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Abstract

Many immutable collection data structures of functional programming languages

including Racket, Scala, and Clojure are implemented as Hash Array Mapped Tries

(HAMTs). This data structure provides efficient lookup, insertion, and deletion oper-

ations and has a small memory footprint. Various design changes have been imple-

mented since the first introduction of HAMTs that further improve memory footprint

and runtime performance. However, these HAMT implementations still keep redun-

dant data in the trie node and do not fully address the cost of cooperating with garbage

collection when initializing or updating nodes. A stencil vector is a new data struc-

ture built into Racket’s compiler and runtime system. Its as an intermediate field of

HAMTs results in better performance and smaller memory use for persistent sets and

maps compared to previous implementations.
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Abstract

Many immutable collection data structures of functional programming lan-
guages including Racket, Scala, and Clojure are implemented as Hash Array
Mapped Tries (HAMTs). This data structure provides efficient lookup, inser-
tion, and deletion operations and has a small memory footprint. Various design
changes have been implemented since the first introduction of HAMTs that
further improve memory footprint and runtime performance. However, these
HAMT implementations still keep redundant data in the trie node and do not
fully address the cost of cooperating with garbage collection when initializing
or updating nodes. A stencil vector is a new data structure built into Racket’s
compiler and runtime system. Its use as an intermediate field of HAMTs results
in better performance and smaller memory use for persistent sets and maps
compared to previous implementations.
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1 Introduction

Almost every software application highly depends on some type of collection

data structure for the implementation of its core functionality; therefore, the

efficiency of various applications depends on the design and performance of

the underlying data structures that they use. This makes the research aimed

to understand and improve the implementations of collection data structures

important.

In many programming languages, including Racket, Haskell, JVM-based lan-

guages such as Scala, Clojure, and functional constructs of Java, HAMTs are

widely used for implementing persistent collection data structures such as sets

and maps. This efficient, trie-based data structure was first proposed and im-

plemented in C++ by Bagwell [1]. One of the main advantages of a HAMT over

an array-based encoding is that it avoids table resizing and null references while

keeping the trie node representation small. Since the initial introduction of

HAMTs, many changes have been proposed and implemented that reduce mem-

ory footprint or improve the runtime performance of the overall data structure.

However, even with these implementation improvements, there is still redun-

dant data stored in the trie node that increases overall memory. Furthermore,

runtime performance can be improved by considering how and when garbage

collection is invoked during various HAMT update operations.

A stencil vector is a new data structure implemented in Racket as an inter-

mediate part of HAMTs. The small implementation design of a stencil vector

allows building it into the compiler and runtime system as HAMT support,

thus, leaving more complicated details of HAMT implementation outside of the

compiler. Its use as a HAMT node results in a smaller memory footprint and

more efficient runtime performance for persistent sets and maps compared to

other implementations.
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This new data structure is at the implementation stage and has not been

sufficiently researched yet. This thesis describes the implementation details of

stencil vectors and their use as HAMT nodes. Additionally, it provides perfor-

mance and memory evaluation for persistent maps represented as stencil vec-

tor–based HAMTs compared to other map representations including Patricia

tries and other HAMT implementations.
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2 Background

2.1 Previous Work

A trie is a tree data structure for strings where nodes of the tree are for shared

prefixes instead of the entire string keys, the edges represent the characters

of the string, and the position of the node is used to identify the associated

key. This data structure was first implemented by Briandais [2] and named by

Fredkin[3]. For the HAMT data structure, which is built based on the idea of

tries, the bits of the hash codes of elements serve as the strings.

In 2001, Bagwell[1] combined partitioning based on the hash code with the

main principles of Linear Hash presented by Litwin, Neimat, and Schneider [5]

that solves collision management and storage growth. The original implementa-

tion by Bagwell has a smaller memory footprint than other tries and guarantees

an upper bound of O(log32(n)) for lookup, insertion, and deletion.

Bagwell’s mutable HAMT implementation was later used to implement func-

tional immutable HAMT by Rich Hickey, the lead-developer of Clojure [4].

There are two possible memory layout choices for HAMT. One of the approaches

comes from Bagwell’s original proposal. In this design, used in Clojure, the val-

ues of the nodes are included in the node itself, while with the second approach,

used in Scala, the value is stored in a leaf node.

