
Defining Noninterference in the Temporal Logic of Actions

Todd Fine
Secure Computing Corporation

2675 Long Lake Road,
Roseville, Minnesota 55113-2536

Email: fine@sctc.com

Abstract

Covert channels are a critical concern for multilevel se-
cure (MLS) systems. Due to their subtlety, it is desirable
to use formal methods to analyze MLS systems for the pres-
ence of covert channels. This paper describes an approach
for using Lamport’s TLA to specify noninterference proper-
ties. In addition to providing a more intuitive definition of
noninterference than previous attempts, this approach also
supports analysis of systems that do contain covert chan-
nels to demonstrate limitations on their exploitations. In
relating the definition of noninterference given here to prior
definitions of noninterference, this paper discusses ways in
which other definitionsof noninterference can be formalized
in TLA, too. Finally, this paper discusses how prior work
on specification refinement and composition might be ap-
plied to the noninterference problem within the framework
provided by TLA.

1. Introduction

A multilevel secure (MLS) system is one in which processes
are assigned levels indicating the sensitivity of data they are
trusted to access and files are assigned levels indicating the
sensitivity of data they contain. For example, a process
might have a level such as SECRET while a file might have
a level such as UNCLASSIFIED. The levels are ordered
from least sensitive to most sensitive, and the goal of the
system is to ensure that processes cannot obtain information
for which they are not trusted. For example, a process with
levelUNCLASSIFIED should not be able to access informa-
tion in a file with level SECRET. An obvious requirement
is the Simple Security Property which prohibits a process
from reading files at higher levels. A slightly less obvi-
ous requirement is the �-Property which prohibits a process
from writing files at lower levels; without this requirement,
a misbehaving high-level process might compromise data in

a file at its level by copying it into a file at a lower level that
is accessible to low-level processes. Typically, the concern
is that the high-level process is a Trojan horse that down-
grades information in the background without the user’s
knowledge. For example, suppose a user with clearance to
SECRET is running a word processor at level SECRET that
has been modified without the user’s knowledge to copy
SECRET information entered by the user into a file with
level UNCLASSIFIED. The �-Property addresses this con-
cern by preventing the process running at level SECRET
from writing files with level UNCLASSIFIED [6].
Unfortunately, the satisfaction of the Simple Security and �
properties does not ensure that low-level processes cannot
obtain data from high-level files. The term covert channel
is used to denote a mechanism by which a high-level pro-
cess can communicate data to a low-level process [6]. The
Simple Security and � properties can be circumvented by a
high-level process reading data from a file at its level and
communicating it to a low-level process via a covert chan-
nel. Once again, the concern is typically that the high-level
process is a Trojan horse that uses the covert channel to
downgrade information without the user’s knowledge.
There has been much prior work investigating techniques
to formalize the definition of a covert channel and use for-
mal methods to analyze a system model to identify covert
channels [2, 9, 3, 4, 7]. This paper proposes a definition
of noninterference that while similar to prior definitions is
more intuitive. While much of the prior work has viewed
noninterference as an absolute criteria indicating whether
a system is “secure”, the statement of noninterference pro-
posed here defines what it means for one entity to not be
able to interfere with another entity through the system.
This leaves open the possibility that other entities in the sys-
tem might be able to interfere with each other. In particular,
the statement allows for the possibility that the system might
contain a covert channel and the goal is to demonstrate that
certain well-behaved entities do not exploit the channel.
Another advantage of the definition provided here is that it

is couched in Lamport’s Temporal Logic of Actions (TLA)
[1]. Lamport’s TLA work is widely known and provides a
well-accepted model of computing. Stating noninterference
in terms of this model makes it accessible to the relatively
large number of people who are TLA-literate, allows TLA
proof rules to be used in the analysis of the system, and opens
the possibility of applying TLA theories such as composi-
tion and refinement to the noninterference problem. Earlier
work has suggested that TLA is an inappropriate formalism
for studying the noninterference problem [5]. We discuss
here why TLA is an appropriate formalism for studying
noninterference even though the specific issues identified in
reference [5] is correct. In addition, we discuss how prior
definitions of noninterference can be incorporated into the
framework of TLA.

2. TLA and Composition

This section provides a brief overview of TLA and composi-
tion theory [1]. The presentation here is a slight refinement
of the standard presentation of TLA with the differences
noted here. The TLA specification language is based on
state transitions. A state is a representation of a snap shot
of the system at some point in time. A state transition is a
triple consisting of a starting state, a new state, and an agent.
The meaning of a triple is that whenever the system is in the
starting state, the specified agent can cause a transition to the
new state. The agent of a transition can be either a system
entity or an environment entity. A behavior is an infinite
sequence of state transitions representing an execution his-
tory. A system is specified as a set of behaviors indicating
the execution histories possible in the system.
Note that a “system” is often a component of a larger sys-
tem. Then, the component system’s environment consists of
other system components with which it interacts as well as
entities external to the system. Also note that a behavior can
also be viewed as an infinite sequence of states sts and an in-
finite sequence of agents ags. The correspondence between
this and a sequence of state transitions is that the ith state
transition in the sequence is (sts(i); (sts(i + 1); ags(i)).
For convenience, we often use the representation as a pair
of sequences rather than the representation as a sequence of
transitions in the following.
Lamport has demonstrated that any component can be spec-
ified as a triple (I;N; L), where:

� I specifies the set of initial states for the system.

