
A Framework for Composition

Todd Fine
Secure Computing Corporation

2675 Long Lake Road,
Roseville, Minnesota 55113-2536

Email: fine@sctc.com

Abstract

Analysis of complex systems requires the use of a “divide-
and-conquer” approach to specification and verification.
Existing theories for specification composition provide a
starting point for a framework for such an approach. This
paper describes a new framework that is a hybrid of two ex-
isting frameworks, explains the advantages of the new frame-
work, and illustrates its use through a simple example.1

1 Introduction

In this paper, we describe a variation of Lamport’s TLA spec-
ification language[1, 2] and provide a framework for com-
position of specifications based on the work of Abadi and
Lamport[1, 2] and Shankar[6]. Composition is a technique
for constructing more complex specifications by building
upon simpler specifications. Viewed from the other direc-
tion, the composition framework allows the specification
and verification of a complex system to be decomposed into
the specification and verification of simpler components.
Benefits of this approach to assurance are similar to those
realized when using a modular approach to software devel-
opment. In particular, complex reasoning about an overall
system can be reduced to simpler reasoning about a collec-
tion of components and reusable system components can
be defined. After describing the framework, we provide an
example of the use of the framework to specify and verify a
simple example.
The framework and example have been formalized in the
PVS specification language and the PVS prover has been
used to prove all of the stated theorems. The PVS represen-
tation of the framework is generic and can be used to specify
and verify other systems as well as the example provided

1This work was supported in part by the Maryland Procurement Office,
contract MDA904-93-C-4209.

here.
The organization of this document is as follows:

� Sections 2- 8 define a framework for specifying, com-
posing, and verifying system components.

� Section 9 provides an example of the use of the frame-
work to specify and verify a simple system. The ex-
ample given is a much simplified version of a secure
computing system.

� Section 10 summarizes the material presented here
and contains some concluding remarks.

2 Behaviors

Our work is based on Lamport’s TLA specification lan-
guage. Advantages of the TLA specification language in-
clude:

� It is a simple language with clearly defined semantics.

� It is state based. Although event based specification
languages are more appropriate for certain classes of
problems, we have found state based languages more
appropriate for our application area (analysis of secure
systems). Specifying a component involves simply
defining the set of possible states and identifying the
allowable state transitions.

� It allows temporal properties to be specified and veri-
fied. This allows TLA to be used in a manner analo-
gous to how event based languages are often used.

� There are existing theories of refinement and compo-
sition for TLA.

In the previous section, we stated that we are actually using
a variant of TLA. By this, we mean that we have embed-
ded a TLA-like specification language in PVS as a theory.

This allows us to write TLA-like specifications that can be
processed using PVS. One of the major differences between
TLA and our embedding is that PVS is a typed language
while TLA is not. In addition, we have added some struc-
ture to the specifications beyond that required by TLA.
The basic construct in TLA is a behavior. A behavior con-
sists of an infinite sequence of states st0; st1; st2; : : : and
an infinite sequence of agents ag0; ag1; : : :.2 The sequence
of states represents snapshots of the system state as time
progresses. The sequence of agents indicates the entity re-
sponsible for a given state transition. We define the type
trace t to denote a record containing the following fields:

� sts — denotes the sequence of states; sts(i) is the ith

state

� ags — denotes the sequence of agents; ags(i) is the
agent causing the transition from the ith state to the
i+1th state

In TLA, a state represents the state of the “entire” universe
at a given point in time. Generally, only a small subset of
the state is relevant to a given specification. We refer to the
relevant portion of the state as the view for that specification.
Each view is required to be an equivalence relation. We use
VIEWS[X] to denote the set of all equivalence relations on
elements of type X.
A behavior predicate is an assertion about a behavior. We
represent each predicate by the set of behaviors satisfying
the predicate; a predicate p holds in a behavior beh when
beh 2 p.
An alternative way to view a behavior is as a sequence of
transitions. By a transition, we mean a triple (st1; st2; ag)
denoting that the entity identified by ag can cause the state
of the system to change from st1 to st2. Given a sequence of
transitions tran0; tran1; tran2; : : : such that the final state
for a given transition is the initial state for the next transition
(in other words, trani:st2 = trani+1:st1), the sequence of
transitions describes a unique behavior having:

� sts(i) = trani:st1

� ags(i) = trani:ag

In our framework, we define the behavior type to be param-
eterized by both state and agent types. Instantiating the type
with the state type representing the entire system state pro-
vides a behavior type appropriate for describing properties
of the entire system. Using a state type representing the
portion of the system state relevant to a given component
provides a behavior type appropriate for describing proper-
ties of the component. Since “system” and “component” are
interchangeable from the standpoint of the framework, we
often use the terms interchangeably in the following.

2Some variants of TLA, such as that in reference [1], ignore agents and
define behaviors in terms of only states.

3 Components

Abadi and Lamport usually specify components in the fol-
lowing normal form:

Init ^2N ^ F

where:

� Init is a state predicate characterizing the initial state,

� N is a disjunction of action predicates characteriz-
ing valid transitions (including a no-op step to allow
“stuttering”),

� 2N means predicate N holds for all time, and

� F is a fairness condition that is the conjunction of
“weak” and “strong” fairness conditions on steps com-
prisingN .

