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Abstract

Traditional imaging systems utilize additional optical elements in order generate

hyperspectral images or correct optical aberrations. However, with increasing compu-

tational power, it is becoming advantageous to simplify our imaging systems and in-

stead rely on postprocessing of the image. Neural networks have been particularly ef-

fective in solving such problems since they can approximate any function when given

enough data. In this paper, we analyze two neural networks, one of which is novel,

on their ability to generate hyperspectral images from image sensor data, and we pro-

pose various modifications to an existing neural network pipeline for processing MDL

images.
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ABSTRACT 

Traditional imaging systems utilize additional optical elements in order generate 

hyperspectral images or correct optical aberrations. However, with increasing computational 

power, it is becoming advantageous to simplify our imaging systems and instead rely on post-

processing of the image. Neural networks have been particularly effective in solving such 

problems since they can approximate any function when given enough data. In this paper, we 

analyze two neural networks, one of which is novel, on their ability to generate hyperspectral 

images from image sensor data, and we propose various modifications to an existing neural 

network pipeline for processing MDL images.  
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CHAPTER 1 

INTRODUCTION 

Ever since AlexNet dominated the ImageNet competition in 2012 [1], 

convolutional neural networks (CNNs) have become the go-to strategy for many image 

classification and computer vision tasks. It has also been discovered that CNNs perform 

quite well in a variety of image-to-image regression tasks [2]–[4] as they are able to 

maintain local spatial coherence while retaining all the pattern recognition of other 

network architectures. This makes them an excellent choice for many imaging tasks 

including those related to hyperspectral imaging [5], [6].  

Convolutional neural networks (CNNs) work by analyzing small groupings of 

pixels in a given image and generating a feature map. This feature map is passed to other 

layers, which can reduce (through pooling) or increase (through further convolutions) the 

dimensionality of the map. Each of the layers in the network is made up of many nodes, 

each of which has a weight that determines how much it will manipulate its inputs. This 

means that the network as a whole simply represents a function, and we can adjust the weights of 

each node in order to modify that function. The weights of each node are learned via training, 

during which the network maps input images to an output image or class. At first, the network 

will perform poorly, since the node weights are arbitrary, but the node weights get trained via an 

optimizer (like stochastic gradient descent) and backpropagation [7] in order to improve the 

network’s ability to transform input images into the desired output. 
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The UNET, a type of CNN utilized in both sections of this work, has proven 

effective for both regression and classification tasks in fields like bioimaging since its 

conception in 2015 [8]. The UNET differs from other CNN architectures in that it first 

downscales the image before upscaling it again. It concatenates outputs from the 

downsampled and upsampled sections in order to gain spatial information on various 

scales. When diagrammed, as in Figure 1.1, these networks form a U shape, giving them 

their name.  

Figure 1.1. A generic UNET architecture (image from [8]) 

The format for the rest of this paper is as follows: Chapter 2 will discuss two 

neural networks architectures and their success in generating hyperspectral images from 

image sensor data; Chapter 3 will analyze a neural network pipeline proposed for 
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reconstructing MDL images, several modifications to this network, and its overall 

performance on both low-resolution and experimental MDL image sets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



4 

CHAPTER 2 

HYPERSPECTRAL IMAGING 

2.1 Background 

Hyperspectral images measure the same scene across many spectral bands. This 

allows them to be particularly useful in identifying specific materials and substances. 

Such images are used to identify cancer [5], oil spills [9] and many other biological, 

biomedical, geological, and astronomical phenomena [10], [11]. This is because different 

substances have different spectral signatures, information which can be more effectively 

utilized when an image contains more spectral information.  

Figure 2.1. Comparing hyperspectral and regular images (image from [12]) 

It has been shown that images can be generated without optics, using sensor data 

alone [13], and it is also possible to generate multispectral images computationally when 
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utilizing an added diffractive filter [14]. Past recovery algorithms treated each spectral 

band (wavelength) as a regularized linear inverse problem, recovering the band after 

generating a calibration matrix.  