� N specifies the allowed state transitions by both the
system and its environment.

� L specifies liveness conditions. For example, Lmight
require that each component periodically be given the
opportunity to perform processing.

I represents the set of states appearing as the first state in
some behavior whileN represents the set of state transitions
appearing in some behavior.
For simplicity, we ignore L in the following and assume
every component can be specified as a pair (I;N). Conse-
quently, the definition of noninterference provided in Sec-
tion 4 does not address liveness. Some prior definitions of
noninterference such as those in references [10] and [7] do
address liveness, so the definition provided here is currently
deficient in this area by comparison. We expect that once
we extend our representation of TLA to address liveness,
the extension of our definition of noninterference to address
liveness will be straightforward.
The descriptionofN as specifying the transitions of both the
system and the environment is slightly misleading. Clearly,
the specification of a component will not completely de-
scribe the behavior of the environment. If it did so, then it
would be a specification of the component and the environ-
ment rather than simply a specification of the component.
The transitions in N that correspond to environment agents
describe assumptions that a component makes about the
environment. For example, the assumption that the envi-
ronment never modifies a variable x would be captured by
not including in N any transitions by the environment that
modified x.
In TLA, a state actually corresponds to the state of the “entire
universe” rather than simply the system state. Consequently,
each component has a “view” of the state. We represent
views as equivalence relations on the state. Two states are
in the equivalence relation associated with a given compo-
nent only if the two states “look” the same to the component.
Components are required to always allow “stuttering” with
respect to their view. In other words, given two states that
appear the same to a component, any agent must be allowed
to cause a transition from one state to the other. From the
perspective of the component, the system is stuttering in that
a null transition has been made. In reality, a stuttering step
might actually perform modifications to many variables that
are not visible to the component. This allows a system be-
havior to record operations performed by other components
in the system even though the variables altered by those
operations are unknown to the component.
For convenience, we represent each component through the
following attributes:

� c ags — the set of agents within the component

� view — the equivalence relation defining which states
“look” the same to the component

� init — the set of allowable states for the component
when the system is first started

� guar — the set of transitions that can be caused by
agents in the component

� rely — the set of transitions by agents in the environ-
ment of the component that correspond to assump-
tions on the behavior of the environment

The attributes c ags and view are implicit in TLA rather than
explicit as they are here. Typically, the c ags sets for differ-
ent components will be disjoint. Then, the agent associated
with a transition indicates which component performed the
transition. The attribute init corresponds to TLA’s I. The
attributes guar and rely provide a partitioning of TLA’s N
based on whether the agent is within the component or an
environment agent. This partitioning and the terminology
“guarantee” and “rely” are based on earlier work by Shankar
[11].
We refer to the above as the component form of a system and
use terms such as cmp, cmp1, and cmp2 to denote specific
instances. Given the component form representation cmp of
a system, we use behs(cmp) to denote the set of behaviors
associated with cmp. This is simply the set of behaviors
having an element of init(cmp) as their starting state and
having each transition being an element of either guar(cmp)
or rely(cmp).
We now describe an operation for composing components.
The composition operator described here is essentially that
described in reference [1] where composition of systems
involves simply intersecting their sets of behaviors. In other
words, a behavior is accepted for the system if it is accepted
by each of the components in isolation. We define our com-
position on component forms rather than sets of behaviors,
but the definition is really the same. In defining the op-
erator, we use subscripted component attributes to refer to
attributes of specific components. For example, c ags

1
is

c ags for cmp1 and c ags
2

is c ags for cmp2. Given two
components cmp1 and cmp2, we define cmp1 k cmp2 to be
the following component form:

� c ags is the union of c ags
1

and c ags
2
.

� view is the intersection of view1 and view2.

� init is the intersection of init1 and init2.

� guar is the union of guar
1

and guar
2
.

� rely is the intersection of rely
1

and rely
2
.

The intuition behind these definitions is:

� Any agent of either component is an agent of the
overall system.

� Two states “look” the same to the composite system
exactly when they “look” the same to each of the
component systems.

� The initial state must be appropriate for each compo-
nent.

� Each system transition must be either a transition by
the first component or a transition by the second com-
ponent.

� Each transition of the composite system’s environ-
ment must satisfy the assumptions each component
makes of its environment.

To ensure that a composite specification is consistent, we
must ensure that the transitions specified for each com-
ponent (guari) satisfy the assumptions made by the other
component (represented by rely

3�i). For example, if rely
1

prohibits the environment of the first component from mod-
ifying variable x, then that component cannot meaningfully
be composed with a second component having guar

2
con-

taining a transition that modifies x. Note that this is a little
different than the Abadi-Lamport work. They allow any two
components to be composed. However, their proof rules for
composite systems are only applicable when the composi-
tion is consistent. In other words, they allow components to
be composed even when the result is inconsistent but they
avoid doing so in practice.
Although one approach would be to define components
as being composable as long as guar

1
� rely

2
and

guar
2
� rely

1
, this has the unfortunate side-effect of often

terming a component as not being composable with itself.
For example, a component that modifies variable x itself
but assumes other components do not modify x would be
termed as not being composable with itself. In particular:

� guar
1

and guar
2

would be the same and both contain
a transition that modifies x

� rely
1

and rely
2

would be the same and both not con-
tain any transitions that modify x

� So, guar
1
6� rely

2
.