This additional structure on specifications typically provides
a more convenient method for describing a system compo-
nent. Rather than specifying each of the possible sequences
of transitions (behaviors) of the component, one merely
specifies the set of initial states and the set of individual
transitions associated with the component. The set of be-
haviors associated with a component can be derived from
Init, N , and F .
In this paper, we choose to place even more structure on
specifications. First, we ignore liveness conditions. Thus,
the normal form for a component specification is Init^2N .
Furthermore, we introduce cags to denote the set of agents
associated with a component. The processing done by the
component is represented by transitions by these agents.
The set of transitions by other agents that the specification
of the component allows places restrictions on the process-
ing performed by other components. In other words, these
transitions define the component’s environmental assump-
tions. Following the approach in [6], we use guar to denote
the transitions in N that are caused by the component’s
agents and rely to denote the transitions inN that are caused
by environment agents. In both cases, the transitions are
state-state-agent triples indicating a permitted move from a
starting state to a final state caused by an agent. A compo-
nent must have a view specified which represents the portion
of the state visible to the component. Finally, a component
must have a function, hidd, specified which indicates the
portions of the component’s view that are inaccessible to
each agent. One can view hidd(ag) as implicitly specify-
ing ag’s interface to the component. The value returned by
hidd(ag) is a set of (st1; st2) pairs specifying parts of the
state that are hidden from ag. One interpretation of this
set of pairs associated with ag is as an equivalence relation
specifying the component’s view of the state minus ag’s

view. However, we allow for the possibility that the set of
pairs is not an equivalence relation for generality (see Sec-
tion 7 where we discuss the value of defining hidd in terms
of rely).
In summary, we define a component to be a structure having
fields init, guar, rely, cags, view, and hidd. We require the
following relationships to hold between the various fields:

� init is a set of states, cags is a set of agents, guar
and rely are sets of transitions, view is an equivalence
relation on states, and hidd is a function mapping
agents to sets of state pairs.

� init and cags are non-empty.

If init or cags were empty, then the component could
never really do anything since it would either have no
valid starting state or have no agents.

� The agent for each transition in guar is an element of
cags.

� The agent for each transition in rely is not an element
of cags.

� guar contains all stuttering steps with respect to view
caused by agents in cags.

A stuttering step with respect to an equivalence rela-
tion is a step in which the initial and final states for the
transition are equivalent with respect to the relation.

The stuttering steps serve as “place holders” for later
refinements of the specification. For example, a re-
finement might involve dividing a single transition
into a sequence of transitions that manipulate low-
level portions of the state introduced as part of the
refinement. In the original specification, each but the
last of the sequence of transitions appears as a stut-
tering step (no-op) since the low-level portions of the
state are not visible.

� rely contains all stuttering steps with respect to view
caused by agents not in cags.

These stuttering steps serve as “place holders” for
refinements in the specification of the environment.

� For each ag, view is a subset of hidd(ag). In other
words, any two states for which the visible portions
of the state are the same also have the portions of the
state other than ag’s interface with the component the
same.

The motivation for this requirement is that the data in
the component that is not visible through an interface
should be a subset of the entire collection of data
visible to a component.

� guar, view, and hidd(ag) (for each ag) are well-
defined with respect to view.

By a set of transitions being well-defined with respect
to an equivalence relation, we mean that for any two
transitions that are equivalent, one transition is in the
set if and only if the other is, too. By transitions being
equivalent, we simply mean that the starting states are
equivalent and the final states are equivalent.

If guar were not well-defined with respect to view,
then whether a transition is permitted or not would
depend on more than view and view would not really
capture the portion of the state visible to the compo-
nent. Analagous statements can be made for rely and
hidd(ag).

� The starting and final states for any transition in rely
with agent ag form one of the pairs in hidd(ag).

If the starting and final states did not form one of the
pairs in hidd(ag), then the transition would change
data outside ag’s interface to the component. This
would violate the implicit assumption that agents only
interact with a component through their interface to
the component.

In some versions of TLA, transitions are defined to be sim-
ply pairs of starting and final states. We chose to include an
agent as part of a transition to record the entity responsible
for a transition. Our application area is usually computer
security. From a security standpoint, who performed an ac-
tivity is often just as important as how the activity affects the
system. When defining a component of a system, we use
the agents to distinguish transitions by the component from
transitions by the component’s environment. In addition,
we make use of agents when stating assumptions concern-
ing how the component’s environment interacts with the
component. For example, certain agents might be able to
access parts of a component’s state while other agents might
be prohibited.

For examples of how the init, cags, guar, rely, view, and
hidd can be defined for a component, see sections 9.2 and
9.3.

Just as the set of behaviors associated with Init ^2N ^ F

can be derived from Init, N , and F , the set of behav-
iors associated with a component cmp can be derived from
init(cmp), guar(cmp), and rely(cmp). This set consists
of all behaviors starting in a state belonging to init(cmp)
and containing only transitions permitted by cmp’s rely or
guar. A system component cmp is said to satisfy a behavior
predicate if each element of the set of behaviors modeling
the system component satisfies the behavior predicate.

4 State and Agent Translation

It is typically the case that different components have differ-
ent states and agents. This results in the properties defined
for the components being type incompatible. We address
this using translator functions that map elements of one type
to another type. A translator must map each source element
to a non-empty set of target elements in such a way that no
two sets of target elements overlap. Furthermore, each ele-
ment of the target type must be mapped to by some element
of the source type. We use translator t[X,Y] as the type
denoting translators from type X to type Y. Given a set s and
a translator t, we use tmap(t,s) to denote the set of elements
to which t maps some element of s. In other words, tmap
“maps” the translation t across the set s.
We allow the translators to return a set of values rather
than a single value to address different levels of abstraction.
For example, a state might be mapped to a more detailed
representation in which some components are unconstrained
by the components of the more abstract state. Then, multiple
more detailed states might correspond to each of the more
abstract states. With regard to agents, what appears to be a
single agent at a certain level of abstraction might be seen
to be multiple agents at a lower level of abstraction. For
example, the more abstract model might view agents as
being processes while a more detailed model might view
agents as being threads executing within the processes.
We use the expression vmap(t; v) to denote the equivalence
relation on the target elements to which t maps an equiva-
lence relation v. In other words, two elements y1 and y2 are
related in the resulting equivalence relation exactly when
there exist x1 and x2 such that:

� t maps x1 and x2 to, respectively, y1 and y2, and

� x1 and x2 are related by v

We use the expression tr ac(ap; xt; yt) to denote the set
of transitions to which xt and yt map a set of transitions
ap. The result is a set of transitions with states and agents
of the types mapped to by xt and yt. More specifically, a
transition (x1; x2; y) is an element of the result exactly when
there exists a1, a2, and b such that:

� xt maps a1 and a2 to, respectively, x1 and x2,

� yt maps b to y, and

� (a1; a2; b) is a transition in ap

A component can be translated to another state type and
agent type by using translation functions. The translation
is straightforward using tmap, vmap, and tr ac. We use

tr cmp(cmp1; xt; yt) to denote the translation of cmp1 us-
ingxt and yt. It can be proven that any translation of a com-
ponent satisfies the requirements on components defined in
Section 3.
The following theorem can be proven:

Suppose cmp1 and cmp2 are components such
that any valid initial state for cmp1 is a valid
initialstate for cmp2 and any transitionpermit-
ted for cmp1 is also permitted for cmp2. Then,
any property satisfied by cmp2 is also satisfied
by cmp1.

The proof is straightforward since predicate satisfaction is
defined in terms of set inclusion and the conditions on cmp1
and cmp2 ensure that the behaviors of cmp1 are a subset
of the behaviors of cmp2. This theorem is the key step
in the proof of the composition theorem which is stated in
Section 7.

5 State and Action Predicates

In general, we attempt to perform analysis in terms of state
predicates and action predicates and use functions defined
below to translate the analyzed predicates into behavior
predicates.
A state predicate is an assertion about a state. We represent
each predicate by the set of states satisfying the predicate.
The type STATE PRED denotes the set of all state pred-
icates. We use init satisfies(cmp; sp) to denote that sp
holds in each of cmp’s initial states.
An action predicate is an assertion about state transi-
tions. We represent each predicate by the set of triples
(st1; st2; ag) satisfying the predicate. Intuitively, the mean-
ing of (st1; st2; ag) belonging to the set representing an
action predicate is that the action predicate allows an action
by ag to cause a state transition from st1 to st2. The type
ACTION PRED[ST;AG] denotes the set of all action
predicates. We use steps satisfy(cmp; ap) to denote that
each transition (guar and rely) allowed by cmp satisfies ap.
We define:

� stbp(sp) to denote the behavior predicate representing
that state predicate sp holds in the initial state

� atbp(ap) to denote the behavior predicate represent-
ing that action predicate ap is satisfied by each tran-
sition

Given a behavior predicate p, we use always(p) to denote
the behavior predicate representing that p “always holds”.
The formal definition is that always(p) contains a behavior
t if each “tail” of t satisfies p. A tail of t is any behavior

resulting from the removal of a finite number of steps from
the beginning of t.3 For convenience, we define:

� alwayss(sp) to denote always(stbp(sp))

� alwaysa(ap) to denote always(atbp(ap))

This allows us to talk about state and action predicates “al-
ways holding” just as we talk about behavior predicates
“always holding”. Similarly, the standard logical operators
can be defined on the various types of predicates. For exam-
ple, aandas(ap; sp) can be defined as the action predicate
representing that ap holds for a transition and sp holds for
the starting state of the transition.
We say that a state predicate is stable if whenever it holds in
a given state, it holds in any state reachable from that state
by a transition.
It is trivial to show that:

If sp holds initiallyand is stable, then sp always
holds.

This theorem captures the standard approach for analyzing
systems with respect to safety properties. First, each poten-
tial initial state is shown to satisfy the property. Next, each
transition that can occur is shown to maintain the satisfac-
tion of the property. Then, induction allows one to conclude
that the property holds in every reachable state.

6 Composition

The approach we use for combining specifications is a hybrid
of the approaches used by Abada-Lamport and Shankar. In
the Abadi-Lamport work, components are simply properties
with the normal form Init ^2N . Composition is defined
to be simply conjunction; the composition of Init1 ^2N1

with Init2 ^2N2 is (Init1 ^ Init2)^2(N1 ^N2). In the
Shankar approach, components are specified in terms of a
tuple (init; guar; rely) and composition is defined as:

(init1 ^ init2,
(guar1 ^ rely2) _ (guar2 ^ rely1),
rely1 ^ rely2)

N in the Abadi-Lamport approach corresponds to guar _

rely in the Shankar approach. Thus, N1 ^ N2 corresponds
to:

(guar1^rely2)_(guar2^rely1)_(rely1^rely2)_
(guar1 ^ guar2)

3An analagous definition can be given for “eventually holds”. Rather
than requiring the property hold for every tail, it requires that the property
hold for at least one tail.

The first two terms correspond to the Shankar’s definition
of guar for the composite while the third term corresponds
to Shankar’s definition of rely for the composite. So, other
than the last term, both definitions are essentially the same.
Typically, the steps by each component are disjoint so the
last term does not contribute anything. In these cases, the
two definitions are essentially the same. Then, the behaviors
of the composite system are interleavings of behaviors of the
individual component systems.
Our definition of composition is similar but slightly differ-
ent. Reasons for the differences include:

� The use of a typed specification language requires that
translator functions be used to make components type
compatible before conjoining them.

� We have made view, cags, and hidd explicit parts of
the definition of a component, so we need to define
view, cags, and hidd for the composite system in
terms of the component systems.

� In the definitionof guar for the composite, we replace
the occurrences of relyi with hiddi. Note that hiddi
actually has a slightly different type than relyi, so
we need to do a type conversion before intersecting a
guar set with a hidd function.

To ensure the composition of two components is con-
sistent, it is necessary to check that each component
satisfies the assumptions the other component makes
about its environment. The expression guara\relyb4

denotes the set of transitions that agents of component
cmpa can make that also satisfy the environmental as-
sumptions of component cmpb. Using guara \ relyb
as the basis for the definition of composition ensures
the result is consistent by eliminating transitions that
violate environmental assumptions of the other com-
ponent.