These techniques require the long and tedious process of calibration, while still 

sometimes taking hours to reconstruct a single image. We propose the use of CNNs to 

generate hyperspectral images from sensor data recovered through a diffractive layer. The 

ability to do so effectively would have a profound impact on countless fields, making 

hyperspectral imaging easier and cheaper, while making massive strides in speed over 

similar strategies [14].  

2.2 Related Work 

There have been efforts in recent years to utilize neural networks in the generation 

of multispectral and hyperspectral images. HSCNN was originally proposed as a deep 

learning solution transform upsampled RGB images into hyperspectral images [15]. 

HSCNN+ built on top of this by developing two networks which “removed the hand-

crafted sampling from HSCNN,” and their networks placed first and second in the 

NTIRE 2018 Spectral Reconstruction Challenge [16]. In 2019, cGANs were proposed to 

generate a mapping between RGB and multispectral images, although this was done 

using a small, augmented dataset [17]. The use of GANs in the generation of 

hyperspectral image generation was further expanded in [18] when Liu et al. were able to 

achieve state-of-the-art results on the ICVL dataset using their own adversarial network.  

Clearly neural networks have a place in the generation of hyperspectral images, 

but other solutions have largely relied on RGB images when generating hyperspectral 
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ones. We propose a solution that takes advantage of an added diffractive filter in order to 

generate hyperspectral images directly from image sensor data. 

2.3 Methods 

The data used to train and evaluate our models was all synthetic, and it has been 

shown that training CNNs on synthetic data can be an effective means for training and 

supplementing datasets [19], [20]. So, while we are exclusively utilizing synthetic data, 

our results should indicate if, at least in principle, CNNs can effectively predict 

hypercubes from sensor data.  

Our ground truth images were a set of 5000 real subsamples of hyperspectral 

images taken from [21]. The synthetic image sensor data was predicted using optical 

diffraction modeling from the image to the sensor. Our data was split into independent 

training, validation, and testing datasets. We developed two different CNNs to generate 

hyperspectral images. They were all built with the Keras library to re-construct 32x32 

hyperspectral images with 25 bands (440nm-800nm) from image sensor data of size 

72x72. It should be noted that the meaningful dimensions of the input data were 32 x 32 

as the rest of the input was zero padding. Our two networks will be referred to as the 

Deep UNET and the SieveNet, and we discuss their specific implementation details 

below.  

2.3.1 Deep UNET 

UNETs have been used in the past with great success in image-to-image 

regression tasks [4], [8], [22] including as encoders in generative adversarial networks 
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[3]. They are now a well-established architecture for CNNs. In general, UNETs contain 

two sections, downsampling and upsampling. These sections are largely symmetrical, 

and each module is eventually concatenated with its appropriate partner. That is, the ith 

module, 𝑚𝑖, contains a bridged connection with 𝑚𝑛−𝑖 if n is the number of total modules 

in the network. This makes them beneficial for a variety of imaging tasks because they 

manage to capture both spatial and feature information at a variety of scales. Our Deep 

UNET follows a similar architecture to that which was posed in the original article [8]. 

We first crop the input image to obtain dimensions 64x64. The downsampling section 

consists of a series of convolutional modules. Each module contains two series of: a 

convolutional layer, followed by a batch normalization, followed by a ReLU activation 

layer. The module is then finished with a max pooling layer, which decreases the 

dimensions of the image by a factor of 2. This process was repeated until dimensions of 

2x2 with 2048 feature maps was reached and the upsampling section began. The 

upsampling modules are the same as the downsampling modules, except that they begin 

with a deconvolutional layer and concatenation with the corresponding sized output from 

the downsampling section. The upsampling modules also do not contain pooling layers. 

This repeated until we had dimensions 64x64 with 25 feature maps. These feature maps 

would ultimately come to represent the 25 bands. Finally, this output was cropped to give 

dimensions 32x32x25.  

2.3.2 SieveNet 

The SieveNet is inspired by the ResNet [23] and HighwayNet [24] architectures. 

It generates three different channels from the input via depthwise convolution with 
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(kernel size, stride) parameters of (8, 1), (4, 2), and (2, 4). Each channel contains a series 

of convolutional layers (sans padding) and leaky ReLU activation layers (alpha = 0.3). 

