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Abstract

This thesis describes a study of how compressing neural networks used to identify

malaria cells and respiratory diseases affects network accuracy, and system perfor-

mance metrics. Its focus is on a state-of-the-art framework for neural network (NN)

compression called Condensa to compress network size and improve network perfor-

mance according to different compression schemes. It details the impact malaria and

lung disease have on a worldwide level each year. It then describes previous research

in automating medical image classification. It also gives a background on what re-

search has been applied towards network compression. The study also describes work

in developing a CNN for the Malarial and Chest-X-ray datasets. It details the results of

compressing the CNN using Condensa’s Filter, StructPrune, Prune, and Quantization

schemes. This thesis provides a complete software implementation to help reproduce

our results and facilitate tool adoption. It also indicates a plan for future research in

applying Condensa towards the problem of developing an efficient system of disease

identification for different medical dataset problems.
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1 Abstract

This thesis describes a study of how compressing neural networks used to
identify malaria cells and respiratory diseases affects network accuracy, and
system performance metrics. Its focus is on a state-of-the-art framework
for neural network (NN) compression called Condensa to compress network
size and improve network performance according to different compression
schemes. It details the impact malaria and lung disease have on a worldwide
level each year. It then describes previous research in automating medi-
cal image classification. It also gives a background on what research has
been applied towards network compression. The study also describes the
author’s own work in developing a CNN for the Malarial and Chest-X-ray
datasets. It details the results of compressing the CNN using Condensa’s Fil-
ter, StructPrune, Prune, and Quantization schemes [1]. This thesis provides
a complete software implementation to help reproduce our results and facil-
itate tool adoption. It also indicates a plan for future research in applying
Condensa towards the problem of developing an efficient system of disease
identification for different medical dataset problems.

2 Introduction

2.1 Disease Context

Machine learning is a technology which has revolutionized a variety of indus-
tries from online advertising to facial recognition. However, its widespread
adoption for medical applications has been somewhat slower. Machine learn-
ing has potential applications in medical imaging, automated disease detec-
tion, and automating medical records. Its slow uptake is primarily due to
several factors. Health data availability is often limited as it is usually spread
through multiple insurance agencies and different providers. Because of this,
split data is also often represented in different formats. Additionally, most
medical data has high privacy requirements due to laws such as HIPAA. This
makes the transfer and storage of medical data a complicated process. Lim-
ited data sets can also create problems with bias within the system. Machine
learning software may perform worse when provided data from an underrep-
resented group or group different from the provided training data.

Also, of high importance is the performance and accuracy of such systems
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as inaccurate diagnosis could potentially lead to wrong treatment and harm
for the patient.

Despite these setbacks, many methods are being developed to address
concerns about data transfer and to successfully combine data sets. With
the growing size of medical data sets over time, it is increasingly important
that efficient methods can be found to process data and generate accurate
predictions. One growing use case for machine learning is for medical imag-
ing. Machine learning can be used in applications such as identifying diseased
malarial cells and detecting lung diseases from chest X-ray scans.

2.2 Identifying Malaria

Malaria is a disease which negatively impacts millions of people worldwide.
It is caused by the plasmodium parasite which is contracted through the bite
of certain species of female mosquito. It infects multiple systems of the hu-
man body and often causes permanent health issues and death. The species
of parasite which cause malaria are plasmodium falciparum, plasmodium vi-
vax, plasmodium ovale, plasmodium knowlesi, and plasmodium malariae. Of
these, plasmodium falciparum contributes to the most deaths. Between the
five of them, malaria kills over 400 hundred thousand people every year [2].
The effective treatment of malaria hinges on being able to rapidly diagnose
patients with malaria to stall the disease in as early a stage as possible. Since
malaria is endemic in many less developed areas, finding a cost-effective way
to diagnose the 220 million infections that occur each year is critical. A large
majority of malaria cases are identified using light microscopy. This is done
by a trained technician using a droplet of the patients’ blood on a specially
prepared slide to analyze red blood cells for the presence of parasites. As
this is a highly time-consuming endeavor, automating the process has been
a desirable research area. In general, research in automating malarial cell
identification has followed two stages. The first is to extract images of red
blood cells from slide images and normalize those images for lighting and
color variations. The second focus is creating a classifying algorithm which
can be trained to generate a model to a sufficient accuracy to classify future
malarial cell infections.

