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Abstract
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Abstract
As speakers and writers omit details about common human experiences, a great deal of relevant

information eludes concrete attestation in the corpora that many language models and other NLP systems

rely on. Physical information about everyday objects is a perfect representative of this type of elusive

commonsense knowledge. Through extracting dependency-based contextual representations for training

classifiers, we present a means of learning the physical attributes of scores of new words from corpora

using only a small number of seed words.
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1 Introduction

In natural speech and text one encounters constant reference to material objects in the human

environment and descriptions of their relations to one another. That is to say, unsurprisingly, language

is often used to refer to artifacts and events in the natural world. It can also be noted that humans

often omit descriptions of the natural world when they expect their audience to assume an

approximation of these omitted facts su�ciently well, reflecting Grice’s maxim of quantity [Grice, 1975].

This is partly reflected in the historical di�culty and significance of tasks such as the Winograd Schema

Challenge (WSC) [Levesque et al., 2012], which can be seen as a problem of pragmatics [Saba, 2019]; a

problem of inferring meaning using world knowledge, rather than syntactico-semantic information.

Tasks like the WSC are di�cult because they require external knowledge.

Physical properties of common objects represent a kind of commonsense knowledge that is often

omitted in text, since humans rely on assumptions about common experiences to make communication

more concise and e�cient [Havasi and Alonso, 2007]. For example, instances of co↵ee cups in natural

language are rarely coupled with the size, weight, and rigidity of such cups. One is unlikely to include

an object’s physical properties unless that object is novel, or otherwise diverges from common

experience. Yet extra-linguistic physical world knowledge can be fundamental to understanding

language [Katz and Fodor, 1963] such as in the WSC question “I put the [heavy book / butterfly

wing] on the table and it broke. What broke?” This question captures a problem of coreference

resolution, but one that very likely requires some sense of physical reasoning; an understanding of real

and relative sizes, weights, etc.

Common systems for solving comprehension tasks in natural language processing include the large

pretrained neural models trained on massive corpora that have become popular recently for solving a

wide variety of tasks. Yet it has been shown that these systems’ representations often fail to model a

variety of meaningful aspects, especially relationships that are not directly attested to in its training

corpus [Forbes et al., 2019, Rubinstein et al., 2015], such as the very type of physical knowledge we’ve

discussed.

Humans acquire this knowledge through everyday experiences. We have years of experience in physical

interaction with the many objects that we so discuss. Ultimately, it is suspected that the real solution

for imbibing machines with the full gamut of human style reasoning and knowledge would require a

form of embodied learning [Lucy and Gauthier, 2017], involving extensive real human-like sensory

experience of machine agents in the real world. This is yet to be achieved.

How might we improve existing systems’ performance in solving tasks requiring common knowledge of

the physical world? We propose a method of predicting nouns’ physical properties through training a

classifier on distributional context-based representations and a small number of annotated seed words.

We evaluate the predictions provided by our classifier on the gold annotation data for nouns provided in

the [Wang et al., 2018] dataset, as well as their relative property values to the object-pair relative
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physical knowledge provided in [Forbes and Choi, 2017].

2 Background and Related Work

The concept of commonsense and commonsense knowledge remains di�cult to define in natural

language processing. Notable recent approaches attempting to acquire commonsense knowledge have

focused on relative physical attributes [Forbes and Choi, 2017, Yang et al., 2018, Tandon et al., 2014] or

acquiring real valued distributions of quantitative data for various physical attributes from text

[Elazar et al., 2019]. Our approach attempts to learn knowledge in a medium-resolution landmark

based format, introduced in [Wang et al., 2018].

2.1 Physical Plausibility Task

[Wang et al., 2018] introduces a crowd-sourced dataset to measure the semantic plausibility for 3,062

di↵erent events, with a vocabulary of 150 verbs, and about 450 nouns. They seek to classify some event

represented by a (subject, verb, object) triplet as either physically plausible, or implausible. Consider for

example three events: (goose, eat, rice), (goose, eat, quarter), and (goose, eat, piano). The first event is

rather plausible and we might be unsurprised to see it attested in corpora. The second event is certainly

less common, but it is still a physically plausible event; we can very well imagine a goose swallowing a

quarter, even if such an event is unlikely, and thus unlikely to be attested in corpora. The last however

is both unlikely to be attested in corpora and not physically plausible. Despite both the second and

third events being unlikely to appear in corpora, the third event is simply unacceptable to entertain. In

the dataset, events similar to the first and second are labeled positive since they are physically

plausible, regardless of whether they are likely to appear in corpora or not, while those physically

implausible events, like the third event, are labeled negative. Additionally, there are cases of

semantically non-sensical events, such as the triplet (cloth, erase, wind), which do appear in the dataset

and are labelled negative, of course.

Since most distributional models are fully dependent upon the linguistic information attested in

training corpora [Forbes et al., 2019, Lucy and Gauthier, 2017], the lack of physical world knowledge

available to these models may hinder performance on comprehension and reasoning [Wang et al., 2018].

