A Framework for Composition

Todd Fine
Secure Computing Corporation
2675 Long Lake Road,
Roseville, Minnesota 55113-2536

Email: fine@sctc.com

Abstract

Analysis of complex systems requires the use of a “ divide-
and-conquer” approach to specification and verification.
Existing theories for specification composition provide a
starting point for a framework for such an approach. This
paper describes a new framework that isa hybrid of two ex-
isting frameworks, explainstheadvantagesof thenew frame-
work, and illustratesits use through a simple example.!

1 Introduction

Inthispaper, wedescribeavariation of Lamport’sTLA spec-
ification language[1, 2] and provide a framework for com-
position of specifications based on the work of Abadi and
Lamport[1, 2] and Shankar[6]. Compositionis atechnique
for constructing more complex specifications by building
upon simpler specifications. Viewed from the other direc-
tion, the composition framework alows the specification
and verification of a complex system to be decomposed into
the specification and verification of simpler components.
Benefits of this approach to assurance are similar to those
realized when using a modular approach to software devel -
opment. In particular, complex reasoning about an overall
system can be reduced to simpler reasoning about a collec-
tion of components and reusable system components can
be defined. After describing the framework, we provide an
exampl e of the use of the framework to specify and verify a
simple example.

The framework and example have been formalized in the
PV'S specification language and the PV'S prover has been
used to prove al of the stated theorems. The PV S represen-
tation of theframework isgeneric and can be used to specify
and verify other systems as well as the example provided

1 Thiswork was supportedin part by the Maryland Procurement Office,
contract M DA904-93-C-4200.

here.
The organization of thisdocument is as follows:

e Sections 2- 8 defineaframework for specifying, com-
posing, and verifying system components.

e Section 9 providesan example of the use of theframe-
work to specify and verify a simple system. The ex-
ample given is a much simplified version of a secure
computing system.

e Section 10 summarizes the materia presented here
and contains some concluding remarks.

2 Behaviors

Our work is based on Lamport's TLA specification lan-
guage. Advantages of the TLA specification language in-
clude:

e Itisasimplelanguagewith clearly defined semantics.

o Itisstate based. Although event based specification
languages are more appropriate for certain classes of
problems, we have found state based languages more
appropriatefor our application area(anaysisof secure
systems). Specifying a component involves simply
defining the set of possible states and identifying the
alowable state transitions.

o It alowstempora propertiesto be specified and veri-
fied. Thisallows TLA to be used in a manner analo-
gousto how event based languages are often used.

e There are existing theories of refinement and compo-
sitionfor TLA.

In the previous section, we stated that we are actually using
a variant of TLA. By this, we mean that we have embed-
ded a TLA-like specification language in PV'S as a theory.



This alows us to write TLA-like specifications that can be
processed using PV S. One of the major differences between
TLA and our embedding is that PVS is a typed language
while TLA is not. In addition, we have added some struc-
ture to the specifications beyond that required by TLA.

The basic construct in TLA isabehavior. A behavior con-
sists of an infinite sequence of states sto, st1, sta, ... and
an infinite sequence of agents agy, ag1, . . ..2 The sequence
of states represents snapshots of the system state as time
progresses. The sequence of agents indicates the entity re-
sponsible for a given state transition. We define the type
trace t to denote a record containing the following fields:

e sts— denotes the sequence of states; st(i) isthei'”
State

e ags — denotes the sequence of agents; ags(i) is the
agent causing the transition from the i** state to the
i+1% state

In TLA, a state represents the state of the “entire” universe
a agiven point in time. Generally, only a small subset of
the state isrelevant to a given specification. We refer to the
relevant portion of the state asthe view for that specification.
Each view isrequired to be an equivalence relation. We use
VIEWY X] to denote the set of all equivalence relations on
elements of type X.

A behavior predicate is an assertion about a behavior. We
represent each predicate by the set of behaviors satisfying
the predicate; a predicate p holds in a behavior beh when
beh € p.

An dternative way to view a behavior is as a sequence of
transitions. By atransition, we mean atriple (sty, sta, ag)
denoting that the entity identified by ag can cause the state
of the system to changefrom st; to st-. Given asequence of
transitionstrang, trany, trans, ... such that the fina state
for agiventransitionistheinitial statefor the next transition
(in other words, tran;.sta = tran;1.st1), the sequence of
transitions describes a unique behavior having:

e sts(i) = tran;.sty
e ags(i) = tran;.ag

In our framework, we define the behavior type to be param-
eterized by both state and agent types. Instantiatingthetype
with the state type representing the entire system state pro-
vides a behavior type appropriate for describing properties
of the entire system. Using a state type representing the
portion of the system state relevant to a given component
provides a behavior type appropriate for describing proper-
tiesof the component. Since“system” and “component” are
interchangeabl e from the standpoint of the framework, we
often use the terms interchangeably in the following.

2 Somevariantsof TLA, such asthat in reference[1], ignore agentsand
define behaviorsin terms of only states.

3 Components

Abadi and Lamport usually specify components in the fol-
lowing normal form:

Init A\AON A F
where:

e [nit isastatepredicate characterizing theinitial state,

e N isadigunction of action predicates characteriz-
ing valid transitions (including a no-op step to alow
“stuttering”),

e ON means predicate N holdsfor all time, and

e [ is afairness condition that is the conjunction of
“weak” and“strong” fairnessconditionson stepscom-
prising N.

Thisadditional structure on specificationstypically provides
amore convenient method for describing a system compo-
nent. Rather than specifying each of the possible sequences
of transitions (behaviors) of the component, one merely
specifies the set of initial states and the set of individua
transitions associated with the component. The set of be-
haviors associated with a component can be derived from
Init, N,and F.

