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Abstract

WebAssembly (Wasm) is an emerging compilation target for programming lan-
guages, executed by web browsers and sandboxed environments like the Web
Assembly System Interface (WASI)[1]. It offers portability, security and near-
native execution speed, making it an attractive compilation target.

However, the Minimum Viable Product (MVP) release of Wasm lacks built-
in support for many useful numeric representations such as arbitrary precision
integers, exact rational numbers, and exact/inexact complex numbers. Source
languages like CommonLisp, Haskell, Python and Racket require these repre-
sentations at run-time to back their built-in numeric types and support their
standard libraries.

This lack of representations, and operations that can be used on mixtures of
these representations, makes compiling these source languages to Wasm modules
unnecessarily difficult. To tackle this issue I have developed a library in C++
for representing these numeric abstractions and cross-compiled it to Wasm, the
source code for which is available here:

https://github.com/ScottButler87/ExtendedNumerics

This thesis details background information about this issue and also serves as an
exposition of the performance characteristics of the ExtendedNumerics library.
The library’s implementation is outlined and comparisons are drawn between
its performance in native and Wasm compilations. Methods used for verifying
correctness and benchmarking performance are also explained.

Despite Wasm’s unusual choice of LEB128 as a core number encoding, the
library performs well when cross-compiled for browsers/Nodejs. While there
still exist other barriers to compiling Haskell, Racket, etc. to Wasm, this library
serves as an effective bridge for crossing the existing numeric representation gap.
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1 Introduction

The source code backing everyday programs and applications often involves

calculations that employ approximate computer representations of a wide spec-

trum of different types of mathematical numbers, both discrete and continuous:

integers, reals, complex numbers, and all manner of combinations thereof.

Precision requirements for these numeric representations can vary from one

program to the next. An application that is calculating frames to be displayed

one after another to a user playing a video game might be satisfied with repre-

sentations that are rough approximations, resulting in some user-imperceptible

level of imprecision. On the other hand, a scientist trying to predict the out-

come of a chemical reaction by modeling atomic interactions might require com-

putations with exact representations which provide sufficient precision for the

calculation.

Among its other responsibilities, a compiler for a source language must

choose appropriate representations for the mathematical numbers specified in,

or resulting from the execution of, the source code of a program. These repre-

sentations must be capable of modeling the operations the programmer expects,

with the required precision.

To fully understand the crux of the issue being brought to discussion, it is

necessary to distinguish between mathematical numbers and the numeric types

and associated representations provided by programming languages to model

these numbers. While mathematical types and their expected behavior during

computations may be easily described, implementing this behavior at the level

of computer hardware requires binary-compatible representations whose form

can be radically different from the mathematical numbers being modeled.

Yet programmers expect to be able to rely on these representations to ac-

curately emulate the behaviors expected from mathematical numbers. They

rely on the ready availability of the necessary representations and associated

operations to implement the numeric calculations required by their programs at

run-time.

Although Wasm natively supports all of the numeric representations employed

by C-like languages, it lacks any native support whatsoever for the numerical

representations needed by compilers for CommonLisp, Haskell, Python, Racket,

Scheme and other languages that require representations outside this limited

subset. Representations for rationals, arbitrary precision integers and complex

numbers are sorely lacking, and this leaves almost half the numeric stack of
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these languages lacking a suitable representation in Wasm.

Thus although Wasm’s minimum viable product release came prepared to be

a compilation target for C-like languages, it requires an extension or a library

module to support compiled programs from languages with native support for

a deeper numeric stack. In addition to providing appropriate representations

for each type in the stack, such a library would also necessarily need to support

operations on and between these types.

In order to efficiently meet the needs of a compiler, this library would need

to provide the same abstraction to the compiler as it does to users: once a nu-

meric value is encoded as some concrete representation, it should be employable

as an operand for any appropriate numeric operation; treated as a generic num-

ber. Operations performed on these numbers must be dispatched to the correct

operation for the given operands depending on their underlying representations.

Developing and compiling a library to Wasm to support these numeric types

at run-time and testing the library’s viability as an extension to Wasm is the

primary goal of my research. The ExtendedNumerics library, written in C++,

is the culmination of my work. Details of its implementation are laid out in

the methods section of the paper. While using the numeric types provided by

this library necessarily result in slower performance than possible through direct

hardware or virtual machine support, it is a first step toward making Wasm a

fully compatible compilation target for high-level languages that supply a deeper

numeric stack to programmers than C-like languages do.
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2 Background

High-level programming languages (such as C/C++, Java, Python, Racket and

others) offer programmers convenient access to a wide variety of numeric repre-

sentations that abstract away the specific complexities of representing a math-

ematical number in computer hardware and performing calculations with it.

