Alchemy

atthew Flatt (P1),
ide, Leigh Stoller,

Overview

e \Why Components?
e Components and AOP
e Barriers to Component Programming

e Knit: Component linking and definition
language with a strong practical bent

e Status and Future Work

Knit

What Is a component?

Modules with:

e Clearly defined exports

e Clearly defined imports

e Control over component instantiation

e Control over component interconnection

e Source code? No source code?
e Can be distributed across machines?

Knit

Why Components?

Reuse
solation
Documentation
~lexibility

Knit

Standard Component Tricks

e Replace components
— Different performance/size/reliablility tradeoffs
— Adapt to different hardware
e |[nsert component
— Monitoring
— Caching
— Optional functionality
e Rearrange components
- Where to put the cache?

Knit

Components and aspects

e Monitoring code

e Separation/Isolation
— Catching component failure
— Protection zones

e Garbage collection
e Concurrency

Knit

A simple system

Find bottlenecks

Client Server
monitor monitor
v v
RPC RPC
monitor monitor
v v

Network

Knit

Fix the problem

Client
cache
| compress
decompress
¢ l
RPC RPC
| .
monitor l
v

Network

Knit

Co-locate component

... but maintain some protect-

Client
Proxy \’l

Knit

Barriers to Component Progr

e Paucity of true component languages
e Cost of switching to new language

e Checking Component Configurations
e Performance

e Initializing Components
- Not a major issue in normal applications
— Really tricky in embedded systems

Knit

Goal of Alchemy Proj

To make components practical

Utah Component Language

e Mr. Ed - Units for Scheme [PLDI’'98]
e Jiazzi - Units for Java [submitted]
e Knit — Units for C [OSDI'00]

Knit

Why C?

e Small language

e Still very popular
Number of projects in sourceforge.org by language:
- C: 3275 projects
- C++: 2608 projects
- Java: 1589 projects
e Used In interesting/real/useful code:
- Embedded systems, Linux, FreeBSD, ...
- KaffeVM (an open source JVM)

Knit

Knit: Units for C

e Works with unmodified/lightly modified C

- Embedded system component kit - 250 components
- KaffeVM (an opensource JVM)

e \Works with new C code

- Clack (a re-implementation of MIT’s Click modular network
router) — 50 components

- Decompose complex memory allocator into many thin layers —
/ components

e Cyclic component dependencies ok
e Automatically generates initialization code

e Extensible constraint system detects configuration
errors

e Cross module inlining makes small components
affordable

Knit

First Public Knit Release: 14t

Knit compiler
Unit-generating tools
Documentation generating tools

Documentation
— Language report
— Tutorial

e 300 example units
e BSD-style open-source license

[See Alastair for demo today/tomorrow]

Knit

Outline

Introduction

Why Components?

Components and AOP

Barriers to Component Programming
Knit

— Atomic units

— Compound units

— Detecting Configuration Errors

— Automatic Initialization
- Implementation and Performance

e Status and Future Work

Knit

Atomic Units [PLDI

Concrete Syntax

bundletype StdIlO
bundletype EXxit
bundletype Main

unit hello = {

imports| stdio :
: Exat];

- Main];
depends{ main needs 1mports };
Ffiles{ "hello.c* }

with flags { "-loskit" };

exit
exports[main

Knit

{ printf, ... }
{ exit, atexit }

{ main }

sStdlo,

Detecting Compositi

Detecting Compositi

Detecting Compositio

ethernet

Knit

Detecting Composition Error-

< locks

console

i .
panic
I

ethernet

Knit

Detecting Composition Error-

< locks

panic

.

ethernet

Knit

Detecting Composition Error-

< locks

ethernet

Knit

Detecting Composition Erro-

E < IOCkS

Knit

Detecting Composition Errors

threads

I

filesys

I

console

I
panic

I

ethernet

context(threads) <= ProcessContext

context(filesys) <= context(threads)

context(console) <= context(filesys)

context(panic) <= context(console)

NoContext <= context(ethernet)

ProcessContext < NoContext
Knit

Extensible Constraint Syste

e Constraint system propagates properties
through component interconnections

- Knit can detect global errors
e Constraint system is extensible

— In context X, don’'tdo Y
— Type system for Modular IP Routers (e.g., Click)

Knit

Initialization

- init_x86();
init_IDE();

init_ VM();
> Init_threads();

init_filesys();
Init_main();

Knit

Initialization

VM IDE
pthreads
filesys
I

main

Knit

When Can We Break

1. Component ‘contains’ subcomponents

2. No dependency between initializers

Knit

Automatic Initialization

e Knit generates initialization sequence

e Cycles are resolved by refining initialization
dependencies in units

e EXxperience
- 5% of units need dependencies refined
- Programmers find initialization a big win

Knit

Implementation (Un

Performance

= Component cost should not distort system
structure

= Reduce overhead by eliminating function calls

Knit

Click and Clack

e Click modular network router from MIT
[SOSP’'99]

e Clack

- Re-implementation of Click using Knit
— Similar performance to Click

e Many small components

Knit

Performance of Clac

Time per Packet

Unoptimized

Knit

Monolithic

Optimized

Click vs. Clack Perfo

Unoptimized Optimized

Knit

O Clack
I Click

Knit

e Supports C, assembly and object files

e Separates interconnections from code

e Extensible constraint system

e Automatic initialization

e Allows cyclic component dependencies
e Allows multiple instances of components
e Text based

Knit

Current Status

e First public Knit release next week
e 300 embedded system components

e Constraint systems

- Top/bottom-half code
- Types of network packets

Knit

Future Work

e Constraints

- Real time constraints
e Restrictions on real time threads
e Timing
- Scaling issues
- Hooks for external code analyzers

- Hooks for external constraint systems

Knit

Future Work

e Properties/Aspects

— Isolation
e Protection domains
e Detect component failure
e Recover from failure

- Performance monitoring and adaptation
e Monitor resource use: time, bandwidth, memory, ...
e Feedback into scheduler/application/network stack/etc.

- Memory Management
-~ Concurrency

Knit

Future Work

e \Weave components through configurations

e Automatically generate components
— proxies (caching, ...)
- adapters (RPC, protection domains, GC, ...)
- advice (monitoring, logging, ...)

Knit

