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Abstract

Interval arithmetic is a simple way to compute a mathematical expression to an

arbitrary accuracy, widely used for verifying floating-point computations. Yet this

simplicity belies challenges. Some inputs violate preconditions or cause domain er-

rors. Others cause the algorithm to enter an infinite loop and fail to compute a ground

truth. Plus, finding valid inputs is itself a challenge when invalid and unsamplable

points make up the vast majority of the input space. These issues can make interval

arithmetic brittle and temperamental. This thesis introduces three extensions to in-

terval arithmetic to address these challenges. Error intervals express rich notions of

input validity and indicate whether all or some points in an interval violate implicit

or explicit preconditions. Movability flags detect futile recomputations and prevent

timeouts by indicating whether a higher-precision recomputation will yield a more ac-

curate result. And input search restricts sampling to valid, samplable points, so they

are easier to find. We compare these extensions to the state-of-the-art technical com-

puting software Mathematica, and demonstrate that our extensions are able to resolve

60.3% more challenging inputs, return 10.2x fewer completely indeterminate results,

and avoid 64 cases of fatal error.
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1 INTRODUCTION
Floating-point arithmetic in scienti�c, �nancial, and engineering applications su�ers from rounding
error: the results of a �oating-point expression can di�er starkly from those of the analogous
mathematical expression [25, 29, 30, 49]. Rounding error has been responsible for scienti�c retrac-
tions [2, 3], mispriced �nancial indices [20, 38], miscounted votes [51], and wartime casualties [50].
Floating-point code thus needs careful validation; sound upper bounds [19, 27, 46], semide�nite
optimization [34], input generation [15, 26], and statistical methods [47] have all been proposed
for such validation. Sampling-based error estimation, which can estimate typical, not worst-case,
error is especially widely used [9, 42, 44, 45].

Consider the core task of computing the error for a �oating-point computation at a given point.
This requires computing an error-free ground-truth for a mathematical computation. Interval
arithmetic [9, 31, 37, 39, 49] and its many variations [7, 28, 40] is the traditional approach to this
problem. Interval arithmetic provides sound bounds on the error-free ground truth, and allows for
re�ning those bounds by recomputing at higher precision, until the ground truth can be estimated
to any accuracy. Computing the ground truth this way on a large number of sampled points gives
a good estimate of the �oating-point error of a computation.
In practice, however, even state of the art implementations struggle on invalid or particularly

challenging input points. The bounds are meaningless for invalid inputs; the recomputation process
may enter an in�nite loop; and valid inputs may be too hard to �nd. Since error estimation requires
sampling a large number of points, these challenges arise frequently. As a result, even state of the art
interval arithmetic implementations enter in�nite loops, give up too early, or in some exceptional
cases even experience memory exhaustion and fatal errors.

We identify three particular challenges for sampling-based error estimation: invalid input points,
futile recomputations, and lowmeasure. Invalid input points violate explicit or implicit preconditions
and cannot meaningfully be evaluated to a ground truth value; consider the square root of a negative
number. Validity must thus be soundly tracked and checked, especially for inputs at the borderline
between valid and invalid. Futile recomputation a�icts some valid inputs: interval arithmetic
recomputes with ever-higher precision but without converging on a ground truth answer. These
recomputations must thus be soundly cut o� early, warning the user that a ground truth value
cannot be computed. Low measure means valid inputs make up a small proportion of the input
space, making it di�cult for applications to �nd su�ciently many. Regions of valid input points
must thus be e�ciently and soundly identi�ed. No general-purpose strategy exists to address these
independent issues; yet all three must be addressed for interval arithmetic to be robust.
This paper proposes three improvements to interval arithmetic that address these issues. First,

error intervals determine whether all or some of the points in an interval violate implicit or explicit
preconditions. Second, movability �ags detect most input values for which recomputation will
not converge, warning the user and avoiding futile recomputation. Third, input search discards
invalid regions of the input space, focusing sampling on valid points. Combined, our improvements
soundly address the issues identi�ed above and make interval analysis more robust.
We implement these improvements in the new interval arithmetic library called Rival and

compare Rival to Mathematica’s analogous N function on a benchmark suite of 481 �oating-point
expressions. Rival produces results in dramatically more cases than Mathematica: Rival is able to
resolve 18824 inputs, while Mathematica is only able to resolve 11744 (60.3% better). In only 746
cases does Rival return a completely indeterminate result; Mathematica, however, does so in 7617
cases (10.2⇥ worse), and among those cases sometimes enters an in�nite loop, runs out of memory,
or hard crashes (64 cases). Furthermore, Rival’s input search saves 74.6% of invalid points from
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2 Anon.

being sampled in the �rst place. An ablation study shows that error intervals, movability �ags, and
input search e�ectively handle even di�cult inputs across a range of domains.

This paper contributes three extensions to interval arithmetic:
• Error intervals to track domain errors and rich notions of input validity (Section 4);
• Movability �ags to detect when recomputing in higher precision is futile (Section 5);
• Input search to uniformly sample valid inputs with high probability (Section 6).

Sections 7 and 8 demonstrate that these extensions successfully address the issues of invalid
inputs, futile recomputations, and low measure. Section 9 discusses our experience deploying these
extensions to users.

2 OVERVIEW
Imagine a simulation that evaluates G~/(G~ + 2). How accurate is this expression? This section
describes how Rival’s extensions to interval arithmetic help answer the question. For ease of
exposition, this section uses two-digit decimal arithmetic as a target precision, with ordinary
�oating-point as a higher precision arithmetic; targetting single- or double-precision �oating-point
with arbitrary-precision libraries sees analogous issues.

2.1 Interal Arithmetic
Consider an input like (G,~) = (3.0, 1.1). At this input point, the expression G~/(G~ + 2) can be
directly computed with two-digit decimal arithmetic: 3.01.1 = 3.34 · · · , which rounds to 3.3; then
3.3 + 2 = 5.30 · · · , which rounds to 5.3; and �nally 3.3/5.3 = 0.622 · · · , which rounds to 0.62. How
accurate is this result? To �nd out, we must compare the computed result with the true value of
this expression.
One might estimate that true value using higher-precision computation. In single-precision

�oating-point, the input evaluates to 0.62605417, which rounds to the two-digit decimal 0.63.
Two-digit decimal evaluation therefore has error: it produces 0.62 instead of the correct 0.63.
Unfortunately, single-precision �oating-point itself has rounding error. After all, in double-precision
arithmetic the computed value is not 0.62605417 but 0.62605425 · · ·, and even higher precision
could produce some third value. So this method of computing the true answer is suspect: how
much precision is enough?

Interval arithmetic answers this question using intervals, written [0,1], which represent any real
value between 0 and 1 (inclusive). Ordinary mathematical operations are then extended to intervals,
the two ends always rounded outward to ensure that the resulting interval always contains the
mathematically exact value. Returning to the running example, the interval evaluation of G~ with
(G,~) = (3.0, 1.1) is [3.0, 3.0] [1.1,1.1] = [3.3, 3.4]. Next, [3.3, 3.4] + [2.0, 2.0] = [5.3, 5.4]. Finally,
[3.3, 3.4]/[5.3, 5.4] = [0.61, 0.65], with those two endpoints computed via 3.3/5.4 = 0.61 and
3.4/5.3 = 0.65.1 Therefore, the true value is between 0.61 and 0.65. A similar interval computation
can be done with any precision; with single-precision �oating-point, the resulting interval is
[0.62605417, 0.62605441].
Importantly, this interval is much narrower and both endpoints round to 0.63 in two-digit

decimals, meaning that the true value (which must be in the interval) does the same. These one-
value interval therefore provide a way to evaluate the true value of the expression, to a target
precision, using a higher but �nite precision. If even single-precision �oating-point resulted in too

1Division yields its smallest output with a small numerator and large denominator; more generally, evaluating a mathematical
operation on intervals means solving an optimization problem, identifying the maximum and minimum values a function
can take on over a range of inputs.

, Vol. 1, No. 1, Article . Publication date: December 2021.



99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

An Interval Arithmetic for Robust Error Estimation 3

wide an interval, double- or higher-precision arithmetic could be tried until a one-value interval is
found.

Interval arithmetic thus provides a fast way to compute a ground-truth value for an expression
on an input point. This algorithm can be used for a range of purposes. In sampling-based error
estimation, a ground truth is computed for many randomly-sampled inputs to a �oating-point
expression, and the actual �oating-point answer is compared to the ground truth to determine
how accurate the expression is. However, while this works well on most inputs, on challenging
expressions it can throw errors, enter in�nite loops, or fail to �nd valid inputs.