In this paper, we choose to place even more structure on
specifications. First, we ignore liveness conditions. Thus,
thenormal formfor acomponent specificationis/nit AON.
Furthermore, we introduce cags to denote the set of agents
associated with a component. The processing done by the
component is represented by transitions by these agents.
The set of transitions by other agents that the specification
of the component allows places restrictions on the process-
ing performed by other components. In other words, these
transitions define the component’s environmental assump-
tions. Following the approach in [6], we use guar to denote
the transitions in N that are caused by the component’s
agentsand rely to denotethetransitionsin V that are caused
by environment agents. In both cases, the transitions are
state-state-agent triplesindicating a permitted move from a
gtarting state to a final state caused by an agent. A compo-
nent must have aview specified which representsthe portion
of the state visibleto the component. Finally, a component
must have a function, hidd, specified which indicates the
portions of the component’s view that are inaccessible to
each agent. One can view hidd(ag) as implicitly specify-
ing ag’s interface to the component. The value returned by
hidd(ag) isaset of (st1, sty) pairs specifying parts of the
dtate that are hidden from ag. One interpretation of this
set of pairs associated with ag is as an equivalence relation
specifying the component’s view of the state minus ag’s



view. However, we alow for the possibility that the set of
pairsis not an equivalence relation for generality (see Sec-
tion 7 where we discuss the value of defining hidd in terms
of rely).

In summary, we define acomponent to be a structure having
fieldsinit, guar, rely, cags, view, and hidd. We require the
following relationshipsto hold between the variousfields:

e initis a set of states, cags is a set of agents, guar
and rely are sets of transitions, view isan equivalence
relation on states, and hidd is a function mapping
agentsto sets of state pairs.

e init and cags are non-empty.

If init or cags were empty, then the component could
never really do anything since it would either have no
valid starting state or have no agents.

e Theagent for each transitionin guar is an element of
cags.

e Theagent for each transitionin rely is not an element
of cags.

e guar contains al stuttering steps with respect to view
caused by agentsin cags.

A stuttering step with respect to an equivalence rela-
tionisastepinwhichtheinitia and final statesfor the
transition are equival ent with respect to the relation.

The stuttering steps serve as “place holders’ for later
refinements of the specification. For example, are-
finement might involve dividing a single transition
into a sequence of transitions that manipulate low-
level portions of the state introduced as part of the
refinement. In the original specification, each but the
last of the sequence of transitions appears as a stut-
tering step (no-op) since thelow-level portionsof the
state are not visible.

e rely contains all stuttering steps with respect to view
caused by agents not in cags.

These stuttering steps serve as “place holders’ for
refinements in the specification of the environment.

e For each ag, view is a subset of hidd(ag). In other
words, any two states for which the visible portions
of the state are the same also have the portions of the
state other than ag’sinterface with the component the
same.

The motivation for thisrequirement isthat thedatain
the component that is not visiblethrough an interface
should be a subset of the entire collection of data
visibleto a component.

e guar, view, and hidd(ag) (for each ag) are well-
defined with respect to view.

By aset of transitionsbeing well-defined with respect
to an equivalence relation, we mean that for any two
transitionsthat are equivaent, one transitionisin the
setif and only if theother is, too. By transitionsbeing
equiva ent, we simply mean that the starting states are
equivaent and thefinal states are equivalent.

If guar were not well-defined with respect to view,
then whether a transition is permitted or not would
depend on more than view and view would not really
capture the portion of the state visible to the compo-
nent. Analagous statements can be made for rely and
hidd(ag).

e The starting and final states for any transitionin rely
with agent ag form one of the pairsin hidd(ag).

If the starting and final states did not form one of the
pairs in hidd(ag), then the transition would change
data outside ag’s interface to the component. This
wouldviolatetheimplicit assumption that agentsonly
interact with a component through their interface to
the component.

In some versions of TLA, transitions are defined to be sim-
ply pairsof starting and final states. We choseto include an
agent as part of atransition to record the entity responsible
for atransition. Our application area is usually computer
security. From a security standpoint, who performed an ac-
tivity isoften just asimportant as how the activity affectsthe
system. When defining a component of a system, we use
the agents to distinguish transitions by the component from
transitions by the component’s environment. In addition,
we make use of agents when stating assumptions concern-
ing how the component’s environment interacts with the
component. For example, certain agents might be able to
access parts of acomponent’s state whil e other agents might
be prohibited.

For examples of how theinit, cags, guar, rely, view, and
hidd can be defined for a component, see sections 9.2 and
9.3.

Just as the set of behaviors associated with Init AON A F
can be derived from /nit, N, and F', the set of behav-
iors associated with a component emp can be derived from
init(emp), guar(cmp), and rely(cmp). This set consists
of dl behaviors starting in a state belonging to init(cmp)
and containing only transitions permitted by cmp’s rely or
guar. A system component cmp issaid to satisfy abehavior
predicate if each element of the set of behaviors modeling
the system component satisfies the behavior predicate.



4 Stateand Agent Trandation

Itistypically the case that different components have differ-
ent states and agents. This resultsin the properties defined
for the components being type incompatible. We address
thisusing trandator functionsthat map elements of onetype
to another type. A transator must map each source element
to a non-empty set of target elements in such away that no
two sets of target elements overlap. Furthermore, each ele-
ment of thetarget type must be mapped to by some el ement
of the source type. We use trandator_t[X,Y] as the type
denoting trandatorsfrom type X to type Y. Given aset s and
atrandator ¢, we use tmap(t,s) to denote the set of elements
to which ¢ maps some element of s. In other words, tmap
“maps’ thetrandationt across the set s.

We dlow the trandators to return a set of values rather
than asinglevalue to address different level s of abstraction.
For example, a state might be mapped to a more detailed
representationin which some componentsare unconstrained
by the components of themore abstract state. Then, multiple
more detailed states might correspond to each of the more
abstract states. With regard to agents, what appearsto be a
single agent at a certain level of abstraction might be seen
to be multiple agents at a lower level of abstraction. For
example, the more abstract model might view agents as
being processes while a more detailed model might view
agents as being threads executing within the processes.

