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Abstract

Interpreting the meaning of noun compounds (e.g., party member or bus stop) is

an ongoing challenge in natural language processing (NLP). Much of this difficulty

arises from the fact that the relationship between nouns in a compound is largely im-

plicit, so interpreting this relationship often requires extrapolation beyond the mean-

ings of the nouns themselves. I have explored a novel approach to representing noun

compound relations, denitional templating, which explicates their meanings in com-

prehensible terms for NLP systems. This approach is shown to improve performance

in interpreting the relationship between constituents of a noun compound across mul-

tiple experimental contexts, relative to analogous approaches which represent only the

nouns themselves.
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Abstract

Interpreting the meaning of noun compounds (e.g., party member or bus stop) is an

ongoing challenge in natural language processing (NLP). Much of this di�culty arises

from the fact that the relationship between nouns in a compound is largely implicit, so

interpreting this relationship often requires extrapolation beyond the meanings of the

nouns themselves. I have explored a novel approach to representing noun compound

relations, definitional templating, which explicates their meanings in comprehensible

terms for NLP systems. This approach is shown to improve performance in inter-

preting the relationship between constituents of a noun compound across multiple

experimental contexts, relative to analogous approaches which represent only the

nouns themselves.
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1 Introduction

Noun compound interpretation is, as one might expect, the task of interpreting the

meanings of noun compounds (NCs, for short), which are sequences of two or more

nouns where one noun (called the head) is modified by the other. For example, in the

NC university professor, it is understood that university is a modifier of the head,

professor, where the employer and/or workplace of the professor is clarified by the

modifier, university.

There are two levels at which one may analyze the meaning of an NC. The first is

that of lexical semantics, where the meaning of an NC is understood at the level of

each noun individually. The second is the level of compositional semantics, where the

meaning of an NC is understood in terms of the (implicit) relationship between its

constituents, determining how the modifier modifies the head. In these terms, the task

of NC interpretation can be understood as determining the compositional semantics

of an NC (i.e., the nature of the relationship between the nouns in the compound) on

the basis of the lexical semantics of an NC (which may be known on the basis of the

words alone). Both levels of semantics are essential to NC interpretation, although

the question of whether they must both be explicitly represented remains an open

question.

One common formulation of NC interpretation is noun compound relation classifica-

tion (NC classification, for short), where machine learning-based classifiers are trained

to select the correct relation for an NC from a fixed, predetermined set of relation

types that classify the relationship between its constituents. For example, the rela-

tion class of university professor could be labeled as Employer, to indicate that the

university is the employer of the professor, whereas silicon chip might be labeled as

Containment, to indicate that the chip contains silicon. (These are the relation labels
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assigned to university professor and silicon chip by Tratz 2011, whose approach to

NC categorization is discussed in §2.1.)

This research explores a novel approach to representing relation classes in NC clas-

sification: definitional templating, which models the meaning of each relation as a

collection of one or more templates. Each template expresses the definition of its cor-

responding relation in natural language, and has two slots which may be filled by the

constituents of a 2-word NC. For example, the template developed for the relation

exhibited by silicon chip, Containment, is:

The N2 is made of N1.

Which, filled with the NC silicon chip, is:

The chip is made of silicon.

In general terms, statistical language models (LMs) are trained to predict what an

unknown word in a sequence of words is likely to be, given the other words in that

sequence.1 This research applies a recent, high-performing LM, BERT (Devlin et al.

2018), in determining how likely two words (an NC’s constituents) are to fit in a

given sequence (a template). My hypothesis is that LMs such as BERT (Devlin et

al.) may be able to consistently distinguish between sentences containing one or more

words which are out-of-place in the semantic context of the sentence – in this case,

a template containing the constituents of an NC associated with a di↵erent relation

than the template – and sentences which do not contain such out-of-context words.

For example, an LM may be able to distinguish how contextually appropriate silicon

chip is in the context of the following two templates (which, as we will see in §3.3,

are those for the Containment and Time relations):
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The chip is made of silicon.

The chip occurs during silicon.*

If the LM is able to make such distinctions (e.g., by determining that silicon chip is

more probable in the context of the first template than the second), then it may be

possible to leverage these distinctions to improve performance in NC classification.

This is the principle behind the definitional templating approach: a variety of NC

classifiers (all of which are based on BERT, Devlin et al. 2018) are trained to map

filled templates as inputs to binary outputs corresponding to whether the NC in

a filled template matches the relation in that template or not. Once a classifier is

trained, it classifies an NC as having the relation described by the template which

the classifier determines that the NC best matches.

2 Related Work

2.1 NC Categorization

The semantics of NCs have long been a productive research area in linguistics. Of

particular interest in my research is the work which has focused on categorizing NCs

on the basis of the relationship between their constituents. A few examples of such

categorization schemes, and the justification behind them, are outlined below.

