Developing and Using a“Policy Neutral” Access Control Policy

Duane Olawsky, Todd Fine, Edward Schneider and Ray Spencer
Secure Computing Corporation
2675 Long Lake Road,
Roseville, Minnesota 55113-2536

Email: olawsky@sctc.com, fine@sctc.com, spencer @sctc.com

December 2, 1996

ABSTRACT

The foundation for security enforcement is access control. Re-
sources must be protected against access by unauthorized entities.
Furthermore, authorized entities must be prevented from accessing
resources in inappropriate ways. A major challenge to the devel-
oper of an access control policy is to provide users the flexibility
to protect their resources as they see fit; system policies that are
inconsistent with user needs are inadequate. In particular, systems
that enforce a single, hard-coded policy cannot satisfy the needs of
all users.

As part of the Distributed Trusted Operating System (DTOS)
program, we have developed and implemented a flexible security
architecture using the Mach microkernel. In this architecture, the
security rules enforced by the system are defined by a system com-
ponent outside the microkernel. This reduces the problem of sup-
porting other security policiesto redefining this system component;
the same microkernel can be usedto support awide range of policies.

Formal methods were used to provide a rigorous approach for
the development of the policy. Recognizing that most people are
uninterested in reading security requirements stated in formal speci-
fication languages, an approach was devel oped for representing and
maintaining the policy in atabular format. This paper describesthe
flexibility of the DTOS security architecture and the approach used
in developing the access control policy for this flexible architecture.
It also gives examples of how to define a component that makes
security decisionsfor the microkernel.!

1 INTRODUCTION

One of the goals of the Distributed Trusted Operating System
(DTOS) program is to investigate an approach for developing an
operating system microkernel that supports a wide range of secu-
rity policies. Rather than simply following the guidelines in the
Trusted Computer Security Evaluation Criteria (TCSEC) [12] and
implementing Discretionary Access Control (DAC) and Multilevel
Security (MLS), the DTOS microkernel must provide a framework

1 This work was supported in part by the Maryland Procurement Office, contract
MDA904-93-C-4209 and was performed in cooperation with researchers at the Infor-
mation Security Computer Science Research Division of the Department of Defense.

that encompassesthese policies aswell as others. The DTOS pro-
gram is exploring this framework through prototyping and study
efforts.

Given that secure system developments have traditionally fo-
cused on implementing a particular security policy,? anatural ques-
tion to ask is why we think supporting a wide range of policies is
important. One reason is that different sites need to protect against
different threats. A site controlling a nuclear reactor needs to pro-
tect the integrity of the processes and data used to run the reactor.
A site containing proprietary or confidential data needs to protect
that data from unauthorized disclosure. A site managing medical
records needs to protect the records both from unauthorized disclo-
sure and inappropriate modification. While access control policies
are appropriate for each of these examples, a different type of ac-
cesscontrol policy might be desired for each. Policies such as Type
Enforcement [3] and Clark-Wilson [5] can be used to address in-
tegrity concerns. Other policies such as MLS, Chinese-Wall [4],
and ORCON [10] can be used to address confidentiality concerns.
However, no single policy is appropriate for all cases.

A second reason for supporting a wide range of policiesis that
the set of threats against which each site must protect is constantly
evolving. Some threats that are of concern today might not be of
concern next year. Furthermore, the system must protect agai nst new
threats that exploit previously unknown security flaws in existing
applicationsand security flawsintroduced through new applications.
A system that is hard coded to enforce a single security policy will
have much more trouble adaptingto the evolving set of threatsthan a
system supporting aflexible security architecture. Thisis especially
true when high assuranceis agoal. Then, time is required to model
the system, state the policy, and perform the assuranceanalysis. By
basing the assurance for a specific site on assurance performed on
apolicy neutral system, the time required to assurethe final system
can be greatly reduced.

Without policy flexibility, users must either make due with a
system that does not provide exactly the type of protection they
would like or must wait until someone develops a system that does.
Given that the development of a secure system takes a significant
amount of time, the threats against which a user needs protection
typically will have changed between the time that development
begins and the time a new system is completed. Thus, users are
constantly forced to make duewith the policiesprovided by existing
systems.

In Section 2 we describe the DTOS architecture for a policy
flexible system, and in Section 3 we describe the method used in
DTOS to develop a flexible, policy-neutral access control policy.
Section 4 presents two examples of the use of the architecture to
implement a high-level policy (MLS and Clark-Wilson), and Sec-
tion 5 discussesthe range of policy flexibility supported by DTOS.

?The Data Secure Unix system described in reference[17] is an exception.

Manager

Request

Security Server

Access
Deci si on
MER_DATA Request SS_DATA
enforcement policy decision policy
retained decisions Access
Vect or

Figure 1: DTOS Architecture

Section 6 describes the use of composability analysis[1] to deduce
properties of the system. Section 7 notes some related research.
Finally, Section 8 summarizesresults and open issues.

2 AN ARCHITECTURE FOR POLICY
FLEXIBILITY

The DTOS security architecture[11], depicted in Figure 1, supports
policy flexibility by separating the making of policy decisionsfrom
the enforcement of those decisions. The policy decisions are made
by security servers. A security server® is simply a process execut-
ing in the system that makes decisions based on a set of security
rules. The enforcement of these decisions is performed by each
system component managing the objects protected by the policy. A
manager is the only subject able to directly access some collection
of objectsthat it manages. It receives a sequence of requests from
various client subjects to perform actions on its objects and must
decide, based onits current state (possibly augmented by new access
decisions received from a security server), whether or not to carry
out that request.