Our approach then seeks to circumvent the normal problems a↵ecting distributional models, like

reporting bias [Durme, 2010], by explicitly modeling physical properties to extract attribute labels for

use directly. This is to say that though there may not often be explicit descriptions of the approximate

size of di↵erent objects, we may still be able to infer information from distributional approaches if we

represent words’ physical attributes explicitly.

[Wang et al., 2018] shows that the semantic plausibility task benefits from explicitly modelling physical

world knowledge. They compare results from training a selectional preference-based neural network

model [de Cruys, 2014] trained on events represented as stacked Glove embeddings to a neural network

model that is similar, but enriched with explicit physical world knowledge. The enriched model
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significantly outperforms the plain neural network model, suggesting, at least, that explicitly modeling

physical world knowledge is useful in the semantic plausibility task. The performance of the selectional

preference based neural network NN and the model enriched with physical world knowledge NN+WK

are shown in Table 5.1.

2.2 Selectional Preferences

Selectional preferences refer to the semantic “preferences” of a predicate for its arguments. For

example, in the sentence “The skiers wore helmets” the mere occurrence of the predicate “wore” tells us

the likely semantic class of its subject. In determining selectional preferences, [Resnik, 1997] sought to

measure the selectional preference strength of a predicate for its argument to classify word sense. In

other words, selectional preference strength measures how informative a predicate is with respect to

selecting its argument’s semantic class. The selectional preference strength that a predicate has for its

subject’s ‘conceptual class’ (e.g., WordNet senses), was modeled as the Kullback Leibler divergence,

SR(p) = DKL(P (c|p)||P (c)), for predicate p, and conceptual class c. The predicate “eat” is likely to

have a much higher selectional preference strength for its object argument, since its objects’ conceptual

class is likely to be loosely restricted to foodstu↵s, compared to the predicate “see”, which would be

likely to occur with a huge variety of conceptual classes.

Selectional preferences are considered in [Wang et al., 2018] as potentially a means of learning the

physical plausibility task. However, it is shown that such an approach may be insu�cient, because by

measuring the semantic preferences of predicates for their arguments, a model will necessarily learn only

the attested events in a corpus, and not plausibile events that are simply uncommon. This is because by

learning the conceptual class of a predicate’s arguments, the possibility of an event becomes tied to a

taxonomic commonality; “eat” selects for objects that are edible, yet edibility of an object is not exactly

what makes an eat event plausible. Thus, a system based on selectional preferences properly is likely to

be unable to optimally learn the physical plausibility task, since it cannot consider the independent

physical attributes of event arguments, which may sometimes be the reason for an event’s plausibility.

Interestingly, selectional preferences have been expanded upon to look at additional, more sophisticated

forms of measuring the ‘preference’ that a predicate, or other relation, has for its arguments. An

additional relationship may be to consider the preference that certain adjectives have for their

argument’s conceptual class as investigated by [Ó Séaghdha, 2010, Hermann et al., 2012]; for example,

we can imagine that the adjective ‘hairy’ might select more strongly for mammal arguments.

2.3 Learning Physical Attributes

There are some notable prior attempts to learning physical attributes from unstructured text.

[Forbes and Choi, 2017] use a factor graph and belief propagation to model the relative physical

relations between object pairs. For some attribute a 2{SIZE, WEIGHT, STRENGTH, RIGIDNESS,

SPEED}, they look to compare two objects (x, y) as x >attr y, x <attr y or x ⇡attr y. For attr = size,

for example x <size y represents x is smaller than y. They perform inference on a graph using nodes
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that model the relative sizes of various objects, as well as nodes modeling the physical implications of

verbs (verb frame nodes). The verb frame node represents a prediction like P (F attr
verb(x, y) = >) for some

verb, physical attribute dimension attr, subject x, and object y. Through this method they are able to

acquire ‘low resolution’ relative physical attribute knowledge for 3,656 object pairs. This resource is

useful of course for asking explicitly relative questions, such as “is a cat heavier than a mouse?” But, in

the semantic plausibility task form [Wang et al., 2018] for example, there may be considerations that

are more nuanced than simply relative knowledge. If our event is (man, swallow, grape), knowing that a

grape is smaller than a man is useful in classifying whether such an event is plausible, but books are

smaller than men, and yet it is not plausible that a man swallows a book.

Another approach to learning physical attribute knowledge by [Elazar et al., 2019], is to aggregate all

real-valued co-occurrences of objects and quantitative values within some window-context, and count

these as positive examples. They do this for attributes TIME, CURRENCY, LENGTH, AREA,

VOLUME, MASS, TEMPERATURE, DURATION, SPEED, and VOLTAGE. They normalize all

measurements by converting all quantitative values to some standard measure. This approach results in

a frequency distribution over a range of values, providing richer statistical information than other

results. It is e↵ectively, a full resolution representation, which of course has some benefits, but, it may

be argued, isn’t always appropriate for common-sense tasks, where physical attributes are meant to be

approximate, and many people don’t actually have such rich information themselves.