In Section 7 it is important to be able to compose a compo-
nent with itself. Thus, we slightly relax the conditions on
composability to:

� guar
1
� guar

2
[rely

2

� guar
2
� guar

1
[rely

1

This condition is clearly satisfied when guar
1

and guar
2

are the same, so any component can be composed with itself.
Intuitively, the condition on composition is that any transi-
tion performed by a component can be jointly performed by
the other component or is allowed by the other component’s
environment assumption. In cases when c ags

1
and c ags

2

are disjoint, the constraints on guar for each component
ensure there are no transitions that can be performed jointly
by both components. Then, the conditions on composability
reduce to guar

1
� rely

2
and guar

2
� rely

1
as originally

proposed.

3. Covert Channels and Noninterference

A well-known example of a possible covert channel in MLS
variants of Unix is the access time channel. Each file has an
access time associated with it that indicates the time at which
the file was last read. When a high-level process reads a low-
level file, the access time is updated. A low-level process can
receive a bit of information by using the stat command to
determine whether the access time of the low-level file has
changed. Although the Simple Security Property prohibits
the high-level process from writing information into the low-
level file, it does not prohibit the file’s meta-data from being
updated.1

Informally, a noninterference policy requires that the “view”
a low-level process has of the system is the same regardless
of whether a high-level process is executing. Note that
“view” here is not necessarily the same as the notion of
a component’s view defined in the previous section. One
attempt at a more rigorous definition of noninterference is:

� Let seq be an arbitrary sequence of instructions exe-
cuted by processes (low-level as well as high-level) in
the system.

� Let seq0 be seqwith the instructionsexecuted by high-
level processes removed.

� Then, the execution of seq on the system should
“look” the same to low-level processes as the exe-
cution of seq0.

This definition detects the access time channel by choosing
seq to be a high-level read of a file followed by a low-level
stat. Then, seq0 is simply the low-level stat. The value
returned by stat is different in each sequence since the
high-level read changes the access time of the file.
Approaches that have previously been used to formalize
“look the same” include:

� The outputs generated by the system must be the same
for each sequence.

This approach detects the access time channel by de-
tecting a different value output from stat in seq and
seq0.

� The states resulting from the execution of each se-
quence “look” the same.

This approach detects the access time channel by
defining two states to “look” the same to low-level
processes if the access times associated with all low-
level files are the same. Since seq and seq0 result in

1One way to close this channel in an MLS system is to change the
semantics of the read operation so the access time is not updated unless the
file is at the same level as the reading process.

different access times being associated with the low-
level file, the resulting states do not “look” the same.

Descriptions of this class of approach can be found in refer-
ences [9] and [2].
Another class of approach is characterized by Thayer and
Johnson’s notion of correctability [3]. Essentially, this def-
inition of noninterference is:

� Let seq be an arbitrary sequence of system events
(including both inputs and outputs).

� Let seq0 be a “perturbed” sequence that is identical to
seq except for the addition or deletion of high-level
inputs.

� Then, there must be some “correction” of seq0 that is:

– identical to seq0 except for the addition or dele-
tion of high-level outputs, and

– identical to seq in low-level inputs and outputs.

This approach detects the access time channel using as seq
the sequence consisting of a high-level read, a low-level
stat, and the output of the new access time. One choice for
seq0 is seq with the high-level read removed.2 Then, seq0 is
not a valid behavior of the system since the low-level stat
must return the file’s original access time rather than the new
access time. There is no way to construct a “correction” by
adding or removing high-level outputs, so the system does
not satisfy the requirements of correctability.
The main difference between this approach and that de-
scribed above is that it allows for nondeterministic system
models. In other words, it is not required that there be a
unique new state for each operation and starting state.
There are several other approaches based on considering
sequences of events. For example, reference [10] defines
noninterference in terms of sequences of events accepted by
the system. In the case of deterministic systems, the policy
requires that given any sequence seq with seql containing
only the low-level events in seq, the set of low-level events
the system accepts after seq is the same as the set of low-level
events the system accepts after seql. This policy detects the
access time channel with seq =< readf;v > and seql =<>
(the empty sequence). Then, the low-level event returning
the current time in response to a stat call is accepted after
seq but is not accepted after seql when the stat call would
have to return the previous access time for the file.
A similar policy was presented in reference [7]. The ap-
proach there was to define noninterference in terms of deter-
minism. The system under consideration is “merged” with
arbitrary high-level behavior. Then, all of the high-level

2In this approach, requests processes make of the system are viewed as
system inputs.

behavior is “hidden”. The policy requires that the resulting
behavior is deterministic. The intuition is that the next low-
level event accepted is always a function of only the previous
low-level behavior. Covert channels show up as instances in
which the system can nondeterministically choose the next
low-level event based on the high-level behavior that was
hidden. To clarify this, consider the access time example.
The merging with arbitrary high-level behavior means that
a file’s access time can be updated to the current time at any
point. When this behavior is hidden, the resulting system
can nondeterministically choose to update a file’s access
time at any point. Then, the output seen at the low-level is
not a function of previous low-level behavior.
The final class of definitions of noninterference that we dis-
cuss here is those using an equivalence relation on states
to explicitly specify restrictions on state transitions. The
equivalence relation defines what it means for two states to
“look” the same to low-level processes and the restrictions
are essentially:

� The starting and new states for transitions by high-
level processes “look” the same.