These are ultimately followed by a depthwise convolutional layer (kernel size=original, 

stride=1). This is added with the intent of helping to align the subnets prior to 

concatenation. These channels all have size 49x49x512 when concatenated. The 

concatenated channel undergoes a dropout layer (rate =0.01) and multiple convolutions, 

each followed by a leaky ReLU layer with decreasing alpha values. The network finishes 

with a convolutional layer that has an activity regularizer that heavily penalizes negative 

values. The activity regularizer defines the loss L, shown in equation 2.1, for a given 

input weight matrix x. 

𝐿 = ||𝑚𝑎𝑥 {𝑥𝑖, 0: 𝑥𝑖 ∈ 𝑥} − 𝑥||
2

2
+ 𝑚𝑒𝑎𝑛(|𝑥|) (2.1) 

The lack of added padding in the convolutional layers allowed the final dimensions to be 

32x32x25. Our SieveNet architecture is shown in Figure 2.2. 

Both networks were trained in Google Colab using the Adam Optimizer [44]. The 

loss was defined as a regularized mean square error for the SieveNet while the loss for 

the Deep UNET was the mean squared error. They were both trained for 64 epochs with a 

learning rate of 0.0001 before being trained for 64 more epochs with a learning rate of 

0.00001 to fine tune the models. Our training dataset consisted of 80% of our original 

dataset. The networks then utilized 10% of the data for validation during training, and the 

final 10% was utilized in testing. 
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Figure 2.2. The proposed SieveNet architecture. 

2.4 Results 

2.4.1 32x32 Images 

Both of our networks were originally trained and tested using 32x32 images. We 

will show three testing images to highlight the performance of both of our networks, and 

we will analyze them in terms of their spatial and spectral performances. For each 

sample, we show the ground truth RGB image, the predicted RGB image, the spectral 

plot of the center pixel (marked with an o), and the spectral plot of another randomly 

selected pixel (marked with an x). We will also discuss the images in terms of their 

average Structural Similarity Index (SSIM), over the 25 hyperspectral bands. The SSIM 

for each band was calculated as in [25]. Over all the test images, the average SSIM score 

for the SieveNet was 0.7483 while the average SSIM score for the UNET was 0.738. 

We analyze these networks’ performance on some interesting samples below.  

Figure 2.3 was chosen to be highlighted from the test set because it contains a 

high degree of complexity for a 32x32 image without containing a lot of complex 
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colors. The ground truth image shows a sun smiling with a rather plain background. Our 

networks both seemed to reconstruct the general shape of the image, but the 

reconstructions are out of focus. The details on the target image are far sharper than 

those in the reconstructions and the color accuracy is passable but certainly not 

indistinguishable. Notice that the smile largely disappears in the SieveNet and fully 

disappears in the UNET. Additionally, the UNET produces a noisier, grayer 

background. Overall, this indicates that these networks both struggle to retain 

information about fine details. The average SSIM for the SieveNet reconstruction is 

0.471 while the average SSIM for the UNET reconstruction is 0.569. 

Figure 2.3 
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Both networks produced promising spectral results for both the center pixel and 

the randomly chosen pixel (located in the shadow at the bottom right). The general shape 

is preserved in   all four plots, although the UNET seems to follow the curve a little 

closer. Overall, Figure 2.3 shows promise in the continued development of these 

networks, but highlights the need for improved fine detail retention. 

Figure 2.4 shows an image which was chosen due to its sharp edges and plain 

colors. It makes sense that the networks would be able to perform better on this simpler 

image, and the SSIM results reflect that. The SieveNet had an average SSIM score of 

0.637, while the UNET had an average SSIM score of 0.753. Clearly, both of the 

networks are able to capture the general structure of the image, but the lines in the 

reconstructions are considerably less distinct than in the ground truth image. Similarly, 

the colors surrounding the main panel are almost indistinguishable from each other in the 

UNET, and barely distinguishable in the SieveNet. Both networks had poor color 

accuracy, even for the main red color, producing instead washed out pink and brown 

versions. 



12 

Figure 2.4 

As for the spectral profiles, we can see that both networks had two separate spikes in the 

middling wavelengths for both of the tested pixels. This may indicate that the networks 

are experiencing similar problems when reconstructing the images, which could be due to 

shared architectural bottlenecks or an insufficient training dataset.  