Themanager receivesrequestsfrom other subjects,including the
Security Server, and it sendsaccessdecisionrequeststo the Security
Server. The Security Server sends responsesto the access decision
reguests to the manager. The manager and Security Server each
have internal data that records their processing state. The Security
Server’sdataincludesadecision policy whichisthe dataand/or code
governing the Security Server's policy decisions. The manager's
data includes an enforcement policy specifying the required access
decisions that the manager associates with each manager request
and a set of retained decisions specifying access decisions that the
Security Server haspreviously madewhich have been cached by the
manager.

When requesting a security decision, the manager must provide
information indicating the subject that is requesting the service and
the object upon which the service is to operate. Thus, it suffices
for an object manager to associate security information with each
object that it manipulates as aresult of client requests. The process
manager* manages the subjects and therefore associates security
information with each subject. In addition to providing the security
information for the accessing subject and for the entity acted upon,
the manager also provides the type of operation that is desired. The
operation type is specified by a permission name. In response, the
Security Server provides a set of decisions, called an access vector,
indicating which operations the accessing subject may perform on

3\We use “a security server” when referring to security serversin general and “the
Security Server” when referring to the security server present in a given instance of
DTOS.

4The processmanager in DTOS is the Mach microkernel.

the entity. Although the Security Server could simply respond with
ayes/no answer as to whether the requested operation is permitted,
we return an access vector for efficiency. By caching the returned
accessvector and consulting the cache before requesting decisions
from the Security Server, the manager can avoid interactions with
the Security Server when the necessary information isin the cache.”

The security information that a security server needsin order to
make access decisions dependson the particul ar policy implemented
by that security server. For example, a security server enforcing an
MLS policy makesits decisions based on the security levels of the
accessing subject and the accessed entity. However, having the
manager provide security levels to the Security Server would be
incorrect sinceit would hard code into the manager that each entity
has a security level. To betruly policy flexible, the manager cannot
contain any policy specific information. Thus, the manager asso-
ciates a label called a security identifier (SID) with each manager
object. The Security Server defines a mapping between SIDs and
security contexts. This mapping defines the meaning of each SID.
In the case of an MLS policy, a security context might consist of
simply a security level. In the case of a Type Enforcement [3] pol-
icy, the security context associated with asubject SID might contain
only a domain while the security context associated with an object
SID might contain only a type.® The level of indirection provided
by SIDs allows the same manager to be used regardless of how the
Security Server interprets SIDs and makes access decisions. The
Security Server provides an interface allowing managers and other
tasks to map SIDs to their associated contexts and vice versa.” Of
course, a security server may restrict accessto this information if
thisisrequired by its policy goals.

There are several typesof policy involved in asystemusing this
architecture. Thefirst is the high-level system policy. Some exam-
ples are MLS, Clark-Wilson and ORCON. Thisis the policy that
would be hard-coded into a system using a traditional architecture
not designed for policy flexibility. In the DTOS architecture this
policy emergesfrom the interaction of the manager and the Security
Server, each of which isimplementing its own policy.

5The interaction between the manager and Security Server in DTOS is dightly
morecomplicated than that described here. For example, therearealso facilitiesfor the
Security Server to instruct the manager not to cache certain parts of the returned access
vectors and to flush vectors from the cache. Such features are necessary to support
policiesin which accesses can be revoked.

5 TypeEnforcement controls subject-to-subject access on adomain-to-domainbasis
and subject-to-object access on adomain-to-typebasis. Thus, the security information
needed to make decisions consists of domainsand types.

"Thedeveloper of any particular security server must decidewhether it isimportant
to the goals of the policy that SIDs be cryptographically protected (or even opague)
from interpretation by other tasks. Such protection is not required by the architecture.
However, to maintain policy-neutrality, all managers should be written with the as-
sumptionthat SIDsare opaque. If this guidelineis violated, the manager will not work
correctly with any security server that does not supply transparent SIDs with the same
structure.

The manager’s enforcement policy defines the security require-
ments governing when the manager provides service. In particular,
this policy identifies the points in the manager processing at which
a security decision needs to be obtained. It also indicates which
security decision is needed at each point. This policy defines what
it means for the manager to enforce policy decisions made by the
Security Server. It will bethe sameno matter what decisionpolicy is
supplied by the security server. Each manager istrusted to correctly
implement its enforcement policy.

The Security Server’'s decision policy defines the security re-
quirements on how the security server makes access decisions.
Since the intent is to allow different security servers to make se-
curity decisionsdifferently, thereis no single security server policy.
However, there is awell-defined interface that the managers expect
each security server to implement. Themain requirement onthein-
terfaceis simply that whenever the Security Server sendsthe results
of a security decision, the results are consistent with the decision
policy that the Security Server isimplementing.®

Although a manager could be any of avariety of components
including afile server enforcing access decisions made on files and
an application enforcing access decisions on application specific
data, the remainder of this paper considers only the enforcement
by the DTOS microkernel of accessdecisionsmade on microkernel
subjects and objects.