We usetheexpression vimap(t, v) to denote the equivalence
relation on the target elements to which ¢ maps an equiva
lencerelation v. In other words, two elements y; and y-» are
related in the resulting equivalence relation exactly when
thereexist z; and z-» such that:

e ¢ maps x; and z- to, respectively, y; and y-, and
e 1 and z, arerelated by v

We use the expression ¢r_ac(ap, zt, yt) to denote the set
of transitions to which «t and yt map a set of transitions
ap. Theresult isaset of transitions with states and agents
of the types mapped to by »¢ and y¢t. More specifically, a
transition (x4, z2, y) isan element of theresult exactly when
thereexists ay, a2, and & such that:

e i mapsa; and a- to, respectively, »; and z»,
e yi mapsh to y, and
e (ay,as, b)isatrangtioninap
A component can be trandated to another state type and

agent type by using trandation functions. The trandation
is straightforward using tmap, vmap, and tr_ac. We use

tr_emp(cmpy, #t, yt) to denote the trandation of emp; us-
ing «t and yt. It can be proven that any trandation of acom-
ponent satisfies the requirements on components defined in
Section 3.

The following theorem can be proven:

uppose emp; and emp-, are components such
that any valid initial state for ¢mp; isa valid
initial statefor emp, and anytransition permit-
ted for emp; isalso permitted for cmp-. Then,
any property satisfied by emp, isalso satisfied
by cmp; .

The proof is straightforward since predicate satisfaction is
defined intermsof set inclusion and the conditionson emp;
and cmp- ensure that the behaviors of emp, are a subset
of the behaviors of emp,. This theorem is the key step
in the proof of the composition theorem which is stated in
Section 7.

5 Stateand Action Predicates

In general, we attempt to perform analysisin terms of state
predicates and action predicates and use functions defined
below to trandate the analyzed predicates into behavior
predicates.

A state predicateis an assertion about a state. We represent
each predicate by the set of states satisfying the predicate.
Thetype STATE_PRE D denotesthe set of al state pred-
icates. We use init_satis fies(emp, sp) to denote that sp
holdsin each of emp’sinitid states.

An action predicate is an assertion about state transi-
tions. We represent each predicate by the set of triples
(st1, sta, ag) satisfying the predicate. Intuitively, the mean-
ing of (sti,sts,ag) belonging to the set representing an
action predicate is that the action predicate allows an action
by ag to cause a state transition from st; to st,. The type
ACTION_PREDI[ST, AG] denotes the set of al action
predicates. We use steps_satisfy(emp, ap) to denote that
each trangition (guar and rely) allowed by emp satisfiesap.
We define:

e stbp(sp) todenotethebehavior predicaterepresenting
that state predicate sp holdsin theinitial state

e atbp(ap) to denote the behavior predicate represent-
ing that action predicate ap is satisfied by each tran-
sition

Given a behavior predicate p, we use always(p) to denote
the behavior predicate representing that p “aways holds’.
Theformal definitionisthat always(p) containsabehavior
t if each “tail” of ¢ satisfies p. A tail of ¢ isany behavior



resulting from the removal of a finite number of steps from
the beginning of ¢.3 For convenience, we define:

e alwayss(sp) to denote always(stbp(sp))

e alwaysa(ap) to denote always(atbp(ap))

This allows usto talk about state and action predicates “al-
ways holding” just as we talk about behavior predicates
“adways holding”. Similarly, the standard logical operators
can be defined on the varioustypes of predicates. For exam-
ple, aandas(ap, sp) can be defined as the action predicate
representing that ap holds for a transition and sp holds for
the starting state of the transition.

We say that a state predicate isstableif whenever it holdsin
agiven state, it holds in any state reachable from that state
by atransition.

Itistrivial to show that:

If sp holdsinitiallyandisstable, then sp always
holds.

This theorem captures the standard approach for analyzing
systems with respect to safety properties. First, each poten-
tia initid stateis shown to satisfy the property. Next, each
transition that can occur is shown to maintain the satisfac-
tion of the property. Then, induction alows oneto conclude
that the property holdsin every reachable state.

6 Composition

Theapproachweusefor combining specificationsisahybrid
of the approaches used by Abada-L amport and Shankar. In
the Abadi-Lamport work, components are simply properties
with the normal form Init A ON. Composition is defined
to be simply conjunction; the composition of Init; A ON;
with Inits AONS IS(Imt1 A Inltz) A D(N1 A Nz) Inthe
Shankar approach, components are specified in terms of a
tuple (init, guar, rely) and composition is defined as:

(antl A initz,
(guary Arelys) V (guars A rely,),
rely; A relys)

N in the Abadi-Lamport approach corresponds to guar V
rely in the Shankar approach. Thus, N; A N3 corresponds
to:

(guary Arelys)V (guars Arely) )V (relyy Arelys)V
(guary A guars)

3 An analagous definition can be given for “eventually holds’. Rather
than requiring the property hold for every tail, it requiresthat the property
hold for at least onetail.

The first two terms correspond to the Shankar’s definition
of guar for the composite while the third term corresponds
to Shankar’s definition of rely for the composite. So, other
than the last term, both definitions are essentia ly the same.
Typicdly, the steps by each component are digoint so the
last term does not contribute anything. In these cases, the
two definitionsare essentially the same. Then, the behaviors
of thecomposite system areinterleavingsof behaviorsof the
individual component systems.

Our definition of composition is similar but dightly differ-
ent. Reasons for the differencesinclude:

e Theuseof atyped specification languagerequiresthat
trand ator functionsbe used to make componentstype
compatible before conjoining them.

e We have made view, cags, and hidd explicit parts of
the definition of a component, so we need to define
view, cags, and hidd for the composite system in
terms of the component systems.

o Inthedefinitionof guar for thecomposite, wereplace
the occurrences of rely; with hidd;. Notethat hidd;
actualy has a dightly different type than rely;, so
we need to do atype conversion beforeintersecting a
guar set with ahidd function.