One influential perspective on the categorization of NCs has been the generative

approach, which understands NCs as being derived forms of larger syntactic structures

containing the NC’s constituents (see Lees 1960, Levi 1978). The most prominent

1
Traditionally, language modeling is formulated in terms of predicting the next word in a

sequence on the basis of all preceding words; but the LM used in this work, BERT (Devlin et al.

2018), is trained to predict missing words at any point in a sequence, and can make use of words

before and after the missing word to predict it.
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formulation of this perspective is likely that of Levi, who argued that all NCs (with

the exception of nominalized NCs) are derived from a small number of predicates

(specifically, Cause, Have, Make, Be, Use, For, In, About, From) containing the NC

constituents. For example, the Make predicate follows the form N2 which makes N1,

meaning that an NC like honey bee is derived from the predicate bee which makes

honey. NCs are obtained by simply deleting the predicate, and may be categorized

according to the type of predicate from which they were formed.

Others have argued that NCs cannot be neatly packaged into a small, closed set of

categories. According to Downing 1977, “attempts to characterize [noun] compounds

as derived from a limited set of [semantic or syntactic] structures can only be con-

sidered misguided,” because NCs are freely constructed, ad-hoc, to describe diverse

semantic relationships between their constituents. On this view, classifying NCs ac-

cording to a limited set of relationships – in essence, the task of NC classification, as

described in §1 – is an inadequate proxy for NC interpretation.

Naturally, varying perspectives on the categorization of NCs lead to di↵erent ideas

about how they should be categorized. Top-down theoretical perspectives like the

generative approach have led many researchers to claim that all (or nearly all) NCs

may be sorted into a limited number of well-defined groups of NCs characterized

by common syntactic or semantic origins, which has led them to create their own

such models of NC categorization (including Levi 1978, Warren 1978, Girju et al.

2005, Ó Séaghdha 2008, Tratz and Hovy 2010, and Tratz 2011). For example, Tratz

2011 established a taxonomy of 37 fine-grained relation types, each of which is a

sub-category among a set of 11 coarse-grained relation categories.2 Following this

taxonomy, he created and published a dataset with ⇠19k English NCs, each with a

label corresponding to the coarse- and fine-grained relation it exhibits. This is the

dataset which I have used throughout my research (see §3.2 for more details), but
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the templating approach could straightforwardly be extended to other datasets by

applying methods similar to those which I describe in §3.3.

A reasonable response to criticisms like Downing 1977’s is to consider alternative

formulations of NC interpretation that do not require a static, strict set of relation

categories. One such alternative is NC paraphrasing, whose goal is to produce or

recognize suitable paraphrases of NCs. For example, the paraphrase part that makes

up body is a suitable paraphrase of body part, but replacement part bought for body

is not (Shwartz and Dagan 2019). This task may be considered as a more faithful

representation of NC interpretation than NC classification, as it leaves room to define

novel and expressive types of NC relations as necessary to capture the nuance of any

individual NC or group of such. However, this open-endedness cuts both ways: it is

easy to imagine many generic paraphrases that, without being technically inaccurate

descriptions of NCs, are neither especially informative nor helpful in distinguishing

between NCs with very di↵erent relations. For example, soup can, party member,

and service price could all be plausibly paraphrased as N2 of N1, even though the

relationships between their constituents are quite distinct.

These NC paraphrasing concerns are at least partially addressed by the task defined by

SemEval 2010 Task 9 (Butnariu et al. 2009) and extended by SemEval 2013 Task 4

(Hendrickx et al. 2013). These tasks define a popular approach to NC paraphrasing

in which human annotators are asked to write paraphrases of NCs, and paraphrases

are ranked in terms of how many annotators chose that paraphrase. In this case, some

vague or vacuous NC paraphrases may still be created; but these will be accompa-

nied by many other paraphrases, at least some of which are likely to be informative.

NC paraphrasing systems may then be trained and evaluated on not just their abil-

2
The first version of this taxonomy and associated dataset was released in Tratz and Hovy

2010, but my research uses the updated Tratz 2011 dataset, which added over 1k NCs and made

minor revisions to the taxonomy.
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ity to classify paraphrases as acceptable or not, but on their ability to rank these

paraphrases (in terms of their likelihood to be chosen by annotators).

2.2 NC Interpretation Systems

2.2.1 Paraphrasing Approaches

A broad variety of NC interpretation systems have been developed in the last few

decades. One class of systems, designed around the NC paraphrasing task, uses a

small seed set of NCs, NC paraphrases, or both to learn patterns in how NCs are

paraphrased, and find or assess more NC paraphrases. Nakov and Hearst 2006 used

sets of NCs developed in other NC interpretation research to perform web searches

with queries of the form “N2 that3 * N1” (where “*” is a wildcard symbol matching

any word). They collected all instances of this pattern from each query’s results,

parsed each matching instance, and extracted the verb (and the preposition following

it, if applicable) as a new valid paraphrase connecting N2 and N1.