Figure 2.5 shows an image that was chosen due to its clear, fine features in the 

center. We immediately see the same story as with the other samples in terms of general 

shape. Both networks produced a very recognizable image with similarly sized features. 

Again, The Deep UNET seems to be noisier while the SieveNet has worse color 
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accuracy. The SSIM scores were 0.64 for the SieveNet and 0.756 for the UNET. 

 

 

Figure 2.5 

 

The spectral profiles of this image indicate that the SieveNet seems to repeatedly predict 

spikes in intensity in the middling wavelengths. The UNET, on the other hand, seems to 

have a more representative spectral plot for both the center and random pixels. 

Additionally, both networks had poor reconstructions of the center pixel, as it is in 

between 3 edges of contrasting colors, which again highlights the case where these 
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networks struggle the most. 

Overall, these samples were reflective of our networks’ performances on other 

samples. Our results seem to indicate that both networks do well in reconstructing 

large shapes but struggle to maintain the fine detail of the hyperspectral images. The 

UNET also produces overly noisy images while the SieveNet seems to give most 

images a red tint. 

2.4.2 64x64 Images 

Our networks were originally trained to reconstruct 32x32 images, but given the 

SieveNet’s flexibility in input sizes (simply requires an input image with zero padding of 

40x40), we decided to train it on 64x64 images as well. We started the network with the 

initial weights from after the 32x32 training, which acted as preliminary training before 

fine tuning the network on 64x64 images. This made it so that we only had to train the 

network for an additional 64 epochs before obtaining solid results. Our 64x64 image 

training set generated the synthetic data the same way, as subsamples of larger 

hyperspectral images, but it also included zero matrices as well as linear combinations of 

spatially constant samples. These additions were made in order to teach the network the 

linearity of the problem. Overall, the SieveNet had an average SSIM score of 0.8282 on 

the testing images, a significant improvement over the 32x32 hyperspectral images. 

Below we highlight the performance on some of the more difficult images.  

Figure 2.6 shows the reconstruction of a higher resolution version of the image 

from Figure 2.3 shown in our 32x32 section, and it highlights how well the network 

scales to higher resolutions.  Spatially, the RGB version of this image looks really good, 
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and this is likely due both due to the improved training dataset as well as the increased 

resolution, since that masks the errors in reconstructing fine details that are more apparent 

at lower resolutions. The average SSIM across the 25 bands of this hyperspectral image 

was 0.617 which is far better than the 0.471 from the 32x32 version. The spectral plots 

for the two chosen pixels are also quite encouraging. 

Figure 2.6 

Figure 2.7 shows a similar story, again with a higher resolution version of one of 

the images highlighted earlier in Figure 2.5. As shown in the RGB version, this image 

looks far better than its 32x32 counterpart. This is backed up by the fact that its average 

SSIM is 0.764 as opposed to 0.640 in the 32x32 image. Again, the center pixel of this 

image shows poor spectral results, as the pixel borders a high-contrast edge, but the 

random pixel from the doll’s forehead shows that the network does well in reconstructing 

pixels from low contrast areas.  
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Figure 2.7 

Figure 2.8 is a new, higher resolution image with lots of contrast, but the 

SieveNet still reconstructs the image very well. The RGB image is, again, very 

recognizable, and the large features all appear spatially accurate. It does appear that the 

network struggled to define the whiskers as these were only a few pixels in width. This 

once again highlights the room for improvement in reconstructing fine details. The 

average SSIM for this image was 0.722, which is on par with the previous shown 

reconstructions. Additionally, both of the plotted pixels were located near contrasting 

edges, and both show decent results. 

Overall, the SieveNet performed at least as well on the 64x64 images as it did on 

the original 32x32 images. This gives us confidence that our networks can produce 

promising results when given a comprehensive dataset that helps the models learn the 
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linearity of the problem. Additionally, further improvements to the network 

architectures will certainly lead to even better results. 

Figure 2.8 

2.4.3 Reconstruction Speed 

While it is true that CNNs can take days to train, the calibration phase required to 

obtain the calibration matrices for regression requires a comparable amount of time. 