2.2 Invalid Input Points
Not all inputs to G~/(G~ + 2) are as conceptually simple as (3, 1.1); consider (G,~) = (�1.1, 7). For
this input, the denominator G~ + 2 evaluates to the interval [0.0, 0.1] in two-digit decimals, meaning
a division by zero error is possible. But single-precision evaluation shows that the error is a mirage:
[�1.1,�1.1] [7,7] + 2 yields the interval [0.0512841, 0.0512843] for the denominator, proving that
division by zero does not occur. More broadly, in interval arithmetic, an interval may contain both
valid and invalid inputs for an operator, in which case an error can be possible without being
guaranteed.
Error intervals formalize this reasoning. Each interval is augmented with a boolean interval

[6, ?], where the 6 tracks whether an error is guaranteed and the ? tracks whether it is possible; the
interval [>,?] is illegal, since a guaranteed error implies a possible error. For our running example
with (G,~) = (�1.1, 7), the error interval is [?,>] in two-digit decimal arithmetic, indicating that
error is not guaranteed but is possible, and [?,?] in single-precision �oating-point, guaranteeing
that no error occurs. Importantly, error intervals can handle borderline cases with recomputation.
For this point, two-digit decimal arithmetic is insu�cient to determine whether the input point is
valid, but single-precision is. If even single-precision weren’t, double or higher precision could be
tried.
Boolean intervals are a type of three-valued logic which can also address expressions with

explicit preconditions or with conditionals that branch on �oating-point comparisons. In each
case a boolean interval indicates whether a condition can, or must, be true, and multiple boolean
intervals can be combined with the standard boolean operators. For example, for an expression ⇢ (G)
with precondition sin(G) > 0, the valid inputs G are those where sin( [G, G]) > 0^¬err(⇢ ( [G, G])) =
[>,>], where err(⇢) refers to the error interval of ⇢. The key for interval arithmetic is that error and
boolean intervals allow expressing rich notions of input validity that integrate with recomputation
and provide sound, error-free guarantees.

2.3 Futile Recomputation
Recomputation guarantees soundness but not speed. To the contrary: repeated, futile recomputa-
tions present a signi�cant practical problem, most commonly due to over�ow.

Consider our running example G~/(G~ + 2), but with the extreme input (G,~) = (1010, 1010). Now
G~ is huge—too large for double-precision and even for common arbitrary-precision libraries. So in
interval arithmetic, it evaluates to [⌦,1] for some largest �nite representable value ⌦. Since ⌦ is
already the largest representable value, [⌦,1] + 2 results in [⌦,1] again, and since the division
[⌦,1]/[⌦,1] can produce a value as small as ⌦/1 = 0 or as large as1/⌦ = 1, the �nal interval
is [0,1]. This interval is too wide to be helpful, and since the problem is over�ow, not rounding,
recomputing at a higher precision will not help. But we need to prevent recomputation from taking
futile recourse to higher and higher precisions until an error like timeout, memory exhaustion, or
worse occurs.
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4 Anon.

Movability �ags detect such futile recomputations. Movability �ags are a pair of boolean �ags
added to every interval, which trackwhether over�ow in�uences each endpoint.When G~ over�ows,
for example, the in�nite endpoint in [⌦,1] is marked “immovable”, meaning that recomputing it at
higher precision would yield the same result. These movability �ags are then propagated through
interval computations: [⌦,1] + 2 also has an immovable in�nity, and in the �nal result [0,1] both
endpoints are immovable. This guarantees that higher-precision evaluation would produce the
same uselessly-wide interval and cuts o� further recomputation. Importantly, immovable endpoints
distinguish harmful over�ows that produce timeouts, like these, from benign over�ows that still
produce accurate results, like in 1/4G .

Movability �ags are sound: if an expression evaluates to a wide immovable interval, recomputa-
tion cannot compute an error-free ground truth. This allows distinguishing harmful over�ows from
di�cult expressions that require higher precision to resolve. Movability �ags are not complete—the
problem is likely undecidable [9]—but are accurate enough to dramatically cut the number of cases
of futile recomputation.

2.4 Low Measure
Many applications of interval arithmetic, such as for error estimation of �oating-point expressions,
require sampling a large number of valid input points, usually via rejection sampling (repeatedly
sampling points and discarding invalid ones). Often a speci�c distribution, like uniform sampling,
is required as well. But for many mathematical expressions the valid, samplable points have low
measure: they are a tiny subset of the entire input space. Consider sin�1 (G + 2007): the only valid
inputs are in [�2008,�2006], a range that contains approximately 0.0001% of double-precision
�oating-point values. Rejection sampling would yield almost exclusively invalid points! Since
restrictions on multiple variables combine multiplicatively, the chance a sample is valid decreases
further for more variables.
Input search addresses this issue by identifying and ignoring regions of the input space where

all inputs are invalid or unsamplable. Input search recursively subdivides the sample space into
axis-aligned hyperrectangles, which assign each variable an interval. For each hyperrectangle,
input search then uses error intervals and movability �ags to determine whether points in that
interval are valid and samplable. In a form of branch-and-bound search, input search then discards
hyperrectangles that return [?,?] and subdivides those that return [?,>]. For example, for
sin�1 (G + 2007), the interval [0,1] is discarded but the interval [�1, 0], whose error interval is
[?,>], is subdivided and searched further.
Input search leverages error intervals and movability �ags to ensure that di�cult regions of the

input space are handled soundly. This ensures that input regions that contain valid inputs are never
discarded, and that applications can choose to ignore (or include) regions where movability �ags
prove unsamplability. Input search also o�ers control over the sampling distribution and tunes the
subdivision to the target distribution to ensure fast convergence.
Put together, error intervals, movability �ags, and input search overcome practical issues with

interval arithmetic that plague state-of-the-art implementations and enable for more e�ective and
robust error estimation.

3 BACKGROUND
Arbitrary-precision interval arithmetic with recomputation is the standard method for approximat-
ing the exact result of a mathematical expression.

, Vol. 1, No. 1, Article . Publication date: December 2021.



197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

An Interval Arithmetic for Robust Error Estimation 5

3.1 Arbitrary-precision Floating Point
Software libraries like MPFR [21] provide �oating-point arithmetic at an arbitrary, user-con�gurable
precision ? . This arithmetic represents a �nite subset (? of the extended reals R [ {±1}. Any
real number G can be rounded '? (G) to precision ? by monotonically choosing one of the two
values in (? closest to G ; we write '#

? and '"
? for rounding down and up speci�cally. Precision

? implementations of functions like sin or log are correctly rounded: the implementation 5? of
a function 5 satis�es 5? (G) = '? (5 (G)). But larger expressions can be inaccurate even in high
precision: (1 + G) � G evaluates to 0 for all inputs G > 2? .

3.2 Interval Arithemtic
Intervals are an abstract domain over the extended reals: the interval [0,1] 2 (? ⇥(? represents the
set {G 2 R⇤ | 0  G  1}. Interval versions 5? can be constructed for each mathematical function 5
to guarantee both soundness,

8G1 2 �1, G2 2 �2, . . . , 5 (G1, G2, . . .) 2 5? (�1, �2, . . .),
and weak completeness,

9 G1,~1 2 �1 , G2,~2 2 �2 , . . . , 5? (�1, . . . , �=) = ['#
( (5 (G1, . . . , G=)),'

"
( (5 (~1, . . . ,~=))] .

The points G8 and ~8 are called witness points, For example, since [01,02] + [11,12] is at least 01 + 11
and at most 02 + 12, the result must be ['#

? (01 + 11),'"
? (02 + 12)].

3.3 Recomputation
Consider an expression 4 over the real numbers, consisting of constants, variables, and function
applications. In a target precision ? , the most accurate representation of its value at G is the ground-
truth value ~⇤ = '? (J4K(G)), where J4K(G) is the error-free real-number result. Interval arithmetic
can be used to compute ~⇤. Evaluate 4 to some interval [~1,~2] at precision @ > ?; then

~1  J4K(G)  ~2 =) '? (~1)  ~⇤  '? (~2)
by soundness and monotonicity. If [~1,~2] is su�ciently narrow, '? (~1) = ~⇤ = '? (~2), which
computes~⇤. We call these narrow intervals one-value intervals; computing one just requires �nding
a large enough precision @.