Kim and Nakov 2011 followed a similar procedure, starting with either a small set of

NCs or NC paraphrases as a seed. If starting with NC paraphrases, they began by

issuing queries of the form “* that PATTERN *” (where PATTERN is an inflected

verb) and parsed search results to find examples of nouns filling the wildcards (“*”).

Alternatively, if starting with seed NCs, they issued queries of the form “N2 that4 *

N1” (the same form as used by Nakov and Hearst) to extract NC paraphrases. This

full process can be repeated indefinitely, extracting as many NCs and NC paraphrases

as desired.5

3
The “that” term in the query matches any one of “that,” “which,” “who.”

4
The “that” term in the query matches any one of “that,” “which,” “who,” or the empty

string.
5

Kim and Nakov 2011 applied several filtering steps and heuristics to refine their collection

of NCs and NC paraphrases between the NC-extraction and paraphrase-extraction phases; but for
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Another interesting paraphrasing approach was developed by Nulty and Costello 2013

using the data from SemEval 2010 Task 9 (Butnariu et al. 2009), which contains al-

most 15k paraphrases of 355 distinct NCs. Their approach used a conditional proba-

bility model based on groups of paraphrases that are used for the same NC to score

new candidate paraphrases. That is, for any NC, and any two paraphrases r1, r2 with

probabilities Pr(r1) > 0 and Pr(r2) > 0 of being a paraphrase selected for the NC

(i.e., each of r1 and r2 was provided as a paraphrase for the NC by at least one anno-

tator in SemEval 2010 Task 9), the conditional probability that any given annotator

would select r1 as a paraphrase for the NC given that r2 has been selected, Pr(r1|r2),

may be computed using the definition of conditional probability:

Pr(r1|r2) =
Pr(r1 \ r2)

Pr(r2)

and the overall score for any such paraphrase r1 is given by:

score(r1) =
X

r22R

Pr(r1|r2)

Indeed, score(ri) may be computed with respect any subset {ri} ofR for use in ranking

them, which makes it possible to test the probability model on the NC paraphrase

ranking task defined in SemEval 2010 Task 9 (Butnariu et al. 2009).

Next, Nulty and Costello 2013 demonstrated that, starting with a small set S of seed

paraphrases, this probability model could be used to score a candidate paraphrases r

for an NC, for r 2 R where R is the list of all paraphrases, as follows:

brevity’s sake, I am not elaborating them here.
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score(r) =
X

s2S

Pr(r|s)

This list of all r 2 R can then be sorted by score, and the top scoring r 2 R is selected

as a candidate paraphrase for the NC.

2.2.2 Feature-Selection Approaches

Feature-selection approaches focus on representing NCs with broad, diverse sets of

handpicked features related to each NC, and using machine learning techniques to de-

termine which features contribute to classification (and which do not). These features

can be gathered from a variety of databases, dictionaries, thesauri, and other data col-

lections or reference materials, combining features from as many sources as one thinks

may be helpful in classification. One example of this approach was implemented by

Tratz and Hovy 2010, who developed NC representations which included (among oth-

ers) such diverse features as the set of all part-of-speech roles (other than noun) that

each NC constituent can fill, synonyms of both NC constituents, the last 2-3 letters of

each constituent, and even a binary {0, 1} feature indicating whether one constituent

is referenced in dictionary definitions of the other. Another NC feature-selection sys-

tem was created by Nastase and Szpakowicz 2003, whose NC representations included

features such as each NC constituent’s part of speech, the lemma of each constituent

(e.g., the lemma of container is contain), the part of speech of each constituent’s

lemma, and several other lexical and syntactic features related to NC constituents.
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2.2.3 Kernel Methods

Ó Séaghdha and Copestake 2013 experimented with a variety of kernel methods, which

they used to map representations of NCs into spaces which make various forms of

similarities between NCs more clear, and trained SVMs to classify NCs in these spaces.

In particular, they experimented with kernels that computed the lexical similarity and

relational similarity of NCs. The lexical similarity of NCs are defined in terms of the

similarity of the contexts in which NC constituents may be found (e.g., the NCs history

book and geography article would be judged to be lexically similar so long as history

and geography are both frequently seen around the same words, and if the same is

true of book and article). Relational similarity, also known as analogical similarity

(see Turney 2006), between two NCs is defined with respect to the similarity of the

contexts in which both constituents of each NC appear (e.g., wood floor and brick

wall would be recognized as relationally similar if the phrases and sentences in which

both constituents appear often contain the same words). In experimenting with kernel

methods based on these notions of similarity, Ó Séaghdha and Copestake found that

systems which combined kernels constructed in terms of lexical similarity with those

built around relational similarity almost always outperformed systems using only one

of these types of kernels.