3 DEVELOPING THE DTOS
MICROKERNEL ENFORCEMENT POLICY

To explore the use of the DTOS architecture, a primary focus of
the DTOS program has been to modify the Mach microkernel to
serve as amanager in that architecture. In doing so, we have added
support to Mach for a wide range of access control policies. This
has been accomplished by inserting control logic inthe microkernel.
The processing of each microkernel request has been modified to
reguest a security decision by a security server before providing a
service. We have also implemented a prototype user-space security
server that makes these security decisions for the microkernel. The
security-enhanced microkernel and the prototype Security Server
have been released to a number of sitesfor usein research on secure
systems. Some sites are developing their own security server while
others are devel oping additional policy-flexible applications. Addi-
tional information on the implementation of both the microkernel
and the Security Server can befound in [11].

Although the work described here deals with enhancing Mach
to function as a policy-neutral object manager, this is merely an
example. Thearchitecture is general enough to be applied not only
to other microkernels but to a wide variety of managers.

3.1 APPROACHES TO POLICY
DEVELOPMENT

Traditionally, there have been two related but distinct approachesto
developing security policies. The first approach, the threat-based
approach, is to identify the system threats that are of concern and
developrequirementsthat addressthethreats. The second approach,
the criteria-based approach is to interpret a set of requirements
specified by an evaluation criteria document (such as [12]) for the
target system. Therelation betweenthetwo approachesisthat inthe
second approachit is assumed that the developers of the evaluation
criteria have already identified all of the relevant threats.

The criteria-based approach is infeasible for DTOS due to the
goal to support a wide range of policies. Regardless of whether
an evaluation criteria document contains MLS, integrity, or avail-
ability requirements, there is alwaysthe possibility that the user of

8 A security server may also provide specialized interfaces for use by particular
managers.

aDTOS system will want to enforce some other type of security.
Consequently, the DTOS policy must provide aframework in which
avariety of policiescan be supported rather than simply interpreting
requirementsin an existing evaluation criteria.

Thus, the DTOS policy development is threat-based. However,
thethreatsidentified are of adifferent naturethan thosetraditionally
identified. When developing the policy for a systemthat isintended
to enforce asingle policy, theidentified threatstypically are specific
to that policy. For example, while covert channels[12] are athreat
with respect to MLS policies, they are typically not a threat with
respect to integrity policies. Since the DTOS policy is intended to
provide a framework that supports a wide variety of policies, the
threatsidentified for DTOS must be policy independent.

The intent is for users to be able to counter threats to their
systemsby appropriately configuring DTOS. Furthermore, asthe set
of threats against which a site must protect evolves, administrators
shouldbeableto reconfigureDTOS to addressthe new set of threats.
This requires controls to be placed on essentially all services. For
example, DTOS must control the setting of the scheduling priority
for a thread since some users will want to protect against service
denial to user threads. Although the denial of service threat might
be of little concern to most users, the possibility that some users
might be concerned suggests viewing it as a real threat. Since
providing protection against every conceivablethreat isimpossible,
a judgement call must be made on the set of threats that are of
concern.

The approach taken in defining the enforcement policy for the
DTOS microkernel is to view any access of the microkernel state
as being a potential threat. By viewing each access as a potential
threat and providing appropriate control mechanisms, the goal of
supporting multiple policies can be achieved.’

3.2 POLICY DEVELOPMENT

Although developing a policy for a system intended to be “policy
neutral” seemsparadoxical, the“paradox” islargely resolved by the
separation of security enforcement from security decision making.
In this section we describe a process for defining the hard-coded
enforcement policy in the manager. We use the DTOS microkernel
enforcement policy as an example. In Section 4 we give examples
of how to define a decision policy in a security server to achieve a
given high-level policy.

The process we have used for defining the enforcement policy
of the DTOS microkernel consistsof the following primary steps:

1. Identify the servicesthat are provided by the microkernel,

2. Relate each microkernel service to one or more access deci-
sions that must be obtained for the service to be performed.

3.2.1 IDENTIFYING SERVICES

To perform the first step we determine the following information
about the system:

o the microkernel data structures, and
¢ the requeststhat clients may maketo accessthose structures.

With this information in hand we proceed to identify the services
provided by the microkernel that need to be controlled. We dis-
tinguish the following two classes of service: transformation and
invocation. A transformation serviceis one that is defined in terms
of a change to one or more of the data structures that comprise
the system state. For example, one component of the DTOS
system state is existing_tasks, the set of existing tasks. Since
any change to a set involves adding or removing elements (or

9 See the DTOS Generalized Security Policy Specification [14] for moreon support-
ing multiple policies.

both), these are two natural services to associate with this com-
ponent. Consideration is then given to whether a threat is posed
by the ability to add or remove elements from this set. The abil-
ity to remove an element poses a denial of service threat. Thus,
we define a service, TerminatesTask(task) to be any modifi-
cation to the contents of the system state that results in task
being removed from ezisting_tasks. Any system transition in
which an element is removed from existing_tasks IS an instance
of this transformation service. As another example, each task
has an associated priority that determines the initial priority of
its threads. The service Sets TaskPriority(task) is defined as a
modification to the system state that results in the priority of task
changing. The AllocatesReadRegion(task, page_index) service
is defined as a state change in which a new page is allocated
at page_index for task and the protections of that page include
read access. The Allocates Write Region(task, page_index) and
Allocates Execute Region(task, page_indez) services denote the
allocation of pageswith write and execute access, respectively.