These implementation details are resolved by code imported as a library or by

an interpreter or compiler for the language.

2.1 Numeric Representations and Dynamic Dispatch

One core difference between C-like languages and languages like Racket, Scheme,

Haskell (and to some degree Python1) is that in C-like languages, the user must

explicitly specify or provide the representation for a numeric value at the time

the source code is written. If built into the language, the representation chosen

is directly related to the implementation used by the compiler for that number

under the hood.

In contrast, programmers writing in languages like CommonLisp, Haskell,

Scheme, Racket and others must specify only a numeric literal and operations

to be performed on it. The compiler chooses a representation when the program

is translated into a target assembly language, inferring the appropriate represen-

tation from the shape of the source numeric literal or from the representations

used for other operands in the same numeric operation. The representation em-

ployed by the compiler can be one directly supported by the target instruction

set such as 64-bit integers or IEEE-754 double precision floats, or a more com-

plicated representation like an arbitrary-precision integer or rational number.

The delay in requiring specific representation choice until compile time helps

make using these languages easier; programmers do not have to specify that

some multiplication is between a floating-point number and an integer. A

programmer simply defines two operands, without knowing or caring how the

operands will be represented in hardware, and the appropriate representations

and operations should be performed at run-time.

However, this convenience comes with a cost. Compiling languages that

treat numerics and arithmetic in this manner requires support at the assembly

1 While Python requires some degree of representation selection for a numeric value, it
supports integers of arbitrary magnitude and values such as complex numbers. These qual-
ities make it a challenging language for compilation to Wasm, similar to the other languages
mentioned.
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language level for both:

1. representing the full numeric tower of the source language, and

2. dynamically dispatching arithmetic operations based on the run-time rep-

resentation of their operands.

For assembly targets that do not natively support these requirements, it

is necessary to provide a supplemental library written in the target assembly

language to fill in the gaps.

2.2 Compilers and Assembly Languages

Compilers are the category of programs generally tasked with translating pro-

grams written in a high-level programming language into assembly instructions

for a target instruction set architecture. This compilation prepares the program

to be assembled into machine code appropriate for the executing platform and

loaded into memory for execution at run-time. Examples of assembly languages

designed for hardware implementations include MIPS, x86 64, RISC-V.

Each of these assembly languages is the programming interface for an in-

struction set implemented by a physical device. Any given high-level language

may be supported by a whole family of compilers (or compiler back-ends), each

designed to convert source code written in that language into a different target

assembly language.

As early as the IBM System/360 with the advent of CP/CMS, the concept

of emulating the hardware that programs are executed on was conceived[2, 14].

This ushered in the era of virtual machines, and not long after came the idea

of a virtual run-time: a virtual machine that acts as a translator between an

intermediate language generated during initial compilation and the machine

code for the physical machine it executes on.

In the modern era, this idea has matured into notable intermediate language

and virtual machine pairs like Java Byte-code/Java Virtual Machine for the Java

language and Common Intermediate Language/Common Language Runtime for

C# and other .NET languages.

2.2.1 WebAssembly: An Emerging Compilation Target

A more recent addition to the growing list of intermediate languages and their

companion virtual machines is WebAssembly. First announced in 2015, the
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minimum viable product was finalized by the World Wide Web Consortium

(W3C) in March, 2017.

Since its release, Wasm (Wasm) has become a new and interesting compila-

tion target for compilers translating high-level languages. Its binary format

is compact and highly portable, and was designed to be easily translated into

an S-expression-based text format (file extension .wat) for readability. Once

a module is downloaded over the internet, it can be executed directly by sup-

porting browsers including Apple Safari, Google Chrome, Mozilla Firefox and

Microsoft Edge. As an assembly language written for a well-defined conceptual

machine, the set of platforms Wasm can execute on is extensible. Recently plans

have been laid to develop a system interface[1] which would provide a Wasm

platform for modules to be executed directly without the need of a browser.

Wasm has many features that make it an attractive compilation target. It

is run in a sandboxed environment on the executing machine, protecting the

operating system and hardware from malicious programs. It was designed with

security, speed and portability in mind; downloaded Wasm code is validated be-

fore execution, and the linear memory used by executing modules for temporary

storage is separated from the call stack and other vital data structures so that

these structures are not vulnerable to mistaken or malicious access.

Because it is an assembly language that is converted to native code by an

assembler before execution, it is capable of matching speed with any equivalent

desktop application. Innovations by Google in their Chrome V8 engine show

off some of the potential still waiting to be explored. The V8 engine translates

downloaded Wasm modules into native code on the fly, function by function as

they are received, using an optimizing compilation pipeline they call ”Turbo-

Fan.”