By replacing relyb with hiddb, we simply remove
transitionsof cmpa that modify the non-interface data
of cmpb. Our intuition is that these transitions are
acceptable by cmpa only because the hidden data of
cmpb is irrelevant to cmpa. Removing transitions that
modify cmpb’s hidden data simply makes explicit the
implicit requirement that only cmpb can modify its
internal data.

� Unlike the Shankar definition, we retain the guar1 \
guar2 term in the definition of composition.

The main reason for doing so is to ensure the defi-
nition of composition is idempotent (in other words,
the composition of a component cmp with itself is

4Note that we use “\” and “^” interchangeably. Similarly, we use “[”
and “_” interchangeably.

simply cmp). When both components are the same,
the guara \ hiddb term is simply guara \ hidda.
Since there is typically at least one transition in guar
that modifies the private data, guara \ hidda is typ-
ically a strictly smaller set of transitions than guara.
However, guara\guarb is guara when the two com-
ponents are the same. Thus, the inclusion of the last
term ensures idempotency.

We define the expression:

compose(cmp1 ; cmp2; sttr1; sttr2; agtr1; agtr2)

to denote the composition of components cmp1 and cmp2,
where:

� sttr1 and sttr2 define translators from the state types
for the individual components to a new state type
appropriate for the composite system, and

� agtr1 and agtr2 define translators from the agent
types for the individual components to a new agent
type appropriate for the composite system.

Note that the state and agent types for the resulting system
are typically different than those for the original compo-
nents. For example, the resulting state type would typically
be a “merge” of the individual state types. For simplic-
ity, we ignore the type translation functions in the following
definitions. Technically, each component must be translated
(using tr cmp) to common state and agent types before com-
posing. For example, reference to the intersection of init1
and init2 in the following should be read as the intersection
of sttr1(init1) and sttr2(init2).
We restrict the domain of compose as follows:

� cmp1 and cmp2 must be components as defined in
Section 3.

� sttr1, sttr2, agtr1, and agtr2 must be translators as
defined in Section 4.

� The intersection of init1 and init2 must be non-
empty.

The function:

composable(cmp1; cmp2; sttr1; sttr2; agtr1; agtr2)

denotes that the last condition (that the intersection of init1
and init2 is nonempty) holds. The first two conditions above
are implicit in the following. When the framework is used
it is necessary to ensure that the restrictions on components
and translators are satisfied by each of the terms.
Although not restrictions on the domain of compose, the fol-
lowing conditions are required by the theorem in Section 7.

� Suppose a transition is in guar1, is by ag, has starting
and final states that are related by hidd2(ag), and
is not in guar2. Then, the transition must be an
element of rely2. Although not quite type correct,
this requirement can be loosely formalized as:

(guar1 \ hidd2) n guar2 � rely2

In other words, transitions by the environment of a
component that do not modify the internal data for
the component are allowed by the component.

� The analogous requirement with the roles of the two
components reversed must hold.

Similarly, the following conditions are required by the the-
orem in Section 8 even though they are not included in the
definition of the domain of compose. The intent of these
conditions is to ensure that the intersection of one com-
ponent’s guar with the other component’s hidd does not
remove any interesting transitions. When these conditions
hold, the only transitions that are removed are ones that are
equivalent (and hence “redundant”) to the transitions that
really define the component.

� Given any transition (st1; st2; ag) in guar1, there ex-
ists st3 and st4 such that:

– st1 is equivalent to st3 with respect to view1,

– st2 is equivalent to st4 with respect to view1,
and

– either:

� (st3; st4; ag) is in guar2, or

� (st3; st4) is in hidd2(ag)

An analogous requirement must hold with the roles of
components 1 and 2 reversed.

Intuitively, this requires that any transition allowed
for a component is equivalent to some other transition
which is either allowed for the other component or
does not modify the other component’s internal data.

The above conditions can be simplified when cags1 and
cags2 are disjoint. For example, the first condition reduces
to requiring that for each (st1; st2; ag) in guar1, there exists
st3 and st4 so that:

� st1 is equivalent to st3 with respect to view1

� st2 is equivalent to st4 with respect to view1

� (st3; st4) is in hidd2(ag)

Intuitively, this requires the effects of the transitionvisible to
cmp1 to be independent of data internal to cmp2. Although
not a restriction on the definition of the domain of compose,
this condition is a reasonable requirement to place on the
components comprising a system.
The result of the composition is defined to be a component
for which:

� The state type is a (potentially new) type to which the
original state types are mapped using sttr1 and sttr2.

� The agent type is a (potentially new) type to which
the original agent types are mapped using agtr1 and
agtr2.

� The set of allowable initial states for the composite
is the intersection, init1 \ init2, of the sets of initial
states for the individual components.

� The set of transitions that the composite can make
consists of transitions such that:

– the transitionbelongs to guar for one component
and respects hidd of the other component, or

– the transition belongs to guar for both compo-
nents

In other words, guar for the composite is:

(guar1\hidd2)[(guar2\hidd1)[(guar1 \
guar2)

� The environment transitionsallowed by the composite
consist of transitions that each component allows of its
environment. In other words, rely for the composite
is rely1 \ rely2.

� The agents for the composite consists of the union,
cags1 [cags2, of the agents for the individual com-
ponents.

� Two states appear the same to the composite only if
they appear the same to both components. In other
words, view for the composite is view1 \ view2.

� The portions of the state that are internal to the com-
posite consist of portions of the state that are internal
to at least one of the components. For the internal
data in two states of the composite to be the same, the
internal data for both components must be the same
in the two states. In other words, hidd(ag) for the
composite is hidd1(ag) \ hidd2(ag).

It is straightforward to prove that the result of the composi-
tion is itself a component (in the sense defined in Section 3),
and the given definition of composition is idempotent, com-
mutative, and associative.