� Given two starting states that “look” the same, an
operation executed by a low-level process leads to
two new states that “look” the same.

This approach would detect the access time channel by defin-
ing two states to “look” the same if the access times for all
low-level files are the same. Then, a read operation per-
formed by a high-level process on a low-level file violates
the first of the above restrictions by changing the access time
of the low-level file. Reference [4] describes an example of
this class of approach.
Of the various definitions, the ones stated in terms of se-
quences of events or operations are the most intuitive. How-
ever, there are many subtleties involved. For example, al-
though correctability is somewhat intuitive, it actually is a
flawed statement of noninterference that Thayer and Johnson
fixed in a variant called forward correctability [3]. The final
class of statements provides more design guidance through
the explicit restrictions on transitions, but does not provide
an abstract statement of the resulting noninterference prop-
erty. Consequently, it is difficult to determinine what the se-
curity requirement really means in this approach. Ideally, an
unwinding theorem [9] can be proved demonstrating that the
conditions on individual transitions are sufficient conditions
to establish a more intuitive definition of noninterference in
terms of system behaviors.
Another disadvantage of most of the prior definitions is that
they are absolute statements; a system satisfies them or it
does not. In practice, covert channels are usually unavoid-
able. For example, a Unix-like MLS system that is required
to satisfy Unix semantics would not be able to avoid the

access time channel. Then, the real goal of the analysis is
to determine how each channel can be exploited. Once this
is done, countermeasures can be inserted to address intol-
erable exploitations. In these cases it is desirable to use
a conditional noninterference policy which states that the
system contains no covert channels except for certain ex-
ceptional cases. Of the policies described previously, only
reference [7] provides a statement of such a noninterfer-
ence policy. This policy requires there be no signaling from
a high-level process to low-level processes as long as the
high-level process is constrained to a specified behavior [7].
However, even this statement of noninterference is not quite
general enough since it is sometimes necessary to restrict
the behavior of the low-level processes, too. For example,
it might be acceptable for arbitrary high-level processes to
signal to certain trusted low-level processes.

4. Proposed New Statement

This section proposes a “new” statement of noninterference
in terms of TLA. Although there is a great deal of similar-
ity between the definition proposed here and the statements
overviewed in the preceding section, there are some signifi-
cant differences:

� The proposed statement corresponds more closely
with the informal definition of noninterference.

� The proposed statement is a property of process-
process-system triples rather than a property of sys-
tems. In other words, the statement defines what it
means for a system to prohibit a process from inter-
fering with a second process rather than what it means
for the system to prohibit interference from high-level
to low-level.

� The proposed statement is defined in terms of com-
position rather than in terms of purging or perturbing
high-level inputs. Note, however, that the definition
of noninterference provided in reference [7] is similar
in this regard.

Before stating the proposed definition of noninterference, it
is first necessary to define a couple more concepts. First,
we need to represent a process cmp executing on a system
sys. We view each as peers cooperating to perform a task.
Thus, we use cmp k sys to denote the process represented
by cmp executing on sys.
Second, we need to define a process’ “view” of a system
(as opposed to its view of the system state). We define
cmp

1
�cmp

3
cmp

2
to denote that cmp

1
and cmp

2
“look”

the same to cmp
3
. This relation is defined as follows:

1. The set of states that “look” the same (with respect
to view3) as some state in init1 is equal to the set of
states that “look” the same as some state in init2.

2. Each agent in c ags
3

is in both c ags
1

and c ags
2
.

3. If (st1; st10; ag) is a transition allowed by one compo-
nent and st2 “looks” the same as st1(with respect to
view3), then there exists ast20 such that (st2; st20; ag)
is a transition allowed by the other component and st20

“looks” the same as st10.

An alternative (and perhaps more intuitive) way to define
cmp

1
�cmp

3
cmp

2
is through behaviors. Essentially, the

requirement is that for each behavior beh1 of one compo-
nent, there exists a behavior beh2 of the other component
such that the corresponding states of beh1 and beh2 “look”
the same with respect to view3. By the two behaviors look-
ing the same, we simply mean that the ith state of beh1 is
equivalent to the ith state of beh2 with respect to view3.
Given cmp

1
and cmp

2
we define:

cmp
1
6;sys cmp

2
=

((cmp
1
k cmp

2
) k sys) �cmp

2
(cmp

2
k sys)

Then, the intuitive statement of “cmp
2

executing by itself
on the system ‘looks’ the same to cmp

2
as cmp

2
executing

concurrently with cmp
1
” is formalized as:

cmp
1
6;sys cmp

2

At this level, the statement appears identical to some existing
statements of noninterference. For example, this definition
appears similar to that used by Rushby in reference [9].
However, there is a significant difference. In prior defi-
nitions, cmp