In August of 2018, an additional straight-line compilation pipeline called

”Liftoff” was added to the V8 engine. The focus of this secondary pipeline is to

allow the chrome browser and V8 engine to begin execution of the Wasm modules

as they are received. In combination, these two pipelines allow the V8 engine to

begin execution of Wasm programs as they are downloading and simultaneously

perform optimizations on hot code paths (control flows that are often executed)

in the background.
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2.3 WebAssembly Numeric Representations and their Lim-

itations: the Compilation Gap

While Wasm provides a panoply of operations for the numeric representations

it supports, this set of representations is intentionally limited. The provided

representations and operations are insufficient to support the full numeric stack

for some of the high-level languages previously mentioned (Haskell etc.) on

their own.

For languages that require these more complex representations, this repre-

sents a barrier to Wasm serving as a target for compilation. The lack of any Wasm

library written to resolve this issue is what I call the compilation gap; a library

would serve as the bridge to compilation.

The limited representations provided by Wasm form a sufficient platform for

implementing such a library to provide the representations and dynamically

dispatching numeric operations required. The source for this library could be

written in Wasm text format or could be compiled to Wasm from a similar library

written in a C-like high-level language.

2.3.1 Numeric Representations

Wasm provides 32 and 64 bit integer representations, which are LEB128[3] en-

coded two’s complement[4] binary representations. They have no explicit signed-

ness and this simplifies many of the operations performed on them. Further

details can be found in Appendix A.

2.3.2 Numeric Operations

Wasm supports the full gamut of numeric operations for the representations

it provides. These include conversions between representations, comparisons,

arithmetic, common functions such as min, max, absolute value, negation and

several types of rounding. Further details can be found in Appendix A.

2.4 Representations and Operations Comprising the Com-

pilation Gap

To bridge the numeric compilation gap CommonLisp, Haskell, Python, Racket

or Scheme, a library would have to be compiled to Wasm that:
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1. provides the numeric representations required by these languages that

Wasm is lacking, and

2. supports generic numeric operations for operating on the provided numeric

representations as well as WebAssembly’s built-in representations.

By generic numeric operation, it is meant that for any numeric operation pro-

vided by the library (for example, addition), it must be possible to apply that

operation to any combination of numeric operands, even if their underlying rep-

resentations do not match. At a minimum, the following subset of numeric

operations would need to be implemented:

1. Negation

2. Addition

3. Subtraction

4. Multiplication

5. Division

6. Quotient

7. Remainder

8. Comparisons

(a) Equality

(b) Inequality

(c) Less Than

Any other operation required could be constructed through the use of these

operations. The table below illustrates the representations required by each

specific language which are not provided by WebAssembly. Any library aiming

to bridge the compilation gap must provide these necessary representations in

addition to the minimum subset of numeric operations above.
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Table 1: Required Numeric Representations by Language

Numeric Representation CommonLisp Haskell Python Racket Scheme

Arbitrary Precision Integers X X X X X

Arb. Prec. Rationals X X X X X

Fixed Prec. Complex Integers - X X X X

Arb. Prec. Complex Integers X X - X X

Arb. Prec. Complex Rationals X X - X X

Complex IEEE 754-2008 FPs X X X X X

2.5 Further Reading

For the interested reader, some further background information can be found

in these reports, by topic: Wasm[8], cross-compilation to Wasm[17][10], Wasm

vs native code performance[13], and assessing the performance delta between

Wasm and JavaScript for Numerical programs[9].
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3 Related Work

While Scheme, Lisp and Haskell, and other language families’ compilers have

been providing the necessary numeric representations for decades in compilation

to assembly for x86/x86 64 instruction sets, at the time of writing I could find

no ongoing projects that attempt to bring this capability to Wasm.

There are several active open source projects working towards compiling

subsets of Scheme, Haskell and other languages that provide extended repre-

sentations, though none of them have as of yet tackled the fundamental issue

addressed in this thesis.

The following are known ongoing compiler projects that provide only the nu-

meric representations natively supplied by Wasm. These projects would benefit

from the creation of a library that bridges the aforementioned numeric compila-

tion gap for their languages. I am sure these are not the only ongoing projects,

and more likely crop up every day.

3.1 Schism (Scheme to Wasm Compiler)

“Schism is an experimental self-hosting compiler from a subset of R6RS Scheme

to WebAssembly”[7] according to its project description. The project success-

fully self-hosts using snapshots checked of previous iterations checked into the

repository. This compiler explicitly states that its support for the full numeric

stack of Scheme is restricted to integers within the int32 range (−21, 21 − 1).

