe the behavior
of al of the nonsystem agents.

In summary, in stating the definition of noninterference in
the previous section, we chose to state it in such away that
the only interferences that are detected are those that the
sender can forceto occur. In practice, noise cannot berelied
upon to obscure channels and it is desirable to strengthen
the noninterference requirements.

6. Relation between TLA and CSP

We now discussthe rel ationshi p between definitionsof non-
interference in TLA and those in event based languages
such as CSP. To do so, we supposethat each agentina TLA
specification is viewed as having the following structure:

e ag.id — denotestheidentity of the agent
e ag.lvl — denotesthe security level of the agent

e ag.op— denotestheoperation carried out by the agent

For example, someof theagentsin an ML S operating system
might be:

o ag1 = (ps,topsecret, req_read;) denotingaprocess
ps a level TOP SECRET issuingar ead request on
file f

o agy = (kernel topsecret, read,, ;) denoting the
operating system kernel processing arequest by pro-
cess ps toread file f

o ags = (pr, unclassified, req_stat;) denotingapro-
cess pr a level UNCLASSI FI EDissuing ast at re-
guest onfile f

o agsy = (kernel, unclassisfied, staty, ;) denot-
ing the operating system kernel processing a request
by process pr to get the access time of file f and
returningt¢ as the access time

The system would be specified so that a transition
(st,st’,ag) would be alowed if the state changes speci-
fied by (st, st') are consistent with the event specified by
ag. For example, the system would alow its environment
to make atransition (stq, st2, ag1) in which st is obtained
from st by recording that ps has requested f beread. As
another example, the system would be specified to allow a
transition (sts, sts, ag2) when sto records that ps has re-
guested f be read and st3 is obtained by performing the
read file operation starting in st,. Examples of behaviors
allowed by the resulting system are:

e Nothing happens

ag
sty — sty - -

e pr checksthe access time
stg 192 sty ag—4>’0 st,. il st

e ps reads the file followed by pr checking the access
time

agy agz ags aga,l ag
sty — stg — st, — sty — sty — sty .-

We now can view “agents’ as being observable system
events. Given a state view v and an alowed transition
(st1, sta, ag) With st; and st, appearing different with re-
spect to v, wecan view ag asavisibleevent. If ag isincags
for the system, then ag is a system event. Otherwise, it is
an environment event. By considering the agent sequences
associated with behaviors, we can obtain a representation
of the system as a sequence of events. For example, the
behaviors above correspond to the sequences:

o <>

o < (pr,unclassified, req_staty),

(kernel, unclassified, statp, 10) >

o < (ps,topsecret, req_readf),
(kernel topsecret, ready, 1),

(pr, unclassified, req_staty),

(kernel, unclassified, statp, r1) >

If weassumethat pr can only seeitsinput and output buffers,
then events ag;, and ag-» are not visible with respect to pr’s
view. We can then restrict each of the event sequences to
the eventsvisibleto pr:

o <>

o < (pr,unclassified, req_staty),

(kernel, unclassified, statp, 10) >

o (pr,unclassified, req_staty),

(
(kernel, unclassified, statp, r1) >

Now, it is relatively straightforward to trandate between
definitions of noninterferencein termsof TLA and CSP. As
an exampl e of applying a CSP version of noninterferenceto
a system specified in TLA, consider the definition in refer-
ence [7] which requires that the system obtained by hiding
sender events is deterministic when viewed by the receiver.
The above sequences of events show that the system speci-
fiedin TLA can performtwo different outputsto thereceiver
astheresult of the same input by thereceiver. Consequently,
the system appears nondeterministicto the receiver and does
not satisfy the definition of noninterferencein reference [7].
By trand ating existing theories of noninterferenceinto TLA,
it is possible to apply those theoriesto systems specified in
TLA. This alows prior definitionsto be used in TLA just
as easily as the definition proposed here. In summary, the
definition of noninterferencein TLA given here is not the
only way to define noninterferencein TLA. To use another
variant of noninterference, it is not necessary to abandon
TLA; itissimply necessary to translateinto TLA.

7. Composition and Refinement

A recent area of research regarding noninterference state-
ments is their composability. Early work in this area in-
cludes McCullough'sstatement of restrictiveness[4]. More
recent work includes that described in references [5] and
[8]. Essentidly, the question is whether the composition of
two “secure’ components results in a “secure” composite
system (where “secure” means “ satisfies noninterference”).
The motivator for thisresearch isthe desire to use a divide-
and-conquer approach to analyzing systems. For example,
it isdesirableto dividethe analysis of an ML S network into
analysis of the foll owing components:

e Anaysisof each of the nodesinisolation.

e Analysisof the network protocol used to connect the
nodes.

Intheory, it is possibleto continueto apply this divide-and-
conquer approach to more detailed models of the system.
For example, themodel of each nodemight be asthe compo-
sition of various components (file system, network protocol
stack, ...) representing the modules comprisingthenode. In
practice, a point is eventually reached at which point it is
not practical to consider componentsin isolation.

To consider the composability of our proposed statement of
noninterference, we now suppose that we have two systems,
sys; and sys,, and processes, cmp, and cmp,, such that:

e cmpy frsys, cmp,, and
o cmpy Frsys, CMp;

Ideally, it would be possible to demonstrate that
cmpy Frsys, ||sys, CMmpo. This type of composability re-
sult holds for policies such as those in references [4], [5],
[1Q], and [7]. We have not spent much time considering
the composability of the definition of noninterference given
here, so it isclearly an area for future research. We simply
make some initial observations here.