7 Composition Theorem

The composition theorem is:

Suppose two components are composable and
each respects the environment assumptions of
the other. Then any property that is satisfied
by at least one of the components is satisfied by
the composition of the two components.

By a component satisfying the environment assumptions of
another component, we mean the following conditions from
Section 6:

� (guar1 \ hidd2) n guar2 � rely2

� (guar2 \ hidd1) n guar1 � rely1

The key to the proof is that whenever the components satisfy
the hypotheses of the theorem, composition is defined such
that the behaviors allowed for the composite are a subset
of the behaviors allowed for each component. Since the
composite cannot exhibit behavior beyond that exhibited by
the components, any property satisfied by the components is
also satisfied by the composite (see the theorem in Section 2).
The definition of composition provided here reduces to the
Shankar definition if hiddi is chosen to be relyi. Then,
(guar1\hidd2)nguar2 is (guar1\rely2)nguar2 which is
clearly a subset of rely2. This is an advantage of Shankar’s
approach; the first two conditions above can be trivially
proved. The danger of this approach is that since there are
few proof obligationson composition, there is a greater like-
lihood that the resulting composition might be inconsistent.
For example, if rely2 does not contain any non-stuttering
transitions in common with guar1, then the condition holds
but the composition is inconsistent; it is supposed to repre-
sent the two components working together but actually does
not allow the first component to perform any meaningful
transitions.
Another approach would be to define hiddi(ag) to be the
equivalence relation identifying the portions of cmpi’s state
that are hidden from ag. Then, the above conditions require
proving that changes one component makes to the interface
data of a second component are consistent with the assump-
tions the second component makes about its environment.
This reduces the concern about inconsistencies going unde-
tected. However, there is still a concern if the interface is
identified incorrectly. For example, suppose that every non-
stuttering element of guar1 modifies a component of the
state identified by hidd2 as being internal. Then, the com-
position is once again inconsistent in that non-stuttering
steps of cmp1 are prohibited. In summary, this approach
addresses the issue of inconsistencies between how the in-
terface data is manipulated and how it is assumed to be

manipulated, but does not ensure that components do not
manipulate internal data of other components.
The issue of the consistency of the composition is addressed
next.

8 Correctness of Definition

It is interesting to note that the composition theorem would
hold for many other definitions of composition. In partic-
ular, the theorem holds for any definition of composition
such that the set of behaviors for the composite is a subset of
the intersection of the behaviors for the components. Con-
sequently, the composition theorem by itself is somewhat
meaningless. To be of use, the definition of composition
must satisfy an intuitive notion of composition as well as
satisfy the composition theorem.
We propose the following as an intuitive requirement on
composition:

� Suppose that (st1; st2; ag) is a transition of cmp1.
Then, there must exist st3 and st4 such that:

– st1 and st3 are equivalent with respect to
cmp1’s view,

– st2 and st4 are equivalent with respect to
cmp1’s view, and

– (st3; st4; ag) is an element of guar for the com-
posite.

This requires that each transition by a component
is equivalent (from that component’s perspective) to
some transition by the composite. Intuitively, this re-
quires that the composite can do at least as much as
the component.

� An analogous condition holds with the roles of the
components reversed.

� Any transition allowed for the environment of the com-
posite is allowed for the environment of each compo-
nent.

By proving that the above requirements hold before com-
posing two components, we can obtain some confidence that
the result satisfies the intuitive notion of composition. The
conditions given in Section 6 are sufficient to establish the
above conditions. Consequently, it sufficies to prove each
of the conditions in Section 6 to ensure that the composition
theorem can be used and that the composition is intuitively
meaningful.

9 An Example

This section provides an example of using the framework
provided in the previous sections to specify and verify prop-
erties of a composite system. The example system consid-
ered here is a much simplified version of an architecture for
a secure computing system. The key to the architecture is
that policy enforcement is separated from policy decisions.
The components in the example are:

� A kernel which provides services to client processes.

� A security server which performs policy computa-
tions as requested by the kernel.

The example presented here is a much simplified version of
the DTOS security architecture described in references [4]
and [3]. The kernel is policy neutral in that it simply enforces
policy decisions made by the security server. The kernel at-
taches labels called security identifiers (SIDs) to processes
and system resources. At each enforcement point, the ker-
nel asks the security server to make a policy decision based
on the SID of the accessing process and the SID of the re-
source to be accessed. The security server responds with an
access vector indicating the allowed access modes for the
process to the resource. The security server computes this
access vector based on a security database that is private to
the security server. The kernel uses the returned access vec-
tor to determine whether to provide access to the resource.
For simplicity, the only class of resource considered in the
example is files,5 and the only access mode controlled by
the policy is write access. The overall system policy is that
the kernel only provides services that are permitted by the
policy defined in the security server.
One example of the type of policy that might be defined in
the security server is a Multilevel Security (MLS) policy[5].
In this policy, sensitivity levels (such as UNCLASSIFIED,
SECRET, and TOP SECRET) are associated with processes
and resources and policy decisions are made based on the
levels. For example, a process with level TOP SECRET is
permitted to read (but not write) a file with level UNCLAS-
SIFIED. This type of policy would be enforced by having
the security server maintain a correspondence between SIDs
and levels and perform the policy computations using the
MLS rules. Upon receiving a request from the kernel, the
security server would first determine the levels associated
with the provided SIDs, next perform the computation, and
finally return the access vector. Another example of the type
of policy that might be defined in the security server is type
enforcement[3]. In this policy, a process SID is mapped to

5The DTOS kerneldoes not actually provide files as a resource. Instead,
files are provided by an operating system “personality” that runs on top of
DTOS. We use files in the example here since we expect readers to have
more familiarity with files than the resources in the actual DTOS kernel.

a domain and a resource SID is mapped to a type and policy
computation rules are based on domains and types.