A useful strategy for �nding @ is to start just a bit past ? and then grow @ exponentially, which
guarantees that large precisions are reached quickly. Under certain assumptions, this exponential
growth strategy can also be proved optimal in the sense of competitive analysis. Sometimes, though,
the @ required is too large to be feasible or may not exist due to limitations like a maximum exponent
size. Practical implementations must thus cap the maximum value of @ and return indeterminate
results when the cap is reached.

4 BOOLEAN AND ERROR INTERVALS
Interval arithmetic is a method for establishing bounds on the output of a mathematical expres-
sion. This section introduces boolean intervals, which incorporate control �ow into the interval
arithmetic framework, and demonstrate how their application to domain errors (error intervals)
allows integrating rich notions of input validity with the soundness and recomputation provided
by interval arithmetic.

4.1 Modeling Control Flow
Besides real computations, �oating-point expressions contain explicit and implicit control �ow.
However, since intervals represent a range of inputs, the results of a boolean expression can be
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indeterminate (true on some inputs in the range and false on others). Boolean intervals (for explicit
control �ow) and error intervals (for implicit control �ow) represent this possibility.

D��������� 1. Boolean intervals [>,>], [?,?], and [?,>] denote the sets {>}, {?}, and {?,>}
of booleans.

Boolean intervals form a standard three-valued logic, with [?,>] representing the indeterminate
truth value and with standard semantics for conjunction, negation, and disjunction. Comparison
operators on intervals can return boolean intervals: [1, 3] < [4, 5] = [>,>], while [1, 4] < [3, 5] =
[?,>]. Explicit control �ow like the if operator unions its two branches when the condition is
indeterminate.

Expressions also have implicit control �ow due to domain errors. As with comparisons, whether a
domain error occurs can be indeterminate; each expression thus returns an error interval,2 a boolean
interval describing whether a domain error occurred during the evaluation of the expression; we
write err(4) for the error interval of expression 4 .3 When an error is possible but not guaranteed,
the function’s output is still meaningful. For example, the expression pow(G,~) raises a domain
error when G is negative and ~ is non-integral. Thus, pow( [�1, 2], [1, 5]) returns [�1, 32] with error
interval [?,>] because pow(�1, 1) = �1 is the minimum possible output, pow(2, 5) = 32 is the
maximum possible output, and pow(�1, 2.5) demonstrates that domain error is possible.4

At higher precisions input intervals are narrower, so errors that were once possible may be ruled
out. Error intervals make it possible to distinguish those cases (which have error interval [?,>])
from cases like

p
�1 (which have error interval [>,>]) where an error is guaranteed even at higher

precision. Consider
p
cos(G). At low precisions and with large G values, cos(G) can evaluate to

[�1, 1], so that
p
cos(G) is possibly invalid. Without error intervals,

p
cos(G) would indicate the

possible error by returning [NaN, 1]. The error interval [?,>] gives more information: it indicates
that the expression could be a valid at a higher precision. But if, at a higher precision, cos(G) is
found to be strictly negative, the error interval will be [>,>] and cut o� further recomputation.

4.2 Point Validity
Both explicit and implicit control �ow can a�ect whether a point is a valid input. Combinations of
boolean and error intervals allow expressing these rich notions of input validity. Consider how four
validity requirements, drawn from the Herbie tool [42], can be formalized as expressions yielding
boolean intervals. Each validity requirement applies to the input (G,~, . . . ) of an expression ⇢.
First, Herbie requires each input variable to have a �nite value in the target precision. Given

the target precision’s smallest and largest �nite values  � and  +, the comparison  �  G   +
expresses that requirement for the variable G . The constants � and + can be computed by ordering
all values in the target precision and taking those just after/before ⌥1. Note that the expression
�1 < G < +1 is equivalent in the target precision, but is much weaker in higher precisions that
contain values between  + and +1.

Second, Herbie requires the output value, when computed without rounding error, to be �nite as
well. The expression  �  ⇢   + enforces this requirement. Note that boolean intervals allow
incorporating arbitrary mathematical formulas into validity requirements.
Third, Herbie requires ⇢ to not raise a domain error. The expression ¬err(⇢), which uses err

to access the error interval, enforces this requirement. Since interval operations are meaningful
even when an input interval contains invalid points, combining this requirement with the second
2Error intervals can be viewed as an abstraction not just of the real results of the computation, but of the Error monad the
computation occurs within.
3In this way, err is analogous to a try/catch/else block.
4When an expression’s error interval is [>,>], of course, the interval bounds are meaningless by necessity.
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An Interval Arithmetic for Robust Error Estimation 7

one allows ignoring points that are either too large or invalid without using higher precision to
determine which restriction applies.

Fourth, Herbie users can provide a precondition that valid inputs have to satisfy. That precondition
can be interpreted as a boolean interval expression to enforce this requirement. Since interval
arithmetic already accounts for rounding error, the precondition is checked without rounding error.
If the chosen precision isn’t high enough, the precondition returns the indeterminate boolean
interval [?,>], and it is automatically recomputed at a higher precision to determine whether the
input is in fact valid.

Since boolean intervals admit conjunction, all four of these requirements can be combined into a
single formula that for input validity. That single formula is crucial to input search Section 6.

5 MOVABLE AND IMMOVABLE INTERVALS
For some inputs, computing a ground-truth value using interval arithmetic and recomputation is
impossible; one common problem is an over�ow that persists across precisions. When no ground-
truth can be computed for certain input points, the user must be warned, and recomputation
must be prevented from causing timeouts. Movability �ags on each endpoint achieve this goal.
Movability �ags are set when operations over�ow, and track the in�uence of that over�ow on
further computation. When over�ow prevents the computation of a ground-truth value, movability
�ags warn the user without timing out.

5.1 Movable and immovable intervals
Formally, an interval is augmented with two movability �ags, one associated with each of its end-
points; an endpoint is immovable when its movability �ag is set. In examples, we write exclamation
marks for immovable endpoints, so that [0, 1!] is an interval with a movable left endpoint 0 and an
immovable right endpoint 1. The movability �ags describe how intervals get narrower at higher
precision.

D��������� 2. One interval re�nes another, written [00,1 0] � [0,1], when 1 0 = 1 and both are
immovable or when 1 0  1 and 1 is movable; and likewise 00 = 0 and both are immovable or when
00 � 0 and 0 is movable.

The goal of movability �ags is to determine whether recomputation at higher precision could
possibly yield a narrower interval output. Speci�cally, they guarantee:

T������ 3. J4K@ (G) � J4K? (G) for all 4 , G , and @ > ? .

When an expression evaluates to an interval that is not one-value and which has two immovable
endpoints, any higher-precision computation will do the same, and recomputation is futile. Al-
ternatively, an interval with a single immovable endpoint is guaranteed to produce that value (if
any).

Program inputs and constants (named and numeric) form a particularly simple case of Theorem 3.
Program inputs are drawn from the target precision and can be directly represented in higher
precision; they are thus represented by intervals [!G, G !] with both endpoints marked immovable.
Constants like c , however, cannot be exactly represented and have both endpoints of their interval
marked movable.
For expressions larger than just constants, Theorem 3 is proved by induction. Operators in the

tree must properly interpret movability �ags on their inputs and set movability �ags on their
outputs. The key is to ensure that each operator 5 preserves re�nement for its inputs:

P������� 4. 5@ (� 01, . . . , � 0=) � 5? (�1, . . . , �=) when @ > ? and all � 08 � �8 .

, Vol. 1, No. 1, Article . Publication date: December 2021.



344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Anon.

Importantly, if 5? (� , � ) has an immovable endpoint, then 5@ (� 0, � 0) must share that immovable
endpoint. When all operators satisfy Property 4, Theorem 3 is preserved by structural induction.
The rest of this section describes how to guarantee Property 4 for various operations.

5.2 Immovability from Overflow
Movability �ags are set when the limitations of arbitrary-precision computation make it impossible
for higher precision to make the result of a computation more precise.
Consider the exp(G) function, which computes 4G . The MPFR library represents arbitrary-

precision values as ±(1 + B)2⌘ , where the exponent ⌘ has a �xed upper bound � . It thus cannot
represent any values larger than 2�+1, so inputs G > log(2�+1) to exp over�ow at any precision.5
This fact allows exp to set movability �ags on its output.