2.3 Contemporary Work

2.3.1 Compositional Approaches

Dima 2016 implements several versions of the compositional approach to NC classi-

fication, where a compositional function f is learned that transforms d-dimensional

word embeddings ~u,~v 2 Rd (corresponding to some NC (n1, n2), and drawn from the
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set of 300-dimensional pre-trained GloVe embeddings; see Pennington, Socher, and

Manning 2014) into a joint compositional vector, ~p (i.e., f(~u,~v) = ~p). The compo-

sitional vector ~p is then passed to a classifier, which maps individual compositional

vectors to relations. Dima experimented with a few di↵erent functions, including the

function f defined by the full-additive model (developed by Zanzotto et al. 2010), for

which square matrices A,B 2 Rd⇥d are learned, where:

f(~u,~v) = A~u+B~v = ~p

Another function f explored by Dima 2016 is the matrix model developed by Socher

et al. 2011, where:

f(~u,~v) = g(W[~u;~v] +~b) = ~p

for pre-established non-linear function g (e.g., the element-wise hyperbolic tangent

function, tanh), the concatenation of (~u,~v), [~u;~v] 2 R2d, learned matrix W 2 Rd⇥2d,

and learned bias term ~b 2 Rd.

2.3.2 Path-Based Approach

Shwartz and Waterson 2018 developed a path-based approach to NC classification,

where NCs are represented by (syntactic) dependency paths connecting their con-

stituents, which are extracted from a large text corpus. For example, for the NC co↵ee

cup, dependency paths might include cup of co↵ee, cup containing co↵ee, co↵ee in

cup, etc. These paths are represented by a concatenation of the following features

for each word in the path: its pre-trained GloVe embedding, its part of speech, the
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dependency relation between it and its parent in the path, and the direction of that

dependency relation (i.e., either left or right, depending on whether the word’s par-

ent comes before or after it in the text). Each path is then passed into an LSTM

(Hochreiter and Schmidhuber 1997), which encodes it as a path embedding ~pi 2 Rd.

For each NC, the 1000 most common paths (in the corpus) for that NC are computed,

and then averaged (weighted by frequency) to yield the path-based representation for

that NC. That is, for all path embeddings ~pi of an NC, where the frequency of ~pi is

f~pi , the path-based representation of the NC is given by:

~p =

P
~pi
(f~pi · ~pi)P
~pi
f~pi

At the end of both Dima 2016’s and Shwartz and Waterson 2018’s approaches, the

representation of a given NC, ~p, is passed as the input to shallow feed-forward neural

networks which are trained to map all such ~p to relations. On its own, the path-

based model of Shwartz and Waterson 2018 does not achieve particularly impressive

performance; but the integrated version of this model (where the pre-trained GloVe

embeddings for each of the NCs constituents are simply passed as input to the neural

network alongside the NC’s path embedding, ~p) scores much higher.

Each of these approaches is state-of-the-art for a di↵erent split of the Tratz 2011

dataset. If the dataset is split randomly into training, validation, and test sets, the

compositional approach of Dima 2016 performs better. However, there is a phe-

nomenon, referred to as lexical memorization, that concerned both Shwartz and Wa-

terson 2018 and Levy et al. 2015, wherein a classifier memorizes the relation that is

exhibited by the most NCs with a given head noun, and may achieve relatively high

performance by simply reporting the most common relation among all NCs in the

training data with the same head. For example, any NC with the head juice (e.g.,
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fruit juice, grape juice, orange juice, etc.) is very likely to exhibit the ingredient re-

lation, so any classifier which encounters even one juice NC while training, and can

remember its relation, is essentially guaranteed to correctly classify all future juice

NCs.

According to Shwartz and Waterson 2018, the paths in their path-based model may

be understood as paraphrases of the meanings of NCs. However, these paraphrases

are often relatively uninformative (e.g., cup of co↵ee or co↵ee in cup do not go much

further toward elucidating the meaning of the NC co↵ee cup than the NC on its

own). Further, the fact that averaged NC path embeddings are frequency-weighted

means that the less frequent a path connecting NC components is, the smaller a

role it plays in final NC path embeddings. As a result, longer and more specific

paths – which, by virtue of their length, have the potential to contain a great deal

of elaborating information – will not contribute as much to final path embeddings

as shorter, potentially less informative paths. Definitional templates, on the other

hand, are designed to explicitly elaborate a relation (i.e., its definition), and this

information is not distorted by frequency weighting. Thus, the templating approach

may o↵er some advantages over the path-based approach.

3 Methods

3.1 Overview

I created definitional templates to cover the range of coarse-grained relations in the

Tratz 2011 dataset, and developed several classification models in which to apply

them. I then tested these templates in the context of each model to determine the

extent to which they contribute to NC relation classification. The processes for devel-
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oping and testing these templates, as well as the templates themselves, are elaborated

below.