One of the recent improvements for HAMT implementations on JVM is

proposed by Steindorfer and Vinju [8]. The authors call the new data structure

Compressed Hash-Array Mapped Prefix-tree (CHAMP). It improves locality

and makes sure the tree remains in canonical and compact representation form

after deletion. Compared to HAMTs of Scala and Clojure, it has a smaller

memory footprint due to a compact data layout for internal trie nodes. CHAMP

also increases locality by reordering the references in a trie node at the cost of

more bit arithmetic and reduces memory by avoiding empty slots in the array.
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2.2 HAMT Implementation

In a typical implementation of a HAMT, each entry of a table is either a key-

value pair or a node object that can hold references to a certain number of child

nodes. The number of possible child nodes depends on a branching factor which

is usually 32. Figure 1 shows how an empty HAMT with branching factor 32

changes with the insertion of four different objects A, B, C, and D [8]. Sample

hash codes of these objects are provided in Table 1.

Object Hash code in decimal Hash code in binary Hash code in base 32
A 32 0...00000.00010.00000 010...
B 2 0...00000.00000.00010 200...
C 4098 0...00100.00000.00010 204...
D 34 0...00000.00001.00010 210...

Table 1: Example hash codes of A, B, C, and D objects

Figure 1: Insertion of A, B, C, and D objects into a HAMT [8]

Instead of storing null pointers for non-existing child nodes, the node object

has a 32-bit bitmap where each set bit corresponds to an existing child node

or a key-value pair. In Figure 1, the position of each node in the bitmap is

marked by the numbers in the top left. The use of a bitmap reduces the space

for a non-existing entry to a single bit. Along with the bitmap, the node object

has an untyped array whose length equals the number of set bits in the bitmap

and whose elements point to either subtries or key-value pairs. To find the
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associated element that a bit represents in the array, a mapping function is

implemented that involves counting the number of set bits in the bitmap [1]. In

some implementations, such as C++, the least significant bit of the pointer is

used as a bit flag to identify whether the node is a subtrie or a key-value pair.

Other choices of differentiating between sub-nodes and key-value pairs include

dynamic checks such as the instanceof operator in Java [1, 8].

If a HAMT is used to represent a map whose keys have associated internal

values, the size of the array is doubled, and the values are stored next to the keys.

However, this implementation leads to empty slots next to subtrie references in

the array. C/C++ implementations of HAMTs eliminate this wasted space

by using union types. For JVM languages, this issue is fixed by introducing

a second bitmap and grouping the elements of the array into key-value pairs

and subtrie references. This implementation improvement also eliminates the

use of dynamic checks, such as instanceof operator, for identifying subtries and

key-value pairs [8].

Additionally, some implementations of HAMT store values in leaf nodes as

opposed to storing them next to subtrie nodes internally. While this approach

increases the memory used by the data structure, it allows storing additional

information in the nodes, such as memoized hash codes of elements used for

update operations. This design results in better runtime performance, especially

for operations that would otherwise recalculate the hash codes.
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3 Stencil Vectors

3.1 Implementation

Overall, the node representation remains the largest factor affecting the memory

footprint of the HAMT data structure; therefore, finding a compact node rep-

resentation is important. Racket’s HAMT implementation uses stencil vectors

for representing nodes. This data structure is implemented in Chez Scheme,

a Scheme variant used to build the most recent Racket compiler and Racket’s

runtime system. Using stencil vectors as HAMT nodes improves memory usage

and overall performance of the data structure.

In Chez Scheme, the type of an object is identified through the lower bits

of the pointer, which are otherwise wasted due to allocation alignment. For

example, on a 64-bit platform, the lower 3 bits of a pointer are used to indicate

whether it refers to one of the most common objects such as fixnums, pairs, and

symbols, or a general object. For a fixnum, which is an exact integer that does

not require allocation for computations in Racket, the rest of the bits are used

to store the value, as shown in Figure 2. For most of the other objects, the rest

of the bits store the object address.

Figure 2: Memory diagram for a fixnum

All other general types of objects share a single bit pattern for the low bits,
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and their types are further refined by using a tag word. The tag words are

stored at the start of the object to which a pointer refers.

Figure 3 shows memory diagrams for a pair and a regular vector on a 64-bit

platform. The pair is identified by the low bits 001 of a pointer, and the content

is stored at the next 8-byte aligned address. For the vector, the lowest 3 bits are

111 indicating a general typed object whose type is determined by a tag word.