Consider the computation exp? ( [0, 1010!]) = [1,1!]. The output’s right endpoint is exp(1010),
which rounds up to +1. Since 1010 exceeds the over�ow threshold, the rounding will occur at any
precision ?; and since 1010 is immovable in the input interval, it will be the right endpoint of any
re�nement of the input. So it is valid to mark the right output endpoint immovable. Alternatively,
for inputs like [1010, 1011] whose left endpoint exceeds the over�ow threshold, the output’s right
endpoint can be marked immovable even if both input endpoints are movable. Thus outputs can
have immovable endpoints even with entirely movable inputs. Note, however, that in this case the
left output endpoint cannot be marked immovable, since it will be the largest representable �nite
value and that can typically increase with higher precision.

This general logic of over�ow extends to the exp2 function with threshold � + 1, and to pow,
which detects over�ow via the identity G= = exp(= logG).

5.3 Propagating Immovability
Once one operator sets a movability �ag, that movability �ag must be propagated through later
computations. That requires keeping track of the exactness of intermediate computations.

An arbitrary-precision function 5? can be thought of as '? (5 (G1, . . . , G=)), where 5 is the exact,
real-valued function. But when the exact result 5 (G1, . . . , G=) is representable in precision ? , the
rounding function '? is the identity. Since 5 (G1, . . . , G=) is then also representable at all higher
precisions @, we have 5@ (G1, . . . , G=) = 5? (G1, . . . , G=). This is the key to guaranteeing Property 4.

In general, an output interval’s endpoint will be immovable if it is the exact result of a computation
on immovable inputs. Monotonic functions are a good illustration of the logic. Consider a single-
argument, monotonic function 5 . Its behavior on intervals is particularly simple:

5? ( [0,1]) = ['#
? (5 (0)),'"

? (5 (1))] .
At a higher precision, the rounding behavior could change and then so would the output interval.
However, if 0 is immovable, any re�nement [00,1 0] � [0,1] must have 0 = 00 and 1  1 0. If 5 (0) is
exactly computed, '#

? is the identity. In this case:

5@ ( [00,1 0]) = 5@ ( [0,1 0]) = ['#
@ (5 (0)),'"

@ (5 (1 0))]
= [5 (0),'"

@ (5 (1 0))] � [5 (0),'"
? (5 (1))] = 5? ( [0,1])

In other words, for monotonic functions, exact computations on immovable endpoints result in
immovable endpoints. For example, sqrt? ( [0, 4!]) = [0, 2!] because the square root of 4 is exactly
2. However, sqrt? ( [0, 2!]) = [0, 1.414 . . .] has a movable right endpoint because the square root

5The value of � for MPFR depends on the platform, so Rival calculates its over�ow threshold at runtime, using 80 bits of
precision and consistent rounding up.
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of 2 is not exact at any precision. Arbitrary precision libraries such as MPFR report whether a
�oating-point operator is exact, making this rule easy to operationalize.
For general interval functions, the task is more complex because the endpoints of the output

interval need not be computed from input endpoints. General interval functions may be de�ned as
computing 5 on witness points 00 and 1 0:

5? ( [01,11], . . . , [0=,1=]) = ['#
? (5 (001, . . . ,00=)),'

"
? (5 (1 01, . . . ,1 0=))]

Here, the witness points 00 and 1 0 are computed as an intermediate step to minimize and maximize
5 over the input intervals. In such a scenario, output endpoints are immovable only if the witness
points are guaranteed to be the same in all re�nements of the input intervals, and when 5 ’s output
is representable:
L���� 5. Suppose the left output endpoint of 5? , computed via 5 (001, . . . ,00=), is representable in

precision ? . That endpoint may be marked immovable if, for all 8 , either 1) 008 = 08 and 08 is immovable;
2) 008 = 18 and 18 is immovable; or 3) 08 and 18 are both immovable and 008 is computed exactly. The
analogous applies to 5? ’s right endpoint.

P����. Since 008 minimizes 5 over the intervals �0 . . . �= , 5? (001, . . . ,00=) bounds 5 from below. If,
furthermore, 5? (001, . . . ,00=) is exactly computed, then 5? (001, . . . ,00=) = 5@ (001, . . . ,00=) for any higher
precision @.
Consider conditions (1) and (2) �rst. If (1) or (2) holds, 008 is guaranteed to be a member of any

re�nement �8 � [08 ,18 ] by immovability. Since it is the witness point for 5 at the lower precision, it
is a valid witness point at any higher precision too.
Alternatively, consider condition (3). If (3) holds, the only re�nement of [08 ,18 ] is itself, so 008

is always a member of that re�nement. Since 008 is additionally computed exactly, it is computed
identically and thus still a witness point at any higher precision.
Since, under (1), (2), or (3), 008 is a valid witness point at any higher precision, the left output

endpoint computed from it can be marked immovable. ⇤

In practice, computing witness points is usually easy. Consider the absolute value function
fabs( [0,1]): the left witness point is 0, 1, or 0, and the right witness point is 0 or 1. In some cases, it’s
best to avoid computing witness points directly. For example, cos has a minimum of �1 at c . Instead
of computing c inexactly, �1 can be used directly, so that for example cos( [!3, 4!]) = [!�1, 0.653 · · · ].
In terms of Lemma 5, the witness point c is computed at in�nite precision and then cos(c) is
evaluated exactly. Over�ow frequently produces immovable in�nite endpoints, but operations on
in�nities are generally exact, so Lemma 5 retains immovability in these cases too.

5.4 Function-specific Movability Reasoning
Function-speci�c reasoning sometimes provides additional cases in which movability �ags may be
set. The most common case is multi-argument functions where individual arguments are special
values like zero or in�nity. These special values allow setting movability �ags even when some of
the input intervals are entirely movable.
Addition is an illustrative example. Addition of anything with in�nity yields in�nity; thus,

[1, +1!] + [1, 2] = [2, +1!], with the right output endpoint immovable. Multiplication by an
immovable 0, like addition of in�nity, results in an immovable 0, even if the other argument is
movable. Multiplication by in�nity is similar but more complex: consider [�1, 1] ⇥ [!1, +1!] =
[�1, +1], where the output interval is movable because the movable left-hand argument may
re�ne to a strictly positive or a strictly negative interval. Thus, much like over�ow detection
requires knowing that the input interval is greater than a given threshold, handling in�nite values
in multiplication requires knowing the sign of the input interval:
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) , � ,$ = ;, ;, {[�1,1]=}
for 8 2 [1, . . . ,# ] :����������������

$ 0 = ;
for G 2 $ :����������

~ = % (G)
if stuck(~) : warn “Discarding points in G”
elif ~ = [>,>] : ) = ) [ {G}
elif ~ = [?,?] : � = � [ {G}
else : $ 0 = $ 0 [ (split G along (8 mod =))

$ = $ 0

return) [$

Fig. 1. Pseudo-code for input search. Given a pre-
condition % over = real variables, input search
finds a set) [$ of disjoint hyperrectangles, such
that ) [ $ contains all valid, samplable input
points. The ) , � , and $ sets are initialized on the
first line and then updated over the course of
# search iterations. In each iteration, the hyper-
rectangles in $ are evaluated. Stuck intervals are
discarded; intervals where the precondition has
undetermined truth value are split into two along
a dimension picked by round robin.

L���� 6. Let 2 = 008 ⇥ 1 08 be an endpoint of an interval returned by multiplication. The endpoint
may be marked immovable if: 1) both 008 and 1

0
8 are immovable and 2 is computed exactly; or, 2) 008

is zero and immovable (or likewise for 1 08 ); or, 3) 0
0
8 is in�nite and immovable and [11,12] does not

contain zero (or likewise for 1 08 ).

P����. The �rst case just restates Lemma 5. In the second case, 008 is immovable, so 008 = 0 is
in any re�nement. Since 0 ⇥ 1 08 = 0 for any 1 08 , the result is immovable. Finally, in the third case,
while 1 08 may change when re�ned, its sign cannot, since [11,12] does not contain zero. Since 008
is immovable, 008 ⇥ 1 08 takes on a �xed sign in any re�nement. Since 008 is additionally in�nity, the
resulting +1 or �1 is immovable. ⇤

Immovable in�nite endpoints are often caused by over�ow, so this multiplication-speci�c reasoning
is essential to detecting immovability for many expressions.

6 INPUT SEARCH
Most applications of interval arithmetic, whether using pure sampling or input generation or
exhaustive testing, start by selecting one or many valid input points. But for many expressions,
valid inputs are rare, making �nding one challenging. And some applications (such as sampling-
based error estimation) further require uniform sampling of valid inputs. Input search addresses
this issue by discarding invalid portions of the input space and focusing on valid points.