3.2 Asterius (Haskell to Wasm Compiler)

This project’s description reads: ”A Haskell to WebAssembly compiler. Project

status: alpha, in active development, some simple examples already work”.[12]

The project supports Javascript/Haskell interoperation via defined first-class

Haskell types and additionally provides infinite precision integers through ex-

ternal calls to a JavaScript framework, taking advantage of the JavaScript built-

in BigInt type added in late 2018. One drawback to this approach is the large

amount of overhead when making calls to JavaScript from Wasm and vice versa.
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4 Methods

This section outlines considerations made and methods used for implementing,

porting, testing and benchmarking the proposed library, referred to henceforth

by the name ExtendedNumerics.

4.1 Approaches Ruled Out

4.1.1 Calling into a JavaScript Library

Calling into a JavaScript library for specific numeric representations such as

BigInts ultimately turned out to be unlikely to be a good approach. There is

a lot of overhead associated with calls to and from Wasm/JavaScript. That

overhead would make the implementation less performant than one where all

the module’s operations are self-contained.

4.1.2 LEB128 encoding for Bignums

Internally, integers in Wasm are encoded in LEB128, however this is likely due

to space concerns or data streaming. It is possible that a library implementation

that encoded its numeric representations in LEB128 could be more compatible

with Wasm, resulting in better performance. However this is unlikely to be the

case as it would be difficult to communicate the fact that representations are

compatible to the intermediate compiler from C to Wasm.

4.1.3 Initial Implementation

I wrote the first iteration of the ExtendedNumerics library in C with no external

dependencies. My hypothesis was that the reduction in overhead versus C++,

combined with the similarity between C code and Wasm instructions, would re-

sult in better performance after cross-compilation than a C++ implementation.

However, before benchmarking began in earnest for this initial C imple-

mentation, I made a comparison with a C++ prototype for a small subset of

the required functionality. This revealed that my hypothesis was wrong. Af-

ter comparing operation performance, it was clear that fixnum operations were

comparable in C and C++; furthermore the cpp int arbitrary precision integer

representation provided by the C++ Boost Multiprecision library easily outper-

formed my own implementation asymptotically.
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In light of this revelation, and spurred on by my own desire to refactor

the existing implementation, I made the decision to reimplement the library in

C++14.

4.2 Library Implementation

4.2.1 Implementation Details

ExtendedNumerics is written in C++14 and takes a dependency on the Boost

Multiprecision library header. It is built using CMake, a platform independent

build system provided by Kitware, Inc.[11] The main class, Numeric, encom-

passes and abstracts away the complexity of the underlying internal classes.

Behind the scenes one of several classes stores the necessary information and

implements the functionality that enables the extended numeric stack. Each

of these classes inherits from ExtendedNumerics, a base class that defines the

shape and interface that must be implemented by backing types in order to

further extend the numeric stack. At initialization time, an appropriate nu-

meric back end is selected from one of these derived classes: BignumInternal,

RatnumInternal, ExactComplexnumInternal, InexactComplexnumInternal.

Numerics can be instantiated with standard integer values, c-style strings,

std::strings or doubles depending on the type literal to be represented. The

Numeric class employs the Resource Acquisition is Initialization (RAII) tech-

nique to allow users to handle Numerics just as they would regular built-in C++

value types. Any dynamic memory needs are serviced under the hood by the

backend classes and Numerics clean up after themselves when they go out of

lexical scope, ensuring they do not cause memory leaks. Although the number

they are representing can be of arbitrary precision and size, the Numeric itself

always takes up only 64 bits on the stack.

Taking inspiration from the Chez Scheme[5] implementation, Fixnum values

are stored directly in the Numeric on the stack in order to reduce the per-

formance penalty of using Numerics for small values. Bignums, Ratnums and

Exact/Inexact Complexnums are referenced via a pointer stored in the Numeric.

Following the guidance of the principle of least surprise, like other value types

Numerics are immutable; performing operations on them produces new Numeric

values rather than mutating the originals.

In order to further support the outward appearance that Numerics are a

value type, they had to be made to behave as other built-in value types, in-

cluding interoperability with other built-ins and each other. Given a binary
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operation on two Numerics or on a Numeric and a built-in, the correct action

to take depends on the types of each. For instance, division should be handled

very differently for integer versus complex values. Dispatching to the correct

function presents a challenge in C++14, which does not support multimethods

or multiple dispatch for user-defined classes.