3.2 Data

This research used the Tratz 2011 dataset, which labeled ⇠19k NCs according to an

NC relation taxonomy containing 11 coarse-grained relations and 37 fine-grained re-

lation sub-categories (with all NCs having one coarse-grained and one fine-grained la-

bel). This dataset was broken into a train, evaluation, and validation split by Shwartz

and Waterson 2018 using a 75:20:5 ratio (which they referred to as their random

split), which is the split I used for all experiments. The Cause coarse-grained relation

of Shwartz and Waterson’s data, and its sole fine-grained sub-category, Experiencer of

Experience, were not listed by Tratz; however, Tratz listed a very similar fine-grained

sub-category, Experiencer + Cognition/Mental Experience, under the coarse-grained

relation of Ownership, Employment & Use. As a result, the Cause and Ownership,

Employment & Use relations were merged under Ownership, Employment & Use, pre-

serving Shwartz and Waterson 2018’s fine-grained sub-category label of Experiencer

of Experience.

The Tratz 2011 dataset contained one coarse-grained relation, Other (containing 1982

NCs, about 10% of the dataset), for which – due to its catch-all nature – a template

could not be defined. As such, I did not use it in this work. This prevents any one-

to-one comparisons between the results discussed in §4, and those of Shwartz and

Waterson 2018, which all included the Other relation.
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3.3 Templates

I developed an initial set of definitional templates, T0, by hand-crafting a template to

encapsulate the definition of each coarse-grained NC relation type. If a single template

appropriately captured the meaning of a coarse-grained relation with respect to NCs

of all its fine-grained sub-relations, I did not create any additional templates for that

relation. However, if a coarse-grained relation had fine-grained sub-categories with

particularly distinct meanings, I created multiple templates to match as many fine-

grained relations as necessary.

Each template in T0 was tested in the LM probability estimator (see §3.4.1), and was

only kept if it improved the overall performance of the classifier across all coarse-

grained relations (by macro F1-score), or was the only template for that relation.

That is, for the subset of templates in T0 corresponding to coarse-grained relation r

denoted as T0,r, the final set of templates T was constructed as follows:

Algorithm 1 Template selection algorithm

Initialize T  ?
for t 2 T0 do
Let r be the coarse-grained relation defined by t
Let p be the LM probability estimator’s performance using all templates in T0

Let p0 be the LM probability estimator’s performance using all templates in
T0 � {t}
if p > p0 or |T0,r| = 1 then
T  T [ {t} 6

end if
end for

Thus, templates in T0 which did not contribute to the LM probability estimator’s

performance are not included in T . This process was repeated as necessary to test

new or modified templates, yielding the final set of templates, T , in Table 1:

6
In cases where |T0,r| > 1, but adding any template in T0,r to T would decrease performance,

only the template in T0,r which decreased performance the least was added.
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Coarse-Grained Relation Template(s) Example

Attribute The N1 N2 is a N1 and a N2. island country

Causal
The N1 caused the N2. job stress

The N1 performed the N2. police raid
Complement The N1 N2 is the N2 of the N1. homicide victim
Containment The N2 is made of N1. gold jewelry

Location & Whole+Part The N2 is located in the N1. household appliance
Objective They will N2 the N1.7 carbon tax

Ownership, Employment & Use
The N2 works for the N1. university professor
The N1 experiences N2. investor enthusiasm

Purpose
The N2 is used for N1. construction vehicle

The N2 supervises the N1. highway o�cial
Time The N2 occurs during N1. evening performance
Topical The N2 is about the N1. lease agreement

Table 1: Final template set, T

3.4 Models

I developed three types of classifiers that apply these definitional templates for NC

classification: a language model (LM) probability estimator, a feed-forward neural net-

work, and a fine-tuned LM. Feed-forward neural networks and fine-tuned LMs require

hyperparameters for their learning/fine-tuning processes, and these hyperparameters

were selected on the basis of the performance they yielded on the validation set. Train-

ing continued as long as model performance increased across epochs, as measured by

weighted F1-scores on the validation set.

7
For the Objective template, N2 was lemmatized (or, failing that, stemmed) as a verb, if

possible; e.g., flood prevention fills the template as “They will prevent the flood.”
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3.4.1 LM Probability Estimator

The LM probability estimator classifies NCs by estimating the probability that their

constituent nouns fill each individual template. They then classify the NC as having

the relation defined by the template that the NC has the greatest probability of filling.

The probability of an NC filling a given template is estimated by filling the N1 and

N2 slots of the template with [MASK] tokens, using BERT (Devlin et al. 2018) to

compute the masked language model (LM) loss8 of the template with respect to the

constituents of the NC. This loss is normalized with respect to the template’s average

loss, and dividing this normalized loss by the sum of all such losses for the NC across

all templates.