As we see, existing techniques have focused either on learning fairly low resolution relative physical

comparisons between objects [Forbes and Choi, 2017, Yang et al., 2018, Tandon et al., 2014], or on real

valued, high resolution data [Elazar et al., 2019]. Both of these approaches may have virtues or

drawbacks, but our approach contrasts with them both in using a medium-resolution landmark based

measure for physical attributes, introduced by [Wang et al., 2018]. These landmark values relate to

some prototypical example of some object in an attribute spectrum, and new objects are labelled with

respect to their best similarity to the landmark objects. The full resolution table with landmarks is

shown in Table 2.1. We like this landmark-based view because it seems a bit more manageable and

approximate than the very high-resolution descriptions in [Elazar et al., 2019], yet it should pick up

additional nuance in relative sizes over the lower resolution examples. Additionally, it provides a global,

non-relative concrete value for each object, without the relative context pair, which seems more

valuable as well.

Attribute Values

Attribute 0 1 2 3 4 5 6

sentience rock tree ant cat chimp man -

masscount milk sand legos car - - -

phase smoke milk wood - - - -

size -watch watch-book book-cat cat-person person-jeep jeep-stadium stadium-

weight -watch watch-book book-dumbbell dumbbell-person person-jeep jeep-stadium stadium-

rigidity water skin leather/plastic wood metal - -

Table 2.1: Physical Attribute Landmarks
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3 Methods

3.1 Overview

The goal of this work is to learn the physical attribute values for new words using dependency-based

contextual information. Our approach involves training machine learning models on data from a corpus,

and assigning new words attribute values from an approximate, medium-resolution value range, as

defined in [Wang et al., 2018]. Figure 3.1 provides an illustrated overview of our approach: first

processing each sentence in the corpus into a tuple of dependency components, aggregating dependency

patterns co-occuring with seed word nouns, extracting new nouns co-occuring with dependency patterns,

performing dimensionality reduction, and training a classifier to assign attribute values to novel words.

Figure 3.1: Method Summary
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3.2 Corpus Processing

We start by processing each sentence in English Wikipedia 1 into a sextuplet representation with

components (subject, subject-pre-modifiers, root verb, object, object-pre-modifiers, prepositional phrase).

We use spaCy’s2 English dependency parser and the WordNetLemmatizer [Miller, 1995] for parsing and

lemmatization respectively. The subject component is defined as a head noun with a dependency

relation ‘nsubj’, ‘nsubjpass’, or ‘csubj’ to the root verb. The object component is defined as a head noun

with a dependency relation ‘dobj’, ‘dative’, ‘attr’, ‘oprd’, ‘acomp’ or ‘agent’!‘pobj’3 to the root verb.

The pre-modifiers are defined by their ‘compound’, ‘nmod’, or ‘amod’ dependency relations to either the

subject or object components. The prepositional phrase is defined by its ‘prep’!‘pobj’ dependency

relation to the root verb. The root verb is concatenated with its ‘particle’ token, if one is present. Each

component of the sextuplet is defined by its dependency relation to the root verb or another component.

A component then is a token that is defined by a class of dependents or subtrees, summarized in Figure

3.2. Note that we only extract a single phrase for subject, verb, object, and prepositional phrase

components, but we may extract multiple pre-modifier components.

• subject 2 {‘nsubj’, ‘nsubjpass’, ‘csubj’}

• object 2 {‘dobj’, ‘dative’, ‘attr’, ‘oprd’, ‘acomp’, ‘agent’!‘pobj’}

• root verb 2 {‘root’, ‘root’!‘prt’} with pos ‘verb’.

• pre-modifier 2 {‘compound’, ‘nmod’, ‘amod’}

• prepositional phrase 2 {‘prep’!‘pobj’}

Figure 3.2: Component Classes for Sextuplet Representation

3.3 Dependency Patterns

After processing the sextuplets from our corpus, we will extract a variety of contextual elements, we will

call them dependency patterns, which are defined by a set of fixed components, and a single variable

component (either the subject or object component). The collection of sextuplets extracted from the

corpus represents a body of sentence instances. By extracting dependency patterns, we can aggregate

the distributional information of the dependency pattern’s variable component to determine the

physical preference that the dependency pattern may have, in order to inform our classifier. In Figure

3.3 we enumerate the types of dependency patterns that we compile distributions for. The fixed

components are shown in black, while the variable component is shown in blue and parenthesized to

emphasize its variable status.

1
Wikimedia dumps service enwiki dumped 1 March, 2020

2
https://github.com/explosion/spaCy

3
Here ‘agent’!‘pobj’ semantically represents the agent of the sentence. Active/passive voice is not normalized.
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(subject) verb

root

(object) verb

root

(subject) verb object

root

(object) verb subject

root

(subject) verb prepositional phrase

root

(object) verb prepositional phrase

root

(subject) verb object prepositional phrase

root

(object) verb subject prepositional phrase

root

(subject) pre-modifier

(object) pre-modifier

Figure 3.3: Dependency Pattern Types

Notice that some dependency patterns are simpler, with fewer fixed components, and thus the

distribution of the variable component for a simpler dependency pattern forms a superset over

sub-patterns with additional fixed components. Not all sextuplets will fill every component. In those

cases, the sextuplet simply doesn’t contribute to certain dependency pattern types.