Figure 3: Memory diagram for (a) pair and (b) vector

As the lower bits of pointers identify the types of common objects, the lower

bits of a tag word are used to identify the type of a general object. However,

in contrast to pointers that only use the three lowest bits for identifying the

type, the number of bits used for differentiating the type in a tag word varies.

Furthermore, the rest of the bits in a tag word can be used to store more
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information about the object such as its length. For example, if the low bits of

a tag identify an object as a string or a vector, the rest of the bits are used to

store the object length. In Figure 3, the tag word of a vector is stored at the

next 8-byte aligned address. Its lowest 3 bits 000 indicate a vector, while the

rest of the bits store the length of the vector. This information is then used in

functions returning the length of an object and garbage collection.

A stencil vector combines a vector and a mask in a compact representation.

Similar to regular vectors, stencil vectors are Scheme objects that are identified

based on the low bits of a tag word. In addition, the tag word for this object

type stores the mask for the vector which is also used to calculate the vector

length. Figure 4 shows a memory diagram for a stencil vector. The lowest 3 bits

of the pointer 111 indicate a general object, and the type is determined through

the tag word. The low bits 011110 in the tag indicate a stencil vector, while

the rest of the bits are used for the mask of the stencil vector. The number of

set bits in the bitmask indicates the number of elements in the vector. In the

example given in Figure 4, the mask has two set bits which means the length of

the vector is two.
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Figure 4: Memory diagram for a stencil vector

When a stencil vector is used to represent a HAMT node, the first elements

are for any child nodes, followed by keys and values.

In addition to supporting a compact representation, a stencil vector’s limited

size and bitmask support a natural API for a functional update, which cooper-

ates better with the garbage collector than allocating a vector and mutating its

individual elements. This efficient functional update allows avoiding the need

for a write barrier. In generational garbage collection, the write barrier is used

to indicate if there are any objects in the old generation with references to ob-

jects in the new generation. This information is then used to prevent garbage

collection for objects that have references from the old generation memory. In

general, for immutable objects, the overhead of the garbage collection is de-

creased, since mutable objects increase the chance of having references from

objects in the older generation memory to the younger one.

For stencil vectors, the tag word used to identify its type is also used to

determine the vector length. The number of set bits in the mask, which is

stored in the tag word, is the length of the stencil vector. This additional
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information about the object is used by the garbage collector during traversal.

In addition, the update operation of a stencil vector does not cause references

from the old generation memory to the new one, which helps to avoid a write

barrier.
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3.2 Stencil Vector Functions

Stencil vectors are vectors that use a mask fixnum to determine their size. The

length of a stencil vector, retrieved through (stencil-vector-length v) function

where v is a stencil vector, is limited to the number of bits in a fixnum whose

two’s complement representation fits into 29-30 or 60-62 bits plus a sign bit de-

pending on the architecture. The vector length limitation is due to the possible

number of bits in a stencil vector mask retrieved through (stencil-vector-mask-

width) which cannot be more than the number of bits in a fixnum.

To create a stencil vector of a given length and content the function (stencil-

vector mask value ...) can be called. Here, mask must be a non-negative fixnum

and its number of set bits must be equal to the number of values. Additionally,

the number of bits must be no more than stencil-vector-mask-width.

For an existing stencil vector, we can get its mask through (stencil-vector-

mask v) and its values through (stencil-vector-ref v n) where v is the vector and

n is the index of the object to return. n must be a non-negative fixnum less than

the length of vector v. While the number of valid positions in a stencil vector

is determined by its mask, and each element in the vector has its corresponding

bit in the mask, position n in stencil-vector-ref is the position in the vector

itself and not in the mask. A bit position can be converted to an index using

(fxpopcount ( fxand (stencil-vector-mask v) (fx- bit 1))) calculation where v is

the vector and bit is the position in the mask.

Listing 1 provides an example of how these functions can be called. Line 1

illustrates creating a vector v1 with mask 1011 and three elements a, b, and c.

The following lines show how to retrieve its length (line 2) and mask (line 3).