To ensure the composition of two componentsis con-
sistent, it is necessary to check that each component
satisfies the assumptions the other component makes
about itsenvironment. Theexpression guar, Nrely;*
denotesthe set of transitionsthat agentsof component
emp, can makethat al so satisfy the environmental as-
sumptions of component empy. Using guar, Nrely;
as the basis for the definition of composition ensures
the result is consistent by eliminating transitions that
violate environmenta assumptions of the other com-
ponent.

By replacing rely, with hidd,, we ssimply remove
transitionsof cmp, that modify the non-interface data
of empy. Our intuition is that these transitions are
acceptable by emp, only because the hidden data of
empy isirrelevanttoemp,, . Removing transitionsthat
modify emp;’s hidden data simply makes explicit the
implicit requirement that only emp, can modify its
internal data.

e Unlikethe Shankar definition, we retain the guar, N
guary termin the definition of composition.

The main reason for doing so is to ensure the defi-
nition of composition is idempotent (in other words,
the composition of a component emp with itsdf is

4 Notethat we use“n” and“A” interchangeably. Similarly, we use“U”
and “Vv” interchangeably.



simply emp). When both components are the same,
the guar, N hidd, term is sSimply guar, N hidd,.
Sincethereistypically at least onetransitionin guar
that modifies the private data, guar, N hidd, iStyp-
ically adtrictly smaller set of transitionsthan guar,.
However, guar, Nguary isguar, whenthetwo com-
ponents are the same. Thus, the inclusion of the last
term ensures idempotency.

We define the expression:

compose(cmpy, empa, sttry, sttry, agtry, agtrs)

to denote the composition of components emp, and emps,
where:

e sttry and stir- define trandators from the state types
for the individual components to a new state type
appropriate for the composite system, and

e agtry and agtr, define trandators from the agent
types for the individua components to a new agent
type appropriate for the composite system.

Note that the state and agent types for the resulting system
are typicaly different than those for the origina compo-
nents. For example, the resulting state type would typically
be a “merge” of the individual state types. For simplic-
ity, weignore thetypetrand ation functionsin the following
definitions. Technically, each component must be translated
(using tr_cmp) to common state and agent types before com-
posing. For example, reference to the intersection of init;
and init, inthefollowing should be read as the intersection
of sttry(inity) and sttra(inits).

We restrict the domain of compose as follows:

e cmp; and emp, must be components as defined in
Section 3.

e stiry, sttrs, agtry, and agtr, must be trandators as
defined in Section 4.

e The intersection of init; and inits must be non-
empty.

The function:

composable(cmpy , cmpa, sttry, sttra, agtry, agtrs)

denotesthat the last condition (that the intersection of init,
and init- isnonempty) holds. Thefirst two conditionsabove
are implicit in the following. When the framework is used
it isnecessary to ensure that the restrictions on components
and trandators are satisfied by each of the terms.

Although not restrictionson thedomain of compose, thefol -
lowing conditionsare required by the theorem in Section 7.

e Supposeatransitionisin guary, isby ag, hasstarting
and final states that are related by hidds(ag), and
is not in guar,. Then, the transition must be an
element of rely,. Although not quite type correct,
thisrequirement can be loosely formalized as:

(guary N hidds) \ guars C relys

In other words, transitions by the environment of a
component that do not modify the interna data for
the component are alowed by the component.

e The analogous requirement with the roles of the two
components reversed must hold.

Similarly, the following conditions are required by the the-
orem in Section 8 even though they are not included in the
definition of the domain of compose. The intent of these
conditions is to ensure that the intersection of one com-
ponent’s guar with the other component’s hidd does not
remove any interesting transitions. When these conditions
hold, the only transitionsthat are removed are ones that are
equivaent (and hence “redundant”) to the transitions that
really define the component.

e Givenany transition (st, sta, ag) in guary, thereex-
ists st3 and st4 such that:
— st isequivaent to stz with respect to views,

— sty IS equivalent to sty with respect to views,
and

— either:

* (st3, stq, ag)iSin guars, OF
* (sts, stq) isin hidds(ag)

An anal ogousrequirement must hold with theroles of
components 1 and 2 reversed.

Intuitively, this requires that any transition allowed
for acomponent is equivalent to some other transition
which is either allowed for the other component or
does not modify the other component’sinterna data.

The above conditions can be simplified when cags; and
cags» are digoint. For example, the first condition reduces
torequiringthat for each (st1, st2, ag) in guary, thereexists
st3 and st4 So that:

e sty isequivaent to sts with respect to view,
e sts isequivaent to st, with respect to view,

o (st3, sty)isinhidds(ag)



Intuitively, thisrequiresthe effects of thetransitionvisibleto
emp; to beindependent of datainternal to cmp,. Although
not arestriction on the definition of the domain of compose,
this condition is a reasonable requirement to place on the
components comprising a system.

The result of the composition is defined to be a component
for which:

e Thedtatetypeisa(potentialy new) typeto whichthe
origina statetypesare mapped using sttr, and sttr,.

e The agent type is a (potentially new) type to which
the original agent types are mapped using agtr, and
agtrs.

e The set of allowableinitial states for the composite
istheintersection, init; N inits, of the sets of initia
states for the individual components.

e The set of transitions that the composite can make
consists of transitions such that:

— thetransitionbel ongsto guar for one component
and respects hidd of the other component, or

— the transition belongs to guar for both compo-
nents

In other words, guar for the compositeis:

(guary Nhidds) U (guars Nhiddy) U (guary N
quars)

e Theenvironment transitionsall owed by the composite
consist of transitionsthat each component allowsof its
environment. In other words, rely for the composite
isrely; Nrelys.

e The agents for the composite consists of the union,
cagsy U cagss, of the agents for the individual com-
ponents.

e Two states appear the same to the composite only if
they appear the same to both components. In other
words, view for the compositeisview; N views.

e The portions of the state that are interna to the com-
posite consist of portions of the state that are internal
to at least one of the components. For the internal
datain two states of the compositeto be the same, the
internal data for both components must be the same
in the two states. In other words, hidd(ag) for the
compositeis hiddi (ag) N hidds(ag).