The quick brown fox jumps over the lazy dog.
pre-modifier pre-modifier subject verb pp- the lazy -pp

root

nsubj
amod

amod

det

prep

pobj

amod

det

Figure 3.4: Dependency Parse with Sextuplet Components Highlighted

As a concrete example, consider the sentence parse in Figure 3.4. This sentence produces the sextuplet

(fox, [brown, quick], jumps, (empty), (empty), over dog). From this sextuplet, we can consider all the

dependency patterns generated of the types specified in Figure 3.3. This sentence generates the

patterns displayed in Figure 3.5.
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• (subject) verb[‘jump’]

• (subject) verb[‘jump’]-pp[‘over dog’]

• (subject) pre-modifier[‘brown’]

• (subject) pre-modifier[‘quick’]

Figure 3.5: Dependency patterns generated by the sentence in Figure 3.4. We show the patterns “flat-
tened” for concision.

Since the sentence lacks an object component, each of the generated dependency patterns is defined only

with the subject variable component. Note again, that the subject component appearing in the

dependency patterns identified in Figure 3.5 is the variable, so while the word ‘fox’ forms the subject

component of the corresponding sextuplet, it isn’t fixed when the subject component is the variable of a

dependency pattern. Figure 3.6 highlights the pattern (subject) verb[‘jump’]-pp[‘over dog’] with

the variable component name in blue and fixed components’ names in green; red highlighted

components form part of the sextuplet, but are ignored by this dependency pattern.

The quick brown fox jumps over the lazy dog.
pre-modifier pre-modifier (subject) verb pp- the lazy -pp

root

nsubj
amod

amod

det

prep

pobj

amod

det

Figure 3.6: Color-coded Representation for (subject) verb[‘jump’]-pp[‘over dog’]

Both (subject) verb[‘jump’] and (subject) verb[‘jump’]-pp[‘over dog’] are generated by the

sentence in Figure 3.4. This is an example of the case discussed before, where (subject)

verb[‘jump’]-pp[‘over dog’] is a sub-pattern of (subject) verb[‘jump’], since every sentence that

generates the former, necessarily generates the latter. The sentence ‘Kangaroos can jump long

distances.’ also generates the pattern (subject) verb[‘jump’] (this time with ’kangaroo’ under the

variable element), but it does not generate the more specific form (subject) verb[‘jump’]-pp[‘over

dog’]. Clearly the simpler dependency patterns will typically be much more common than one of its

sub-patterns. This is largely why we limit the number of dependency templates, as more sophisticated

or arbitrary structures are considered, the more sparse and redundant the data becomes.

3.4 Seed Selection

We start by splitting the dataset of annotated words form [Wang et al., 2018] into a validation and test

set with 44 and 393 words respectively; approximately a 10%-90% split. We then begin to compile a list
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of seed nouns from the list of words rated by concreteness in [Brysbaert et al., 2014]. We first select

each non-compound word from [Brysbaert et al., 2014] that was given the maximum concreteness

rating. We determine the total frequency of each word in our corpus, and rank the resulting candidates

from our list by their frequency in the corpus. From this list, we select 44 words to form the seed

vocabulary, chosen to produce a relatively even distribution of attribute values for each attribute. Each

of the seed words are then manually annotated using the same resolution and attribute types considered

in [Wang et al., 2018]. When performing the manual annotation we consulted the validation set

annotations in order to promote a consistency between the validation and seed words’ labels. The full

list of seed words with their physical attribute annotations is shown in Appendix A.

(a) Seed Set (b) Validation Set

Figure 3.7: Distribution of Validation Set Attribute Values for Size and Rigidity

3.5 Features Representation

Our goal is to learn the physical attribute values of new words. We start o↵ by looking at the

sextuplets, and their dependency patterns, whose subject or object components contain words that are

in our annotated seed vocabulary. Let DP be the set of all dependency patterns that co-occurred with

at least one seed words as its variable argument. Then for each dependency pattern dpi 2 DP , we can

consider the discrete function P (A|dpi) where A is the random variable representing the value of a

particular physical attribute, and dpi is a dependency pattern co-occuring with that word. We

approximate this function by observing the frequency distribution of the attribute values of seeds that

co-occur as the variable component of dpi. We can do this because we know the physical attribute

values for the annotated seed words. After this process, we then have a sample to approximate

P (A|dpi) for each dependency pattern dpi 2 DP .

We want to eventually assign a specific attribute value to each new word for each physical attribute

under consideration. That is, for a non-seed word that appears in the corpus, we want to learn some of

its physical attributes; its approximate size or rigidity for example. After compiling the attribute value

frequency distributions for each dependency pattern dpi 2 DP , we can extract new words that co-occur

as the variable argument of each dependency pattern, but for which we have no physical attribute

annotations. For each new word w, we can now calculate the frequency with which w occurs as the

variable argument for each dpi 2 DP ; we’ll call this frequency ci. Then for each new word w 2 W , we

define a vector < c0, c1, ...cN > representing a “bag of patterns” counting the co-occurrences of w with
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each dpi 2 DP . This “bag of patterns” vector, for each word w 2 W , is the basic datatype we use to

perform the following steps for feature selection and data filtering.