1
and cmp

2
would be either the identity of a

process or a security attribute of a process. For example,
Rushby defines MLS noninterference in a form similar to
that used here but with; defined as a relation on sensitivity
levels rather than processes. By defining; to be a relation
on processes, the definition of noninterference can take into
account the behavior of the processes.
To clarify this point, consider the access time channel. By
defining cmp

1
to be a high-level process that reads low-

level files and defining cmp
2

to be a low-level process that
performs stat operations on the same files, it is clear that
cmp

1
;sys cmp

2
. Now, suppose cmp

1
is defined instead

to be a high-level process that only accesses high-level files.
Then, cmp

1
6;sys cmp

2
. Since sys has not been changed,

it still contains a covert channel through access times. But,
there is no interference from cmp

1
to cmp

2
through sys

since no high-level process reads low-level files. Whereas
many prior statements of noninterference have defined “se-
curity” as an absolute (either there are channels or there are
not channels), the statement proposed here acknowledges
the possibility that there are channels in the system and al-
lows for a precise statement as to how the channels can
be exploited. Once a set of exploitations has been identi-
fied and demonstrated to be complete, it suffices to develop

countermeasures for each of the exploitations. While the
countermeasures might involve closing the channel, they
also might involve leaving the channel in the system and
auditing its use or introducing noise or delays. Many prior
statements of noninterference cannot deal with the latter
case since the channel is still in the system. The proposed
statement of noninterference addresses the issue by allowing
for a precise definition to be made of the processes in the
system that can signal through any residual channels.
Note that other conditional noninterference policies have
also allowed for exceptions to pure noninterference to be
identified. Typically, these policies have only allowed for
restrictions to be placed on the sending subject. For exam-
ple, the conditional noninterference policy in reference [7]
provides a means for stating that there is no flow of in-
formation to the receiver as long as the sender behaves in
a specified fashion. The noninterference policy described
here is a further generalization that allows restrictions to be
placed on the receiving process, too. For example, we could
just as well change cmp

2
to not check the access time on files

accessed by cmp
1
. Then, there would be no flow from cmp

1

to cmp
2

through sys even though the system contains the
access time channel and cmp

1
accesses low-level files. It is

expected that this generalization will be useful in precisely
defining the information flows in systems that (for example)
collect global system information in data structures that are
only accessible to trusted processes. Then, the policy could
be used to identify flow from higher level processes to the
trusted processes as being alright.
Although we have been using the term “process” to refer
to cmp

1
and cmp

2
, it is important to note that they can

actually be any component. For example, cmp
1

might ac-
tually be a collection of processes executing on the system.
A pure MLS policy could be stated by grouping high-level
processes into cmp

1
and low-level processes into cmp

2
and

demonstrating the system prevents interference. It is also
possible that the components do not correspond to processes
at all. For example, cmp

1
might denote a particular profile

of traffic on one network while cmp
2

denotes a particular
profile of traffic on a second network. If the system is a
network guard, this would provide a policy statement con-
cerning the ways in which the first network can interfere
with the second network through the guard. In summary,
although we use the term “process” for motivational rea-
sons, the proposed statement of noninterference addresses
much more than simply interference between processes in
computing systems.

5. Discussion

The most common objection to using the Abadi-Lamport
work for noninterference is that noninterference is not pre-
served by arbitrary refinements. A refinement of a system

sys is any sys
2

whose allowed behaviors are a subset of
those allowed by sys. In other words, a refinement can
further restrict the behavior of the system but cannot intro-
duce new behavior. For example, an abstract specification
of a sort procedure might simply indicate that at the com-
pletion of the sort, the elements in the input list have been
rearranged into the proper order. This abstract specification
might allow for the elements to be magically reordered in a
single step, gradually reordered through bubble sort, grad-
ually reordered through quicksort, …. This specification
could be refined into a specification of a particular sorting
algorithm such as quicksort.
Allowing for specification refinement is one of the reasons
for requiring that components allow stuttering. The stutter-
ing steps can be refined into transitions that alter lower-level
variables in the refinement. For example, what appears as a
stuttering step in the abstract specification of sorting might
be seen to be the setting of an index variable in the specifi-
cation of quicksort.
In the Abadi-Lamport work the term “property” is used to
denote a set of behaviors that is closed under stuttering.
Thus, properties are represented in the same manner as sys-
tems. A system is said to satisfy a property if every behavior
of the system is contained in the set of behaviors denoting
the property. A benefit of this approach is that any property
that a system satisfies is also satisfied by any refinement of
the system. This allows a top-down development approach
to be used. Requirements are stated that ensure the desired
system properties hold. Then, these requirements are re-
fined into high-level design, low-level design, code, … with
each successive refinement still ensuring the desired system
properties.
Unfortunately, noninterference is not preserved by refine-
ment when nondeterministicbehavior is allowed. For exam-
ple, suppose that the abstract specification of a system allows
for either a 0 or a 1 to be output to a low-level process from a
given system state. Although this behavior, might not allow
covert signaling in the abstract specification, it is trivial to
construct refinements in which covert signaling is allowed.
For example, suppose the specification is refined so that a bit
of data from a high-level file is read and used to determine
whether to output a 0 or a 1. Then, the transition outputs
data from a high-level file to a low-level process. Since
noninterference is not preserved by refinement, it cannot be
a property in the Abadi-Lamport sense. This has led others
to reject the use of the Abadi-Lamport theory for explor-
ing noninterference properties. For example, reference [5]
mentions that noninterference is not a property in the Abadi-
Lamport theory and then proceeds to study noninterference
within a different formalism.
However, it is still possible to state noninterference in the
temporal logic of actions as we have done in the previous
sections. As pointed out in reference [5], the definition