Finally, lines 4-6 show retrieving the elements based on their positions in the

vector.
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1 ( define v1 ( stencil-vector #b1011 ' a 'b ' c ) )
2 ( stencil-vector-length v1 ) ; => 3
3 ( stencil-vector-mask v1 ) ; => #b1011
4 ( stencil-vector-ref v1 0 ) ; => ' a
5 ( stencil-vector-ref v1 1 ) ; => 'b
6 ( stencil-vector-ref v1 2 ) ; => ' c

Listing 1: Creating a stencil vector with three elements

A stencil vector can be updated using (stencil-vector-update v remove-bits

add-bits values ...) function where v is the vector to be updated. The update

function returns a new stencil vector that contains all elements from v in their

relative positions except those identified by remove-bits fixnum. remove-bits

must be a subset of the mask of v for the operation to be successful. In addition,

the new vector contains the new values at positions determined by add-bits

fixnum which must not overlap the subtraction of remove-bits from the mask of

v. Also, the number of provided values must match the number of set bits in

add-bits. The mask of this new vector is the mask of v minus remove-bits plus

add-bits.

Listing 2 shows an example of how stencil-vector-update function can be

used. The update function in line 2 creates a new vector by removing the

second element of vector v1 defined in line 1 and adding a new element x. The

updated vector’s mask is 1011 � 0010 + 0100 = 1101 (line 3). Lines 4-6 show

the elements of the updated vector.

1 ( define v1 ( stencil-vector #b1011 ' a 'b ' c ) )
2 ( define v2 ( stencil-vector-update v1 #b0010 #b0100 'x ) )
3 ( stencil-vector-mask v2 ) ; => #b1101
4 ( stencil-vector-ref v2 0 ) ; => ' a
5 ( stencil-vector-ref v2 1 ) ; => 'x
6 ( stencil-vector-ref v2 2 ) ; => ' c

Listing 2: Updating a stencil vector
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4 Performance and Memory Benchmarks

Our benchmarks show that HAMTs based on stencil vectors perform the best

on average and have the smallest memory footprint among the implementations

that we have tried for persistent maps in Racket, including Patricia tries, regu-

lar vector–based HAMTs, and HAMTs based on two different variants of stencil

vectors described below. We implemented these stencil vector variants to evalu-

ate the effects of avoiding write barriers during functional update and compact

representation of stencil vectors.

In order to demonstrate the effects of stencil vector’s compact representation

on performance and memory, we implemented a version of stencil vectors that

uses the rightmost bits of the tag word to store the length of the vector, while

the bitmask is stored in the first slot of the vector, and the update operation

still avoids write barriers. Additionally, to explore the effects of write barriers

on runtime performance, we implemented a version of stencil vectors that uses

a write barrier when updating the vector and compared its performance to that

of stencil vectors which avoid write barriers.

The implementation of hash tables as Patricia tries is similar to Haskell’s

Data.IntMap implementation of hash tables, which uses integers for keys. This

data structure was first implemented by Morrison [6] and then used by Okasaki

and Gill [7] to represent a finite map with integer keys.

We also compared stencil vector–based HAMTs to Compressed Hash-Array

Mapped Prefix-tree (CHAMP) in Java [8] and PersistentHashMap in Clojure

to provide some evidence that the implementation performs comparably to the

state of the art.

We used a machine with macOS Big Sur (version 11.2.3), 32GB RAM, and

2.4GHz 8-Core Intel Core i9 processor for all benchmarking experiments.
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4.1 Memory Benchmarks

4.1.1 Methods

To evaluate the memory improvements of stencil vector–based HAMTs com-

pared to other HAMT implementations and Patricia tries, we implemented mi-

crobenchmarks for measuring the memory footprints of persistent maps. The

implementation of memory benchmarks does not involve extra libraries; instead,

we used current-memory-use and collect-garbage functions available in Racket.

The microbenchmarks create an empty array of 1000 elements which is

then populated by persistent maps of 200 elements. The memory microbench-

marks are invoked using 4 different implementations of persistent maps: stencil

vector–based HAMTs, regular vector–based HAMTs, Patricia tries, and non-

compact stencil vector–based HAMTs.

4.1.2 Memory Benchmarking Results

As shown in Table 2, the persistent map implementation with the smallest mem-

ory is represented by stencil vector–based HAMTs, followed by non-compact

stencil vector–based HAMTs, then regular vectors, and, finally, Patricia tries.

Compared to Patricia tries, stencil vector–based HAMTs improve the memory

use by around 70%. Additionally, the difference between stencil vector–based

HAMTs and the non-compact variant of stencil vectors is about 7%.