Specifically, for each template t, L̄t is defined as the ratio of the smallest masked LM

loss on t among all NCs to the sum of the masked LM losses on t for all NCs; i.e.:

L̄t = minNCi

(
loss(NCi, t)P

NCj
loss(NCj, t)

)

The normalized template loss of each NCi with respect to template t, zNCi,t , is defined

as:

zNCi,t =
L̄t

loss(NCi, t)

The estimated probability that NCi matches template t, denoted Pr(t|NCi), is com-

puted by dividing zNCi,t by the sum of the normalized losses of NCi across all tem-

plates, yielding:

8
Masked LM loss is used exclusively as a scoring metric, and not for any form of training.
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Pr(t|NCi) =
zNCi,tP

t02T zNCi,t0

Finally, each NCi is classified as having the relation corresponding to the to template

t which yields the greatest Pr(t|NCi).

3.4.2 Feed-Forward Neural Network

I developed three variations of a feed-forward neural network classifier: an NC-only

model, a template-only model, and a hybrid template/NC model. Following Shwartz

and Waterson 2018, all variants have one hidden layer of width one-half the size of its

input layer, use a linear activation function, are randomly initialized, and are trained

using the Adam optimizer (Kingma and Ba 2017).

Figure 1: Feed-forward NC-only variant

The NC-only variant’s inputs are the 768-dimensional sequence-level BERT (Devlin

et al. 2018) embeddings (i.e., the [CLS] token) produced by feeding an NC into BERT

(base, uncased), and has an output layer of width 10 (for the 10 relation classes). It is

trained on the task of mapping these sequence embeddings directly to relation classes.
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Figure 2: Feed-forward template-only variant

The template-only variant’s inputs are the sequence-level BERT (Devlin et al. 2018)

embeddings produced by feeding filled templates (denoted t(N1, N2) in Figure 2) into

BERT (base, uncased). It has an output layer of width 1, and is trained on the binary

classification task of determining whether a filled template expresses the relation of the

NC it contains.9 Classification is performed by obtaining the output layer activation

corresponding to the positive label, 1 (i.e., the label for filled templates with a relation

matching the NC they were filled with), for each template, and classifying the NC as

having the relation which corresponds to the template with the highest positive-label

activation.

Figure 3: Feed-forward hybrid variant

9
A single classifier is trained with respect to all templates, relations, and training NCs. Each

training instance is labeled as 1 if it contains a template and NC associated with the same relation,

and 0 otherwise, irrespective of the particular template or NC.
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The hybrid variant’s inputs are a concatenation of the inputs to both the NC-only

and template-only variants (yielding a 1536-dimensional vector). It has an output

layer of width 1, and its training and classification are performed in the same way as

the template-only variant.

3.4.3 Fine-Tuned LM

As in the case of the feed-forward neural network classifier, I developed three varia-

tions of the fine-tuned LM classifier: an NC-only model, a template-only model, and

a hybrid template/NC model. However, in the place of BERT embeddings (Devlin

et al. 2018), these models instead take a string of word tokens as input. Each vari-

ant begins as the BERT-base (uncased; Devlin et al.) model, and is fine-tuned on a

di↵erent task.

I fine-tuned BERT-base (uncased; Devlin et al. 2018) by removing its output layer,

replacing it with a new, randomly initialized final layer (without modifying any other

component of the network), and training the modified model on one of two fine-tuning

tasks described below. This new final layer has an input dimensionality corresponding

to the width of the final hidden layer of the pre-trained network – which, for BERT-

base (uncased), is 768 – and an output dimensionality corresponding to the number

of output classes required for the fine-tuning task – which, for these fine-tuned LMs,

is either 10 (for the NC-only variant) or 1 (for the template-only and hybrid variant).

The NC-only variant has an output dimensionality of 10 because it is trained to map

NC inputs directly to relation classes (of which there are 10). The template-only

and hybrid variants, like their analogues among the feed-forward network models,

are trained on the binary classification task of determining whether a filled template

expresses the relation of the NC it contains. The template-only variant’s input is a
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filled template, whereas the hybrid variant’s input is an A/B sequence consisting of

a filled template, a separator ([SEP]) token, and the NC. (For examples of A/B se-

quences as BERT inputs, see the next-sentence prediction, sentence-pair classification,

or question answering tasks described by Devlin et al. 2018.)

4 Results

If the definitional templating approach contributes to NC relation classification, then

the template-only or hybrid variants of the feed-forward neural network and fine-tuned

LM classifiers should outperform the NC-only variants. Alternatively, if templates are

not useful in NC relation classification, then the template-only and hybrid variants

should perform similarly to or worse than the NC-only variants.

Results from the feed-forward neural network models and fine-tuned LMs are shown

in Table 2, Table 3, and Table 4 below, with the best results for each metric (among

those each type of classifier) in boldface. (Due to time and resource constraints, all

experiments could only be run once. It is possible that random initialization had

nontrivial e↵ects on these results – particularly in the case of the feed-forward neural

network models – that might have become apparent across multiple runs.)