To overcome this, operations are initially dispatched to the ExtendedNu-

merics base class based on the base type of the right hand operand. From there,

derived classes are dispatched twice more based on explicit type tags carried at

run-time, once for each operand. Built-in values are treated in the same fashion,

first dispatching to ExtendedNumerics and then directly on to a friend function

of the appropriate back end. This approach is necessitated by the lack of virtual

friend functions in C++14.

4.2.2 Cross-compilation to WebAssembly

The library is compiled to Wasm via the Emscripten SDK, maintained, created

and provided by the authors listed at emscripten.org[16]. This tool is as close

to a drop-in replacement for gcc as is available. I used the emconfigure utility

in combination with CMake and unix make to compile the Numerics library

directly to Wasm from source. The boost dependency is serviced in Wasm by

a port of the boost headers provided by Emscripten: github.com/emscripten-

ports. This cross-compiled version of the ExtendedNumerics library is compat-

ible with Nodejs as well as any modern browser that supports Wasm.

4.2.3 Notable Aside: GNU Multiple Precision Arithmetic Library

GNU Multiple Precision Arithmetic Library (GMP) is a reliable and widely

used C/C++ multiprecision library maintained by the Free Software Founda-

tion at gmplib.org. During implementation I experimented with using GMP’s

arbitrary precision integer back end instead of Boost’s cpp ints. However, I

found that native speeds were relatively similar for numbers up to 10,000 bits

long. Additionally, after struggling with Emscripten SDK to compile GMP to

WebAssembly, I found that it was significantly slower than Boost when cross-

compiled. For that reason, ExtendedNumerics employs Boost’s headers instead.

It is worth noting that it might be worth trying the conversion again in future,

in case some silent build error occurring during cross-compilation was the source

of the unexpected poor performance.
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4.3 ExtendedNumerics Python Extension

In the interest of demonstrating a second use-case for this codebase in addition

to numeric representations for Wasm, ExtendedNumerics was also compiled and

exercised as a Python extension. I accomplished this using the Python distu-

tils package in tandem with the Simplified Wrapper and Interface Generator

(SWIG) open source software tool available from swig.org. An additional bene-

fit of having this extension is that this enables integration testing of the library

in situ. It also makes using the library and adding new tests tractable for a

larger population of developers than would C++/Wasm alone.

4.4 Correctness/Testing

The test suite for ExtendedNumerics is written in Python and exercises the

library compiled as a Python extension. In addition to a set of hand-made edge

cases and regression tests, the suite includes a probabilistic test module that

tests all operations and operand pairs. The suite generates random Numerics

and their equivalents as Python values and tests the results of performing Nu-

meric operations against the results generated by Python arithmetic operations.

This leverages the reliability of the Python built-in arithmetic types to fuzz the

ExtendedNumerics library and verify its results, searching for aberrant behav-

ior. The number of iterations and floating point relative equality tolerance is

adjustable and the fuzzing suite is readily extensible for new Numeric repre-

sentations as necessary. The current ExtendedNumerics library implementation

has withstood over a hundred million random samples without exception.

4.5 Benchmarking

4.5.1 Failed Initial Course: Google benchmark and gtest with We-

bAssembly

Tempted by the ease of use and reliability of the Google open source projects

gtest and Google benchmark, initially I tried to take a dependency on these

C++ libraries. Google benchmark’s built-in timing, complexity measurements

and anti-optimization facilities were of particular interest. What began as a

modest 5-8 hour investment in learning to use this new library and writing

benchmarks culminated in over 30 hours of build failures, intense frustration and

ultimate failure, as I tried to coerce Emscripten, CMake, ExtendedNumerics,
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gtest and Google benchmark to work together. I will briefly summarize this

struggle below.

At the time and unbeknownst to me, the experimental Emscripten upstream

llvm branch had a bug where vtables were not being properly populated and

this caused the benchmark build to fail at link time. Switching to the more

reliable Emscripten fastcomp backend seemed to relieve this issue.

The use of advanced compilation flags/options with em++ are not well doc-

umented and also not covered in great detail on Q/A sites like StackOver-

flow. This difficulty was aggravated by my lack of understanding of the CMake

build system. At build time Google benchmark requires features such as pooled

threading, expandable memory, link time optimization and more. It turned out

that the reason these issues are not well-documented is that the Emscripten

SDK provides the utilities emconfigure and emmake which automatically detect

and resolve these issues.

After seemingly successful cross-compilation with the Emscripten fastcomp

backend, the Google benchmark library’s internal tests were failing. Specifically,

when running the .js drivers produced by Emscripten, Nodejs complained that

WebAssembly.Memory returned a memory buffer that waas not a SharedArray-

Buffer. Node suggested that this was due to a lack of Wasm thread support.