2.3 Identifying Lung Disease

Lung disease is another problem which impacts millions of people. In 2016,
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approximately 3.4 million people died due to chronic obstructive pulmonary
disease (COPD). Another 400 thousand passed away from asthma. Tradi-
tionally, radiology has been the standard method for detecting lung diseases.
There is currently a shortage of radiologists worldwide. For example, a re-
port by the Royal College of Radiologists (U.K.) stated that only 2 percent of
radiology departments can fulfill their imaging reporting requirements within
contracted hours. Machine learning could serve to alleviate this problem as it
is able to identify lung diseases with similar accuracy to a trained radiologist
[3]. Chest X-rays are one of the most widely used tools for diagnosing lung
diseases. As such, it represents a possible opportunity for automation via
computer vision technologies.

2.4 Review of Previous Research

Deep neural networks (DNNS) are becoming increasingly larger to obtain
greater accuracy and include more information. Consequently, there have
been many efforts to try and reduce the size of these networks to improve
inference time. In general, the metrics used for network compression are the
accuracy and the number of floating-point operations (FLOPS). Also, the
run-time memory (ratio of space for storing hidden layer features vs. the
original network) footprint can be reported to show improvements in storage
capacity.

2.4.1 Previous Network Compression Research

Previous research indicates that training a small, shallower network has
poorer generalization compared to an equally sized pruned network gener-
ated from a larger pretrained network [4]. It has also been found that pruned
CNNs and LSTMs outperform smaller dense models. In a study carried out
by Gupta, the models achieved a compression ratio of 10 in the number of
non-zero parameters with tiny losses to accuracy [5].

Other experiments have shown that a DNN with more degrees of freedom
allows for a larger solution set to be chosen from the parameter space [6].
Additionally, overparameterization has been shown to have a regularization
effect on the loss space when trained with stochastic gradient descent [7].

Another phenomenon that was recently discovered is the double descent
phenomenon. Basically, on certain classes of deep learning models, the test
accuracy goes through a descent phenomenon when not using early stopping
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or regularization. As the model size grows bigger, the test / train error
initially decreases to an initial minimum. It then increases because of the
bias-variance tradeoff. Unexpectedly, with further increases of the network
size, the test error drops lower than the initial minimum.

Having larger networks after the second descent results in weights close to
zero. Or in other words, the norm of the weights gets dramatically smaller
with increasing network size during the second descent. As network sizes
increases, there is a smaller return on accuracy with a large complexity in-
crease. [8].

Frankle and Carbin also showed that training a network to convergence
with many parameters made it easier to find a sub network that maintains
performance when trained from scratch. This implies that compressing large
pretrained and overparametrized DNNS trained to convergence has advan-
tages from a performance and storage perspective. In their study, they found
that retraining a compressed model can maintain performance.

2.4.2 Network Compression Techniques

An important tool in network compression is retraining. Basically, a pruned
network may undergo a drop in accuracy as nodes are zeroed out or removed.
To make up for this, a network may be retrained to recover that accuracy.
This can either be done using unsupervised or supervised training methods.

There have been several methods developed to reduce network size. One
of the simplest forms is weight sharing. This is accomplished by reducing
32-float weight numbers to 2-bit unsigned integers (uints). Each of these
is indexed to a centroid which is averaged from the original float weights.
In this case, a cluster index of the original weights is stored with a list of
centroids. This massively reduces the amount of data that must be stored.
The averaging to produce the centroids also has a regularizing effect on the
network [9]. Various variations to generate the centroids have been proposed.

Network pruning is the process by which weights less than a specified
threshold are zeroed out of the network by assigning their weight to be zero
and then restructuring the network to remove zeroed out nodes [10]. More
recent models focus on pruning a certain density of the weights. Basically,
the weights closest to zero are pruned to match the desired density. Once
pruning takes place, a network must often be retrained to regain accuracy.

Quantization is another common approach to reducing network size. Typ-
ical GPUs use either 32-bit floating point or half precision floating point.
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Large floating point networks are converted into networks with lower preci-
sion (INT–8, INT–4, INT–2 or 1 bit representations) to reduce the memory
footprint of the network.

2.5 Condensa

Much of recent medical computer vision research has focused on the use of
deep neural networks (especially convolutional neural networks which spe-
cialize in computer vision). DNNs offer an advantage over other methods
in that they do not require a set of identification features to be selected by
the network creator. Instead, the connections in the network can be trained
sufficiently to achieve similar if not greater accuracy than other methods.
However, the drawback of DNNs is that the scale of computations required
to train the network and generate predictions is much higher than other
methods. Since modern DNNs often contain millions of parameters or hun-
dreds of layers, it is highly desirable to be able to reduce the size of the
network (or compress the network). Doing so can be an often-experimental
endeavor and require a great deal of manual tuning. Consequently, tools
are being built to systematically automate the process of compressing DNN
networks. Condensa is a state-of-the-art tool which was developed as part of
Josephs’s work in collaboration with Nvidia Research [1].