In al of these examples, aserviceis equated with a characteriz-
ing property of state transitions. Any state transition satisfying the
characterizing property is considered to have provided the service.
Conversely, a state transition that does not satisfy the characterizing
property is considered not to have provided the service.'°

Not all microkernel requests ater the modeled state of a mi-
crokernel entity. Some of them only observe the modeled state
of some entity, and these requests cannot easily be characterized
as performing transformation services. For example, consider the
Mach task _info request which returns information on the state of a
specifiedtask. Sincethis operation simply observesdata, notraceis
left in the contents of the system stateto indicate when the operation
has been performed. For each such request we define an invocation
service* Any system transition in which one of these requests is
invoked is an instance of the corresponding invocation service.

Unlike a transformation service, which may be performed by
multiple requests, an invocation service is associated with exactly
one request. Since transformation services address the ways in
which subjects can modify the system state, they address primarily
denial of service and integrity concerns. In contrast, invocation
services address ways in which subjects can observe objects, thus
focusing on confidentiality concerns.

3.2.2 STATING THE POLICY

The second step in the development of an enforcement policy is
to define the relationship between the manager’s services and the
accessdecision computationsthat must be requested of the Security
Server by the manager. The manager enforcement policy must
indicate which accessdecisionsneed to be checked before providing
eachservice.'? Thus, theenforcement policy must map each service
to atriple consisting of the SIDs of the subject and object involved
together with the permission requested.

For example, the DTOS microkernel’'s enforcement pol-
icy maps the service SetsTaskPriority(task) to the permis-

190ne issue that might be taken with the task priority example is that a request
that sets a task’s priority to the same value as the task’s current priority will not be
recognizedasa Sets TaskPriority service. Astherequest iseffectively ano-op, we
maintainthat thereisno needto view therequest as providingaservice. Of course, there
are also covert channel issues that must be addressed when the permission checks are
beingimplemented. Care must betaken that if the serviceisdisallowed an “insufficient
permission” statusisreturned even when the operationwould be ano-op. Otherwise, if
aclient ¢ doesnot have permission to obtainaservice Sets TaskPriority(t1), then
¢ could determine the priority of ¢; by attempting to set ¢, ’s priority and observing
whether thereturn status indicates “ success’ or “insufficient permission”. (Permission
checksin DTOS areimplemented in a way that preventsthis channel.)

" There are afew Mach requests (e.g., task_get_special_port) for which multiple
invocation servicesaredefined. Thisallowsfiner-grained control depending uponwhich
system state informationis requested as specified in the parameters of the request.

12Recall that we allow the possibility that the result of an access decision request is
cached. If the result of arequired access decision can be obtained from the cache, then
the microkernel will not make a new request for that access decision.

Requirementson client to task Accesses

[[Transformation Service | Required Permission ||

SetsTaskPriority(task)
Terminates Task(task)

Change_task_priority
Terminate_task

Table 1: Tabular Policy Example

sion Change_task_priority and the SIDs for the client!® and

task (the target). In other words, the microkernel policy re-
quires that the client have Change_task_priority permission
to task before providing the service SetsTaskPriority(task)
to the client. Similarly, the DTOS enforcement pol-
icy maps the service TerminatesTask(task) to the per-
mission Terminate_task and the SIDs for the client and
task. The services AllocatesReadRegion(task, page_index),
Allocates Write Region(task, page_index)
and AllocatesEzecute Region(task, page_index) are mapped to
Have_read, Have_write and Have_ezecute permission, respec-
tively, and to the SIDsfor task and the indicated page.

The DTOS enforcement policy is stated in two different forms.
To provide a clear, precise statement, the policy is formalized
in the Z specification language [16]. This requires formaliz-
ing the system state and the transformation services. Then
the enforcement policy can be formalized as a relation between
the services, the permissions and the SIDs. The expression
kernel_allows(task_sid(client), task_port_sid(task)) denotes
the set of permissions allowed from the SID of the client to the
object SID of the target task. It thus models the accessvector asso-
ciated with the pair of SIDs. The formalization of the requirements
on SetsTaskPriority is asfollows:

Y Transition; task : TASK
o SetsTaskPriority
= Change_task_priority
€ kernel_allows(task_sid(client),
task_port_sid(task))

Experience has shown that most people are uncomfortableread-
ing such mathematical statements. Consequently, formal security
policies are to agreat extent ignored by all but formal methods ad-
vocates. Thisisunfortunate since people such assystemdevelopers,
evaluators, accrediters, and users need to understand the system pol-
icy. After all, the distinguishing characteristic of a securesystemis
that it hasa policy that it is assured to satisfy.

The DTOS enforcement policy addresses this by providing a
tabular representation of the policy as well as the formal Z state-
ment. Tables 1 and 2 contain brief excerptsthat illustrate the tabular
representation of the policy.

The heading of a table indicates the SIDs that should be used
for the permission checks specified in the table. Each row of a
table identifies a binding between a service and a permission. One
such table is defined for each pair of entity types for which there
are associated permission checks. A similar approach is used for
invocation services. The only difference is that the tables associate
permissionswith DTOS requestsinstead of transformation services.
The system developers have found the tables to be a convenient
representation of the policy. This has allowed the people coding
the security checksto obtain a better understanding of the security
checksthan if the policy wasdocumented only in the Z specification
language.