3.6 Feature Selection and Data Filtering

As one might expect, the bag of patterns representation for each word results in a sparse,

high-dimensional feature space. We compile real distributional data for approximately 2 million unique

dependency patterns. Additionally we extract about 2 million unique non-seed words that co-occurred

at least once with a valid dependency pattern. In order to make this data and feature space more

workable, we can filter the set of extracted words and we can perform feature selection.

We can filter the extracted word set in three ways: filtering lexically by excluding words with lemmas

not contained in WordNet’s vocabulary [Miller, 1995], filtering by frequency by excluding words with

lower frequenncy counts, and filtering by variance by excluding words whose bag of patterns

representation suggests high variance in expected attribute values. By excluding the list of words under

consideration to those whose lemmas are contained by WordNet’s vocabulary, we reduce the number of

words extracted to about 40 thousand; a great reduction compared to the nearly 2 million initially

considered. Upon inspection, seemingly, many of the words filtered out by this method include proper

nouns, obscure, scientific, and technical terms, and more abstract words without physical properties.

Since physical attribute data is not as meaningful for these words, we can exclude them to promote a

greater semantic consistency of the candidate words. For frequency filtering, we are specifically

considering the total number of times that a word occurs under the variable element of those

dependency patterns in our feature space. For variance filtering, we compute a word’s sample variance

by modeling its “predictions” X = argmax
a2A

P (a|dpi) for dpi 2 DP , weighted by ci, and then filter out

words for which Var(X) is greater than a specified threshold.

For feature selection, we can also reduce the number of features based upon frequency and variance.

When performing filtering based on variance for patterns, we simply compute the variance of a

pattern’s variables’ attribute value for the attribute under consideration. Even after such filtering

though, we typically end up with hundreds or thousands of dependency patterns comprising the feature

space. Since the number of labelled instances is so few, we perform z-score normalization with respect

to each feature before performing dimensionality reduction on the entire feature set, after filtering,

using scikit-learn’s incremental PCA [Pedregosa et al., 2011] with batch size 2048 before training

models for classification. Notice then, that the variance and frequency parameters for the feature set

and words considered have an e↵ect on the resulting reduced representation.

The values for each frequency and variance threshold in the data filtering and feature selection

preproocessing step produces its own parameter space for which we perform a grid search over the

following values:

• Pattern frequency threshold (�) 2 {10, 25, 50, 100, 150}

• Pattern variance threshold () 2 {0.1, 0.5, 1.0, 1.5, 2.0}

• Word frequency threshold (�) 2 {5, 25, 50, 100}
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• Word variance threshold () 2 {0.1, 0.5, 1.0, 1.5, 3.0, 4.0, 5.0}

• PCA components 2 {25, 60, 100, 200}

As performing PCA is a space intensive operation, some combinations of feature selection and data

filtering parameters which result in a very large feature matrix are omitted from consideration.

The final choice of parameters can be seen in Table 3.1. These values were attained during parameter

tuning, with the best model being chosen by F1 micro average score on the validation set.

Model Pattern Freq. Pattern Var. # Patterns Word Freq. Word Var. # Words PCA Components

MLP 75 1.0 1,145 25 5.0 16,812 60

KNN 75 0.5 769 5 5.0 20,460 60

SVM 75 0.5 769 25 5.0 10,396 100

(a) Size

Model Pattern Freq. Pattern Var. # Patterns Word Freq. Word Var. # Words PCA Components

MLP 75 0.5 1,035 50 4.0 14,204 60

KNN 75 1.0 1,525 25 5.0 20,924 25

SVM 75 0.5 1,035 50 4.0 17,924 60

(b) Rigidity

Table 3.1: Data Filtering, Feature Selection Thresholds, and PCA Components Selected for Evaluation.

3.7 Machine Learning Models

We proceed to perform attribute prediction using vectors from the transformed matrix. We try out 3

di↵erent machine learning models: a k-nearest neighbors classifier, a multi-layer perceptron, and a

support vector machine classifier using scikit-learn’s implementations [Pedregosa et al., 2011].

Using the validation set of the 44 annotated words from [Wang et al., 2018], we perform minimal

parameter tuning for each model’s particular hyper parameters; leaving unspecified parameters as their

default values in scikit-learn. For the k-nearest neighbors classifier, we compare values of k 2 {1, 2}; for
the multi-layer perceptron classifier, we compare values of the learning rate in {1e� 2, 1e� 3, 1e� 4}
with 1, 2, or 3 hidden layers with sizes of {(64, ), (64, 32), (128, 64, 32)} respectively; for the support

vector machine classifier we use the ‘rbf’ kernel and compare values of

C 2 {0.5, 1.0, 2.0, 3.0, 5.0, 8.0, 10.0, 14.0}. The final models’ parameter values, shown in Table 3.2, were

chosen based upon performance of their F1 Micro Average, as shown in Table 4.1.
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Model Parameters

MLP learning rate: 1e-2, hidden layers: {64, 32}
KNN k: 1

SVM C: 14.0

(a) Size

Model Parameters

MLP learning rate: 1e-2, hidden layers: {64, 32}
KNN k: 2

SVM C: 14.0

(b) Rigidity

Table 3.2: Evaluation Model Parameter Specification

4 Evaluation

To evaluate the attribute predictions produced by each model, we compare the learned physical

attributes to the gold data from [Wang et al., 2018] not in the validation set used for parameter tuning.