Suppose emp; and emp, are processes of the composite
system that are desired to be shown to be noninterfering. In
general, each process can refer to processing specificto each
of the systems being composed. This means that when ana-
lyzing the security of sys;, it might be necessary to consider
sys=, t0o. Thiswould be undesirable sinceit would make it
difficult to analyze systems individually. There might be a
trade-off here between being ableto state conditional nonin-
terference policies and having the noninterference policies
be composable.

The reason why composing two secure (in the noninterfer-
ence sense) systems does not necessarily result in a secure
system isthat the composition is generaly more determin-
istic than the original system. As noted earlier, removing

nondeterminism can introduce covert channels. For exam-
ple, our definition of noninterference requires that for each
behavior beh of the sender and receiver operating together
onthesystem, there existsan equivalent behavior be ' of the
receiver operating by itself on the system. The reason that
thispolicy is not generally composable is that the behavior
beh’ might not be alowed by the composite system even
though it is alowed by the first system individualy. The
problem arises because some of the environment steps of
thefirst system are steps it allowsto be taken by the second
system. If any of these steps appear in beh’ and are not ac-
tually selected by the second system, then beh’ isnot avalid
behavior of the composite. Although more investigation is
required, we suspect that by requiring noninterference to
hold for al refinements of emp; and emp,, this problem
can be addressed.

8. Conclusion

In the approach described here, noninterference is a prop-
erty (inthegenericrather than Abadi-Lamport sense) of sys,
empq, and emp,. This hasled to noninterference being re-
ferredtoasa“property of properties’ (inthe Abadi-Lamport
sense) since sys, emp,, and cmp,, are Abadi-Lamport prop-
erties. Whileit istrue that noninterferenceis not an Abadi-
Lamport property, the preceding sectionshave demonstrated
that noninterference can be specified in TLA and that ex-
aminations of the composability of noninterference can be
carried out within TLA. We believe a similar approach can
be used to examine refinement of noninterference in the
context of TLA specifications. Since the TLA specifica
tion language and the composition and refinement theories
developed for it are well-accepted tools for specifying and
verifying systems, it is desirable to be able to use them for
secure system development. By devel oping techniques to
perform covert channel analysison TLA specifications, itis
possibletouse TLA for all of theformal anaysisperformed
on asystem.

In addition to demonstrating how to state noninterferencein
TLA, the proposed statement is of interest by itself. It has
a very close tie to the intuitive notion of noninterference.
In addition, it allows precise statements of which processes
are prevented from signaling even when a covert channel is
present in the system. The given definition of noninterfer-
ence is merely one example of how noninterference can be
defined in TLA. We discussed how other definitionsof non-
interference in terms of CSP might be trandated into TLA.
This allows users of TLA to build upon prior definitions of
noninterference while a so providing acommon framework
for comparing various noninterference policies.

Much future work remains to be done. First, it would be
desirable to determine whether the strong version of our
noninterference policy is composable. In doing so, we will

need to determine the feasibility of retaining the conditional
nature of the policy while ensuring it is composable. Sec-
ond, the examination into refinement of systems satisfying
noninterference should be done. This could provide guid-
ance to devel opers as to how abstract specifications can be
refined into implementations without introducing security
flaws. Finally, therange of policiesthat can be supported by
the proposed statement of noninterference should be con-
sidered. In addition to allowing for the statement of poli-
cies prohibiting components from interfering even though a
covert channel is present, the generality might be useful in
areas such as intransitive noninterference [9]. For example,
using emp, to denote processing other than that specified
for an assured pipelineand c¢mp, to denote acomponent in-
tended to receive information through the assured pipeline,
it should be possible to demonstrate that the information
transfer is prevented if the system implements the assured
pipeline correctly.

References

[1] M. Abadi and L. Lamport. Conjoining specifications. Tech-
nical Report 118, Digital Equipment Corporation, Systems
Research Center, Dec. 1993.

[2] T. Fine. Constructively Using Noninterference to Analyze
Systems. In|EEE Symposiumon Security and Privacy, pages
162-169, Oakland, CA, May 1990.

[3] D. Johnsonand F. Thayer. Security and the composition of
machines. In Proceedings of the Workshop on the Founda-
tions of Computer Security. IEEE, Oct. 1988.

[4] D. McCullough. Noninterference and the composability of
security properties. In Proceedings of the 1988 Symposium
on Security and Privacy, pages 177-186. |[EEE, Apr. 1988.

[5] J. McLean. A General Theory of Composition for Trace
Sets Closed Under Selective Interleaving Functions. In Pro-
ceedings of the IEEE Symposium on Security and Privacy,
Oakland, CA, May 1994,

[6] NCSC. Trusted Computer SystemsEvauation Criteria. Stan-
dard, DOD 5200.28-STD, US National Computer Security
Center, Fort George G. Meade, Maryland 20755-6000, Dec.
1985.

[7] A.W. Roscoe. CSP and determinism in security modelling.
In Proceedings of the |[EEE Symposiumon Security and Pri-
vacy, pages 114-127, Oakland, CA, May 1995.

[8] A.W. Roscoeand L. Wulf. Composing and Decomposing
Systems under Security Properties. In Proceedings of the
IEEE Computer Security FoundationsWorkshop, 1995.

[9] J. Rushby. Noninterference, Transitivity, and Channel-
Control Security Policies. Technical report, SRI Interna-
tional, Dec. 1992.

[10] P. Ryan. A CSP Approach to Noninterference and Unwind-
ing. IEEE Cipher, 1990.

[11] N. Shankar. A lazy approach to compositional verification.
Technical Report TSL-93-08, SRI International, Dec. 1993.

