Alchemy

Jay Lepreau (PI), Matthew Flatt (PI), Alastair Reid, Eric Eide, Leigh Stoller, Mike Hibler

University of Utah

Overview

- Why Components?
- Components and AOP
- Barriers to Component Programming
- Knit: Component linking and definition language with a strong practical bent
- Status and Future Work

What is a component?

Modules with:

- Clearly defined exports
- Clearly defined imports
- Control over component instantiation
- Control over component interconnection
- Source code? No source code?
- Can be distributed across machines?

Why Components?

- Reuse
- Isolation
- Documentation
- Flexibility

Standard Component Tricks

- Replace components
 - Different performance/size/reliability tradeoffs
 - Adapt to different hardware
- Insert component
 - Monitoring
 - Caching
 - Optional functionality
- Rearrange components
 - Where to put the cache?

Components and aspects

- Monitoring code
- Separation/Isolation
 - Catching component failure
 - Protection zones
- Garbage collection
- Concurrency

A simple system

7 Knit

Find bottlenecks

8 Knit

Fix the problem

Co-locate components

10 Knit

... but maintain some protection

11 Knit

Barriers to Component Programming

- Paucity of true component languages
- Cost of switching to new language
- Checking Component Configurations
- Performance
- Initializing Components
 - Not a major issue in normal applications
 - Really tricky in embedded systems

Goal of Alchemy Project

To make components practical

Utah Component Languages

- Mr. Ed Units for Scheme [PLDI'98]
- Jiazzi Units for Java [submitted]
- Knit Units for C [OSDI'00]

Why C?

- Small language
- Still very popular

Number of projects in sourceforge.org by language:

- C: 3275 projects
- C++: 2608 projects
- Java: 1589 projects
- Used in interesting/real/useful code:
 - Embedded systems, Linux, FreeBSD, ...
 - KaffeVM (an open source JVM)

- ...

Knit: Units for C

- Works with unmodified/lightly modified C
 - Embedded system component kit 250 components
 - KaffeVM (an opensource JVM)
- Works with new C code
 - Clack (a re-implementation of MIT's Click modular network router) – 50 components
 - Decompose complex memory allocator into many thin layers –
 7 components
- Cyclic component dependencies ok
- Automatically generates initialization code
- Extensible constraint system detects configuration errors
- Cross module inlining makes small components affordable

First Public Knit Release: 14th Feb 2001

- Knit compiler
- Unit-generating tools
- Documentation generating tools
- Documentation
 - Language report
 - Tutorial
- 300 example units
- BSD-style open-source license

[See Alastair for demo today/tomorrow]

Outline

- Introduction
- Why Components?
- Components and AOP
- Barriers to Component Programming
- Knit
 - Atomic units
 - Compound units
 - Detecting Configuration Errors
 - Automatic Initialization
 - Implementation and Performance
- Status and Future Work

Atomic Units [PLDI'98]

```
serve_file
     serve_cgi
                            - Ioski t
int serve_web(...) {
                             - DKERNEL
  if (...)
                            - DHAVE_CONFIG
    serve_cgi (...);
  else
    serve_file(...);
               serve_web
```

Concrete Syntax

```
bundletype StdI0 = { printf, ... }
bundletype Exit = { exit, atexit }
bundletype Main = { main }
unit hello = {
 imports stdio: StdIO,
          exit : Exit ];
 exports[main: Main];
  depends{ main needs imports };
  files{ "hello.c" }
 with flags { "-Ioskit" };
```


context(threads) <= ProcessContext</pre>

context(filesys) <= context(threads)</pre>

context(console) <= context(filesys)</pre>

context(panic) <= context(console)</pre>

NoContext <= context(ethernet)

ProcessContext < NoContext

Extensible Constraint System

- Constraint system propagates properties through component interconnections
 - Knit can detect global errors
- Constraint system is extensible
 - In context X, don't do Y
 - Type system for Modular IP Routers (e.g., Click)

- ...

Initialization

Initialization

When Can We Break Cycles?

1. Component 'contains' subcomponents

2. No dependency between initializers

Automatic Initialization

- Knit generates initialization sequence
- Cycles are resolved by refining initialization dependencies in units
- Experience
 - 5% of units need dependencies refined
 - Programmers find initialization a big win

Implementation (Unoptimized)

Performance

- Component cost should not distort system structure
- Reduce overhead by eliminating function calls

Click and Clack

- Click modular network router from MIT [SOSP'99]
- Clack
 - Re-implementation of Click using Knit
 - Similar performance to Click
- Many small components

Performance of Clack

37 Knit

Click vs. Clack Performance

38 Knit

Knit

- Supports C, assembly and object files
- Separates interconnections from code
- Extensible constraint system
- Automatic initialization
- Allows cyclic component dependencies
- Allows multiple instances of components
- Text based

Current Status

- First public Knit release next week
- 300 embedded system components
- Constraint systems
 - Top/bottom-half code
 - Types of network packets

Future Work

Constraints

- Real time constraints
 - Restrictions on real time threads
 - Timing
- Scaling issues
- Hooks for external code analyzers
- Hooks for external constraint systems

Future Work

- Properties/Aspects
 - Isolation
 - Protection domains
 - Detect component failure
 - Recover from failure
 - Performance monitoring and adaptation
 - Monitor resource use: time, bandwidth, memory, ...
 - Feedback into scheduler/application/network stack/etc.
 - Memory Management
 - Concurrency

Future Work

- Weave components through configurations
- Automatically generate components
 - proxies (caching, ...)
 - adapters (RPC, protection domains, GC, ...)
 - advice (monitoring, logging, ...)