6.1 Intervals for Uniform Sampling
Boolean and error intervals can evaluate input validity for interval inputs, as shown in Section 4.
They can thus prove a whole range of inputs to be valid or invalid at once. Consider a valid-
ity condition % expressed via boolean and error intervals, and input intervals �1, �2, . . . , �= . Then
% (�1, �2, . . . , �=) can yield [>,>], [?,?], or [?,>], depending on whether these intervals contain
only valid points, only invalid points, or a mix.
More formally, with = free variables and a target precision ?; the total number of input points

is then |(? |= . The hyperrectangle �1 ⇥ · · · ⇥ �= , where each free variable is bound by an interval,
has weight F = |(? \ �1 |/|(? | · · · · · |(? \ �= |/|(? |. Now consider a set of hyperrectangles that
partition the total input space. Uniformly sampling from the [>,>] hyperrectangles and rejection
sampling from the [?,>] hyperrectangles, both with probability proportional toF , yields valid
inputs points, uniformly sampled from the input space. If uniform sampling is unnecessary, the
weights can simply be ignored; or if some non-uniform distribution is required the weightF can
use the cumulative distribution function in place of the uniform size |(? \ �: |.
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An Interval Arithmetic for Robust Error Estimation 11

This basic idea forms the basis of a branch-and-bound algorithm shown in Figure 1 that iteratively
decomposes the complete input space into a subset with a higher proportion of valid points. The
search algorithm maintains three sets of hyperrectangles, � , ) , and $ , initialized with ) = � = {}
and with $ = {(=? } containing the whole input space. At each step, the validity expression is
evaluated on each hyperrectangle in $ . If the result is [?,?] or [>,>], the interval is moved to �
or ) , but in the [?,>] case the interval is subdivided and both halves are placed back into $ . At
each step, the intervals in � [) [$ cover the input space; the process terminates once no intervals
are left in $ , or after a �xed number of iterations (14 in our implementation). Thus, as the search
algorithm proceeds, ) and � accumulate hyperrectangles covering valid and invalid regions of
the input space, while $ contains increasingly small hyperrectangles whose validity is unknown.
Once search is �nished, points are sampled proportionally to weight from the hyperrectangles in
) [$—from ) directly and from $ via rejection sampling.

Two special twists are required to make this algorithm e�ective and maximally general. First,
when splitting [?,>] hyperrectangles, the algorithm performs best when the two resulting hy-
perrectangles contain the same number of values. Since �oating-point binary representations are
sorted, the best split is midway between the binary representations of the endpoints in the target
precision. Second, it is important that the hyperrectangles in ) [ � [$ strictly partition the input
space—no point is in two hyperrectangles. However, recall that intervals are inclusive on both
ends, so one point can end up in two hyperrectangles and end up oversampled. The �x for this is
to increment one endpoint to the next �oating-point value when splitting a hyperrectangle. The
split value is represented in the resulting lower hyperrectangle, and the next value is represented
in the resulting higher hyperrectangle. This allows input search to guarantees uniform sampling
when that is required, such as for sampling-based error estimation.

6.2 Range Analysis
Hyperrectangle subdivision aids sampling because partitioning the input space can model complex
relations between variables. However, it is ine�cient for the most common type of condition:
constant bounds on variables. Input search uses a static analysis of the precondition, called range
analysis, to address this issue. The main role of range analysis is to detect comparisons between
variables and constants, and propagate these comparisons through boolean operations. For each
variable, the result is a set of intervals, where inputs outside the set are provably invalid. Input
search then forms the cartesian product of these per-variable interval sets and uses the resulting
hyperrectangles as a starting point for the subdivision search.

Formally, range analysis returns disjoint intervals-81[-82[ . . .[-8= for each variable G8 , where:

J%K(G) =) 88, G8 2 -81 [ -82 [ . . . [ -8= .

Range analysis traverses the precondition from the bottom up. A comparison G < ⇠ becomes the
range table G 7! {[�1,⇠]}, and boolean operations correspond to straightforward intersections
and unions of range tables. For non-trivial comparisons like exp(G) < ~, range analysis just returns
a non-restrictive range table; these more complex cases are better handled by branch-and-bound
search.

6.3 Unsamplable Inputs
As discussed in Section 5, some valid input points are unsamplable: interval arithmetic cannot
compute a ground truth value and so cannot accurately measure error. Input search must warn
the user if it �nds unsamplable points, ideally providing an example to help the user debug the
issue. But unsamplable points often represent unintended inputs; users often react to the warning
by adding a precondition ruling the unsamplable points invalid. So many applications of interval
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arithmetic in fact discard unsamplable points, after issuing a warning. Since unsamplable inputs
often come in large contiguous regions, input search ought to detect them, warn the user, and
ignore them.

Movability �ags let input search do this. De�ne an interval to be stuckwhen it has two immovable
endpoints but is not one-value.6 In other words, G is unsamplable if stuck(J4K? (G)). Surprisingly,
stuck satis�es Property 4:

T������ 7. Suppose stuck(J4K? (- )) for a hyperrectangle - . Then for any hyperrectangle - 0 � -
(interpreted pointwise) and precision @ > ? , stuck(J4K@ (- 0)) also holds.
As a corollary, if all intervals in a hyperrectangle - have both endpoints movable, and J4K? (G) is
stuck, then all points G 2 - are unsamplable, because their point intervals [G, G] re�ne - .

P����. Any re�nement of a stuck interval is also stuck. Now, by Theorem 3, if - 0 � - ,
J4K@ (- 0) � J4K? (- ). So if J4K? (- ) is stuck, so is J4K@ (- 0). ⇤

Input search thus marks each hyperrectangle’s endpoints as movable before evaluating the
validity condition. When a hyperrectangle evaluates to a stuck interval, a warning is can be raised,
informing the user to the presence of unsamplable inputs. To aid in debugging, a point is chosen
from - and provided to the user as an example unsamplable input; by Theorem 7, any point in -
will do. Applications can con�gure input search to then discard - by moving it to the � set.

7 EVALUATION
We implement error intervals, movability �ags, and input search in the Rival interval arithmetic
library7 and evaluate it against the state-of-the-art Mathematica 12.1.1 N function. Mathematica is
a proprietary software system advertised as “the world’s de�nitive system for modern technical
computing” and priced at roughly $1 500 per person per year for industrial use; our research is
supported by an educational site license. Mathematica is also widely used across all science and
engineering domains; a Google Scholar search for ’Mathematica’ yielded 10,000 hits, while an ArXiv
search found 200 results for 2021 alone. Being a proprietary system, it’s impossible to know with
certainty how N works; however, its maximum precision �ag, its con�gurability for target precision
or target accuracy, and its over�ow and under�ow warnings all suggest that N implements interval
arithmetic.
Our results are plotted in Figure 2. We �nd that among 19895 challenging input points, Rival

is able to resolve 60.3% more and has 10.2⇥ fewer indeterminate results. Its error-handling-�rst
design (with error intervals and movability �ags) also avoids in�nite loops, memory exhaustion,
and hard crashes, which a�ict Mathematica in 64 cases. Furthermore, input search can avoid 74.6%
of the invalid inputs in the �rst place.

7.1 Methodology
Mathematica’s N function can compute mathematical expressions exactly to an arbitrary precision,
precisely the task supported by Rival. We chose Mathematica as our baseline after comparing
multiple traditional interval arithmetic libraries. Of all the evaluated libraries, Mathematica was
the most robust and supported the most functions. For example, the MPFI library does not handle
errors soundly (unlike Rival’s error intervals), has no built-in support for recomputation (unlike
Rival’s movability �ags), and lacks support for some mathematical functions like pow and erf.
6If only �nite values are valid, intervals with a single immovable, in�nite endpoint can also be considered stuck.
7Rival is written in roughly 1650 lines of Racket, including 650 lines of interval operators, 650 lines of search and recompu-
tation algorithms, 100 lines of module headers, and 250 lines of tests, and is publicly available as free software, at a URL
removed for anonymization.
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Fig. 2. Rival versus Mathematica’s N on approximately 19895 hard inputs from the 481 Herbie 1.4 benchmark
suite. Rival achieves be�er results for each outcome threshold, including successfully sampled points (dark
green), points proven invalid (light green), unsamplable points (orange), or points with unknown results
(red). Additionally, some points cause Mathematica to run out of memory or crash, shown in black. The blue
intervals mark invalid and unsamplable points avoided by input search.