Classifier Variant Precision Recall F1-score

Feed-Forward Neural Network
NC-only 0.687 0.660 0.668

Template-only 0.717 0.644 0.672
Hybrid 0.724 0.686 0.699

Fine-Tuned LM
NC-only 0.722 0.724 0.717

Template-only 0.723 0.721 0.721
Hybrid 0.724 0.718 0.718

Table 2: Macro-averaged results
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Classifier Variant F1-score (Accuracy)

Feed-Forward Neural Network
NC-only 0.706

Template-only 0.704
Hybrid 0.732

Fine-Tuned LM
NC-only 0.734

Template-only 0.749
Hybrid 0.743

Table 3: Micro-averaged results

Classifier Variant Precision Recall F1-score

Feed-Forward Neural Network
NC-only 0.705 0.706 0.701

Template-only 0.711 0.704 0.701
Hybrid 0.739 0.732 0.729

Fine-Tuned LM
NC-only 0.757 0.734 0.740

Template-only 0.752 0.749 0.750
Hybrid 0.762 0.743 0.749

Table 4: Weighted-average results

The macro-averaged results (Table 2) take the average of each relation class’ precision,

recall, and F1-scores for each relation class (irrespective of the number of NCs with

any given relation); the micro-averaged results (Table 3) simply compute performance

across all NCs regardless of their relation; and the weighted-average results (Table 4)

compute precision, recall, and F1-scores across NCs with each relation, and average

them together by weighting the figure for each relation according to the number of

NCs with that relation.

4.1 Feed-Forward Neural Network Results

Among the feed-forward neural network results we see that, while the template-only

variant does not always outperform the NC-only variant, the hybrid variant consis-

tently does. This suggests that the embeddings generated by feeding either NCs or
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filled templates into BERT (Devlin et al. 2018) contain complementary information.

Thus, a feed-forward neural network classifier which is able to access information

from both of them, as the hybrid variant does, is able to outperform the variants

which have access to only one of them (despite the fact that the hybrid variant has

an expanded search space, as its hidden layer has a higher dimensionality than that

of the other variants).

4.2 Fine-Tuned LM Results

4.2.1 Relation Analysis

The template-only and hybrid variants outperformed the NC-only variant by 0.9-

1.5% across micro-averaged and weighted-average results while showing similar per-

formance (with an improvement of only 0.3%-0.4% over the NC-only variant) among

macro-averaged results. For this to be the case, they must be outperforming the NC-

only variant with respect to relatively more common NC relation classes, while achiev-

ing similar performance or under-performing on the less common relation classes.
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Figure 4: Fine-tuned LM F1-scores by relation

Consider the two largest relation classes, Purpose and Objective, which together rep-

resent 39% of the NCs in the Tratz 2011 dataset. As seen in Figure 4, both the

template-only and hybrid variants have higher F1-scores than the NC-only variant on

these relations. On the other hand, the NC-only variant has a higher F1-score than the

other variants on the smallest relation class, Time, which makes up just 2.7% of the

Tratz dataset. Thus, while each of the NC-only and template-only variants outper-

forms the other on exactly half of the NC relation classes, the template-only variant

yields superior performance (measured by F1-score) on NCs representing 66% of the

Tratz dataset (those with the Attribute, Causal, Containment, Objective, or Purpose

relations), compared to 34% for the NC-only variant (including NCs with the Comple-

ment, Location & Whole + Part, Ownership, Employment & Use, Time, and Topical

relations).

Interestingly, of the 3 relation classes with the highest overall fine-tuned LM perfor-

mance (as measured by the average F1-score between all variants), Topical, Objective,

and Time, the NC-only variant substantially outperforms the template-only variant
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on 2 of them (Topical and Time). Reciprocally, of the 3 relation classes with the

lowest overall performance (Causal, Containment, and Location & Whole + Part),

this pattern is reversed, with the template-only variant outperforming the NC-only

variant on 2 of them (which also happen to be the lowest two, Causal and Contain-

ment). This pattern suggests that perhaps the switch from the NC-only to template-

only fine-tuned LM brings down performance on the “easiest” relation classes (e.g.,

Time), while buttressing up performance on the most “di�cult” (e.g., Causal). This

idea is supported by the weighted-average results (Table 4), which show that the

template-only variant has a substantially higher weighted-average recall than either

of the other two variants, while also having the lowest weighted-average precision.

Thus, it has broader overall coverage of the diverse range of NCs in the Tratz 2011

dataset than the NC-only (or hybrid) variants, but this coverage comes at the cost of

higher precision.

4.2.2 Template-Only and Hybrid Variants

Unlike the feed-forward network variants, the template-only fine-tuned LM variant

outperformed the hybrid variant, with both of these variants outperforming the NC-

only variant (at least as measured by the micro-averaged results). One possible expla-

nation for these results is that the fine-tuned LMs are better at attending to specific

word-pairs in filled templates than the feed-forward networks. (After all, the fine-

tuned LMs receive a tokenized word sequence as input, which will always contain the

NC constituents, while the feed-forward networks simply receive one 768-dimensional

embedding representing the entire word sequence – or two, in the case of the hy-

brid feed-forward network variant.) Should this be the case, it is conceivable that the

template-only fine-tuned LM variant is able to attend to the NC constituents in a

filled template, making the hybrid variant’s inclusion of the lone NC as its second
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sequence input largely redundant.