Hours of background research later, I found that support for threads in Wasm

has been disabled until further notice due to vulnerabilities to the Spectre attack

vector first revealed in January, 2018. Details about the vulnerability can be

found at https://meltdownattack.com.

While fixes for this issue involving authentication and authorization of brows-

ing environment resource requests are in development, the timeline for resolu-

tion is still unclear. The best resource I could find for more information about

these issues was at Mozzilla, here: Cross-Origin Resource Policy (CORP). Hav-

ing finally met an insurmountable barrier, I resorted to writing the necessary

benchmarks in C++14 myself.

4.5.2 Performance Benchmarking

To demonstrate the performance characteristics of the ExtendedNumerics li-

brary as both a native and Wasm compilation target, I created two primary

benchmarks. The first of these measures the doubling behavior of all Extend-

edNumerics operations, checking for differences in asymptotic behavior from

one platform to the other. The other benchmarks the performance of each

18

https://meltdownattack.com/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cross-Origin_Resource_Policy_(CORP)


Numeric subtype in all supported operations with every other Numeric sub-

type. This benchmark forms the baseline for objective ExtendedNumerics per-

formance comparisons between the native and Wasm compilation targets.

4.5.3 Sanity Test Benchmarks

I wrote several other benchmarks for performing basic sanity checks on the li-

brary. As the results were more an aside, I am documenting them here rather

than in the results section. Benchmarking operation performance symmetry

(measuring the delta between NumericType1 BINOP NumericType2 vs Nu-

mericType2 BINOP NumericType1) unearthed several performance issues that

were later fixed. It also gave me insights into some of the performance charac-

teristics of the Boost multiprecision types I have employed as internal arbitrary

precision representations.

A benchmark for measuring the overhead of using Numeric ratnums rather

than the cpp rational backend directly is also included. It reveals that the

overhead associated with the extra level of indirection is about 20 nanoseconds

per 1200 nanosecond operation. I also employed it to measure construction time

overhead for Numerics, which clocks in at around 35 nanoseconds additional

overhead.

I also wrote a benchmark to measure the difference in execution time between

built-in 64 bit C integers and Numeric fixnums. The difference is not insignifi-

cant, with Numeric fixnum multiplication taking approximately 12 times as long

as the built-in multiplications. This includes time spent by the Numeric deter-

mining its own internal type, as well as ensuring that no operations overflow the

precision capacity of fixnums. Notably, operations that do not overflow are 3

times faster than equivalent operations that do require overflow from fixnum to

bignum. All of these operations are orders of magnitude faster than calculations

that must result to ratnum representation to prevent precision loss.

4.5.4 Note: Benchmark Execution Environment

To maximize consistency and reproducibility, all benchmarking results reported

in the following section were collected by running the benchmarking suite on

the University of Utah CADE lab desktop machines. Detailed specifications are

included in appendix E.
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5 Results

5.1 Summary

Benchmarking the ExtendedNumerics library compiled to both native x86 64

and Wasm revealed that while WebAssembly is undeniably faster than Javascript

and its predecessor asm.js, there is still more ground to be covered. Regardless,

the results were relatively positive.

I found that the natively compiled library executed benchmarks at around

twice the speed observed from Wasm. This performance delta is consistent

across all benchmarks, though the deficit may be exacerbated if test inputs

grow large enough to merit taking advantage of multiprocessing in the Extend-

edNumerics implementation. WebAssembly’s multiprocessing support is still

experimental.

Numeric operation asymptotic complexity remained stable, unchanged be-

tween native and Wasm benchmarking. Most assuring, the performance charac-

teristics of Numeric operations are clearly preserved despite cross-compilation

and a fundamental change in underlying binary representation. Figure 1 is a

chart demonstrating the trends per operand for each operation in both native

and Wasm. Charts with more fine-grained details can be found in appendices

B, C and D. What follows is an overview of the most pertinent information

acquired during benchmarking.

5.2 Operation Asymptotic Behavior

As mentioned above, no discrepancy was observed in the ExtendedNumerics

library’s asymptotic performance between native and Wasm. Perhaps unsur-

prisingly, multiplication and division were found to be not-quite-quadratic with

respect to operand bit size, regardless of whether the operations were being

performed on bignum, ratnum or exact complexnum back ends. Addition and

subtraction both scaled linearly with operand bit size. Note: Results were not

gathered for fixnums or for inexact complexnums, as these back ends are both

fixed precision.