is technically a “property of Abadi- Lamport properties”
rather than an “Abadi-Lamport property” itself. This means
the TLA proof rules do not necessarily apply to noninterfer-
ence. However, they do apply to safety properties such as
the Simple Security Property and the �-Property. By writing
specifications in TLA, the existing theories for TLA can be
used in the analysis of such properties. By using the state-
ment of noninterference proposed in the previous section,
the same system model can be used for the noninterference
analysis, too.
Furthermore, if the definition of noninterference can be re-
duced to a collection of unwinding conditions, the unwind-
ing conditions can often be addressed using TLA proof rules.
For example, the definitions in references [2, 9] can also
be formalized in TLA as properties of properties. These
definitions of noninterference have associated “unwinding
theorems” that allow verification of the noninterference pol-
icy to be reduced to verification of conditions on individual
instructions. Essentially, the conditions are:

� Operations by the transmitter do not change data vis-
ible to the receiver.

� Operations by the receiver modify data visible to the
receiver in a manner determined entirely by data vis-
ible to the receiver.

The former condition is a restriction on the set of transitions
that the system may allow. Consequently, it is a safety
conditionand is a property in the Abadi-Lamport sense. The
second condition is generally a property of Abadi-Lamport
properties rather than an Abadi-Lamport property itself. A
more precise statement of the condition is:

Given any transition (st1; st01; ag) by the receiver and
st2 having the same data visible to the receiver as is
visible in st1, there exists a transition (st2; st

0
2
; ag)

with st0
1

and st0
2

having the same data visible to the
receiver.

Rather than describing a set of allowed transitions, this con-
dition describes a class of sets of allowed transitions and
consequently is a property of properties rather than a prop-
erty itself. Thus, the TLA proof rules do not directly apply
to the second condition but do apply to the first condition.
In summary, the TLA proof rules are not directly applicable
to noninterference, but the inference that noninterference
cannot be studied within the framework provided by TLA
is incorrect. Noninterference can be stated in TLA and
portions of the noninterference analysis as well as analysis
of any other safety properties of the system can be done
using the TLA proof rules.
There is a strong connection between the refinement issue
and determinism. Generally, the concern with refining sys-
tems satisfying a noninterference policy is that the removal

of nondeterminism introduces covert channels through the
removal of noise. For example, consider the access time
channel. If the system specification says that it can choose
to update the access time for any file at any time, then
actions taken by the sending process are hidden by noise
present in the system. When the receiving process detects
that the access time of a file has been changed, it has no way
to determine whether the time was updated by the sending
process or randomly by the system. Thus, the sending pro-
cess cannot interfere with the receiving process. The system
that is obtained by removing all of the random system tran-
sitions updating the access times of files is a refinement of
the initial system since it contains no new transitions. How-
ever, this system does allow the sending process to signal
to the receiving process. Roscoe discusses the difficulties
of analyzing noninterference in nondeterminism systems in
reference [7].

A similar concern with the definition of noninterference
given in the previous section is that even though a sys-
tem might prevent a sending process from interfering with
a receiving process, it might not prevent a refinement of
the sending process from interfering with a refinement of
a receiving process. For example, if the sending process
is defined to allow arbitrary transitions by the sender, then
composing the sending process with the system does not
constrain the system in any way. Consequently, the com-
position of the receiver with the system is essentially the
same as the composition of the receiver with the system and
the sender, and it appears there is no information flow. A
refinement of the sender can constrain the behavior of the
system and possibly introduce information flows.

One way to address these concerns is to strengthen the defini-
tion of noninterference so that it requires that any refinement
of the system prohibits any refinement of the sender from
interfering with any refinement of the receiver.

A similar concern is that the sender and the receiver might
not specify the behavior of all agents in the system. Then, the
definition of noninterference allows noise to be introduced
by other system agents. For example, the sending process
might appear to not be able to use the access time channel to
signal to the receiving process because any update to a file’s
access time caused by the sender could just as well have
been caused by the unspecified behavior of other agents in
the system. One way to address this concern is to ensure that
the sending and receiving processes describe the behavior
of all of the nonsystem agents.

In summary, in stating the definition of noninterference in
the previous section, we chose to state it in such a way that
the only interferences that are detected are those that the
sender can force to occur. In practice, noise cannot be relied
upon to obscure channels and it is desirable to strengthen
the noninterference requirements.