Another possibility is that, while the template and NC inputs may still contain some

complementary information (potentially leading to the di↵erence in precision and re-

call between the two leading variants), some aspect of the experimental configuration

or fine-tuning process might attenuate the marginal benefits of including them both.

For example, it may be that BERT’s (Devlin et al. 2018) A/B sequence input format

is not particularly well-suited to this task, so while some presentation of both the

filled template and the NC as inputs might have had a greater impact on the perfor-

mance of a di↵erently-configured hybrid variant, this impact was not apparent in the

A/B sequence input configuration of the hybrid variant.

5 Conclusions

This research explored the use of definitional templates in NC relation classification,

developing a variety of models to explore how they might be applied to this task and

the extent to which they increase performance on it. Results from the feed-forward

networks (see §4.1) indicated that including both templates and NCs as inputs to

classifiers can produce complementary e↵ects, leading to overall performance gains,

relative to performance observed for classifiers with access to only one of these inputs.

Results from the fine-tuned LMs (see §4.2) showed that introducing templates in the

context of sophisticated deep learning architectures – such as that of BERT (Devlin et

al. 2018) – can lead to more varied outcomes, but nonetheless improves performance

on the whole.
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5.1 Future Research

As discussed in §4.2.2, the hybrid fine-tuned LM did not see the same complementary

e↵ects from including both templates and NCs as was evident among the feed-forward

network variant results. However, the possibility remains that these complementary

e↵ects might appear in the performance of fine-tuned LMs if alternative approaches

are employed for including both templates and NCs as inputs to a fine-tuned LM.

Testing such alternatives could help to determine whether feed-forward networks only

exhibit complementary e↵ects because they have a lesser capacity (relative to fine-

tuned LMs) to attend to the presence of NCs in filled templates, or whether these

e↵ects may be extended to fine-tuned LMs as well.

One remaining question regarding the templating approach is how to handle NCs

from the Tratz 2011 dataset with the Other relation. These NCs were not used in this

research, because no Other template could be created; and as such, the results elab-

orated in §4 could not be directly compared to those of Shwartz and Waterson 2018

(as noted in §3.2). For direct comparison between leading NC relation classification

approaches like those of Shwartz and Waterson to be possible, a method for handling

NCs with the Other relation should be developed. For example, a threshold could

be set such that, if no filled templates yielded a positive-label activation above the

threshold, an NC would be classified as Other. This threshold could be empirically

determined (so as to achieve the best balance between NCs of the Other threshold

and all others), and could also be set at di↵erent values for each individual template

for optimal performance.

This work could also be extended by developing a hybrid classifier incorporating other

NC classification approaches (in particular, those of Shwartz and Waterson 2018 and

Dima 2016) alongside the templating approach. Doing so might follow the blueprint
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of the hybrid feed-forward network variant (see §3.4.2) by concatenating multiple

vector representations of NCs, and using this concatenated vector as input for a

feed-forward neural network; but in this case, sequence-level embeddings of filled

templates would be concatenated with Shwartz and Waterson’s path embeddings

and/or Dima’s compositional vectors. Alternatively, an ensembling system could be

constructed which contains one of the full template-based classifiers (perhaps that

with the highest overall performance, the template-only fine-tuned LM), Shwartz and

Waterson’s path-based classifier, and any number of Dima’s compositional classifiers,

and classifies NCs according to a weighted sum of the votes from each of these. (The

weights in this weighted sum should be learned, and might substitute {0, 1} votes for

each NC relation, with confidence scores from each classifier’s output layer.)

Finally, additional templates could be developed for a variety of purposes. All the

templates I developed corresponded to the coarse-grained relations of the Tratz 2011

dataset, but templates could also be developed for its fine-grained relations. Fine-

grained template-based classifiers might even be able to contribute to coarse-grained

classification by, for example, overriding a coarse-grained classifier in cases where a

fine-grained classifier has a substantially higher positive-label activation for a fine-

grained relation class than any of the coarse-grained positive-label activations on the

part of the coarse-grained classifier. (Naturally, this would only change the outcome

of classification in cases where the fine-grained classifier’s highest confidence score

corresponded to a fine-grained relation class under a di↵erent coarse-grained relation

class than that which was indicated by the coarse-grained classifier; but I anticipate

that such a system could be particularly helpful when handling NCs with some of the

least frequent fine-grained categories.) Templates could also be created for other NC

relation datasets (e.g., Girju et al. 2005, Ó Séaghdha 2008), or even applied to other

tasks in lexical composition.10

10
E.g., adjective attribute selection – see Hartung 2015’s HeiPLAS dataset, and Shwartz and
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