Where these techniques differ tremendously is in their reconstruction time. Using a 

strategy similar to that proposed in [14], it took well over 4 minutes to generate a 

320x320x25 hyperspectral image. On the other hand, our SieveNet generated the same 

hyperspectral image in less than 3 seconds. See Fig. 9 in Appendix A for a full table of 

our experiment. Our results show that the speedup of CNNs over the former strategy 

can be over 100 times (Figure 2.9), and makes real-time, computational hyperspectral 
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imaging a possibility. The reconstruction of most images will be almost instant on 

adequate hardware, as this comparison was done on the same CPU (Intel Xeon 24 Core 

2.66Ghz, with 128 GB RAM) for both methods to compare them as fairly as possible.  

Figure 2.9 The speedup of SieveNet over linear algebra-based solvers 

2.5 Conclusion 

We studied the performance of neural networks in generating hyperspectral images via 

synthetic sensor data. We proposed two general CNN architectures to achieve this task, and we 

demonstrated that these networks could produce very promising results, often producing 

reasonably accurate pixel spectra. Our models struggled most to generate fine details, but they 

demonstrated that convolutional neural networks certainly have a space in the field of 

hyperspectral image construction. It is possible that future models could see significant 

improvements upon utilizing denoising techniques [26]. Similarly, architectural tweaks 
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could greatly improve our networks’ efficiency [27] and accuracy while additional data 

preprocessing could help the networks more effectively predict the appropriate 

hypercube. We believe our results warrant further research into the use of CNNs in 

constructing images via sensor data and the use of experimental data for training models 

in future studies. 
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CHAPTER 3 

MULTILEVEL DIFFRACTIVE LENS IMAGING 

3.1 Background 

Refractive lenses are the traditional means for focusing light within imaging 

mechanisms, however other types of lenses can also be used. In recent years, diffractive 

lenses have gained popularity due to their lighter and thinner form [28]. Multilevel 

diffractive lenses in particular are useful for their relative ease of production and high 

image quality when compared with other flat lenses [28]-[30]. However, a problem with 

a majority of these strategies is that these imaging systems experience significant 

aberrations (particularly chromatic) which result in a distorted image [28], [31]. In order 

to eliminate these distortions without additional optical elements, we necessarily need to 

apply various forms of post-processing to the images. In this chapter, we will analyze the 

end-to-end, image processing pipeline proposed in [29] with various modifications, on 

our own experimental datasets using two different diffractive lenses.  

3.2 Related Work 

Numerous works have been proposed to allow high quality imaging with only a 

single lens element, as opposed to the numerous optical elements included in most 

modern imaging systems. In 2011, a non-stationary deconvolutional method was 
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proposed for removing optical aberrations [32]. Following this, another system was 

proposed to more efficiently solve for the point spread functions associated with 

particular optical systems via a convex cross-channel term [33]. Works have also shown 

that such deconvolutions can be performed blind, or without any calibration step [34], 

[35]. 

Deep learning has also seen massive advancements in image processing. The 

SRCNN [36] allowed for the generation of high quality, super-resolution images. This 

was followed by the VDSR [37] as well as the DRCN [38] and DRRN [39] networks, 

each of which draws on the skip connections from ResNet [23]. Other popular networks 

for image-to-image tasks include the VGG-16 [40], Inception Net [41], ResNet, and 

UNET [8] architectures. Recently, though, the proposal of generative adversarial 

networks (GANs) [42], and more specifically conditional generative adversarial 

networks (cGANs) [43], has allowed for a whole new model of image reconstruction. In 

this chapter we will utilize one such cGAN, Pix2Pix [3] which performs well in a variety 

of image-to-image tasks. This Pix2Pix architecture is utilized in [29] by their MDL 

image processing pipeline. 

The Pix2Pix network provides a generic framework for image-to-image 

translation. This is because it contains a generator network which modifies some input 

image, and a discriminator network, which determines whether a given input is real or 

fake (with fake meaning generated by the generator network). The loss function for the 

generator is then tied to its ability to pass off its images to the discriminator as real. This 

creates a cycle whereby the discriminator and generator each improve as they find new 

ways to discern fakes and new ways to make the image look more realistic.  
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3.3 Methods 

In order to process our MDL images, we utilized the technique proposed in [29] 

with minor modifications. This process consists of an end-to-end neural network pipeline. 