It is straightforward to prove that the result of the composi-
tionisitself acomponent (in the sense defined in Section 3),
and the given definition of compositionisidempotent, com-
mutative, and associative.

7 Composition Theorem

The composition theoremiis:

Suppose two components are composable and
each respects the environment assumptions of
the other. Then any property that is satisfied
by at least one of the componentsis satisfied by
the composition of the two components.

By a component satisfying the environment assumptions of
another component, we mean the following conditionsfrom
Section 6:

e (guary N hidds) \ guars C relys
e (guars N hiddy) \ guar, C rely;

Thekey tothe proof isthat whenever the components satisfy
the hypotheses of the theorem, composition is defined such
that the behaviors alowed for the composite are a subset
of the behaviors allowed for each component. Since the
composite cannot exhibit behavior beyond that exhibited by
the components, any property satisfied by the componentsis
al so sati sfied by thecomposite (seethetheoremin Section 2).
The definition of composition provided here reduces to the
Shankar definition if hidd; is chosen to be rely;. Then,
(guaryNhidds)\ guars i1s(guary Nrelys)\ guars whichis
clearly a subset of rely-. Thisisan advantage of Shankar’'s
approach; the first two conditions above can be trivially
proved. The danger of this approach isthat since there are
few proof obligationson composition, thereisagreater like-
lihood that the resulting composition might be inconsistent.
For example, if rely, does not contain any non-stuttering
transitionsin common with guar;, then the condition holds
but the composition isinconsistent; it is supposed to repre-
sent thetwo componentsworking together but actually does
not allow the first component to perform any meaningful
transitions.

Another approach would be to define hidd;(ag) to be the
equiva ence rel ation identifying the portionsof emp;’s state
that are hidden from ag. Then, the above conditionsrequire
proving that changes one component makes to the interface
data of a second component are consistent with the assump-
tions the second component makes about its environment.
This reduces the concern about inconsi stencies going unde-
tected. However, thereis still a concern if the interface is
identified incorrectly. For example, supposethat every non-
stuttering element of guar; modifies a component of the
state identified by hidd- as being internal. Then, the com-
position is once again inconsistent in that non-stuttering
steps of emp, are prohibited. In summary, this approach
addresses the issue of inconsistencies between how the in-
terface data is manipulated and how it is assumed to be



manipulated, but does not ensure that components do not
manipulate internal data of other components.

Theissue of the consistency of the compositionisaddressed
next.

8 Correctness of Definition

It isinteresting to note that the composition theorem would
hold for many other definitions of composition. In partic-
ular, the theorem holds for any definition of composition
such that the set of behaviorsfor the compositeisa subset of
the intersection of the behaviors for the components. Con-
sequently, the composition theorem by itself is somewhat
meaningless. To be of use, the definition of composition
must satisfy an intuitive notion of composition as well as
satisfy the composition theorem.

We propose the following as an intuitive requirement on
composition:

e Suppose that (st1, sta, ag) is a transition of cmp; .
Then, there must exist s¢3 and st4 such that:

— st; and sts are equivalent with respect to
cmpy'SView,

— sty and sty are equivalent with respect to
emp1'sview, and

— (sts, st4,ag) isan element of guar for the com-
posite.

This requires that each transition by a component
is equivalent (from that component’s perspective) to
some transition by the composite. Intuitively, thisre-
quires that the composite can do at least as much as
the component.

e An analogous condition holds with the roles of the
components rever sed.

e Anytransition allowed for the environment of the com-
positeis allowed for the environment of each compo-
nent.

By proving that the above requirements hold before com-
posi ng two components, we can obtai n some confidence that
the result satisfies the intuitive notion of composition. The
conditions given in Section 6 are sufficient to establish the
above conditions. Consequently, it sufficies to prove each
of the conditionsin Section 6 to ensure that the composition
theorem can be used and that the compositionisintuitively
meaningful.

9 An Example

This section provides an example of using the framework
provided in the previous sectionsto specify and verify prop-
erties of a composite system. The example system consid-
ered hereisamuch simplified version of an architecture for
a secure computing system. The key to the architecture is
that policy enforcement is separated from policy decisions.
The componentsin the example are:

e A kerne which provides services to client processes.

e A security server which performs policy computa-
tions as requested by the kernel.

The example presented hereis amuch simplified version of
the DTOS security architecture described in references [4]
and[3]. Thekernel ispolicy neutral inthat it simply enforces
policy decisions made by the security server. The kernel at-
taches labels called security identifiers (SIDs) to processes
and system resources. At each enforcement point, the ker-
nel asks the security server to make a policy decision based
on the SID of the accessing process and the SID of the re-
source to be accessed. The security server respondswith an
access vector indicating the allowed access modes for the
process to the resource. The security server computes this
access vector based on a security database that is private to
the security server. The kernel uses the returned access vec-
tor to determine whether to provide access to the resource.
For simplicity, the only class of resource considered in the
example is files” and the only access mode controlled by
the policy iswrite access. The overall system policy isthat
the kernel only provides services that are permitted by the
policy defined in the security server.

One example of the type of policy that might be defined in
the security server isaMultilevel Security (MLS) policy[5].
In this policy, sensitivity levels (such as UNCLASSIFIED,
SECRET, and TOP SECRET) are associated with processes
and resources and policy decisions are made based on the
levels. For example, a process with level TOP SECRET is
permitted to read (but not write) afilewithlevel UNCLAS-
SIFIED. This type of policy would be enforced by having
the security server maintai n a correspondence between SIDs
and levels and perform the policy computations using the
MLS rules. Upon receiving a request from the kerndl, the
security server would first determine the levels associated
with the provided SIDs, next perform the computation, and
finally returnthe access vector. Another exampl e of thetype
of policy that might be defined in the security server istype
enforcement[3]. In thispolicy, a process SID is mapped to

5TheDTOS kernel doesnot actually providefilesasaresource. Instead,
files are provided by an operating system “ personality” that runs on top of
DTOS. We use files in the example here since we expect readers to have
more familiarity with files than the resourcesin the actual DTOS kernel.



adomain and aresource SID ismapped to atype and policy
computation rules are based on domains and types.