This work focused on learning words’ size and rigidity attributes, though the same procedure could be

performed for any of the attributes considered in [Wang et al., 2018], as shown in Table 2.1.

After parameter tuning, an interesting result is that the top performing parameters for the data

filtering and feature selection methods have a common pattern across the di↵erent models; stricter

thresholds for patterns, and less strict thresholds for words. For the models trained to classify for size,

for example, all of the evaluation models selected a 75 pattern frequency threshold, 0.5 or 1.0 pattern

variance threshold, and more liberal thresholds for filtering words. This specification filters the patterns

to a relatively small number, and suggests that the models may rely significantly on the data filtering

process for patterns, and that low variance patterns are inherently informative.

Observing the patterns that do get through, it is clear that some number are arbitrary and likely

uninformative. On the size attribute with pattern filtering parameters of 75 and 0.5 for frequency and

variance thresholds respectively, the pattern (SUBJECT, subject-pre-modifier[‘cylinder’]) is

attested with the seed words bank, trophy, anchor, crown, cabin, lighthouse, bull, barrel, and

motorcycle, all contributing to a total of 77 instances for size attributes for this pattern. Yet, barrel

contributes the majority of these instances, producing a low variance pattern with a fairly definite

expected value. Analyzing the words extracted by this pattern however led to a somewhat di↵erent

picture; some of the words most commonly co-occurring with this pattern include locomotive, car,

submarine, and engine, suggesting a potentially di↵erent real variance and expected value. Of course

the pre-modifier ‘cylinder’ has a very common and definite meaning with respect to engines and

vehicles, but the choice of seed words may have biased the feature distribution in some arbitrary way.
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There are however examples of much more intuitive examples of useful and informative patterns. Again

with the same pattern filtering parameters, one attested pattern is (subject[‘–pron–’], verb[‘drink’],

OBJECT), with the most common seed words contributing being wine and co↵ee with common

physical attributes. The extracted words most commonly co-occurring with this pattern include other

liquids, such as water, alcohol, blood, and beer.

4.1 Results

The final results for each model are shown in Table 4.1, shown as the F1 micro average. With more in

depth analysis of the results for precision, recall, and F1 score per attribute value for the validation and

evaluation sets on the size attribute are shown in Tables 4.2 and 4.3. For the rigidity attribute, results

are shown in Tables 4.4 and 4.5. Upon inspection, the results of predictions for the size attribute, we

see that the resulting F1 scores suggest moderate performance, with better results for the rigidity

attribute than size. This may be related to an imbalance in both the attribute values distributions of

the validation and seed sets, shown in Figure 3.7, as well as the distribution of attribute values attested

in the corpus, as seen in Figure 4.1. In particular, the very poor performance on attributes values 2 in

rigidity, and 6 in size, may be due to the relatively low frequencies that these attribute values are

attested to in the corpus.

Performance on the validation set outpaces that on the evaluation set by a significant margin, though

relative performance on the validation set during parameter tuning was highly correlated with

performance on the evaluation set. Overall, it would seem that the best performing model was the multi

layer perceptron on both the size and rigidity attributes, based on final testing F1 micro average scores.

The support vector machine also performed fairly well, especially on the validation set, though it

seemed to not generalize quite as well as the multi layer perceptron. Unfortunately, precision and recall

di↵er significantly between attribute values for all models, meaning that the error per class is

inconsistent, a somewhat undesirable trait.

(a) Validation Set (b) Seed Set

Figure 4.1: Attribute Value Frequency in Wikipedia, Based on Word Count
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Size Rigidity