The first element of the pipeline is a pix2pix conditional GAN, built with a UNET as the 

generator and a PatchGAN network as the discriminator. This is the same as the network 

proposed in [3]. The structure of our network is shown in Figure 3.1. We utilize the 

Adam optimizer [44] with a learning rate of 0.0002 and momentum parameters of 0.5 and 

0.999.  The second element of the network pipeline consists of a Deep Recursive 

Residual Network (DRRN), as proposed in [39]. Figure 3.2 shows the general 

architecture of a DRRN, consisting of concatenated recursive convolutional blocks. Our 

DRRN was built using 9 recursive units and one recursive block, as described in [29]. We 

used the Adam optimizer for this network as well with a learning rate of 0.0001. In order 

to train our pipeline, we would first train the GAN for 100 epochs, before feeding its 

color corrected images into the DRRN as the input images and training the DRRN for 

100 epochs. We show results for training the DRRN patch-wise on the images as well as 

image-wise. 

Our experimental datasets were generated by two different lenses, L1 and L2. 

Both of these lenses were fabricated via direct laser write grayscale lithography [45], and 

L2 is the same as L3 in [46]. Details about L1 and L2 are shown in Table 3.1. 
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Figure 3.1 Our Pix2Pix GAN Architecture 
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Figure 3.2 Architecture of a DRRN. The red box represents a recursive block, while the 

green boxes denote recursive units. (image from [39]) 

Table 3.1 A description of the flat lenses used for gathering images 

Our analysis of this neural network pipeline consists of three parts: comparing L1 

and L2, adding preprocessing techniques, and evaluating various DRRN loss functions 

and architectures. In order to do all of these, we needed to make our own datasets. All of 

our ground truth images were 64x64 subsamples of images taken from [47], and we used 

Flat Lens
Diameter 

(mm)

Focal Length

(mm)
F#

Operating

Wavelengths

(nm)

L1 0.15 1 6.67 450-850

L2 4 45 11.25 450-750
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both lenses to capture the ground truth images from a display (Omen model 

B0711T4RDF). For the purposes of lens comparisons, we created two datasets (one with 

each lens) of size 784, with testing datasets of size 156. Using these datasets, we 

compared the performance of L1 and L2. Then, we created a dataset with 13268 training 

images and 3317 testing images taken with L2. We used this dataset to test the use of 

preprocessing techniques. The preprocessing included image sharpening, median 

filtering, and white balancing done in MATLAB using the “imsharpen,” “medfilt2,” and 

“wbalance” functions. We also used this expanded dataset to test modifications to the 

network pipeline. When modifying the pipeline, we only modified the DRRN, and we 

modified it in three ways: adjusting the architecture to give it 16 recursive units and 3 

recursive blocks; modifying the loss function to include Mean Absolute Error, Mean 

Squared Error, the cross-channel loss proposed in [29], and SSIM (calculated as 1-

SSIM); and training it both patch-wise (via 8x8 patches) and image-wise. We analyze our 

image processing results via SSIM and Peak Signal-to-Noise Ratio (PSNR). 

Finally, after determining the optimal lens and pipeline, we will show some 

experimental images and their reconstructions via the pipeline, which we hope will 

demonstrate the ability for such a pipeline to work in a realistic setting, as opposed to 

working on a given set of images captured from a display. 

3.4 Results 

When comparing L1 and L2, we find that L2 generally has better color accuracy 

and clearer captured images. This, in turn, resulted in better network performance, with 

the L1 processed images having an SSIM of 0.355 and PSNR of 16.33 while L2’s 
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processed images had and SSIM of .385 and a PSNR of 16.53. Figure 3.3 shows some 

sample images taken by these two lenses. After performing this experiment, we decided 

to use L2 for the remainder of our study, due to its higher quality in terms of captured and 

processed images. 