13 Theclient is the task that initiated a request for service.

Requirementson task to page_sid(task, page_index) Accesses

[Transformation Service

| Required Permission ||

Allocates ReadRegion(task, page_index)

Have_read

Allocates Write Region(task, page_index)

Have_write

Allocates Execute Region(task, page_index)

Have_execute

Table2: A Second Example

To help maintain consistency between the enforcement policy,
the design documents and the microkernel itself, we have written
tools that automatically extract information on servicesand permis-
sions from underlying data tables. These tools analyze the data
tables to produce the following:

e The policy requirements (both the formal Z versions and
the tables shown above) included in the enforcement policy
document,

e Thelists of permissions needed to invoke each request (there
may be several),

e Thelist of permissions associated with each class of object,
and

¢ C files defining the permissions used in the microkernel and
the checksto be performed.

Thesetools have proved useful in maintaining consistency between
the assurance and implementation efforts as the system evolved.

Although the tabular representation of the policy has been quite
useful, itisincompl ete without the definitions of each of the services.
In the DTOS approach, the service definitions are given informally
in English and formally in Z. Althoughthe Z formalization could be
omitted, some benefits have been achieved from the formalization.
First, theformal definitions are much more precisethan theinformal
ones. This additional precision is especialy useful in capturing
some of the more subtle aspects of the system such as the transfer
of capabilities. The lack of precision in informal definitions can
lead to inconsistencies between how the security requirements are
interpreted by the peopleimplementing the system versusthe people
analyzing the system. Second, the formalization of the policy has
allowed other tools to be used in the development of the policy. For
example, a parser can be used to check the syntax and typing of the
requirements. In particular, referencing a service that has not been
formally defined results in an undefined function being reported
when the formal policy statement is generated and parsed. This has
actually occurred onthe DTOS program when systemimplementors
have added new services to the tables. In these cases, parsing the
formal policy identifiesthat the new servicesstill need to beformally
defined.

3.2.3 EVALUATION OF THE APPROACH

The two-step process described here was relatively straightforward
to apply to DTOS. The microkernel documentation describes the
system data structures and microkernel requests from which the
service definitions are derived. The approach worked well for the
initial development of the policy aswell as for the incorporation of
system components that were added later. Having a well-defined
process for identifying the services is much more desirable than
using an ad hoc approach. Since there is nothing Mach-specific
to this approach, it is of use to other secure system developments,
too. Thisincludes operating system and application developments
as well as other microkernels. The only assumption made by the
approachis that the system uses the client-server paradigm.

We note that it would be possible to define one or more invoca-
tion servicesfor each system request and not define any transforma-
tion services. This would eliminate the need to model the system
state in the enforcement policy specification. However, we prefer
the use of transformation services whenever possible because re-
quirements based on them provide general enforcement statements.
A transformation service defines a state transition that might be
provided by multiple system requests. For these cases, defining the
security requirementsin terms of a common transformation service
ensures a more coherent policy. Rather than a separate permis-
sion check being specified for each individual request providing the
service, asingle permission is globally associated with the service
regardless of what requests are implemented in the system. This
has the following advantages:

Robustness— If the system interface is modified, we only need
analyze what services are performed by the modified/added
system calls.

Support of High-L evel Reasoning—
Transformation services allow general high-level reasoning
about permission checking without repeated analysis of all
the requests that perform a given service.

In contrast, theinvocation servicescontrol theinvocation of requests
rather than the providing of services. A requirement that a client
have get_task_info permission to a task in order to invoke the
task _info request on that task placesno restrictions on other waysin
which the client can obtain information about the task. To perform
higher level reasoning about which tasks “know” a given piece
of information for a particular task, one must first identify all of
the requests that return that information. Then, the permissions
associated with each of these requests must be analyzed to ensure
that the policy is satisfied.

However, even for transformation services, it is still necessary
at some point to determine which requests provide the transfor-
mation service. In particular, the system developers will need to
determinewhich portions of the code provide agiven service so that
the access decision requestsrequired by the enforcement policy can
beincluded. Thus, while transformation services have advantages,
they might complicate argumentsthat the implementation obeysthe
enforcement policy.

The number of permissions defined in DTOS is much greater
than those defined for other systems. For example, most MLS
systemsreduce the set of permissionsto read and write. In DTOS,
there are currently about 150 different microkernel permissions.
Not coincidentally, there are approximately 150 microkernel calls
in Mach. Thus, the large set of permissionsis necessary to support
fine-grained control. For example, thereare different typesof “ read”
accessesin Machthat agiven policy might wish to differentiate. Two
such read accessesare

o read atask’s address space, and

¢ read atask’s|PC name spaceby copying a port right from the
task.

Since the goal of DTOS is to support a wide range of policies, a
large set of permissionsis necessary. Otherwise, DTOS will not be
able to support system policiesthat require fine-grained control.

Fine-grained control isvery closely linked to the concept of least
privilege. Anenabling design principlefor securesystemsisto limit
the privileges held by each subject to the minimum required. Then,
the system decision policy can berelied upon to prohibit the subject
from performing unwanted operations. This allows the majority of
the assuranceanalysisfor the subject to focus on demonstrating that
the subject correctly performs the operations that it is permitted to
perform.