For an interval arithmetic library, soundness and weak completeness already require optimal
interval endpoints, so traditional interval arithmetic libraries generally have the same results as
Rival without its extensions. Meanwhile, Mathematica is a widely-used commercial product with
extensive support for all mathematical functions and presumably-robust implementations of all of
them. Furthermore, Mathematica’s documentation suggests that N is intended to handle invalid
inputs soundly and cut o� recomputation in some cases of over- and under-�ow, making it at least
comparable to Rival.

Wemodel our evaluation task on sampling-based error estimation; that is, on the task of randomly
sampling inputs to an expression and determine the ground-truth value of the expression at those
inputs. We use a collection of 481 �oating-point expressions drawn from sources like numerical
methods textbooks, mathematics and physics papers, and surveys of open-source code, collected
in the Herbie 1.4 benchmark suite. These benchmarks consist of mathematical expressions with
0–89 operations and 0–16 variables; 4 benchmarks contain conditionals and 47 have user-de�ned
preconditions. Each benchmark is evaluated to double precision at 8 256 randomly sampled input
points (for N, to the equivalent decimal precision). Both N and Rival are limited to 10240 bits; Rival
is also limited to 31-bit exponents.8 In error estimation, most inputs to an expressions are “easy”
points where any technique will succeed; the crux of the problem are the challenging or marginal
points. To focus on these challenging points, we ignore inputs that both Mathematica and Rival can
sample, and focus on the remaining more challenging points, which are 19895 out of the overall
126720. Evaluations are performed on a machine with an i7-4790K CPU (at 4.00GHz) and 32GB of
DDR3 memory running Debian 10.0 (Buster), Racket 7.9 BC, and MPFR version 4.0.2-1.
The main methodological challenge is matching Mathematica’s and Rival’s semantics. Mathe-

matica’s N function supports �oating-point, �xed-precision, and exact computation; we convert
the sampled input points to exact rational values to ensure that exact computation is performed.
We also wrap each intermediate Mathematica operator to signal an error for Indeterminate or
Complex outputs. We compare Mathematica’s and Rival’s outputs, when both tools are able to
compute a value, to check that subtleties like atan2 argument order are correctly aligned between
the two systems. We also capture warnings and errors, which Mathematica uses to indicate whether
its evaluation is sound. These cross-checks give us con�dence that Mathematica and Rival are
asked to evaluate the same expressions on the same inputs. (Two points fail these cross-checks at
the time of this writing. We have investigated these inputs, discovered them to trigger a bug in
Mathematica, reported the bug to Wolfram support, and had it con�rmed.) Rival’s input search
8Mathematica’s precision limit is set via the $MaxExtraPrecision variable [52]. Its exponent limit is not con�gurable, but
experiments suggest an exponent limit of approximately 37 bits.
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has no direct analog in Mathematica, so for this experiment we randomly selected points without
using input search. However, we did test whether input search would have allowed Rival to avoid
sampling that point.
Evaluating Rival against Mathematica requires understanding Mathematica’s behavior on in-

valid and challenging inputs. Unfortunately, unlike Rival, Mathematica is proprietary, and the
documentation is not always speci�c. Like Rival, Mathematica’s N attempts to detect invalid inputs
and futile recomputations. In general, for invalid inputs Mathematica either returns a complex
number or the special Indeterminate value for some intermediate operator. In Figure 2, these cases
are considered proven domain error (light green). Mathematica also raises a variety of warnings,
including for over�ow and under�ow; we conservatively assume these warnings are sound and are
reached at low precision, and mark these cases unsamplable (orange in Figure 2). For Rival this
status is used only when the interval is proven stuck before the maximum precision is reached.
(More broadly, we interpret ambiguous cases as generously as possible toward Mathematica to
ensure a fair comparison.) When Rival or Mathematica reach their internal precision limit, we use
the unknown result status (red in Figure 2).

7.2 Results
Of the 19895 hard input points across our 481 benchmarks, Mathematica is able to resolve only
11744, while Rival is able to resolve 18824 points (60.3% better). Speci�cally, Rival samples 5872
points and proves a further 12952 to be invalid; Mathematica samples only 24 and proves only 11720
invalid. Rival’s error intervals, which integrate the detection of invalid inputs with recomputation,
account for the di�erence in the number of points proven invalid.
Not only does Rival resolve more cases, it resolves nearly a superset of the cases resolved

by Mathematica. Rival resolves 5877 points not resolved by Mathematica; Mathematica resolves
only 26 points that Rival cannot. (Without access to Mathematica’s internals it’s hard to say how
Mathematica resolves those 26 points. Our best guess is that it may be simplifying the benchmark
expressions before evaluating them at an input.) Furthermore, when Mathematica is unable to
resolve an input, it sometimes (64 cases) enters an in�nite loop or declares that insu�cient memory
is available.9 We render these inputs in black in Figure 2; Rival never crashes in this way. Moreover,
in 16 cases, the Mathematica process crashes and must be killed with SIGKILL, which may cause
the user to lose work.

Both Rival and Mathematica are unable to resolve some inputs: 1071 points for Rival and 8151 for
Mathematica. In these cases it’s important to give additional information to the user: some of these
points may be resolvable with more precision, time, or memory, but others cannot be resolved due
to algorithmic limitations. Rival’s movability �ags, which prove 746 points unsamplable, soundly
detect algorithmic constraints; Mathematica’s various warnings a�ect 7617 points (10.2⇥ worse)
and are unsound, sometimes triggered even for samplable inputs. Mathematica marks unsamplable
5830 points that Rival successfully samples as a result. Thus, unlike Rival’s movability �ags, they do
not advise whether the user ought to try again with more precision or abandon the computation. At
the same time, Mathematica reaches its internal precision limit 1.4⇥ more often than Rival because
Rival’s movability �ags allow it to identify unsamplable points at low precision.
For applications that need to sample valid inputs, Rival’s input search is additionally helpful.

Input search is able to avoid sampling 9142 invalid inputs and 668 unsamplable inputs, thereby
cutting the rate of invalid and unsamplable points by 74.6% (the blue intervals in Figure 2). This
means that using Rival for sampling-based error estimation would yield even better results than

9We limit the computation to one second per input point; all 32GB of memory are available to Mathematica. Rival never
runs out of memory, or takes longer than 250ms to complete a computation.
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Fig. 3. Counts of valid points (bot-
tom, blue), domain errors (middle,
yellow), infinite outputs (top, light
blue), and precondition failures
(too rare to be visible) for points
sampled without input search. 80
bits of precision su�ices for most
points.

Fig. 4. Counts of unsamplable
points. Rival’s movability flags de-
tect all but 19.0% of unsamplable
points, with the majority detected
at just 80 bits of precision. De-
tecting unsamplable points avoids
timeouts and user disappointment.

Fig. 5. Size of the) (bo�om, green),
$ (middle, blue), and � (top, red)
sets a�er each iteration of Rival’s
input search. The “0” bar shows
the results of range analysis; the “⇤”
bar shows the results of rejection
sampling. On average, input search
avoids 68.6% of invalid samples.

those suggested by Figure 2, since input search allows Rival to avoid many challenging, invalid
points. The overall picture of these results is that Rival is more capable than Mathematica: it is able
to sample more points, discard more invalid points, and leave fewer indeterminate cases unresolved.
It also does so without timeouts, memory exhaustion, or fatal crashes. Yet it also o�ers sound
guarantees and valuable extensions like input search.

As a result of Rival’s improvements in interval arithmetic, Rival is 9.87⇥ faster than Mathematica.
Mathematica’s timeouts, OOM, and crashes also add to its runtime, but Rival is 9.03⇥ faster than
Mathematica even after excluding these inputs. This is a consequence of Rival’s better handling
of invalid inputs and futile recomputation: any interval arithmetic library spends the bulk of its
time doing high-precision arithmetic. For one library to be faster than another, then, that library
must identify invalid inputs, detect futile recomputation, sample fewer such points, or in some
other way do fewer high-precision operations. That’s precisely what Rival ’s extensions do; those
extensions ultimately require just a few comparisons, so they add negligible overhead time, but they
dramatically cut down on unnecessary computation. In fact, Rival is also (19.2%) faster than MPFI,
another commonly-used interval arithmetic library, again due to Rival’s ability to skip unnecessary
computation.