The intent is for the same kernel to be able to support
sites with a variety of security policies. If a site desires
a unique policy, it simply constructs a security server en-
coding that policy. A prototype DTOS kernel and secu-
rity server have been constructed and some experiments
have been performed to demonstrate that the policy can be
changed without changing thekernel. However, thereistill
the question of how to perform the assurance for thissystem.
If the system is viewed as a monolith, then each time a new
security server is defined, the system specification must be
viewed as having changed and there is the question of how
much analysis must be redone.

It would be preferable for the assurance analysis to take
advantage of the architecture of the system. The system is
intentionally architected so that the kernel can be areusable
component. By using the composition framework, the ker-
nel can be specified and verified as a separate component.
Each new security server is separately specified and veri-
fied. Then, the composition theorem isused to combinethe
properties proved of the kernel and a given security server
into an overall system security policy. Although this sepa
ration of the kernel and security server appears pointlessin
the simple example provided here, it is expected to be quite
valuable for the actual DTOS system. The specifications
that have been written for the DTOS kernel are a couple
hundred pages long and there are over 100 separate access
modes controlledinthe system. Giventhe complexity of the
kerndl, it isvaluableto be able to analyze it once and reuse
the analysis each time anew security server is defined.

In the presentation that follows, we start with the overall
system policy and use it to drive the specification of the
components. This is an example of using the composition
theorem to support system decomposition. We could just
as well have used a bottom-up approach starting with the
component specifications. Only the presentationwould have
been different.

9.1 System

The system consists of the kernel as well as the security
server. It providesservicetotheclient asalowed by thepol-
icy defined in the security server. The only service provided
by the kernd in this simple example is that of modifying a
file

6 The PV'S specifications are actually written in the bottom-up approach
since PV Srequiresdefinition beforeuse. Also notethat the componentsare
not quiteindependent since some definitions (for example, type definitions)
are shared between the components.

911 State

The state of the system can be thought of as being comprised
of the following classes of data:

e Dataprivateto the kernel.
e Dataprivate to the security server.

o Datarepresentingtheinterface between thekernel and
security server.

o Datarepresentingtheinterface between thekernel and
USer processes.

Kernd Data
The data private to the kernel consists of:

e process_sid — a function mapping each process in
thesystemtoa SID

e file_sid — afunction mapping each fileinthesystem
toaSID

e file_data — afunction mapping each filein the sys-
tem to its contents

e active_process — the user process currently execut-
ing on the processor”

Security Server Data
The only data privateto the security server is:

e ss write_allowed — a function indicating when a
processwith agiven SID ispermitted towriteto afile
with agiven SID

As discussed previoudly, the data private to a real security
server would be more complex. A security server would
typically have structures mapping SIDsto security contexts
and structures associating access vectors with security con-
text pairs. For simplicity, we abstract the security server
here to simply the resulting function from a pair of SIDsto
aBoolean.

Security Server Interface Data

The interface data through which the kernel and security
Server communicate consists of :

e checking — aBoolean that when set to {rue denotes
that the kernel is waiting for a policy computation to
be provided by the security server

e psid — a SID indicating the process SID for apolicy
computation

e fsid — a SID indicating the file SID for a policy
computation

7 For simplicity, we assume a uniprocessor system.



e done — aBoolean that when set to¢rue indicatesthat
the security server has completed a policy computa
tion that the kernel has not yet “consumed”

o write_allowed — A Boolean indicating the result of
apolicy computation compl eted by the security server

User Process I nterface Data
The interface data through which the kernel and user pro-
CEesses communicate consi sts of :

e write_requested — afunction indicating whether a
process has submitted a write request which has not
been processed

e write_params — afunction indicating the input pa-
rameters for a write request submitted by a process;
write_params(p) = (f, d) meansthat processp sub-
mitted a request to write d tofile f

9.1.2 Specification

The overall system isthe composition of the kernel and the
security server. Thetrandators ktokss and stokss are used
to trandate states in the composition. The agents for both
components as well as the overal system are of the same
type, so theidentity trandation is used to map agentsin the
composition.

9.1.3 Properties

The property we prove of the overall systemis:

(kss_ac_prop) Any transition that modifies the
contents of a file has a starting state in which
thesecurity policy defined inthe security server
allowsthe current process to modify thefile. In
addition, the agent for any such transitionisan
agent of the kernel.

The proof of thisproperty isin terms of thefollowing prop-
erties of the individual components:

o (kss.write_preda) Anytransitionthat modifiesthecon-
tents of a file has a starting state in which:

— psid is the active process SID and fsid is the
filesSD

— checking, done, and write_allowed aresettotrue

In addition, the agent for such atransitionisa kernel
agent.

o (kss_checking_pred) Every reachable state is such
that whenever checking and done are both set
to true, writeallowed has the same value as
ss write_allowed(psid,fsid).

These properties are the trandations of the properties ker-
nel_write preda (see Section 9.2.3) and ss_checking_pred
(see Section 9.3.3) for the individua components. It is
straightforward to prove that the kernel and security server
components defined in the following sections satisfy the
conditions of the composition theorem. Thus, to show that
these properties hold for the composite system, it suffices
to show that they hold for at least one of the components.
Another way to view thisis that the composition theorem
implies that these requirements are sufficient conditions to
allocate to the individual components of the system. We
now describe the individua components and demonstrate
that they ensure these properties hold.

9.2 Kernd

The kernel implements the service of modifying afile.