 

 

Figure 3.3 A comparison between L1 and L2 

  

Next, with our increased dataset size, we compared our network pipeline with and 

without MATLAB image preprocessing. For the preprocessed images, the SSIM score 

was 0.4290 while the PSNR score was 16.43. On the other hand, the unprocessed images 

had an SSIM score of 0.4647 and a PSNR score of 18.09. This indicated to us that the 

preprocessing was likely taking away some of the valuable information that the network 

was using to map our MDL images to the ground truth. Figure 3.4 shows a comparison 

between a few preprocessed and unprocessed images, and the middle image shows a 

major difference between the two, as the shingles of the MATLAB preprocessed roof 



27 
 

seem more blurred together than those in the unprocessed image when we compare the 

results of the network pipeline. However, the main differences between the two sets of 

images appears to be a shift in hue, although it doesn’t appear that this shift in the 

preprocessed images really made the network output more similar to the ground truth. 

 

 

Figure 3.4 A comparison between images with and without MATLAB preprocessing 

 

 Finally, the results from our tests regarding the different pipeline configurations 

are shown in Table 3.2 and a comparison of the various reconstructions of an image are 

shown in Figure 3.5. Our results a show that none of the DRRN configurations provided 

any benefit to the mean SSIM or PSNR scores over the GAN itself. Additionally, none of 

the reconstructions in Figure 3.5 look significantly improved or even different from the 

GAN reconstruction. Finally, there was no significant difference between the patch-wise 

and image-wise DRRN reconstructions, although this is not particularly surprising given 

that none of the DRRN configurations significantly altered their input image. 
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Table 3.2 The mean PSNR and SSIM scores for each variation of the pipeline 

 

 

Pipeline
DRRN 

Loss Function
SSIM PSNR

Captured Images N/A 0.38498 16.1958

GAN N/A 0.47863 18.2106

GAN + Patch-

wise DRRN
MAE

0.44152 17.9516

GAN + Patch-

wise DRRN
MSE

0.43522 17.6346

GAN + Patch-

wise DRRN
Cross Channel

0.44823 17.7244

GAN + Patch-

wise DRRN
SSIM

0.47336 17.6189

GAN + Image-

wise

DRRN

MAE

0.4647 18.0881

GAN + Image-

wise

DRRN

MSE

0.44466 17.7889

GAN + Image-

wise

DRRN

Cross Channel

0.45113 17.8148

GAN + Image-

wise

DRRN

SSIM

0.46658 18.2095

GAN + Image-

wise DRRN 

with 16 units

MAE

0.45077 17.8131

GAN + Image-

wise DRRN 

with 3 blocks

MAE

0.44623 18.0693

GAN + Image-

wise DRRN 

with 3 blocks, 

16 units

MAE

0.44696 17.9866
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Figure 3.5 A comparison of the different pipeline reconstructions. The descriptions of the 

images refer to the DRRN that was used in the pipeline. 

In pursuance of our goal to determine a pipeline for general MDL use, we 

attempted to reconstruct various experimental images taken with L2. These images were 

not captured off of a display like the training images were, so we would expect a slightly 

worse performance by the pipeline when reconstructing them. An example of two of 

these reconstructions are shown in Figure 3.6. Unfortunately, our pipeline appears to 

perform poorly when reconstructing experimental images, as it simply serves to distort 

the images further.  



30 

Figure 3.6. Example of experimental images (not captured from display) and their 

reconstructions. A black and white circular logo is pictured on the left, and a headphone 

is featured on the right. 

3.5 Conclusion 

We studied an end-to-end neural network pipeline with numerous variations and 

found that, despite marginal success in reconstructing testing images, such a network 

performs poorly on our experimental data. Our tests also indicate that the DRRN does not 

significantly impact the results of the output, and in most cases the DRRN actually 

lowered both the SSIM and PSNR scores of the original GAN output. Similarly, training 

the DRRN patch-wise did not significantly affect the performance when compared to 

image-wise training. 

This suggests that for such a network to be successful, it may need to be trained 

on experimental images, capturing the same scenes with both a traditional imaging 

system as well as an MDL. Alternatively, there may be other modifications that can be 
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made to the network to ensure that, despite being captured from a display, the image 

translations will still translate well to more general images. 
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