Persistent Map Implementation Used Memory (MB)

Stencil vector–based HAMT 3.41
Non-compact stencil vector–based HAMT 3.67

Regular vector–based HAMT 4.55
Patricia Trie 15.20

Table 2: Memory benchmarking results for persistent map implementations in
Racket
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4.1.3 Real World Memory Measurement Experiment

Additionally, to determine how various implementation choices for persistent

maps affect a real world application, we measured the memory use of DrRacket

with the abovementioned implementations of persistent maps. The measure-

ment results, which are consistent with the microbenchmarking results, are

shown in Table 3. The implementation with stencil vector–based HAMTs re-

sults in the smallest memory use, while Patricia trie based implementation uses

around 45MB more memory. Additionally, the non-compact version of stencil

vector–based HAMTs results in 5MB more memory use compared to regular

stencil vector HAMTs.

Persistent Map

Implementation

Total Memory Used by

DrRacket (MB)

Stencil vector–based HAMT 495.37
Non-compact Stencil Vector–based HAMT 500.10

Regular vector–based HAMT 529.60
Patricia Trie 541.93

Table 3: DrRacket memory use differences based on persistent map implemen-
tation

4.2 Performance Benchmarks

4.2.1 Methods

We measure the runtime performance for insertion, deletion, and lookup opera-

tions on hash tables of sizes 2x, x 2 {1, ..., 23}. This size range was used by Bag-

well [1] and Stenidorfer, Vinju [8] to measure the performance of HAMTs. The

setup for each benchmark includes filling the collection with randomly generated

numbers, then invoking each operation with 8 random parameters to measure

the runtime. Two kinds of arguments are considered and measured separately -

elements that are already contained in the data structure and elements that are

not in the data structure. In order to have numerically comparable timing re-
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sults, we repeat each operation 2,000,000 times. For performance measurement,

we use Racket’s time function that collects timing information for a procedure

application. The results collected through this function include CPU and real

time required to evaluate the operation for given arguments and CPU time

spent on garbage collection in milliseconds. We run each benchmark 20 times

and consider the average of the measurements for the evaluation. Additionally,

we implemented similar benchmarks in Java for CHAMP implementation and

Clojure’s PersistentHashMap using Java Microbenchmarking Harness (JMH).

JMH is configured to run 5 warmup iterations and 20 measurement iterations

on Average Time mode, as well as to run garbage collector before each invoca-

tion.

The Racket source code of performance benchamrking is provided in Ap-

pendix A.

4.2.2 Performance Benchmarking Results

Figures 5, 6, and 7 show the performance microbenchmarking results for inser-

tion, deletion, and lookup operations for 5 different implementations of persis-

tent maps: stencil vector HAMTs, Patricia tries, regular vector HAMTs, HAMTs

that use stencil vectors with write barriers as nodes, and HAMTs that use non-

compact stencil vectors as nodes. The average relative standard deviation is less

than 3% for all persistent map implementations in Racket and less than 1% for

JMH benchmarks. The results of the latter are shown separately in Figures 9,

10, and 11.
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Figure 5: Performance benchmarking results of persistent map implementations
in Racket for insertion operation
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Figure 6: Performance benchmarking results of persistent map implementations
in Racket for deletion operation
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Figure 7: Performance benchmarking results of persistent map implementations
in Racket for lookup operation
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Performance Comparisons to Regular Vector–Based HAMTs. Sten-

cil vector–based HAMTs perform significantly better compared to regular vec-

tor–based HAMTs for inserting new elements and removing existing ones since

these operations involve garbage collection. In particular, stencil vector HAMTs

perform better than regular vector HAMTs by about 35% for insertion opera-

tion and by 27% for removal operation as shown in Figure 5 and 6. For inserting

already contained elements in the map and removing elements that are not in

the map, both versions of HAMT perform similarly.

For both cases of lookup operation, regular vector HAMTs perform better

than stencil vector HAMTs by about 8% as shown in Figure 7.

Performance Comparisons to Patricia Tries. The only operations

when Patricia tries perform better are insertion of new elements and removal of

existing elements as shown in Figures 5, 6, and 7. For these operations, Patricia

tries perform better by 15% and 30%, respectively. However, for both cases, the

difference is much less when there are more than 1 million entries, and the time

spent on garbage collection increases. In particular, the performance difference

is reduced to less than 5% for inserting new elements and 13% for removing

contained elements.