5.2.1 WebAssembly Performance

Although there was an across-the-board 50% reduction in performance, no per-

formance degradations were observed for any of the permutations of operations
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Figure 1: Performance characteristics of native vs Wasm operations across
operands.

between different Numeric back ends. The breakdowns by operand and oper-

ation in appendix C are near mirror-images from native to Wasm compilation

targets. Most importantly, fixnum and inexact complexnum operations are still

significantly faster than their arbitrary-precision siblings, even in Wasm. This

performance characteristic is an important factor in deciding whether or not

Wasm is a desirable target for programs that perform large numbers of small

calculations.

5.2.2 A Target of Opportunity: Benchmarking the Python Exten-

sion vs Python Builtins

The Python extension arose of necessity during development as a handy form

of correctness verification for Numeric operations. This presented an oppor-

tunity to exercise the ExtendedNumerics library as an extension of Python

functionality and measure its performance against Python builtin types and a

few user-defined classes that emulate the functionality of the ExtendedNumerics
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library.

Appendix D showcases the results of that benchmarking in detail. The

results are broken down by subcategories – net benefit, neutral and net loss.

Numerics employing each of the back ends were timed against Python built-in

values (in the case of bignums and Python ints), library classes (ratnums and

Fraction) and a few classes I defined myself for emulating the required equiva-

lent ExtendedNumeric library functionality that were previously exclusively for

correctness checking.

Python handily beats the Numerics extension in operations that can be

accomplished using its own built in value types, presumably because these cal-

culations are performed directly inside natively-compiled libraries rather than

by interpreting Python byte code.

However, the Numerics library outperforms Python when it comes to op-

erations between Python built-ins and user-defined/imported library classes.

Perhaps the imported libraries are not as heavily optimized as the core numeric

types. Numerics performed particularly well on operations between built-in in-

exact complex numbers and user-defined exact complex number classes, as well

as on operations where one operand was small enough to fit within a fixnum.

These benchmarking results highlight some enticing immediate use-cases for the

ExtendedNumerics Python extension.
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6 Conclusions

The development, testing and benchmarking of the ExtendedNumerics library

represented a significant step towards proving viability of the WebAssembly

platform as a compilation target for many functional languages, and providing

a necessary stepping stone for compiling languages that require support for an

extended numeric stack to Wasm.

My findings indicate that while Wasm is still somewhat lacking in perfor-

mance for arithmetic-heavy applications in comparison to natively compiled

code, it is more than ready to support general purpose computing that relies on

the functionality ExtendedNumerics provides.

The Numeric class provides the necessary numeric representations, opera-

tions and interoperations necessary to readily support languages like Common-

Lisp, Racket and the others mentioned at length in the background section. I am

excited to be a continuing part of the effort to make general purpose computing

on the Web a reality, and I look forward to seeing what more is accomplished

using WebAssembly in the near future.
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Appendices

A WebAssembly Numeric Details

A.1 Representations

Since integers use a 2’s complement representation, most integer operations are

not differentiated into signed and unsigned versions. For those operations where

signedness does make a difference in the bit-level processes performed, signed

and unsigned versions are provided.
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Table 2: WebAssembly Numeric Representations

Name Representation

i32 LEB128 encoded binary integer

i64 LEB128 encoded binary integer

f32 32 bit IEEE 754-2008 single-precision floating point

f64 64 bit IEEE 754-2008 double-precision floating point

A.2 Integer Operations

Table 3: WebAssembly Integer Arithmetic

Abbreviation Description

add Addition, carry bit discarded

sub Subtraction, borrow bit discarded

mul Multiplication, low bits of result only

div s Signed integer quotient, result rounded toward 0

rem s Remainder after signed division

div u Unsigned integer quotient, result rounded toward 0

rem u Remainder after unsigned division

Note: Both div and rem trap on division by zero. div s traps on signed integer
minimum divided by -1.
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Table 4: WebAssembly Integer Bit Operations

Abbreviation Arity Description

clz unary Count leading zeroes

ctz – Count trailing zeroes

popcnt – Population count, number of bits set to one

and binary L bitwise AND R

or – L bitwise OR R

xor – L bitwise XOR R (exclusive or)

shl – Shift bits of L left by R’s value, filling with zeroes

shr s – Shift bits of L right by R’s value, sign extending on the left

shr u – Shift bits of L right by R’s value, filling with zeroes

rotl – Rotate bits of L, most significant to least significant, R times

rotr – Rotate bits of L, least significant to most significant, R times

Note: Bitwise negation can be performed using xor with -1 as the first operand.