921 State

The kernel state consists of the data private to the kerndl as
well astheinterface data. We define:

e kernel_view(sty, sty) to test whether the kerne
dtate portions of two states are the same. This re-
turnstrue exactly when process sid, write_requested,
write params, filesid, file.data, active process,
checking, psid, fsid, done, and write allowed have
the same value in both states.

e kernel_priv(sty, st2) to test whether the kernel pri-
vate portionsof two states are the same. Thisreturns
true exactly when process_sid, file_sid, file_data, and
active_process have the same value in both states.

e kernel_ss_int(sty, stz) to identify the non secu-
rity server interface portions of the state. This re-
turns true exactly when kernel_priv returns true
and write_requested and write_params have the same
valuein both states.

This says that the portions of the state hidden from
the security server are the kernel private data and the
fieldswrite_requested and write_paramswhich arethe
kernel’sinterface to user processes.

e kernel_p_int(sty, sta, p) toidentify the non user pro-
cess interface portions of the state. Thisreturnstrue
exactly when kernel_priv returnstrue and:

— checking, psid, fsid, done, and write allowed
have the same valuein both states, and
— For any p; other than p, write_requested(p;)

and write_params(p;) have the same valuein
both states.



This says that the portions of the state hidden from
a given user process are the kernel private data, the
security server interface data, and the interface data
for other user processes.

e kernel_hidd(ag) asthe hidd function for thekernel.
The sets of states returned by it are as follows:

— When ag = kp, the set of all pairs of states
satisfying kernel_view.

— When ag = sp, the set of pairs of states for
which kernel_ss_int(sty, sta) returnstrue.

— Otherwise, the set of pairs of states for which
kernel_p_int(sty, sto, ag) returnstrue.

Here, kp and sp are distinguished, distinct agents
used to represent, respectively, the kernel and security
server.

The only restriction we place on the initid states for the
kernd isthat checking, done, and write_allowed are st to
false. Thefunction kernel_init testsastateto see whether
thesefidds are set to false.

We define kernel_cags to bethe set consisting of thesingle
element, kp. Thisisthe agent used to denotethat atransition
is caused by the kernel.

9.2.2 Specification

To specify the kernel as a component, a definition must be
provided for each of the six pieces of a component. The
init, cags, view, and hidd componentsare as defined inthe
previous section.

The guar piece defines the following transitions as being
allowed by the kernel:

e start_check(f,d) — ask the security server whether f
can be modified

— checking issetto false inthe starting state,

— write_requested(active_process) holdsin the
gtarting state,

— write_params(active_process) = (f,d) in
the starting state,

— checking issettotrue and done isset to false
inthefina state, and

— psid and fsid in the final state are set to the
active process SID and f’s SID in the starting
state

— No other portions of the state that are visibleto
the kernel are changed.

o write file(f,d)—if the policy alows f to be modified,
then f ismodified to have contents d

— write_requested(active_process) holdsin the
gtarting state,

— write_params(active_process) = (f,d) in
the starting state,

— write_allowed, done, and checking are set to
true in the starting state,

— fsid issetto file_sid(f) inthe starting state,

— thecontentsof f arechangedtod, and checking
and write_requested(active_process) are set
to false inthefina state, and

— No other portions of the state that are visibleto
the kernel are changed.

o fail_write(f, d) — if the policy does not dlow f to
be modified, then the policy computation is simply
“consumed”

— write_requested(active_process) holdsin the
gtarting state,

— write_params(active_process) = (f,d) in
the starting state,

— done and checking are s&t to true and
write_allowed is s&t t0 false in the starting
state,

— checking
and write_requested(active_process) are set
to false inthefina state, and

— No other portions of the state that are visibleto
the kernel are changed.

e schedule_process—anew processismadetheactive
process; this cannot occur in the middle of a policy
computation

— checking is set to false in the gtarting state,
and

— active_process ischangedtoanew process, and

— No other portions of the state that are visibleto
the kernel are changed.

e kernel_stutter — no change is made to the kernel
State.

We use two criteria in determining the transitions allowed
in rely for thekernd:

e Transitions alowed by the kernd’s rely must not
modify private data or interface datafor other agents.



e Transitionsalowed by the kernel’s rely must not vi-
olate invariant properties desired for the kernel. The
only such property we define here isthat:

Whenever checking is set to true, psid is
set to the active process' SID.

Since process_sid and active_process are contained
inthe kernel’s private state, the only requirement that
needs to be placed on the kernel’s environment to
ensure this property isthat it does not modify psid or
checking.

So, we define kernel_rely to consist of al transi-
tions that leave the process_sid, file_sid, file_data,
active_process, psid, and checking fields of the state un-
changed as well as satisfying kernel_hidd.

Itis straightforward to prove that the given definition of the
kernel_component satisfies the requirementsfor acompo-
nent defined in Section 3.

9.2.3 Properties

It is straightforward to prove the following properties hold
for the kernd:

o (kernel_write prop) Any transition that modifies the
contents of a file has a starting state in which:

— fadisthefilesSD
— checking, done, and write_allowed aresettotrue

In addition, the agent for such atransitionisa kernel
agent.

This follows by inspection of kernel_guar and
kernel_rely.

o (kernel_checking_pred) Every reachable stateis such
that whenever checking isset totrue, psidisset tothe
SID of the active process.

Thisfollowsby noting that it holdsin any initial state
and isheld stable by kernel_guar and kernel_rely.

o (kernel_write preda) Any transition that modifies the
contents of a file has a starting state in which:

— psid is the active process SID and fsid is the
filesSD,
— checking, done, and write_allowed aresettotrue

In addition, the agent for such atransitionisa kernel
agent.

Thisfollowsimmediately fromthefirst two properties
demonstrated. The first property ensures everything
other than the requirement on psid. The second prop-
erty ensures the requirement on psid since checking
holdsin the starting state.