The large number of permissions raises two concerns:

¢ the complexity of inserting code to check so many permis-
sions, and

¢ the effect on performance of checking so many permissions.

In DTOS, most microkernel calls require only a single permission
check, and most of these permission checkscan be done at the same
point in the code before processing of the request is dispatched to
the individual processing routines. This resolves the first concern
to alarge extent.

To addressthe second concern, we implemented an access vec-
tor cache in the microkernel. To reduce cache searching, pointers
from key data structures to associated cache entries are maintained
by the microkernel. Heavy use of Mach send-once rights reduces
the effectiveness of this secondary caching mechanism (the point-
ers). A few preliminary timing studies have been performed, but
they are not sufficient to draw solid conclusions. They suggest that
the impact on performance is determined largely by the effective-
ness of the caching scheme. That is, if access vectors are easily
available, permission checking does not have a significant effect on
performance. The data are probably obscured by other factors such
as paging performance and page alignment of microkernel code
as well as disk fragmentation and contention. See [11] for more
information on the implementation and the performance tests.

4 EXAMPLE SECURITY SERVERS

A security server has complete freedom to make each security deci-
sion in whatever manner it wants. The particular high-level policy
enforced by the system is a function of the decision policy im-
plemented by the Security Server and the enforcement policy im-
plemented by a manager. One possible decision policy grants all
permissions. If we combine such a security server with the Mach
microkernel, the resulting system would be essentially equivalent
to vanilla Mach. This is, of course, not very interesting from a
security standpoint. In this section we give a brief sketch of two
decision policies for DTOS that are more interesting with regard
to security. When combined with the DTOS microkernel, the first
example implements a high-level policy consisting of MLS with
Type Enforcement, and the second implements the Clark-Wilson
integrity policy [5]. We have also investigated the ORCON policy
[10].

4.1 MLS WITH TYPE ENFORCEMENT

The only security server currently included in Secure Computing’s
DTOSreleaseisonethat performslevel-based and type enforcement
security checks[7]. This security server

e maps each subject SID to alevel-domain pair,
e maps each object SID to alevel-type pair, and

e makes security decisions based on the levels, domains, and
types associated with the SIDs provided by the microkernel
according to the usual level dominance and type enforcement
conventions.

4.2 CLARK-WILSON

The Clark-Wilson integrity policy [5] isconcerned with the correct-
ness of data and the prevention of fraud rather than the prevention
of disclosure. The data items that are to be protected are called
constrained data items (CDIs). The primary way in which CDI
correctness is protected is by alowing CDIs to be modified only
by certain programs, called transformation procedures (TPs), that
have been certified to take the set of CDIsfrom onevalid state to an-
other. (Validity is defined in some application-specific way.) Each
TP is certified to manipulate only certain sets of CDIs in a single
execution.

Prevention of fraud is furthered by providing mechanisms for
the separation of duty. A user « isallowed to modify aCDlI, ¢, only
if there exists aset of CDIs, .S, anda TP, ¢, such that

e cisanelementof S,
e u modifies ¢ by executing ¢,
e u iscertified to execute ¢ to modify the CDIs S.

Consider a check-writing program that requires a purchase order
to be entered into the system before a check will be printed. With
the above requirement, we can prevent the person who can run the
check-writing program from also running the equipment purchasing
program. In this way no single person can produce a purchase
order, discard it, and then write a check to pay for an item which is
never ordered. Fraud then requires at least two people conspiring
together.!*

In defining the decision policy of a Clark-Wilson security server
the primary consideration is the maintenance of a history for each
TP execution. Each processis assigned a unique subject SID (and
thus a unique subject context).'® A subject context indicates the
user in whose name the process is executing and the TP that the
process is executing. Every time a process p, executing a TP ¢,
is granted write access for the first time to any CDI ¢, this event
is recorded in the Security Server. Let CDI_history(p) denote
the set of all CDIs for which p has been granted write permission.
When p requests write access to a CDI ¢, the Security Server
checksthe CDI history associated with p. Write permission for ¢,
isgranted only if {¢2} U CDI_history(p) is asubset of some set
51 of CDls that TP ¢ is certified to manipulate and some set S
of CDlIs that the user is certified to manipulate via ¢. In this way
the Security Server ensuresthat granting p write accessto ¢, will
not allow p to manipulate a set of CDIs in violation of the Clark-
Wilson constraints. This example decision policy shows that the
architecture can support dynamic policies.

5 RANGE OF POLICY FLEXIBILITY

The example decision policies in Section 4 demonstrate some of
the flexibility of the DTOS microkernel enforcement policy. In
this section we discuss in more general terms the capabilities and
limitations of the enforcement policy in supporting high-level policy
flexibility.

We have already seen an example of adecision policy that pro-
vides a dynamic policy that is sensitive to the history of granted
permissions. DTOS can also support dynamic policies that are
environment-sensitive. For example, DTOS could be used to im-
plement a time-of-day policy in a bank where different decision
policies are used during banking and non-banking hours. This can
be achieved by writing a security server that monitors the system

4 For brevity, we have omitted some of the requirements of Clark-Wilson. These
requirementsare consideredin [14].

15 Thecurrent version of DTOS doesnot adequately support this one-to-onerel ation-
ship between subjects and SIDs. It can be obtained but may require modificationsto
many programs, include some that are not security aware. Of course, the inadequate
support is not a concernif it is acceptable to view all processes with the same SID as
being the same logical “process’.

clock and alters its method of making decisions at the appropriate
times. DTOS also supports both transitive and intransitive decision
policies. A transitive policy is onewhereif asubject A can modify
an object dy and if asubject B can detect the modifications made
by A to dy and can itself modify a dataitem dg, then A can also
modify dg. Any policy that does not satisfy this constraint for all
subjects and objectsis intransitive.