The intent is for the same kernel to be able to support
sites with a variety of security policies. If a site desires
a unique policy, it simply constructs a security server en-
coding that policy. A prototype DTOS kernel and secu-
rity server have been constructed and some experiments
have been performed to demonstrate that the policy can be
changed without changing the kernel. However, there is still
the question of how to perform the assurance for this system.
If the system is viewed as a monolith, then each time a new
security server is defined, the system specification must be
viewed as having changed and there is the question of how
much analysis must be redone.

It would be preferable for the assurance analysis to take
advantage of the architecture of the system. The system is
intentionally architected so that the kernel can be a reusable
component. By using the composition framework, the ker-
nel can be specified and verified as a separate component.
Each new security server is separately specified and veri-
fied. Then, the composition theorem is used to combine the
properties proved of the kernel and a given security server
into an overall system security policy. Although this sepa-
ration of the kernel and security server appears pointless in
the simple example provided here, it is expected to be quite
valuable for the actual DTOS system. The specifications
that have been written for the DTOS kernel are a couple
hundred pages long and there are over 100 separate access
modes controlled in the system. Given the complexity of the
kernel, it is valuable to be able to analyze it once and reuse
the analysis each time a new security server is defined.

In the presentation that follows, we start with the overall
system policy and use it to drive the specification of the
components. This is an example of using the composition
theorem to support system decomposition. We could just
as well have used a bottom-up approach starting with the
component specifications. Only the presentation would have
been different.6

9.1 System

The system consists of the kernel as well as the security
server. It provides service to the client as allowed by the pol-
icy defined in the security server. The only service provided
by the kernel in this simple example is that of modifying a
file.

6The PVS specifications are actually written in the bottom-up approach
since PVS requires definition before use. Also note that the componentsare
not quite independentsince some definitions (for example, type definitions)
are shared between the components.

9.1.1 State

The state of the system can be thought of as being comprised
of the following classes of data:

� Data private to the kernel.

� Data private to the security server.

� Data representing the interface between the kernel and
security server.

� Data representing the interface between the kernel and
user processes.

Kernel Data
The data private to the kernel consists of:

� process sid — a function mapping each process in
the system to a SID

� file sid— a function mapping each file in the system
to a SID

� file data — a function mapping each file in the sys-
tem to its contents

� active process — the user process currently execut-
ing on the processor7

Security Server Data
The only data private to the security server is:

� ss write allowed — a function indicating when a
process with a given SID is permitted to write to a file
with a given SID

As discussed previously, the data private to a real security
server would be more complex. A security server would
typically have structures mapping SIDs to security contexts
and structures associating access vectors with security con-
text pairs. For simplicity, we abstract the security server
here to simply the resulting function from a pair of SIDs to
a Boolean.
Security Server Interface Data
The interface data through which the kernel and security
server communicate consists of:

� checking — a Boolean that when set to true denotes
that the kernel is waiting for a policy computation to
be provided by the security server

� psid — a SID indicating the process SID for a policy
computation

� fsid — a SID indicating the file SID for a policy
computation

7For simplicity, we assume a uniprocessor system.

� done— a Boolean that when set to true indicates that
the security server has completed a policy computa-
tion that the kernel has not yet “consumed”

� write allowed — A Boolean indicating the result of
a policy computation completed by the security server

User Process Interface Data
The interface data through which the kernel and user pro-
cesses communicate consists of:

� write requested — a function indicating whether a
process has submitted a write request which has not
been processed

� write params — a function indicating the input pa-
rameters for a write request submitted by a process;
write params(p) = (f; d)means that process p sub-
mitted a request to write d to file f

9.1.2 Specification

The overall system is the composition of the kernel and the
security server. The translators ktokss and stokss are used
to translate states in the composition. The agents for both
components as well as the overall system are of the same
type, so the identity translation is used to map agents in the
composition.

9.1.3 Properties

The property we prove of the overall system is:

(kss ac prop) Any transition that modifies the
contents of a file has a starting state in which
the security policy defined in the security server
allows the current process to modify the file. In
addition, the agent for any such transition is an
agent of the kernel.

The proof of this property is in terms of the following prop-
erties of the individual components:

� (kss write preda) Any transition that modifies the con-
tents of a file has a starting state in which:

– psid is the active process’ SID and fsid is the
file’s SID

– checking, done, and write allowed are set to true

In addition, the agent for such a transition is a kernel
agent.

� (kss checking pred) Every reachable state is such
that whenever checking and done are both set
to true, write allowed has the same value as
ss write allowed(psid,fsid).

These properties are the translations of the properties ker-
nel write preda (see Section 9.2.3) and ss checking pred
(see Section 9.3.3) for the individual components. It is
straightforward to prove that the kernel and security server
components defined in the following sections satisfy the
conditions of the composition theorem. Thus, to show that
these properties hold for the composite system, it suffices
to show that they hold for at least one of the components.
Another way to view this is that the composition theorem
implies that these requirements are sufficient conditions to
allocate to the individual components of the system. We
now describe the individual components and demonstrate
that they ensure these properties hold.

9.2 Kernel

The kernel implements the service of modifying a file.

9.2.1 State

The kernel state consists of the data private to the kernel as
well as the interface data. We define:

� kernel view(st1 ; st2) to test whether the kernel
state portions of two states are the same. This re-
turns true exactly when process sid, write requested,
write params, file sid, file data, active process,
checking, psid, fsid, done, and write allowed have
the same value in both states.

� kernel priv(st1; st2) to test whether the kernel pri-
vate portions of two states are the same. This returns
true exactly when process sid, file sid, file data, and
active process have the same value in both states.

� kernel ss int(st1; st2) to identify the non secu-
rity server interface portions of the state. This re-
turns true exactly when kernel priv returns true

and write requested and write params have the same
value in both states.