6. Relation between TLA and CSP

We now discuss the relationship between definitions of non-
interference in TLA and those in event based languages
such as CSP. To do so, we suppose that each agent in a TLA
specification is viewed as having the following structure:

� ag:id — denotes the identity of the agent

� ag:lvl — denotes the security level of the agent

� ag:op— denotes the operation carried out by the agent

For example, some of the agents in an MLS operating system
might be:

� ag1 = (ps; topsecret; req readf) denotinga process
ps at level TOP SECRET issuing a read request on
file f

� ag2 = (kernel; topsecret; readps;f) denoting the
operating system kernel processing a request by pro-
cess ps to read file f

� ag3 = (pr; unclassified; req statf) denotinga pro-
cess pr at level UNCLASSIFIED issuing a stat re-
quest on file f

� ag4;t = (kernel; unclassisfied; statpr;f;t) denot-
ing the operating system kernel processing a request
by process pr to get the access time of file f and
returning t as the access time

The system would be specified so that a transition
(st; st0; ag) would be allowed if the state changes speci-
fied by (st; st0) are consistent with the event specified by
ag. For example, the system would allow its environment
to make a transition (st1; st2; ag1) in which st2 is obtained
from st1 by recording that ps has requested f be read. As
another example, the system would be specified to allow a
transition (st2; st3; ag2) when st2 records that ps has re-
quested f be read and st3 is obtained by performing the
read file operation starting in st2. Examples of behaviors
allowed by the resulting system are:

� Nothing happens

sta
ag
! sta � � �

� pr checks the access time

sta
ag3
! stb

ag4;0
! stc

ag
! stc � � �

� ps reads the file followed by pr checking the access
time

sta
ag1
! std

ag2
! ste

ag3
! stf

ag4;1
! stg

ag
! stg � � �

We now can view “agents” as being observable system
events. Given a state view v and an allowed transition
(st1; st2; ag) with st1 and st2 appearing different with re-
spect to v, we can view ag as a visible event. If ag is in cags
for the system, then ag is a system event. Otherwise, it is
an environment event. By considering the agent sequences
associated with behaviors, we can obtain a representation
of the system as a sequence of events. For example, the
behaviors above correspond to the sequences:

� <>

� < (pr; unclassified; req statf);

(kernel; unclassified; statpr;f;0) >

� < (ps; topsecret; req readf);

(kernel; topsecret; readpr;f);

(pr; unclassified; req statf);

(kernel; unclassified; statpr;f;1) >

If we assume that pr can only see its input and output buffers,
then events ag1 and ag2 are not visible with respect to pr’s
view. We can then restrict each of the event sequences to
the events visible to pr:

� <>

� < (pr; unclassified; req statf);

(kernel; unclassified; statpr;f;0) >

� (pr; unclassified; req statf);

(kernel; unclassified; statpr;f;1) >

Now, it is relatively straightforward to translate between
definitions of noninterference in terms of TLA and CSP. As
an example of applying a CSP version of noninterference to
a system specified in TLA, consider the definition in refer-
ence [7] which requires that the system obtained by hiding
sender events is deterministic when viewed by the receiver.
The above sequences of events show that the system speci-
fied in TLA can perform two different outputs to the receiver
as the result of the same input by the receiver. Consequently,
the system appears nondeterministic to the receiver and does
not satisfy the definition of noninterference in reference [7].
By translating existing theories of noninterference into TLA,
it is possible to apply those theories to systems specified in
TLA. This allows prior definitions to be used in TLA just
as easily as the definition proposed here. In summary, the
definition of noninterference in TLA given here is not the
only way to define noninterference in TLA. To use another
variant of noninterference, it is not necessary to abandon
TLA; it is simply necessary to translate into TLA.

7. Composition and Refinement

A recent area of research regarding noninterference state-
ments is their composability. Early work in this area in-
cludes McCullough’s statement of restrictiveness [4]. More
recent work includes that described in references [5] and
[8]. Essentially, the question is whether the composition of
two “secure” components results in a “secure” composite
system (where “secure” means “satisfies noninterference”).
The motivator for this research is the desire to use a divide-
and-conquer approach to analyzing systems. For example,
it is desirable to divide the analysis of an MLS network into
analysis of the following components:

� Analysis of each of the nodes in isolation.

� Analysis of the network protocol used to connect the
nodes.

In theory, it is possible to continue to apply this divide-and-
conquer approach to more detailed models of the system.
For example, the model of each node might be as the compo-
sition of various components (file system, network protocol
stack, …) representing the modules comprising the node. In
practice, a point is eventually reached at which point it is
not practical to consider components in isolation.
To consider the composability of our proposed statement of
noninterference, we now suppose that we have two systems,
sys

1
and sys

2
, and processes, cmp

1
and cmp

2
, such that:

� cmp
1
6;sys

1
cmp

2
, and

� cmp
1
6;sys

2
cmp

2

Ideally, it would be possible to demonstrate that
cmp

1
6;sys

1
ksys

2
cmp

2
. This type of composability re-

sult holds for policies such as those in references [4], [5],
[10], and [7]. We have not spent much time considering
the composability of the definition of noninterference given
here, so it is clearly an area for future research. We simply
make some initial observations here.
Suppose cmp1 and cmp2 are processes of the composite
system that are desired to be shown to be noninterfering. In
general, each process can refer to processing specific to each
of the systems being composed. This means that when ana-
lyzing the security of sys1, it might be necessary to consider
sys2, too. This would be undesirable since it would make it
difficult to analyze systems individually. There might be a
trade-off here between being able to state conditional nonin-
terference policies and having the noninterference policies
be composable.
The reason why composing two secure (in the noninterfer-
ence sense) systems does not necessarily result in a secure
system is that the composition is generally more determin-
istic than the original system. As noted earlier, removing