Condensa is a framework for programmable model compression that offers
many advantages. In compressing a DNN, the requirements of different com-
pression contexts (such as DNN structure, target hardware platform, and
user’s optimization objective) may vary widely. For example, a user may
focus on reducing inference latency or instead focus on reducing the total
memory footprint. The former strategy may focus on pruning convolutional
filters while the latter may prune individual non-zero weights. However, dif-
ferent network types may necessitate different types of compression for the
same optimization objective. A language modeling network such as a trans-
former might require pruning 2-D blocks (since it does not have convolutional
layers) while a filter pruning strategy could be employed on a CNN. Con-
densa provides built in support for compressing according to these various
schemes. Condensa works by taking a reference model and a compression
scheme, and then uses a black box sample-efficient Bayesian optimization to
generate a sparsity value. The model, scheme, and sparsity value are fed
into the L-C optimizer [1]. The optimizer works by globally distributing the
sparsity value across the model and then uses the L-C algorithm to recover
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accuracy in multiple training cycles [1]. Because of its advantages, Condensa
is a promising tool to use in creating an efficient DNN for classifying medical
image datasets. The focus of our study is on how Condensa can be utilized
to optimize DNN network performance for medical datasets.

Before Condensa was developed there has been a large body of research
dedicated to compressing neural networks. Some of these include reinforced
learning, AutoSlim, and ADMM [1]. The L-C algorithm was recently devel-
oped and is utilized by the Condensa framework.

3 Methods

3.1 Thesis

The goal of this thesis is to present a study on creating an efficient DNN
to classify medical image datasets using the Condensa software. The two
test data sets were the Malarial Cell Images Dataset and the Chest-X-ray
Datasets, both of which are publicly available through NIH [11][12]. Different
network condensing methods and density levels were compared. Comparison
was done via GPU memory and percent of GPU utilization, latency, and test
accuracy parameters.

3.2 Condensa Testing Script

A major component of this project was streamlining the Condensa testing
process for each dataset. This was done by creating a Bash script that could
run in a Linux environment. This script enabled the user to create models
with settings adjusted in a global file. Latency, throughput, GPU memory,
and GPU utilization tests could also be run from the same script. The script
also allowed the user to combine the results from multiple tests into a single
graph. One of the notable features was that the script also integrated with
Comet ML. Data from the Condensa network generation process is piped to
the users Comet account. Many of the graphs in this paper are sourced from
Comet.

3.3 Datasets

The two datasets used in this study were the NIH Malaria Dataset and the
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NIH Chest X-ray dataset.

3.3.1 Malaria Dataset

The former consists of 27,558 images split evenly between parasitized and
uninfected cell images. These were generated from thin blood smear slide
images from the Malaria Screener research activity. Giemsa-stained thin
blood smear slides were taken from 150 P. falciparum-infected patients and
50 healthy patients. The images were labeled by an expert slide reader from
the Mahidol-Oxford Tropical Medicine Research Unit in Bangkok, Thailand.
They were then segmented into individual cells and split into individual im-
ages [11]. Images were transformed to a pixel dimension of 32X32 pixels.
Additionally, random horizontal flips, and rotation up to 10 degrees, and
color jitter were introduced to account for variation in lighting among sam-
ples. Figure 1 and Figure 2 demonstrate typical images found within the
Malaria dataset.

Figure 1: Healthy Cell Figure 2: Malarial Cell

3.3.2 Chest-X-ray Dataset

The Chest-X-ray dataset contains 108,948 frontal chest-X-ray images from
32,717 patients stored in a pdf format [12]. Each image is labelled with a sub-
set of 15 labels (Normal, Atelectasis, Cardiomegaly, Consolidation, Edema,
Effusion, Emphysema, Fibrosis, Hernia, Infiltration, Mass, Nodule, Pleural
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Thickening, Pneumonia, Pneumothorax) The labels were extracted originally
via NLP methods from radiology reports included with each of the X-rays to
detect phrases indicating the presence of disease. The reports were sourced
from the Picture Archiving and Communication Systems of the NIH Clinical
Center [13]. The original method for labelling this data set was validated
by comparing results from a small set of 3,851 expertly labelled radiology to
labels generated by the NLP report labelling algorithm.