This says that the portions of the state hidden from
the security server are the kernel private data and the
fields write requested and write params which are the
kernel’s interface to user processes.

� kernel p int(st1; st2; p) to identify the non user pro-
cess interface portions of the state. This returns true
exactly when kernel priv returns true and:

– checking, psid, fsid, done, and write allowed
have the same value in both states, and

– For any p1 other than p, write requested(p1)
and write params(p1) have the same value in
both states.

This says that the portions of the state hidden from
a given user process are the kernel private data, the
security server interface data, and the interface data
for other user processes.

� kernel hidd(ag) as the hidd function for the kernel.
The sets of states returned by it are as follows:

– When ag = kp, the set of all pairs of states
satisfying kernel view.

– When ag = sp, the set of pairs of states for
which kernel ss int(st1; st2) returns true.

– Otherwise, the set of pairs of states for which
kernel p int(st1; st2; ag) returns true.

Here, kp and sp are distinguished, distinct agents
used to represent, respectively, the kernel and security
server.

The only restriction we place on the initial states for the
kernel is that checking, done, and write allowed are set to
false. The function kernel init tests a state to see whether
these fields are set to false.
We define kernel cags to be the set consisting of the single
element, kp. This is the agent used to denote that a transition
is caused by the kernel.

9.2.2 Specification

To specify the kernel as a component, a definition must be
provided for each of the six pieces of a component. The
init, cags, view, and hidd components are as defined in the
previous section.
The guar piece defines the following transitions as being
allowed by the kernel:

� start check(f,d) — ask the security server whether f
can be modified

– checking is set to false in the starting state,

– write requested(active process) holds in the
starting state,

– write params(active process) = (f; d) in
the starting state,

– checking is set to true and done is set to false
in the final state, and

– psid and fsid in the final state are set to the
active process’ SID and f’s SID in the starting
state

– No other portions of the state that are visible to
the kernel are changed.

� write file(f,d) — if the policy allows f to be modified,
then f is modified to have contents d

– write requested(active process) holds in the
starting state,

– write params(active process) = (f; d) in
the starting state,

– write allowed, done, and checking are set to
true in the starting state,

– fsid is set to file sid(f) in the starting state,

– the contents of f are changed to d, and checking
and write requested(active process) are set
to false in the final state, and

– No other portions of the state that are visible to
the kernel are changed.

� fail write(f; d) — if the policy does not allow f to
be modified, then the policy computation is simply
“consumed”

– write requested(active process) holds in the
starting state,

– write params(active process) = (f; d) in
the starting state,

– done and checking are set to true and
write allowed is set to false in the starting
state,

– checking

and write requested(active process) are set
to false in the final state, and

– No other portions of the state that are visible to
the kernel are changed.

� schedule process— a new process is made the active
process; this cannot occur in the middle of a policy
computation

– checking is set to false in the starting state,
and

– active process is changed to a new process, and

– No other portions of the state that are visible to
the kernel are changed.

� kernel stutter — no change is made to the kernel
state.

We use two criteria in determining the transitions allowed
in rely for the kernel:

� Transitions allowed by the kernel’s rely must not
modify private data or interface data for other agents.

� Transitions allowed by the kernel’s rely must not vi-
olate invariant properties desired for the kernel. The
only such property we define here is that:

Whenever checking is set to true, psid is
set to the active process’ SID.

Since process sid and active process are contained
in the kernel’s private state, the only requirement that
needs to be placed on the kernel’s environment to
ensure this property is that it does not modify psid or
checking.

So, we define kernel rely to consist of all transi-
tions that leave the process sid, file sid, file data,
active process, psid, and checking fields of the state un-
changed as well as satisfying kernel hidd.
It is straightforward to prove that the given definition of the
kernel component satisfies the requirements for a compo-
nent defined in Section 3.

9.2.3 Properties

It is straightforward to prove the following properties hold
for the kernel:

� (kernel write prop) Any transition that modifies the
contents of a file has a starting state in which:

– fsid is the file’s SID

– checking, done, and write allowed are set to true

In addition, the agent for such a transition is a kernel
agent.

This follows by inspection of kernel guar and
kernel rely.

� (kernel checking pred) Every reachable state is such
that whenever checking is set to true, psid is set to the
SID of the active process.

This follows by noting that it holds in any initial state
and is held stable by kernel guar and kernel rely.

� (kernel write preda) Any transition that modifies the
contents of a file has a starting state in which:

– psid is the active process’ SID and fsid is the
file’s SID,

– checking, done, and write allowed are set to true

In addition, the agent for such a transition is a kernel
agent.

This follows immediately from the first two properties
demonstrated. The first property ensures everything
other than the requirement on psid. The second prop-
erty ensures the requirement on psid since checking
holds in the starting state.

9.3 Security Server

9.3.1 State

The security server state consists of the data private to the
security server as well as the interface data. We define:

� ss view(st1; st2) to test whether the security server
state portions of two states are the same. This re-
turns true exactly when checking, psid, fsid, done,
ss write allowed, and write allowed have the same
value in both states.

� ss priv(st1; st2) to test whether the security server
private portions of two states are the same. This
returns true exactly when ss write allowed has the
same value in both states.

� ss hidd(ag) as the hidd function for the security
server. The sets of states returned by it are as fol-
lows:

– When ag = kp, the set of all pairs of states
satisfying ss priv.

– Otherwise, the set of pairs of states for which
ss view returns true.

The only restriction we place on the initial states for the
security server is that checking, done, and write allowed

are set to false and ss write allowed is set to a constant,
policy database. The function ss init tests a state to see
whether these requirements are satisfied.
We define ss cags to be the set consisting of the single
element, sp. This is the agent used to denote that a transition
is caused by the security server.