Table 5: WebAssembly Integer Comparison Operations

Abbreviation Signed Operation

eqz N/A L == 0

eq N/A L == R

ne N/A L != R

lt s Yes L < R

le s Yes L ≤ R

gt s Yes L > R

ge s Yes L ≥ R

lt u No L < R

le u No L ≤ R

gt u No L > R

ge u No L ≥ R

Note: These comparisons return a Boolean result, which is represented in We-
bAssembly as an i32. Any non-zero value is considered true, while 0 is inter-
preted as false.
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A.3 Floating-Point Operations

For the most part, WebAssembly floating-point representations behave as speci-

fied by IEEE standard 754-2008[15] which describes a specification for hardware

implementations of floating point. However, there are many caveats and intri-

cacies involved in the behavior of the utility operations described below. For

more information, consult the WebAssembly reference manual[6].

Table 6: WebAssembly Floating-Point Arithmetic Operations

Abbreviation Description

add Addition

sub Subtraction

mul Multiplication

div Division interpreting each operand as unsigned

Note: Each operation conforms to the IEEE 754-2008 specification of its behav-
ior.

Table 7: WebAssembly Floating-Point Utility Operations

Abbreviation Arity Description

abs unary IEEE 754-2008 compliant absolute value

neg – IEEE 754-2008 compliant negate value

sqrt – IEEE 754-2008 compliant square root

ceil – IEEE 754-2008 compliant round to integral, towards positive

floor – IEEE 754-2008 compliant round to integral, towards negative

trunc – IEEE 754-2008 compliant round to integral, towards zero

nearest – IEEE 754-2008 compliant round to integral, ties to even

min binary Minimum value considering L and R, -0 < 0

max – Maximum value considering L and R, -0 < 0

copysign – Result has magnitude of L and sign of R
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Table 8: WebAssembly Floating-Point Comparison Operations

Abbreviation Operation

eq L == R

ne L != R

lt L < R

le L ≤ R

gt L > R

ge L ≥ R

Note: All floating-point comparisons are IEEE 754-2008 compliant. These com-
parisons return a Boolean result, which is represented in WebAssembly as an
i32. Any non-zero value is considered true, while 0 is interpreted as false.

B Operation Doubling Behavior Comparison,

Native vs Webassembly

B.1 Bignums

29



B.2 Ratnums
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B.3 Exact Complexnums
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C Performance Per Operand Comparisons,

Native Vs WebAssembly

C.1 Fixnums
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C.2 Inexact Complexnums
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C.3 Bignums
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C.4 Ratnums
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C.5 Exact Complexnums
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D Python Extension Performance Comparison

Charts

D.1 Net Benefit, Use Case Potential
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D.2 Neutral
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D.3 Net Loss
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E Benchmarking Environment – CADE Lab Spec-

ifications

All benchmarks reported in the results section were acquired by running bench-

marking suites in the University of Utah CADE lab. The following specifications

were acquired by running the hostnamectl and lscpu commands on CADE Lab1-

1.

$ hostnamectl

Static hostname: lab1-1.eng.utah.edu

Icon name: computer-desktop

Chassis: desktop

Machine ID: 642cbea72ee846839af0f1d891e6bbde

Boot ID: 595b0ed4115943128266e025a7cd009d

Operating System: Red Hat Enterprise Linux

CPE OS Name: cpe:/o:redhat:enterprise linux:7.7:GA:server

Kernel: Linux 3.10.0-1062.7.1.el7.x86 64

Architecture: x86-64

$ lscpu

Architecture: x86 64

CPU op-mode(s): 32-bit, 64-bit

Byte Order: Little Endian

CPU(s): 8

On-line CPU(s) list: 0-7

Thread(s) per core: 2

Core(s) per socket: 4

Socket(s): 1

NUMA node(s): 1

Vendor ID: GenuineIntel

CPU family: 6

Model: 60

Model name: Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz

Stepping: 3
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CPU MHz: 3999.902

CPU max MHz: 4000.0000

CPU min MHz: 800.0000

BogoMIPS: 7183.85

Virtualization: VT-x

L1d cache: 32K

L1i cache: 32K

L2 cache: 256K

L3 cache: 8192K

NUMA node0 CPU(s): 0-7

Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov

pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx

pdpe1gb rdtscp lm constant tsc arch perfmon pebs bts rep good nopl xtopology

nonstop tsc aperfmperf eagerfpu pni pclmulqdq dtes64 monitor ds cpl

vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4 1 sse4 2 x2apic

movbe popcnt tsc deadline timer aes xsave avx f16c rdrand lahf lm abm

epb invpcid single ssbd ibrs ibpb stibp tpr shadow vnmi flexpriority

ept vpid fsgsbase tsc adjust bmi1 avx2 smep bmi2 erms invpcid xsaveopt

dtherm ida arat pln pts md clear spec ctrl intel stibp flush l1d
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