When inserting elements that already exist in the map, stencil-vector HAMTs

perform on average 60% better than Patricia tries. This result is due to stencil

vector HAMTs checking whether the key is already mapped to the given value,

in which case the update is skipped, while the Racket implementation of Patricia

tries does not check for repeated key-value pairs. Similar results are observed for

removal of not contained elements. While adding the reuse check to the Patri-

cia implementation of update operations improves the performance of Patricia

tries for inserting already existing elements and removing non-existing ones by

30% and 25%, respectively, it adds a 15% penalty to the actual update opera-
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tions that are initially implemented to be simple and fast. These benchmarking

results are shown in Figures 12 and 13 in Appendix B.

For both cases of lookup operation, stencil vector–based HAMTs perform

better than Patricia tries by 21% and 15%, respectively, as shown in Figures

7(a) and 7(b).

Performance Comparisons to Stencil Vectors with Write Barri-

ers. HAMTs based on stencil vectors with write barriers perform similarly for

insertion of an already existing element, deletion of a not contained element,

and both cases of lookup when compared to HAMTs based on stencil vectors

that avoid write barriers.

However, for operations that update the HAMT, stencil vectors without

write barriers perform significantly better. When inserting new elements, avoid-

ing the write barrier allows to improve runtime performance by about 30%.

Additionally, as the number of elements increases, so does the performance dif-

ference. For example, as shown in Figure 8, for maps that have more than 217

elements stencil vector HAMTs that avoid write barriers perform better by more

than 40%.

The results are similar for the removal of existing elements.
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Figure 8: Runtime performance of regular stencil vectors compared to stencil
vectors with write barriers and non-compact stencil vectors
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Performance Comparisons to Non-Compact Representation of Sten-

cil Vectors. Compared to the non-compact variant of stencil vectors, regular

stencil vector–based HAMTs performance is slightly slower for some of the op-

erations. Given that the length of the vector is directly stored in the tag word

for the non-compact stencil vector, this variant of stencil-vectors is better by

about 6% for insertion of new elements and 8% for insertion of already existing

elements. For the rest of the operations, the difference is less than 5%.

Performance Comparisons to CHAMP and Clojure’s Persisten-

tHashMap. The results of the additional benchmarks implemented in Java

for CHAMP and Clojure’s PersistentHashMap, while from different platforms,

show that the stencil vector implementation of HAMTs performs comparably to

the state of the art. As shown in Figures 9, 10, and 11, the only cases when sten-

cil vector–based HAMTs perform worse than Clojure’s PersistentHashMap are

for inserting a new element in maps with more than 211 elements and removing

an existing element from maps with more than 25 elements.

Additionally, stencil vector–based HAMTs perform the best for insertion

of already contained elements. In particular, stencil vector HAMTs perform

better than CHAMP by around 42% and 65% compared to Clojure’s Persisten-

tHashMap as shown in Figure 9(a). For the rest of the operations, performance

difference compared to CHAMP in Java varies between 30% (for insertion of

new elements) and 58% (for lookup). On average, the recent HAMT implemen-

tation for JVM languages that has better performance than Clojure’s Persisten-

tHashMap for all operations and Scala’s immutable.HashMap for all operations

except for removal of not contained elements, performs better than stencil vec-

tor–based HAMTs in Racket by a factor of 2.

Compared to Clojure’s PersistentHashMap, stencil vector HAMTs perform

better by around 30% for inserting new elements and deleting not contained
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elements for maps with less than 211 elements. For lookup operation, stencil

vector HAMTs perform better than Clojure’s PersistentHashMap by 40% for

contained elements and by 28% for not contained elements. Similar to other

operations, stencil vector HAMTs perform better especially for smaller sizes.

Figure 9: Performance benchmarking results of stencil vector–based HAMT,
CHAMP, and Clojure’s PersistentHashMap for insertion operation
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Figure 10: Performance benchmarking results of stencil vector–based HAMT,
CHAMP, and Clojure’s PersistentHashMap for deletion operation
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Figure 11: Performance benchmarking results of stencil vector–based HAMT,
CHAMP, and Clojure’s PersistentHashMap for lookup operation
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5 Conclusion

We described a new intermediate data structure, stencil vector, that is cur-

rently implemented in Racket and built into the runtime system and compiler.