9.3.2 Specification

To specify the security server as a component, a definition
must be provided for each of the six pieces of a component.
The init, cags, view, and hidd components are as defined
in the previous section.
The guar piece defines the following transitions as being
allowed by the security server:

� compute access — determine whether an access is
allowed

– checking is set to true and done is set to false
in the starting state,

– ss write allowed, checking, psid, and fsid

are not changed,

– done is set to true and write allowed is set to
ss write allowed(psid; fsid) in the final state.

� ss stutter — no change is made to the security server
portions of the state.

We use two criteria in determining the transitions allowed
in rely for the security server:

� Transitions allowed by the security server’s rely must
not change private portionsof the security server state.

� Transitions allowed by the security server’s rely must
not violate invariant properties desired for the security
server. The only such property we define here is that:

Whenever checking and done are both set
to true, write allowed is set to
ss write allowed(psid,fsid).

Thus, we require that rely contains only transitions in which
ss write allowed is not altered and the following condi-
tions hold whenever checking and done are set to true in
the final state for the transition:

� checking and done are set to true in the starting state
for the transition, and

� write allowed, psid, and fsid are not changed.

It is straightforward to prove that the given definition of the
ss component satisfies the requirements for a component
defined in Section 3.

9.3.3 Properties

It is straightforward to prove the following property holds
for the security server:

� (ss checking pred) Every reachable state is such
that whenever checking and done are set to true,
write allowed is set to ss write allowed(psid,fsid).

This follows by noting that it holds in any initial state
and is held stable by ss guar and ss rely.

10 Conclusion

In terms of writing specifications, the framework described
here seems quite usable. The operations supported by each
component can be specified in the “standard” manner and
the framework can be used to combine the individual oper-
ations into a component specification. Although the use of
translator functions in the composition is a little awkward, it
is not that difficult and the specifications still seem readable.
Requiring composition to be pairwise is somewhat clumsy
especially for complex systems with a larger number of
components. A possible enhancement would be to define a

function which takes a sequence of components and com-
poses them together using the pairwise composition. This
might be more convenient for specification writers.
The approach used to accomplish the composition is a hybrid
of the approaches advocated by Abadi-Lamport[1, 2] and
Shankar[6]. This approach retains the following advantages
of the individual approaches:

� Components must be proven to be appropriate for
composition before reasoning about the composite.

� The introduction of new, private data structures in
other components does not require updates to be made
to the environmental assumptions of a component.
That the component does not modify these data struc-
tures is implicit in the data structures being part of the
private state of other components.

� The framework makes a clear distinction between the
initial states, allowed transitions, and allowed envi-
ronment transitions for each component. In addition,
the framework forces the specification of the agents
that are permitted to cause each transition.

� Most of the reasoning about a composite system can
be reduced to reasoning about individual components.

An obvious disadvantage of using the modular specification
approach rather than specifying the example as a monolithic
entity is that is was necessary to specify how the individual
components interacted. The shared components of the state
(checking, psid, fsid, done, and write allowed) are used
to model the communication protocol between the kernel
and the security server. The specifications provided here are
surprisingly long considering the complexity of the example.
However, this is actually a trade-off between the accuracy of
the model and the amount of effort required to analyze the
model. By explicitly modeling the communication between
the components, the correspondence between the model and
the actual system is more obvious. It is also important to
note that the modular specification approach has advantages
from a maintenance standpoint. For example, suppose the
security server were later replaced by a different security
server that satisfied the same properties used in the cor-
rectness proof of the overall system. Then, the analysis of
the system could be updated by simply reproving the secu-
rity server properties. It would not be necessary to reprove
properties of the kernel. Although more experience is re-
quired using the framework, we currently believe that the
benefits resulting from the modular approach are worth the
increased complexity resulting from specifying the commu-
nication between components. This is especially true since
the whole intent of the DTOS system architecture is to allow
for the replacement of the security server.

Note that we define a transition to be a state-state-agent triple
rather than a state-state pair. Although the Abadi-Lamport
work allows for transitions to be specified in this form, the
examples they typically provide specify transitions as simply
relations between a starting and final state. Furthermore, in
some versions of the Abadi-Lamport work, they completely
ignore agents. The Shankar work completely ignores agents,
too. Our primary area of application is security, and we have
found that specifying the agent for each transition is critical
to security analysis. When only correctness is of concern,
the component that performs a step is irrelevant as long
as it is correctly performed. When security is a concern,
who causes a transition is just as important as whether the
transition is performed correctly.

In future releases of this report, we could start investi-
gating liveness properties, but many properties of interest
are safety properties and require no consideration of live-
ness. Our plan for how liveness properties will eventually
be addressed is that two extra fields would be added to the
definition of a component. One field would describe the
Abadi-Lamport “weak fairness” conditions, while the other
field would describe the Abadi-Lamport “strong fairness”
conditions.

References

[1] M. Abadi and L. Lamport. Conjoining specifications. Tech-
nical Report 118, Digital Equipment Corporation, Systems
Research Center, Dec. 1993.

[2] J. de Bakker, W. de Roever, and G. Rosenberg. Stepwise Re-
finement of Distributed Systems, LNCS 430. Springer-Verlag,
1990.

[3] T. Fine and S. E. Minear. Assuring Distributed Trusted Mach.
In Proceedings IEEE Computer Society Symposium on Re-
search in Security and Privacy, pages 206–218, Oakland, CA,
May 1993.

[4] S. E. Minear. Providing Policy Control Over Object Op-
erations in a Mach Based System. In Proceedings of the
Fifth USENIX UNIX Security Symposium, pages 141–156,
Salt Lake City, Utah, June 1995.

[5] NCSC. Trusted Computer Systems Evaluation Criteria. Stan-
dard, DOD 5200.28-STD, US National Computer Security
Center, Fort George G. Meade, Maryland 20755-6000, Dec.
1985.

[6] N. Shankar. A lazy approach to compositional verification.
Technical Report TSL-93-08, SRI International, Dec. 1993.