Figure 3: No Label Lung Figure 4: Cardiomegaly Lung

Dataset Preparation Prior to doing any data processing, the images were
split into three subsets of (training, validation, and test) data such that no
duplicate patient images (as patients had multiple scans) could exist in the
training and validation split categories. Additionally, some of the classes had
much higher numbers of training examples. This could induce a bias towards
certain classes without correction. This was accounted for with an additional
weight vector which weighted each class by frequency in all calculations. The
weights were calculated by summing the frequency of all types of classes and
dividing the occurrence of each class by this total.

The original dimensions of each X-ray image was 3000x3000 pixels. Dur-
ing data processing, images were resized to a pixel dimension of 64x64 pixels
as well as having random rotation within 10 degrees. No image was flipped
as this could potentially generate a false disease result if the heart were rep-
resented on the patient’s right side. Additional transformations were random
additions of color jitter to normalize lighting differences.
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3.4 Condensa Testing for the Malarial Cell Dataset

Once pre-processing was complete, training was carried out via the Condensa
system. All models used the Pytorch Resnet-18 DNN network. The struc-
ture used for the malarial cell dataset is shown in Table 1. Condensa was
run on this model and trained with the malarial cell dataset with different
density targets and different methods to reduce the density. The operations
included pruning, structured pruning, filter pruning, and quantization net-
work reduction operations. The prune method works by pruning an overall
network to a given density. This is in general done by zeroing out weights
that are very close to zero. The structured pruning scheme works by pruning
blocks of non-zeroes. Filter pruning prunes filters from convolutional layers.
Finally, quantization converts from 32-bit float point to 16-bit [14].

These different models were then compared based on various performance
criteria.

Table 1: Malaria Cell Dataset Resnet-18 Structure

Layer Name Output Size ResNet-18

conv1 16x16
7x7, 64, stride 2
3x3 max pool, stride 2

layer1 8x8
[3x3, 64
3x3,64
] x2

layer2 4x4
[3x3, 128
3x3, 128] x2

layer3 2x2
[3x3, 256
3x3, 256] x2

layer4 1x1
[3x3, 512
3x3, 512] x2

average pool 1x2 1x1, 2 fc, softmax

3.5 Condensa Testing for the Chest-X-ray Dataset

To maintain comparability, the Chest X-Ray dataset was also modeled us-
ing the ResNet-18 architecture. The main difference is that Chest-X-ray
images may have multiple labels. This also meant that the chest-X-ray net-
work used a weighted logit threshold value to determine the label for each
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class. As with the malaria cell dataset, the Chest-X-ray dataset was tested
using pruning, structured pruning, filter pruning, and quantization network
reduction operations. Its structure is also listed in Table 2.

Besides different network pruning operation schemes, networks were gen-
erated with different densities to compare how accuracy recovery progressed
with Condensa.

Table 2: Chest X-ray Dataset Resnet-18 Structure

Layer Name Output Size ResNet-18

conv1 32x32
7x7, 64, stride 2
3x3 max pool, stride 2

layer1 16x16
[3x3, 64
3x3,64
] x2

layer2 8x8
[3x3, 128
3x3, 128] x2

layer3 4x4
[3x3, 256
3x3, 256] x2

layer4 2x2
[3x3, 512
3x3, 512] x2

average pool 1x1 1x1, 15 fc, logit threshold

4 Results

One of the primary focuses of testing was on the difference of performance
between networks with different condensing strategies. These included dif-
ferences in overall network density reduction, focused filter size reduction, or
only a reduction in bit size. Each network in the Malaria dataset was tested
using the same dataset and allowed to train for 45 cycles of the Condensa
algorithm.

In each of these cycles, a sparsity value is chosen which will lose only up to
a certain accuracy threshold. This sparsity value is used to calculate a final
sparsity that optimizes a user-defined objective function in the constrained
sparsity domain. The model is accordingly modified / compressed. After-
ward, Condensa performs L-C accuracy recovery which retrains the network
to recover the lost accuracy. This process is repeated a user specified number
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of times [1].

4.1 Cinchona Network Density Results

Condensa Training Duration

F
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Figure 5: Malaria data set Free Memory (GB) vs. Condensa Training Dura-
tion with Quantize16 0.1, 0.5, 0.9 densities.