Model Validation Testing Validation Testing

MLP 0.51 0.33 0.56 0.43
KNN 0.48 0.29 0.53 0.40
SVM 0.50 0.31 0.58 0.37

Table 4.1: Final Model F1 Micro Average

Attr. Val 0 1 2 3 4 5 6

Precision 0.71 0.56 0.45 0.56 0.50 0.25 0.00

MLP Recall 0.56 0.42 0.56 0.71 0.25 0.50 0.00

F1 0.63 0.48 0.50 0.63 0.33 0.33 0.00

Precision 1.00 0.75 0.44 0.27 0.40 0.00 0.00

KNN Recall 0.33 0.50 0.44 0.43 0.50 0.00 0.00

F1 0.50 0.60 0.44 0.33 0.44 0.00 0.00

Precision 0.33 0.67 0.56 0.36 1.00 0.50 0.00

SVM Recall 0.11 0.67 0.56 0.57 0.75 0.50 0.00

F1 0.17 0.67 0.56 0.44 0.86 0.50 0.00

# words 9 12 9 7 4 2 1

Table 4.2: Results for Size Attribute on Validation Set

Attr. Val 0 1 2 3 4 5 6

Precision 0.37 0.33 0.25 0.56 0.21 0.37 0.33

MLP Recall 0.21 0.40 0.24 0.38 0.14 0.42 0.22

F1 0.27 0.37 0.25 0.46 0.16 0.39 0.27

Precision 0.28 0.48 0.23 0.40 0.15 0.22 0.06

KNN Recall 0.24 0.22 0.27 0.36 0.20 0.31 0.11

F1 0.26 0.30 0.25 0.38 0.17 0.25 0.08

Precision 0.38 0.41 0.25 0.44 0.30 0.35 0.00

SVM Recall 0.13 0.29 0.40 0.48 0.14 0.23 0.00

F1 0.20 0.34 0.30 0.46 0.19 0.30 0.00

# words 67 99 62 86 44 26 9

Table 4.3: Results for Size Attribute on Test/Evaluation Set
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Attr. Val 0 1 2 3 4

Precision 0.50 0.74 1.00 0.63 0.40

MLP Recall 0.14 0.88 0.25 0.56 0.50

F1 0.22 0.80 0.40 0.59 0.44

Precision 0.63 0.80 0.33 0.36 0.33

KNN Recall 0.71 0.75 0.25 0.56 0.13

F1 0.67 0.77 0.29 0.43 0.18

Precision 0.71 0.92 0.00 0.57 0.29

SVM Recall 0.71 0.75 0.00 0.44 0.50

F1 0.71 0.83 0.00 0.50 0.36

# words 7 16 4 9 8

Table 4.4: Results for Rigidity Attribute on Validation Set

Attr. Val 0 1 2 3 4.

Precision 0.41 0.74 0.33 0.20 0.30

MLP Recall 0.29 0.66 0.14 0.35 0.23

F1 0.34 0.70 0.20 0.25 0.26

Precision 0.25 0.78 0.00 0.22 0.37

KNN Recall 0.52 0.54 0.00 0.34 0.31

F1 0.34 0.64 0.00 0.26 0.34

Precision 0.28 0.65 0.00 0.21 0.32

SVM Recall 0.37 0.54 0.00 0.22 0.40

F1 0.31 0.59 0.00 0.21 0.36

# words 52 149 49 59 84

Table 4.5: Results for Rigidity Attribute on Test/Evaluation Set

We additionally evaluate the quality of the learned attributes by comparing the results to the relative

object pair dataset from [Forbes and Choi, 2017], consisting of 3,656 pairs of objects labelled along the

physical attributes size, weight, strength, rigidness, and speed, and split into a (183 / 1645 / 1828) seed,

development, and test set. This dataset considers the relation between an object pair, whether one

object is bigger, heavier, stronger, more rigid, or faster than other. We can see how our learned size and

rigidity attribute values compare to the relative attribute object pairs in Table 4.6. Here the multi

layered perceptron performed best for the size attribute, with slightly better results on rigidity.

Interestingly the KNN model performs relatively well, and outperfoms other models on the rigidity

attribute, despite performing slightly worse on average for the [Wang et al., 2018] test set. The

performance of each model is again moderate, with models producing somewhat noisier results on this

dataset than the method used in [Forbes and Choi, 2017].
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Test Acc.

Model Size Rigidity

[Forbes and Choi, 2017] 0.75 0.75
MLP 0.62 0.48
KNN 0.53 0.54
SVM 0.57 0.43
Random 0.33 0.33

Table 4.6: Relative Attribute Comparison

To get a better idea of how our models are behaving, the confusion matrices in Figures 4.2 and 4.3 of

our models show mostly issues with precision, while usually capturing the general tendencies of words’

physical attributes. For most attribute values, the plurality of word predictions are correct, and most

mislabels fall within an adjacent value bin, suggesting that though the labels are somewhat noisy, their

utility in downstream tasks will depend on how important the resolution is for that task. Nonetheless,

these results may be particularly useful for downstream tasks that utilize a larger vocabulary, since

manually annotating thousands or tens of thousands of words is infeasible.
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(a) knn (b) mlp

(c) svc

Figure 4.2: Confusion Matrix for Validation Set on Size Attribute
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(a) knn (b) mlp

(c) svc

Figure 4.3: Confusion Matrix for Evaluation Set on Size Attribute
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5 Conclusions and Future Work

This work contributes a means for acquiring large amounts of medium-resolution physical attribute

knowledge using a small amount of seed data. Analysis of results suggests that the produced attribute

knowledge is reasonable, if somewhat noisy, and can likely be useful in downstream tasks, for which

manual annotation would be unreasonably time and resource consuming.

5.1 Potential Improvements

In retrospect to this study, a few potential means for improvement identified include: normalizing

active/passive voice, which was not done in this study when extracting sextuplet representations,

performing seed selection to guarantee a more balanced extraction of dependency patterns and words

from the corpus, using more powerful machine learning models to make attribute value predictions from

contextual representations alone.