nondeterminism can introduce covert channels. For exam-
ple, our definition of noninterference requires that for each
behavior beh of the sender and receiver operating together
on the system, there exists an equivalent behavior beh0 of the
receiver operating by itself on the system. The reason that
this policy is not generally composable is that the behavior
beh0 might not be allowed by the composite system even
though it is allowed by the first system individually. The
problem arises because some of the environment steps of
the first system are steps it allows to be taken by the second
system. If any of these steps appear in beh0 and are not ac-
tually selected by the second system, then beh0 is not a valid
behavior of the composite. Although more investigation is
required, we suspect that by requiring noninterference to
hold for all refinements of cmp1 and cmp2, this problem
can be addressed.

8. Conclusion

In the approach described here, noninterference is a prop-
erty (in the generic rather than Abadi-Lamport sense) of sys,
cmp

1
, and cmp

2
. This has led to noninterference being re-

ferred to as a “property of properties” (in the Abadi-Lamport
sense) since sys, cmp

1
, and cmp

2
are Abadi-Lamport prop-

erties. While it is true that noninterference is not an Abadi-
Lamport property, the preceding sections have demonstrated
that noninterference can be specified in TLA and that ex-
aminations of the composability of noninterference can be
carried out within TLA. We believe a similar approach can
be used to examine refinement of noninterference in the
context of TLA specifications. Since the TLA specifica-
tion language and the composition and refinement theories
developed for it are well-accepted tools for specifying and
verifying systems, it is desirable to be able to use them for
secure system development. By developing techniques to
perform covert channel analysis on TLA specifications, it is
possible to use TLA for all of the formal analysis performed
on a system.
In addition to demonstrating how to state noninterference in
TLA, the proposed statement is of interest by itself. It has
a very close tie to the intuitive notion of noninterference.
In addition, it allows precise statements of which processes
are prevented from signaling even when a covert channel is
present in the system. The given definition of noninterfer-
ence is merely one example of how noninterference can be
defined in TLA. We discussed how other definitions of non-
interference in terms of CSP might be translated into TLA.
This allows users of TLA to build upon prior definitions of
noninterference while also providing a common framework
for comparing various noninterference policies.
Much future work remains to be done. First, it would be
desirable to determine whether the strong version of our
noninterference policy is composable. In doing so, we will

need to determine the feasibility of retaining the conditional
nature of the policy while ensuring it is composable. Sec-
ond, the examination into refinement of systems satisfying
noninterference should be done. This could provide guid-
ance to developers as to how abstract specifications can be
refined into implementations without introducing security
flaws. Finally, the range of policies that can be supported by
the proposed statement of noninterference should be con-
sidered. In addition to allowing for the statement of poli-
cies prohibiting components from interfering even though a
covert channel is present, the generality might be useful in
areas such as intransitive noninterference [9]. For example,
using cmp

1
to denote processing other than that specified

for an assured pipeline and cmp
2

to denote a component in-
tended to receive information through the assured pipeline,
it should be possible to demonstrate that the information
transfer is prevented if the system implements the assured
pipeline correctly.

References

[1] M. Abadi and L. Lamport. Conjoining specifications. Tech-
nical Report 118, Digital Equipment Corporation, Systems
Research Center, Dec. 1993.

[2] T. Fine. Constructively Using Noninterference to Analyze
Systems. In IEEE Symposium on Security and Privacy,pages
162–169, Oakland, CA, May 1990.

[3] D. Johnson and F. Thayer. Security and the composition of
machines. In Proceedings of the Workshop on the Founda-
tions of Computer Security. IEEE, Oct. 1988.

[4] D. McCullough. Noninterference and the composability of
security properties. In Proceedings of the 1988 Symposium
on Security and Privacy, pages 177–186. IEEE, Apr. 1988.

[5] J. McLean. A General Theory of Composition for Trace
Sets Closed Under Selective Interleaving Functions. In Pro-
ceedings of the IEEE Symposium on Security and Privacy,
Oakland, CA, May 1994.

[6] NCSC. Trusted Computer Systems Evaluation Criteria.Stan-
dard, DOD 5200.28-STD, US National Computer Security
Center, Fort George G. Meade, Maryland 20755-6000, Dec.
1985.

[7] A. W. Roscoe. CSP and determinism in security modelling.
In Proceedings of the IEEE Symposium on Security and Pri-
vacy, pages 114–127, Oakland, CA, May 1995.

[8] A. W. Roscoe and L. Wulf. Composing and Decomposing
Systems under Security Properties. In Proceedings of the
IEEE Computer Security Foundations Workshop, 1995.

[9] J. Rushby. Noninterference, Transitivity, and Channel-
Control Security Policies. Technical report, SRI Interna-
tional, Dec. 1992.

[10] P. Ryan. A CSP Approach to Noninterference and Unwind-
ing. IEEE Cipher, 1990.

[11] N. Shankar. A lazy approach to compositional verification.
Technical Report TSL-93-08, SRI International, Dec. 1993.