In Figure 5, the overall free GPU memory available to each network is
graphed. The Quantize16 networks shown in this graph are trained to a
density of 0.1, 0.5, and 0.9, respectively, represented as a decimal percentage
density. Quantize16 uses 16-bit float values for its network. Of note in this
graph is that the amount of free memory for 0.1 is greater than 0.5, and the
0.9 density network has the least free memory.
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Condensa Training Duration
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Figure 6: Malaria data set GPU Percent Utilization vs. Condensa Training
Duration with Quantize16 0.1, 0.5, 0.9 Densities.

The same networks are represented in Figure 6. In this graph the average
GPU utilization of each graph throughout the Condensa training duration is
depicted. The GPU utilization has been smoothed for ease of seeing overall
trends in the data. Overall, the percent GPU usage was highest for 0.1,
second highest for 0.5, and smallest for 0.9.
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Condensa Training Step
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Figure 7: Malaria data set Test Accuracy vs. Condensa Training Step with
Quantize16 0.1, 0.5.

The accuracy for the 0.1 and 0.5 density network is shown in Figure 7. In
this case, the 0.1 density network consistently maintains a higher accuracy
level. It should be noted that with sufficient training cycles, the networks
will converge to a common accuracy. This is usually the maximum accuracy
of the network. An aspect of testing the network was to see how sparse
a network could become before accuracy losses could be seen. In Figure
8, different densities were tried for the network. At densities below 0.01,
the overall accuracy seemed to drop. However, this trend switched over for
networks with a density smaller than 0.00001. This could be attributed to
the fact that the dataset is a binary classification problem and ResNet-18
can tend to be over-parameterized.
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Condensa Training Step
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Figure 8: Malaria data set Test Accuracy vs. Condensa Training Step with
Quantize16 0.1, 0.01, 0.001, 0.0001, 0.00001, 0.0000001

4.2 Cinchona Compression Method Results

Other than different densities, the network was also tested with different
compression schemes. In each of these tests, the network was pruned to a 0.1
density. These included Quanize-16, FilterPrune, Prune, PruneQuantize16,
StructPrune, and StructPruneQuantize. Quantize-16 was basically using 16-
bit floats to store data instead of the standard 32-bit numbers. FilterPrune
pruned (removed) some of the filters between convolutional layers. Prune
pruned the overall network to a given density. StructPrune removed neurons
from fully connected layers and removed filters from convolutional layers. In
Figure 9, FilterPrune, StructPrune, and StructPruneQuantize all achieved
around 50 percent accuracy which is basically random for a binary classified
dataset.

Quantize32 and Quantize16 achieved the highest accuracy. Quantize32 is
a network which quantizes to the standard 32-bit operators. As expected, it
achieved the highest accuracy as it underwent minimum modification. Be-
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neath it in accuracy, Quantize16 achieved an average 72.44 percent accuracy.
For the percentage of GPU utilization, Quantize16, FilterPrune, PruneQuan-

tize16, and StructPruneQuantize had the lowest GPU utilization. Prune32
had the highest GPU utilization and Quantize32 and StructPrune had similar
performance.

GPU memory usage was very similar for all networks except StructPrune
and Quantize16.

Figure 9: Malaria Compression Methods Average Performance Metrics
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4.3 Chest-X-ray Network Density Results

(a) Prune 0.1 vs 0.5 (b) PruneQuantize16 0.1 vs 0.5

(c) FilterPrune 0.1 vs 0.5 (d) StructPrune 0.1 vs. 0.5

Figure 10: Chest-X-ray: Free Memory (GB) vs Duration Densities: (0.1,
0.5), Methods: (Prune16, Prune32, FilterPrune, StructPrune)

The other dataset analyzed was the Chest-X-ray dataset. The dataset re-
quired a multi-classification approach as a patient could have more than one
disease. Like the malaria dataset, different network densities were tested
according to different performance metrics. In Figure 10, the average free
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memory for each of the 0.1 density networks was higher or equivalent to the
higher density network.

Condensa Training Duration
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Figure 11: Chest-X-ray data set GPU Utilization vs. Condensa Training
Duration with Prune32 0.1, 0.5 densities.

In contrast, the GPU utilization for the lower density network seemed to
be higher. An example can be seen in Figure 11 for the PruneQuantize32
network comparing densities 0.1 and 0.5.
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Condensa Training Steps
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Figure 12: Chest-X-ray data set Accuracy vs. Condensa Training Steps with
Prune32 0.1, 0.5 densities.