8 DETAILED ANALYSIS
This section expands on Section 7 to detail the performance of error intervals, movability �ags,
and input search individually, and to describe particularly challenging benchmarks. The data show
that Rival’s extensions are e�ective, accomplish their task at low precision, and handle challenging
inputs from a range of domains.

8.1 Error Intervals
Error intervals are evaluated by considering the internal precision at which they deem input points
valid or invalid. Input search is disabled. Figure 3 counts valid and invalid points by the internal
precision required. The vast majority of points are proven valid or invalid at 80 bits of precision,
with 1280 bits the second-most common precision. This curious runner-up precision is largely due
to trigonometric functions: the largest double-precision values are as large as 21024, and 1280 bits is
enough precision to identify their period modulo c . Recomputation automatically increases the
precision to this level.
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Compared to valid points, a larger fraction of invalid points are detected at 80 bits of precision,
likely because for these points, Rival doesn’t need to compute a ground truth value, just prove
that the point is invalid. The majority of invalid points result from in�nite outputs and domain
errors, while user-speci�ed precondition failures are rare.10 Speci�cally among expressions with
preconditions, 0.1% of sampled points are invalid, suggesting that error intervals work well even
under these most challenging conditions.

The benchmark named “Harley’s example”11 demonstrates the importance of soundness for error
and boolean intervals:

pre 2? > 0 ^ 2= > 0
let 0 = 1/(1 + 4�B ),1 = 1/(1 + 4�C ) in
(02? · (1 � 0)2? ) /(12= · (1 � 1)2= )

Some inputs to this expression produce outputs just below or just above the point where the output
rounds to in�nity; error intervals force recomputation until it is clear whether which of the points
are valid, which can require as many as 5120 bits.

8.2 Movability Flags
Movability �ags are evaluated by considering the precision at which they can prove a point
unsamplable. Figure 4 shows that movability �ags detect a 81.0% of unsamplable points and thus
prevent most futile recomputations. Unsamplable points are found (and warnings issued) for
21 input expressions, mostly involving ratios of exponential functions. For example, the expq2
benchmark involves the expression exp(G)/(exp(G) � 1); its unsamplable points can be detected
with just 80 bits of precision. For more di�cult expressions, higher precision is sometimes necessary
to prove unsamplability; consider the expq3 benchmark:

Y ·
�
4 (0+1) ·Y � 1

�
(40 ·Y � 1) ·

�
41 ·Y � 1

� , with �1 < Y < 1.

This benchmark is unsamplable when 0 = Y = 10�200 and 1 = 10200: the second term in the
denominator over�ows, but at low precisions the �rst rounds down to 0, making the denominator
possibly zero. Only at 2560 bits of precision12 does it become clear that the denominator is very
large, which is necessary to prove the expression unsamplable.
By contrast, cases where movability �ags fail often seem like oversights by the benchmark

developers or the users those benchmarks are derived from. For example, the regression suite’s
exp-w benchmark, 4�F · pow(✓, 4F), fails to detect unsamplable points when ✓ is negative andF
large and positive, pow(✓, 4F) raises a negative number to a possibly-in�nite power. Since Rival
does not track movability for error intervals, it does not detect that recomputation here is futile.
But the author of this expression likely intended ✓ to be close to 1, instead of negative. Similarly,
movability �ags fail on textbook examples of di�cult-to-analyze functions like “Kahan’s Monster”:

pre ~ > 0
let I =

⇣
|~ �

p
~2 + 1| � 1/(~ +

p
~2 + 1)

⌘
, I2 = I · I in

if I2 = 0 then 1 else (exp I2 � 1)/I2
In the reals, I is exactly 0 so the program yields 1; with interval arithmetic, I is a narrow interval
straddling 0 and Rival cannot rule out a division by zero in the else branch. Of course, since

10In�nite inputs are totally absent, unsurprising given the small fraction of inputs they represent.
11This benchmark appears as a case study in the original Herbie paper, suggesting its importance [42].
12Because, with a minimum double-precision exponent of �1024, the term 40·Y needs at least 2048 bits to clearly di�er from
1.
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Error Intervals Movability Flags Input Search
Benchmarks # Valid Pre. Inf. Error Total Detected |) | |$ | |� |
hamming 28 76.8% 0.0% 6.3% 16.9% 4.6% 100.0% 53.9% 20.1% 26.0%
haskell 270 67.1% 0.0% 17.3% 15.6% 0.1% 100.0% 60.5% 25.1% 14.4%
libraries 50 69.9% 0.0% 18.2% 11.9% 3.0% 32.8% 60.1% 12.2% 27.7%
mathematics 39 65.4% 2.8% 5.0% 26.9% 17.6% 88.1% 36.3% 20.8% 43.0%
numerics 38 79.5% 0.0% 15.3% 5.1% 0.7% 90.6% 41.2% 8.2% 50.6%
physics 31 51.3% 0.0% 15.9% 32.9% 6.7% 96.9% 32.9% 40.8% 26.3%
regression 13 87.3% 0.0% 5.3% 7.4% 8.3% 33.4% 53.0% 21.0% 25.9%
tutorial 3 90.1% 0.0% 9.9% 0.0% 0.0% 100.0% 84.8% 6.8% 8.4%
Herbie v1.4 481 67.3% 0.3% 14.8% 17.6% 3.0% 81.0% 54.9% 22.3% 22.8%
User Inputs 4888 63.5% 0.0% 13.5% 23.0% 5.0% 55.8% 61.1% 17.6% 21.3%
FPBench 126 79.9% 14.2% 5.9% 0.0% 2.1% 93.3% 19.8% 7.6% 72.6%

Table 1. Rival’s success on subsets and additional benchmark sets. The table shows the percentage of points
that are valid or invalid for various reasons; the total fraction unsamplable points and the fraction of those
detected by movability flags; and the sizes of |) |, |$ |, and |� | a�er input search. Results for error intervals
and movability flags are with input search disabled to separate the impacts of each extension.

real computation is undecidable, constructing counterexamples like this will be possible for any
algorithm.

8.3 Input Search
Input search is evaluated by considering the fraction of the input space in the ) , $ , and � sets. Fig-
ure 5 shows these fractions as a percentage of the total search space, averaged over all benchmarks,
at each input search iteration. Over 15 iterations, input search discards 22.8% of the total input
space and proves an additional 54.9% to contain only valid points. As a result, 71.1% of sampled
points are guaranteed to be valid and do not need to be rejection-sampled, and 74.6% of invalid
points are avoided.

Input search helps Rival sample from benchmarks that would otherwise be infeasible to sample
from. Consider Jmat.Real.erfi:13

✓
1p
c
4G ·G

◆
·
✓
1
|G | +

1
2

1
|G |3 + 3

4
1
|G |5 + 15

8
1
|G |7

◆
, with G � 1

2

Inputs above approximately 30 over�ow, so roughly 0.15% of double-precision �oating-point values
are valid. But input search identi�es the valid range with ease, and only 1.4% of samples are
ultimately rejected.

Input search can also sometimes prove that there are no valid inputs at all. In the benchmark

p
log(G) + sin(G)/sin�1 (G + 2),

the term sin�1 (G + 2) requires �3  G  �1, while log(G) requires G > 0, so the benchmark has no
valid points. This benchmark was originally derived from a user submission; input search allows
Rival to provide a helpful error message to the (doubtless confused) user.
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8.4 Generality
To demonstrate the generality of error intervals, movability �ags, and input search across domains,
we perform a subgroup analysis. Table 1 breaks down the Herbie 1.4 benchmarks into their 8
component suites.

Rival is e�ective in a wide variety of circumstances. Di�erent benchmark suites range from 51.3%
(physics) to 90.1% (tutorial) valid points,14 and the e�ectiveness of input search correspondingly
varies. Movability �ags are 100.0% e�ective in the hamming benchmark suite, which has many
ratios of exponential functions, but much less e�ective in the regression suite, which is composed
of di�cult-to-analyze examples that once triggered timeouts or crashes in the Herbie project that
compiled these benchmarks.

We also consider two additional benchmark sets to evaluate Rival’s generality: the 126 standard
FPBench benchmarks and 4888 publically-accessible user submissions to the Herbie web demo. The
FPBench suite is intended for benchmarking �oating-point analysis tools and makes extensive use
of preconditions. Despite this, input search samples a valid point with 93.8% probability, discarding
72.6% of the input space, andmovability �ags are extremely e�ective at detecting unsamplable points.
The user-submitted benchmarks are the other extreme: unorganized, duplicative, and sometimes
copied from the other two suites. Rival nonetheless preforms well—especially input search, since
there are no preconditions among the user submissions so detecting valid inputs is easier. Both
the subset analysis and validation sets thus show that error intervals, movability �ags, and input
search are e�ective in general across domains.