It provides a smaller and more efficient representation for HAMT nodes com-

pared to other node representations such as regular vectors. The evaluation

of the new data structure shows that the performance of updating persistent

maps that are represented by stencil vector HAMTs is improved compared to

other HAMT implementations due to the data structure’s cooperation with the

garbage collector. Additionally, our memory microbenchmarking results have

shown that stencil vector–based HAMTs result in smaller memory compared

to Patricia trie and regular vector–based HAMTs implementations of persistent

maps.
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Appendices

A Performance Benchmarks in Racket

1 #lang racke t /base
2 ( require racke t / s e t racke t / vec to r )
3
4 ( define f ixedSeedMersennePrime 2147483647 )
5 ( define seedForNotContained 12745 )
6 ( define I 20 )
7 ( define s i z eOfTes t 8 )
8 ( define Q 2000000 )
9 ( define maxNumber 4294967087 )

10
11
12 ( define-syntax t imes
13 ( syntax-rules ( )
14 [ (_ e )
15 ( let loop ( [ v #f ] [ i I ] )
16 (if ( zero? i )
17 v
18 ( loop ( begin
19 ( co l l e c t−garbage ' major )
20 ( time e ) )
21 ( sub1 i ) ) ) ) ] ) )
22
23 ; ; c r e a t e a map from random elements
24 ( define ( createMapRandom s i z e seed )
25 ( random-seed seed )
26 ( let loop ( [ ht ( hasheq ) ] [ i s i z e ] )
27 (if ( zero? i )
28 ht
29 ( let ( [ va l ( random maxNumber ) ] )
30 (if ( hash-ref ht va l #f )
31 ( loop ht i )
32 ( loop ( hash-set ht va l va l )
33 ( sub1 i ) ) ) ) ) ) )
34
35 ; ; c r e a t e a vec to r o f random elements o f l ength ' s i z e '
36 ( define ( vectorRand s i z e seed )
37 ( let ( [ newVec ( make-vector s i z e ) ] )
38 ( random-seed seed ) ; ; r e s e t random
39 ( for ( [ ind ( in-range s i z e ) ] )
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40 ( vector-set! newVec ind ( random maxNumber ) ) )
41 newVec ) )
42
43
44 ; ; c r e a t e a vec to r o f l ength ' s i z e '
45 ; ; us ing only ' f i r s tN ' e lements o f ' vc '
46 ( define ( getSubsetVector vc s i z e f i r s tN )
47 ( let ( [ newVec ( make-vector s i z e ) ] )
48 ( for ( [ ind ( in-range s i z e ) ] )
49 ( vector-set! newVec ind
50 ( vector-ref vc ( modulo ind f i r s tN ) ) ) )
51 newVec ) )
52
53
54
55 ( define vector8NotContained ( vectorRand 8 seedForNotContained ) )
56 ( define vector2NotContained ( getSubsetVector vector8NotContained 8 2 ) )
57 ( define vector4NotContained ( getSubsetVector vector8NotContained 8 4 ) )
58
59 ( define vector8Contained ( vectorRand 8 f ixedSeedMersennePrime ) )
60 ( define vector2Contained ( getSubsetVector vector8Contained 8 2 ) )
61 ( define vector4Contained ( getSubsetVector vector8Contained 8 4 ) )
62
63
64 ( define ( chooseS i z e x isNotContained )
65 (if i sNotContained
66 ( cond
67 [ ( equal? x 2 ) vector2NotContained ]
68 [ ( equal? x 4 ) vector4NotContained ]
69 [ else vector8NotContained ] )
70 ( cond
71 [ ( equal? x 2 ) vector2Contained ]
72 [ ( equal? x 4 ) vector4Contained ]
73 [ else vector8Contained ] ) ) )
74
75
76
77 ; ;____benchmarks_____
78
79 ; ; i n s e r t not conta ined
80 ( displayln " i n s e r t not conta ined " )
81 ( for ( [ sz ( in-range 1 24 ) ] )
82 ( displayln ( expt 2 sz ) )
83 ( let ( [ ht ( createMapRandom ( expt 2 sz ) f ixedSeedMersennePrime ) ] )
84 ( let ( [ notContained ( chooseS i z e ( expt 2 sz ) #t ) ] )
85 ( t imes
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86 ( for ( [ i ( in-range Q) ] )
87 ( let loop ( [ v #f ] [ i s i z eOfTes t ] )
88 (if ( zero? i )
89 v
90 ( loop ( hash-set ht ( vector-ref notContained
91 (− s i z eOfTes t i ) )
92 ( vector-ref notContained
93 (− s i z eOfTes t i ) ) )
94 ( sub1 i ) ) ) ) ) ) ) ) )
95
96 ; ; i n s e r t conta ined
97 ( displayln " i n s e r t conta ined " )
98 ( for ( [ sz ( in-range 1 24 ) ] )
99 ( displayln ( expt 2 sz ) )