As expected, the accuracy of the higher density network remained more
stable during training as can be seen in Figure 12.

Table 3: Chest-X-ray 0.1/0.5 Network Density Accuracies

Compression Method Density Accuracy
Prune 0.1 0.27
Prune 0.5 0.26
Prune Quantize16 0.1 0.39
Prune Quantize16 0.5 0.48
Prune Quantize32 0.1 0.36
Prune Quantize32 0.5 0.32
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4.4 Chest-X-ray Compression Method Results

Table 4: Chest-X-ray Top-5 accuracy 0.1 density network

Lung Disease Class Accuracy
Atelectasis 0.84
Cardiomegaly 0.96
Consolidation 0.92
Edema 0.97
Effusion 0.85
Emphysema 0.97
Fibrosis 0.98
Hernia 0.90
Infiltration 0.83
Mass 0.95
Nodule 0.90
PleuralThickening 0.97
Pneumonia 0.97
Pneumothorax 0.96

It should be noted that the Chest-X-ray dataset allowed for multi-class la-
belling. As a result, while the top-1 accuracy as depicted in Figure 13 was
quite low for the chest-X-ray dataset, the individual class accuracies were
much higher. Table 4 depicts the class accuracies in a typical 0.1 density
network. Classes with lower accuracies had fewer samples. For example,
Infiltration had the lowest accuracy because it had a much smaller number
of data samples compared to the rest of the classes.

As with the malaria dataset, the Chest-X-ray dataset was tested using
different compression schemes. As running times took substantially longer
with a larger dataset, a more limited set of methods was tested. These
include PruneQuantize16, PruneQuantize32, FilterPrune, and StructPrune.

In Figure 13, the highest overall accuracy was achieved by PruneQuan-
tize16, and FilterPrune. StructPrune achieved very low accuracy as com-
pared to the other methods. What it came to GPU utilization, PruneQuan-
tize16 had the highest while StructPrune had the lowest GPU utilization.

PruneQuantize16 had the lowest memory usage but had a slightly higher
GPU usage than all other networks.
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Figure 13: Chest-X-ray Compression Methods Average Performance Metrics

5 Discussion

5.1 Density Network Trends

In the malaria dataset, the smaller density networks appeared to have a lower
GPU memory usage. However, they also had a slightly higher GPU percent
usage. Similar accuracy could be attained for different densities. As Resnet-
18 is a large network, it could be extensively compressed and maintain similar
accuracy. Some smaller networks appeared to obtain greater accuracy than
larger density networks. For example, the networks with a density of 1e-6
and 1e-7 appeared to achieve greater accuracy than a network with density of
0.1 (1e-1). However, networks with 1e-2, 1e-3, and 1e-4 appeared to achieve
similar or lower accuracies compared to the baseline density of 0.1.

Similarly, the Chest-X-ray dataset networks had lower GPU memory us-
age for networks with a density of 0.1 as compared to networks with a den-
sity of 0.5. This trend was similar for networks compressed using Prune,
PruneQuantize16, FilterPrune, and StructPrune compression schemes.

In a similar trend to the malaria dataset, the lower density networks also
had a slightly higher GPU percent utilization. The lower density networks
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had lower GPU memory usage. Also similar was the fact that networks with
lower density were more erratic in accuracy recovery but could recover to
a similar accuracy to their higher density counterparts. In contrast to the
malaria dataset, the chest-X-ray dataset had varying accuracies between its
different density networks with different compression schemes.

5.2 Compression Method Trends

Between both datasets, the StructPrune compression method had the lowest
accuracy at low densities. However, StructPrune also achieved the lowest
GPU utilization between both datasets. It had the best GPU memory uti-
lization for the malaria dataset and had comparable memory performance
to Prune and Filter prune in the case of the Chest-X-ray dataset. In both
datasets, PruneQuantize16 used less memory than its counterpart.

6 Conclusion

In our work we have developed a script which can be adapted to process a
variety of image datasets using the Condensa framework. It also provides
throughput, latency, and GPU memory / utilization tests for generated net-
works. Experiments with the Malaria and Chest-X-ray dataset suggest rela-
tionships in how the density of a network affects GPU utilization and GPU
memory usage. The experiments also suggested the optimum networks com-
pression scheme for the respective datasets. In the future, our work will be
to further improve the portability of our tool to other datasets with different
classification schemes. Our goal is to gain understanding in how different
compression schemes and network types perform in combination with the
unique limitations of medical datasets.
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