9 DISCUSSION
The Rival library, containing error intervals, movability �ags, and input search, is publicly available
as open source software.15

9.1 Implementing Rival
Ensuring soundness and weak completeness in Rival required care. We started by splitting each
function’s domain into monotonic regions. For example, fmod has monotonic regions de�ned by
:~  G < (: + 1)~ for some : , monotonically increasing in G and decreasing in ~.16 Finding the
minimum or maximum of a function then requires �nding the maximum over all of the monotonic
regions in the input intervals. Soundness is guaranteed by the monotonicity of the function within
each region, while weak completeness is guaranteed because the output interval’s endpoints come
from particular points in some monotonic region. We wrote paper proofs for each function to
ensure that we accurately identi�ed the monotonic regions, and veri�ed that we correctly chose
the maximum and minimum points using Mathematica.
To catch one-o� oversights and typos, we additionally deployed millions of random tests for

soundness on both wide and narrow intervals, weak completeness (by subdividing intervals), and
movability (by recomputing in higher precision). These tests further improved Rival’s reliability.
One random test found that sin internally rounded c to nearest instead of rounding c di�erently for
the two endpoints; this is a soundness bug. Another random test found that de�ning fmod(G,~) by
trunc(G/~) ·~ fails to account for the correlation between G/~ and G ; this is a completeness bug �xed
with a custom implementation of fmod. Finally, a manual audit found that movability �ags weren’t
13Speci�cally, of the two benchmarks with that name, the one labeled “branch G greater than or equal to 5”, which we
assume is mislabeled.
14The physics benchmarks also trip up input search by heavily using trigonometric functions. The tutorial suite has three
very simple expressions, and its invalid points all come from a single over�ow.
15URL will be available after anonymization is lifted.
16For positive G ; fmod is odd in its �rst argument.
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being set when pow under�owed to 0, which lead to movability �ags missing some unsamplable
points. We replaced the powmovability logic with the identity pow(G,~) = exp(~ · log(G)) to avoid
duplicating the movability logic.

9.2 Deploying Rival
We began developing Rival three years ago to replace unsound sampling heuristics for a popular
�oating point analysis and error estimation tool.17 Rival was deployed to production one year ago
and has since been used by thousands of users.

Rival was originally a traditional interval arithmetic library aimed at soundly computing error-
free ground truths. At �rst, our main concern was speed: interval arithmetic generally requires
evaluating each function twice (once for each endpoint) while the existing unsound heuristics
evaluated each function once, so we expected performance to be twice as bad. These concerns were
unfounded. Instead, though “di�cult” points needed higher precision in Rival (in order to soundly
prove they were correctly sampled), Rival could sample “easy” points with lower precision than the
earlier heuristics, so replacing them with Rival did not slow down sampling.
Instead of speed, the core problem with this initial version of Rival was its handling of invalid

inputs. Initially, Rival used NaN endpoints to indicate domain errors, much like the open source
MPFI library [43]. But those NaN endpoints would sometimes be lost in later computations, leading
to Rival erroneously computing outputs for invalid inputs.We developed error intervals to guarantee
that Rival only sampled valid points. With this problem �xed, we realized that unsamplable points
consumed an unjusti�ably large share of sampling time. Movability �ags were developed out of the
realization that over�ow was behind most of these unsamplable points and could be easily detected
at low precision. This sped up sampling, and allowed samping inputs for many larger expressions
that used to time out. But this only revealed that most of those sampled inputs were invalid or
unsamplable; input search was developed to address this issue.

All told, Rival is sounder, faster, and more user-friendly than the heuristic approach it replaced. In
rare cases, the earlier heuristics computed incorrect ground truth values, even for textbook examples
such as

p
G + 1 � p

G ; Rival never does. Its input search and movability �ags allow estimating error
for larger benchmarks than the earlier heuristics could support. And by rigorously handling error
cases, algorithmic limitations, and even edge cases like benchmarks with no valid inputs, Rival
allows for clearer and more actional error messages for users. Over all, through error intervals,
movability �ags, and input search, Rival successfully addressed user-visible issues and improved
the application it was embedded in.

10 RELATEDWORK
Computable Reals. The problem of computing the exact value of a mathematical expression has

a long history. Early work [7, 8, 10, 40] explored various representations for “computable real”
values and developed algorithms for computing functions over them. One common representation
involving scaled 2-adic numbers yields particularly simple implementations [12, 41], but is slow,
especially for expressions having certain forms [33]. Interval arithmetic was later discovered to be
better suited to this task, as it tends to be faster [32].
Interval arithmetic has been widely available since 1967’s XSC [53]. Today, the Boost [39]

and Gaol [23] libraries are widely used, both providing interval arithmetic with double-precision
endpoints. The more modern Moore library [37] provides arbitrary-precision endpoints as well. The
IEEE 1788 standard formalizes several forms of interval arithmetic [1], including interval decorations,
which could be used to implement Rival’s error intervals and movability �ags. Recent work welds

17Tool will be identi�ed once anonymity is lifted.
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computable real algorithms to decision procedures for special cases like as rational arithmetic, and
provides an API for supporting the combination [9]. Despite its unique bene�ts for user-facing
calculator applications, general-purpose error estimation generally lies outside the special cases,
so Rival’s methods are orthogonal. RealPaver uses interval arithmetic to characterize the solution
sets of nonlinear constraints [28], to aid in pruning for global function optimization [24], similar to
Rival’s boolean intervals and input search. However, since RealPaver is targetted speci�cally at
mathematical optimization problems, it neither tracks rounding error nor provides error intervals
nor guarantees uniform sampling.

Error Estimation. There is a large literature on measuring �oating-point rounding error. One
approach [18, 27, 35] uses one interval to track value ranges and another interval to track rounding
errors, producing a sound error bound for the whole computation. This approach can be extended to
and intraprocedural, modular abstract interpretation [17, 36, 48]. Error Taylor forms can also bound
�oating-point error [14, 19, 46] and generally providing tighter bounds than interval-based bounds,
as does semide�nite programming [34]. Both error Taylor forms and semide�nite characterize error
at a �xed input point and then apply sound global optimization, such as Gelpia [11], which uses
interval arithmetic to compute sound bounds.
An alternative approach to error estimation aims to generate inputs with particularly large

rounding error. S3FP [15] treats the expression itself as a black box, while FPGen [26] uses symbolic
execution to more e�ciently target problematic input ranges. Other tools target rare errors [54–56]
or attempt to maximize code coverage [4, 22]. In each case, these inputs are generated, selected, or
mutated by comparing to an error-free ground-truth, usually computed with arbitrary precision
or interval arithmetic. Rival’s enhancements to interval arithmetic are especially attractive for
input generation methodologies, since they often generate invalid inputs (which they should select
against) or unsamplable inputs (which they should ignore).

Error Detection. Some tools aim to localize rounding error within a large program. FpDebug [6]
and Herbgrind [45] use Valgrind to target x86 binaries and detect rounding error using higher-
precision shadow values. PositDebug does the same but for posit, rather than �oating-point,
values [16]. Bao and Zhang [5] instead detect control-�ow divergence and re-executing the program
at higher precision. Herbie [42], an error repair tool, uses heuristics to select a su�ciently high
shadow value precision; the algorithm is unsound and can compute incorrect ground truths. TAFFO
replaces user-selected inputs with run-time values to dynamically substitute �xed-point for �oating-
point computation [13]. All of these need to compute an error-free ground truth and are susceptible
to invalid or unsamplable inputs.

11 CONCLUSION
This paper addresses three problems common to traditional interval arithmetic implementations.
Error intervals track the necessity and possibility of domain errors, and can be combined with
other boolean constraints to provide a rich description of valid and invalid inputs. Movability
�ags add another pair of boolean �ags to track the impact of over�ows, identifying inputs where
algorithmic limitations prevent identifying a correct ground-truth value. Finally, input search
leverages both error intervals and movability �ags to identify regions of valid, samplable points,
even when those regions have low measure in the input space. Rival implements all three features
and outperforms the state-of-the-art Mathematica 12.1.1 N function, resolving 60.3% more inputs,
returning indeterminate results 10.2⇥ less often, and avoiding all cases of fatal error.
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