We might also want to consider the role that di↵erent resolutions for each attribute plays in defining the

quality of acquired knowledge. The attribute resolution is fundamental to how dependency patterns are

selected, and likely have a significant e↵ect on the functions learned by each machine learning model.

The resolution scheme we used was chosen in part to take advantage of the dataset produced by

[Wang et al., 2018], and though we like a medium resolution scheme in general, it is not clear exaclty

how specific resolutions a↵ect the knowledge acquisition process.

5.2 Weak Labelling for Semantic Plausibility

A recent solution to the semantic plausibility task of [Wang et al., 2018], involves finetuning a BERT

model [Devlin et al., 2019], a large pretrained neural model, on the plausibility dataset

[Porada et al., 2019]. This paper trains the large uncased BERT model on the plausibility dataset with

10-fold cross validation of the 3,062 event examples. The training procedure is identical to the models

proposed and evaluated by [Wang et al., 2018], with results in Table 5.1. The NN model refers to the

selectional preference-based neural network model proposed in [de Cruys, 2014], while NN+WK refers

to the model discussed in Table 2.1 which enriches the NN model with explicit world knowledge

[Wang et al., 2018]. The nature of the plausibility dataset, and the method of training in the supervised

example should be detailed more explicitly. Specifically, as the data has a limited vocabulary (150 verbs,

and 450 nouns), the folds are organized such that the vocabulary is e↵ectively spread somewhat evenly

across each of the folds, so that the vocabulary of each 9-fold training set spans that of the test set as

well. In addition to having a fairly high training:test size ratio, this detail would seem to make the task

a bit easier. Nevertheless, the BERT model obviously outperforms the prior models significantly.
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A more interesting datum from this [Porada et al., 2019], perhaps, is another approach to finetuning

the BERT model, which uses no data from the plausibility task at all. In this implementation, they

create a ‘self supervised’ dataset of (subject, verb, object) events by extracting events from English

Wikipedia. The extracted events represent the physically plausible events in the self supervised

paradigm. They then create an equal number of pseudo-negative examples by sampling subjects, verbs,

and objects based upon frequency to generate events that do not occur in the corpus (i.e., implausible

events). After this process, they generate a dataset with 12 million events (6 million positive, and 6

million pseudo-negative) for finetuning the BERT model. For evaluation, the plausibility dataset from

[Wang et al., 2018] is split into two 1,531 sets of triples for validation and testing, and training on the

self supervised dataset for the BERT model, as well as the NN model (without world knowledge).

Results are shown in Table 5.2. Clearly the results for the self supervised dataset suggest that both the

BERT and NN model fail is some significant way to learn plausibility as derived in this scheme from

natural text. As such, the attributes we have learned could be used as weak labels to enrich the great

majority of the events in the self supervised dataset, hopefully providing a better measure of the impact

of physical world knowledge for plausibility tasks from natural text.

Model 10-fold CV Mean Acc.

Random 0.50

NN [de Cruys, 2014] 0.68

NN+WK [Wang et al., 2018] 0.76

Fine-tuned BERT 0.89

Table 5.1: Supervised Results for Plausibility Task

Model Valid Test

Random 0.50 0.50

NN [de Cruys, 2014] 0.53 0.52

Fine-tuned BERT 0.65 0.63

Table 5.2: Self Supervised Results for Plausibility Task
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Appendices
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A Seed Words

word sentience masscount phase size weight rigidity

gold 0 3 2 0 1 4

bank 0 3 2 5 5 4

crown 0 3 2 2 2 4

factory 0 3 2 6 6 4

trophy 0 3 2 2 2 4

priest 5 3 2 3 3 1

restaurant 0 3 2 5 5 4

wine 0 0 1 1 1 0

salt 0 1 2 0 0 0

ferry 0 3 2 4 3 3

timber 0 2 2 4 4 3

volleyball 0 3 2 2 1 2

grandfather 5 3 2 3 3 1

beetle 2 3 2 0 0 2

dogs 3 3 2 2 2 1

eagle 3 3 2 2 1 1

telephone 0 3 2 1 1 3

co↵ee 0 0 1 1 1 0

clock 0 3 2 2 1 3

bull 3 3 2 4 4 2

photographer 5 3 2 3 3 1

jet 0 3 2 5 5 4

mirror 0 3 2 3 2 4

sheep 3 3 2 3 3 1

dancer 5 3 2 3 3 1

anchor 0 3 2 3 4 4

deer 3 3 2 3 3 1

violin 0 3 2 3 2 3

runner 5 3 2 3 3 1

motorcycle 0 3 2 4 4 4

lighthouse 0 3 2 5 5 4

cabin 0 3 2 5 5 4

casino 0 3 2 6 6 4

snail 2 3 2 0 0 1

cottage 0 3 2 5 5 4

coin 0 3 2 0 0 4

barrel 0 3 2 4 4 3

toy 0 3 2 1 1 3

dish 0 3 2 2 1 4
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photograph 0 3 2 1 0 1

frog 3 3 2 1 1 1

duck 3 3 2 2 2 1

smell 0 0 0 0 0 0

chimp 4 3 2 4 4 1
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