Asobserved in Footnote 15, DTOS does hot adequately support
a one-to-one relationship between processes and SIDs. A second
limitation isthat the DTOS microkernel doesnot sendthe parameters
of arequest to the Security Server. Thispreventstheimplementation
of certain policies. For example, supposesomeonewishesto imple-
ment a policy that allows each task ¢; to set the priority of atask &,
to any value p such that min_pri(ti, &) < p < maz_pri(ty, tz)
where min_pri and maz_pri are functionsthat map apair of tasks
to apriority. To support thistype of high-level policy, the microker-
nel would have to send the desired priority to the Security Server
as part of the access decision request. This effectively defines a
unique permission (and service) for each possible value of atask’s
priority. The DTOS enforcement policy does not support this level
of granularity.

Another limitation results from the fact that all accessdecision
requests arein terms of a pair of SIDs. It would probably be useful
to allow access decision requests with more than two SIDs. For
example, we might want to control port requests in Mach based
upon a SID-triple containing the client, the target port and the task
receiving from the target port. Asanother example, a Clark-Wilson
decision policy could probably be implemented with much less
history information if the Security Server interface allowed aprocess
to request accessto an entire set of CDIsin oneinteraction.

DTOS allows the Security Server to specify that an accessdeci-
sionis non-cachable and to request that a decision be removed from
the microkernel’s cache. However, in the first several releases of
DTOS, becauseof the way in which memory accessis controlledin
Mach, both of these abilities had no effect on read, write and execute
permissions. This limited the ability of DTOS to support policies
that must retract permissions that have already been granted.'® We
note that this does not make the system insecure, it only limits the
policy flexibility supported by the DTOS microkernel.

Obviously, this permission retraction problem applies only to
the DTOS microkernel and does not affect any other manager that
might beusedin aDTOS system. Furthermore, the other limitations
discussedin this sectionreally only apply to the microkernel and the
current Security Server. A new security server could allow an arbi-
trary number of SIDsor additional parameter information to be sent
in adecision request. If Clark-Wilson CDIswere managed by afile
server rather than the microkernel, then the file server could request
access to a set of CDIs in a single interaction. We also point out
that each manager is responsiblefor defining and enforcing its own
policy. A security server can be written or extended to make policy
decisionsfor any such manager. Thus,an MLS DBMSacting asthe
manager for database objects can have its own enforcement policy
dealing with tuples, attributes and relations. A security server could
be defined to supply access vectorsinstructing the MLS DBMS on
which operations are to be allowed and which rejected.

6 COMPOSABILITY

A question to be answered in any system with the DTOS archi-
tecture is whether the interaction of a manager and security server,
eachfollowing its own policy, guaranteesthat the system asawhole
enforces the high-level system policy. We are using composability

16The problem is that Mach caches protections in the page table, and removing
permissionsfrom the access vector cache has no effect on the pagetable. Thisproblem
was remedied in the October 1996 DTOS release by having the microkernel walk the
page tables updating the page protectionsas indicated by the security server.

theory [1, 15] to perform this analysis[6]. To do so wefirst specify
for each component (i.e., the manager and the Security Server) the
component’s behavior and the assumptions the component makes
about the actions of its environment including the other compo-
nents of the system and the environment of the entire system. In
both cases, we focus on safety properties. After showing that no
component violates the environmental assumptions of any other
component, we compose the two specifications by taking their con-
junction. Using this method we can analyze access control policies
such as simple security, the *-property and integrity.

The advantageof applying composability analysisto the system
is that we need demonstrate the correct implementation of the en-
forcement policy in the manager only once. When a new Security
Server is developed, its decision policy and the composition of this
Security Server with the manager must be analyzed. However, any
analysis that has already been performed on the manager can be
reused. We expect the manager to normally be much larger and
more complicated than the Security Server, so most of the analysis
isin fact reused.

7 SOME RELATED WORK

Pageet al. [13] proposesthe use of rule-based policiesto obtain pol-
icy flexibility. Like the DTOS separation of manager and security
server, this allows the system policy to be altered without changing
the manager. The way in which the rules in a rule-based policy are
interpreted by an object manager is roughly equivalent to what we
call an enforcement policy. Abrams et al. [2] presentsa framework
(GFAC) for studying and constructing access control policies. An
access control policy is viewed as rules expressed by authorities
in terms of access control information and context. Much of the
information in Section 5 regarding the range of policy flexibility in
DTOS came from an effort similar to the GFAC work to categorize
policies according to what they require of the enforcement policy
and the interface between the manager and security server. Hosmer
[8, 9] considers a Decider-Enforcer architecture in which the De-
cider may incorporate multiple policies. These policies are related
viametapolicieswhich capture the similarities between policiesand
the ways in which their decisions may be combined when they are
being used in the same Decider.