100 ( let ( [ ht ( createMapRandom ( expt 2 sz ) f ixedSeedMersennePrime ) ] )
101 ( let ( [ conta ined ( chooseS i z e ( expt 2 sz ) #f ) ] )
102 ( t imes
103 ( for ( [ i ( in-range Q) ] )
104 ( let loop ( [ v #f ] [ i s i z eOfTes t ] )
105 (if ( zero? i )
106 v
107 ( loop ( hash-set ht ( vector-ref conta ined
108 (− s i z eOfTes t i ) )
109 ( vector-ref conta ined
110 (− s i z eOfTes t i ) ) )
111 ( sub1 i ) ) ) ) ) ) ) ) )
112
113 ; ; remove not conta ined
114 ( displayln "remove not conta ined " )
115 ( for ( [ sz ( in-range 1 24 ) ] )
116 ( displayln ( expt 2 sz ) )
117 ( let ( [ ht ( createMapRandom ( expt 2 sz ) f ixedSeedMersennePrime ) ] )
118 ( let ( [ notContained ( chooseS i z e ( expt 2 sz ) #t ) ] )
119 ( t imes
120 ( for ( [ i ( in-range Q) ] )
121 ( let loop ( [ v #f ] [ i s i z eOfTes t ] )
122 (if ( zero? i )
123 v
124 ( loop ( hash-remove ht ( vector-ref notContained
125 (− s i z eOfTes t i ) ) )
126 ( sub1 i ) ) ) ) ) ) ) ) )
127
128
129 ; ; remove conta ined
130 ( displayln "remove conta ined " )
131 ( for ( [ sz ( in-range 1 24 ) ] )
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132 ( displayln ( expt 2 sz ) )
133 ( let ( [ ht ( createMapRandom ( expt 2 sz ) f ixedSeedMersennePrime ) ] )
134 ( let ( [ conta ined ( chooseS i z e ( expt 2 sz ) #f ) ] )
135 ( t imes
136 ( for ( [ i ( in-range Q) ] )
137 ( let loop ( [ v #f ] [ i s i z eOfTes t ] )
138 (if ( zero? i )
139 v
140 ( loop ( hash-remove ht ( vector-ref conta ined
141 (− s i z eOfTes t i ) ) )
142 ( sub1 i ) ) ) ) ) ) ) ) )
143
144
145 ; ; lookup not conta ined
146 ( displayln " lookup not conta ined " )
147 ( for ( [ sz ( in-range 1 24 ) ] )
148 ( displayln ( expt 2 sz ) )
149 ( let ( [ ht ( createMapRandom ( expt 2 sz ) f ixedSeedMersennePrime ) ] )
150 ( let ( [ notContained ( chooseS i z e ( expt 2 sz ) #t ) ] )
151 ( t imes
152 ( for ( [ i ( in-range Q) ] )
153 ( let loop ( [ v #f ] [ i s i z eOfTes t ] )
154 (if ( zero? i )
155 v
156 ( loop ( hash-ref ht
157 ( vector-ref notContained
158 (− s i z eOfTes t i ) )
159 #f )
160 ( sub1 i ) ) ) ) ) ) ) ) )
161
162 ; ; lookup conta ined
163 ( displayln " lookup conta ined " )
164 ( for ( [ sz ( in-range 1 24 ) ] )
165 ( displayln ( expt 2 sz ) )
166 ( let ( [ ht ( createMapRandom ( expt 2 sz ) f ixedSeedMersennePrime ) ] )
167 ( let ( [ conta ined ( chooseS i z e ( expt 2 sz ) #f ) ] )
168 ( t imes
169 ( for ( [ i ( in-range Q) ] )
170 ( let loop ( [ v #f ] [ i s i z eOfTes t ] )
171 (if ( zero? i )
172 v
173 ( loop ( hash-ref ht
174 ( vector-ref conta ined
175 (− s i z eOfTes t i ) )
176 #f )
177 ( sub1 i ) ) ) ) ) ) ) ) )
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B Performance Differences of Patricia Trie Im-

plementations and Stencil Vector–Based HAMTs

Figure 12: Performance benchmarking results of stencil vector–based HAMT,
Patricia trie, and updated Patricia trie with reuse check for insertion operation
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Figure 13: Performance benchmarking results of stencil vector–based HAMT,
Patricia trie, and updated Patricia trie with reuse check for deletion operation
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