9.3 Security Server

931 State

The security server state consists of the data private to the
security server as well astheinterface data. We define:

e ss_view(sty, st2) to test whether the security server
dtate portions of two states are the same. This re-
turns true exactly when checking, psid, fsid, done,
ss_.write_allowed, and write_allowed have the same
valuein both states.

e ss_priv(sty, sty) to test whether the security server
private portions of two states are the same. This
returns true exactly when sswrite_allowed has the
same value in both states.

e ss_hidd(ag) as the hidd function for the security
server. The sets of states returned by it are as fol-
lows:

— When ag = kp, the set of dl pairs of states
satisfying ss_priv.

— Otherwise, the set of pairs of states for which
ss_view returnstrue.

The only restriction we place on the initia states for the
security server isthat checking, done, and write_allowed
are set to false and ss_write_allowed is Set to a constant,
policy_database. The function ss_init tests a state to see
whether these requirements are satisfied.

We define ss_cags to be the set consisting of the single
element, sp. Thisistheagent used to denotethat atransition
is caused by the security server.

9.3.2 Specification

To specify the security server as a component, a definition
must be provided for each of the six pieces of a component.
The init, cags, view, and hidd components are as defined
in the previous section.

The guar piece defines the following transitions as being
allowed by the security server:

e compute access — determine whether an access is
alowed

— checking issattotrue and done issetto false
in the starting state,

— ss_write_allowed, checking, psid, and fsid
are not changed,

— done isset totrue and write_allowed is Set to
ss_write_allowed(psid, fsid) inthefina state.



e ss_stutter — nochangeismadeto the security server
portionsof the state.

We use two criteria in determining the transitions allowed
in rely for the security server:

e Transitionsallowed by the security server’s rely must
not change private portionsof the security server state.

e Transitionsallowed by the security server’s rely must
not violateinvariant propertiesdesired for the security
server. The only such property we define here isthat:

Whenever checking and done are both set
to true, write_allowed is set to
ss write_allowed(psid,fsid).

Thus, werequirethat rely containsonly transitionsinwhich
ss_write_allowed is not atered and the following condi-
tions hold whenever checking and done are set to true in
the final state for the transition:

e checking and done areset totrue inthestarting state
for thetransition, and

o write_allowed, psid, and fsid are not changed.

Itis straightforward to prove that the given definition of the
ss_component satisfies the requirements for a component
defined in Section 3.

9.3.3 Properties

It is straightforward to prove the following property holds
for the security server:

e (ss.checking_pred) Every reachable state is such
that whenever checking and done are set to true,
write allowed is set to ss write_allowed(psid,fsid).

Thisfollowsby noting that it holdsin any initial state
and isheld stable by ss_guar and ss_rely.

10 Conclusion

In terms of writing specifications, the framework described
here seems quite usable. The operations supported by each
component can be specified in the “standard” manner and
the framework can be used to combine the individual oper-
ationsinto a component specification. Although the use of
trand ator functionsin the compositionisalittleawkward, it
isnot that difficult and the specifications still seem readable.
Requiring composition to be pairwise is somewhat clumsy
especialy for complex systems with a larger number of
components. A possible enhancement would be to define a

function which takes a sequence of components and com-
poses them together using the pairwise composition. This
might be more convenient for specification writers.
Theapproach used to accomplish the compositionisahybrid
of the approaches advocated by Abadi-Lamport[1, 2] and
Shankar[6]. Thisapproach retainsthe foll owing advantages
of theindividual approaches:

e Components must be proven to be appropriate for
composition before reasoning about the composite.

e The introduction of new, private data structures in
other components does not require updatesto be made
to the environmental assumptions of a component.
That the component does not modify these data struc-
turesisimplicitin the data structuresbeing part of the
private state of other components.

e Theframework makes a clear distinction between the
initial states, allowed transitions, and allowed envi-
ronment transitionsfor each component. In addition,
the framework forces the specification of the agents
that are permitted to cause each transition.

e Mogt of the reasoning about a composite system can
be reduced to reasoning about individua components.

An obvious disadvantage of using the modul ar specification
approach rather than specifying the example asamonoalithic
entity isthat is was necessary to specify how the individual
components interacted. The shared components of the state
(checking, psid, fsid, done, and write_allowed) are used
to model the communication protocol between the kernel
and the security server. The specificationsprovided here are
surprisingly long considering the compl exity of theexample.
However, thisisactualy atrade-off between the accuracy of
the model and the amount of effort required to anayze the
model. By explicitly modeling the communication between
the components, the correspondence between the model and
the actual system is more obvious. It is also important to
notethat the modular specification approach has advantages
from a maintenance standpoint. For example, suppose the
security server were later replaced by a different security
server that satisfied the same properties used in the cor-
rectness proof of the overal system. Then, the analysis of
the system could be updated by simply reproving the secu-
rity server properties. It would not be necessary to reprove
properties of the kernel. Although more experience is re-
quired using the framework, we currently believe that the
benefits resulting from the modular approach are worth the
increased complexity resulting from specifying the commu-
nication between components. Thisis especially true since
thewholeintent of the DTOS system architectureisto allow
for the replacement of the security server.



Notethat wedefineatransitiontobeastate-state-agent triple
rather than a state-state pair. Although the Abadi-Lamport
work allows for transitionsto be specified in thisform, the
examplesthey typically providespecify transitionsassimply
relations between a starting and final state. Furthermore, in
some versions of the Abadi-Lamport work, they completely
ignoreagents. The Shankar work completely ignoresagents,
too. Our primary area of applicationis security, and we have
found that specifying the agent for each transitionis critical
to security analysis. When only correctness is of concern,
the component that performs a step is irrelevant as long
as it is correctly performed. When security is a concern,
who causes a transition isjust as important as whether the
transitionis performed correctly.

In future releases of this report, we could start investi-
gating liveness properties, but many properties of interest
are safety properties and require no consideration of live-
ness. Our plan for how liveness properties will eventually
be addressed is that two extra fields would be added to the
definition of a component. One field would describe the
Abadi-Lamport “weak fairness’ conditions, while the other
field would describe the Abadi-Lamport “strong fairness’
conditions.
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