8 CONCLUSIONS

This paper describes the approach used to develop a policy-neutral
enforcement policy for the DTOS microkernel. The approach is
clarified through small examples of its application to DTOS. This
paper also provides examples of the combination of that enforce-
ment policy with a decision policy to implement a system with a
desired high-level system policy. Overall, the approach seemsquite
effective. The policy developed provides a fine degree of control
which can be used for both confidentiality and integrity policies.
The approach has also allowed the policy development to be more
closely integrated with the systemimplementation by using atabul ar
representation of the policy. Tools have been developed to maintain
consistency between the assurance and implementation efforts as
the policy evolves.

Although we have presented a process for systematically de-
veloping an enforcement policy for a policy-neutral system, this
process is not entirely objective. Choices must frequently be
made regarding the level of granularity of the services. For ex-
ample, others might choose to split the Sets TaskPriority(task)
service into two services: IncreasesTaskPriority(task) and
Decreases TaskPriority(task). This would provide finer control
by allowing, for example, atask to have permission to increaseasec-
ond task’s priority but not decrease the priority. Some users might

want even finer-grained control such as that described in Section 5
with regard to specific ranges of allowed priorities.

At the other end of the spectrum is the question of whether
other parts of the DTOS enforcement policy have an unnecessarily
fine grain. That is, are there service distinctions in DTOS that no
policy will ever need to use? Artificial examples can be created of
policies that require each of the permissions that we have defined.
However, the real question is what permissionswill people actually
need to support the policies they want to implement. Our current
approach for selecting the granularity is still rather ad hoc and is
based upon our perceptions of the likelihood that a policy will need
to make different decisionswith respect to the sub-services. Further
analysis is required to determine which of the currently defined
permissions are really necessary to support the policies of interest
to users.

Finally, the DTOS architecture has the advantagethat a system
with a new high-level policy may be implemented merely by sub-
stituting a security server that implements anew decision policy. In
assuring this new system policy we do not need to redo analysisthat
has already been performed upon the manager for the assurance of
other policies.

REFERENCES

[1] Martin Abadi and L eslie Lamport. Composing Specifications.
ACM Transactions on Programming Languagesand Systems,
15(1):73-132, January 1993.

[2] Marshall D. Abrams, Kenneth W. Eggers, Leonard J. La
Padula, and Ingrid M. Olson. A Generalized Framework for
Access Control: An Informal Description. In 13th National
Computer Security Conference, pages 135-143, Washington,
D.C., October 1990.

[3] W. E. Boebert and R. Y. Kain. A practical alternative to hier-
archical integrity policies. In Proceedings 8th National Com+
puter Security Conference, pages 18-27, Gaithersburg, MD,
October 1985.

[4] David F. C. Brewer and Michael J. Nash. The Chinese wall
security policy. In IEEE Symposium on Security and Privacy,
pages 206-214, Oakland, CA, May 1989.

[5] David D. Clark and David R. Wilson. A comparison of com-
mercial and military computer security policies. In IEEE Sym-
posium on Security and Privacy, pages 184-194, Oakland,
CA, April 1987.

[6] Todd Fine. A Framework for Composition. In Proceedings
of the Eleventh Annual Conference on Computer Assurance,
pages 199-212, Gaithersburg, Maryland, June 1996.

[7] Todd Fine and Spencer E. Minear. Assuring Distributed
Trusted Mach. In Proceedings |EEE Computer Society Sym-
posium on Researchin Security and Privacy, pages 206—218,
Oakland, CA, May 1993.

[8] Hilary H. Hosmer. Metapoliciesll. In 15th National Computer
Security Conference, pages 369378, Baltimore, MD, October
1992.

[9] Hilary H. Hosmer. The Multipolicy Paradigm. In 15th Na-
tional Computer Security Conference, pages 409422, Balti-
more, MD, October 1992.

[10] Catherine JensenMcCollum, Judith R. Messing, and LouAnna
Notargiacomo. Beyond the pale of MAC and DAC — defining
new forms of accesscontrol. In IEEE Symposiumon Security
and Privacy, pages 190-200, Oakland, CA, May 1990.

[11] Spencer E. Minear. Providing Policy Control Over Object
Operations in a Mach Based System. In Proceedings of the
Fifth USENIX UNIX Security Symposium, pages141-156, Salt
Lake City, Utah, June 1995.

[12] NCSC. Trusted Computer Systems Evaluation Criteria. Stan-
dard, DOD 5200.28-STD, US National Computer Security
Center, Fort George G. Meade, Maryland 20755-6000, De-
cember 1985.

[13] John Page, Jody Heaney, Marc Adkins, and Gary Dolsen. Eval-
uation of Security Model Rule Bases. In 12th National Com+
puter Security Conference, pages 98-111, Baltimore, MD,
October 1989.

[14] Secure Computing Corporation. DTOS Generalized Secu-
rity Policy Specification. Technical report, Secure Computing
Corporation, 2675 Long Lake Road, Roseville, Minnesota
55113-2536, January 1995. DTOS CDRL A019.

[15] N. Shankar. A lazy approach to compositional verification.
Technical Report TSL-93-08, SRI International, December
1993.

[16] J.M. Spivey. The Z Notation: A Reference Manual. Prentice
Hall International, 1992.

[17] Bruce J. Walker, Richard A. Kemmerer, and Gerald J. Popek.
Specificationand Verification of the UCL A Unix Security Ker-
nel. Communications of the ACM, 23(2):118-131, February
1980.

