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Abstract

Tensor decomposition is an essential tool to analyze high-order interactions in mul-

tiway data. While most tensor decomposition approaches are developed for static data,

many real-world applications generate tensor elements in a streaming fashion. On the

other hand, the side information, such as a variety of the features for the entities and

interactions, are produced in the mean time, which can greatly relieve data sparsity

and potentially help find factors of better quality. In this thesis, we develop a Bayesian

streaming tensor decomposition algorithm that can incrementally update the latent fac-

tors with streaming tensor elements in an arbitrary order, and meanwhile integrate the

side information to enhance the factor quality. Experiments on four real-world datasets

show that our method can improve upon existing streaming decomposition methods

that do not exploit side information, and obtain at least comparable prediction accuracy

to the stare-of-the-art static tensor decomposition approaches.
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ABSTRACT

Tensor decomposition is an essential tool to analyze high-order interactions in mul-

tiway data. While most tensor decomposition approaches are developed for static data,

many real-world applications generate tensor elements in a streaming fashion. On the

other hand, the side information, such as a variety of the features for the entities and

interactions, are produced in the mean time, which can greatly relieve data sparsity and

potentially help find factors of better quality. In this thesis, we develop a Bayesian stream-

ing tensor decomposition algorithm that can incrementally update the latent factors with

streaming tensor elements in an arbitrary order, and meanwhile integrate the side informa-

tion to enhance the factor quality. Experiments on four real-world datasets show that our

method can improve upon existing streaming decomposition methods that do not exploit

side information, and obtain at least comparable prediction accuracy to the stare-of-the-art

static tensor decomposition approaches.
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CHAPTER 1

INTRODUCTION

Tensors, also known as a multidimensional arrays, are commonly used to represent

the interactions among multiple entities. For example, the movie rating process can be

considered as three-way interactions between users, movies and time, and hence the data

can be represented by a three-mode tensor (user, motive, time). Tensor decomposition is

a fundamental tool to analyze these interactions. It decomposes the entire tensor into

a simple form in terms of latent factors [13], which are feature representations of the

entities that participate in the interactions. With the factors, we can discover the structures

hidden in the entities, such as communities and anomalies, and predict various quantities

of interests, such as click-through-rates, and recommendation accuracy.

While a variety of excellent tensor decomposition algorithms have been proposed [1,

10, 17, 18, 23, 25, 26], they only work on static tensors. However, in many real-world appli-

cations, the tensor elements are produced in a streaming manner, and after being accessed

once, they are not allowed to be visited anymore, e.g., Snapchat and Instagram. This brings

in challenges for the traditional batch decomposition algorithms.

To address this problem, recently a few incremental decomposition approaches were

proposed to adapt to the dynamic growth of tensors. For example, MAST [20] allows

the tensors to expand in all the modes simultaneously. However, MAST put constraints

on the order of the streamed tensor elements — the new elements must reside in the

incremental part of the tensor, rather than belong to the previous tensor (i.e., missing

entries). To handle streams in an arbitrary order, [6] proposed Probabilistic Streaming

Tensor Decomposition (POST) that uses streaming variational Bayes framework [4] to

update the posterior distribution of the latent factors after every a few batches. It is based

on a probabilistic model and the entry values are conditional independent given the latent

factors. The order of tensor elements do not change the data likelihood, and hence the
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factorization does not count on the order.

On the other hand, the side information, such as various features of the interactions

and profiles of the entities, are collected simultaneously with the tensor elements. These

information are valuable, can enrich the sparse tensor data, and potentially improve the

estimation of the latent factors. Despite the promising prospect of the side information,

existing approaches have rarely incorporated the side information into the decomposition

process, especially in the streaming setting. We argue that the side information can be

particularly useful for streaming tensor data, because the data is even sparser and more

incomplete. Furthermore, since after going through the data once, we cannot access them

again to correct the potential learning bias, the side information can help guide the real-

time updates of the latent factors and prevent the learning from saturating into inferior

results.

To bridge the gap, in this paper, we propose Probabilistic Streaming Tensor Decomposi-

tion with Side Information (POSTsi), a Bayesian streaming tensor decomposition algorithm

that can (1) integrate the side information to improve the quality of incremental decom-

position, (2) handle tensor elements that stream in an arbitrary order, and (3) quantify

uncertainty of the latent factors and the predictions in real time. Specifically, we introduce

a linear model that combines the output of a Bayesian CP decomposition model and the

side features to predict the observed tensor entry values. We then develop an efficient

streaming variational Bayes algorithm to update the posterior distribution of the latent

factors and side feature weights every time upon a new batch of tensor elements are

received. Following the incremental version of Bayes’ rule, our algorithm uses the current

posterior distribution as the prior, and integrates the likelihood of new tensor elements to

calculate the updated posterior, which is in turn served as the prior for the next updates.

For evaluation, we compared with the state-of-the-art streaming tensor decomposition

approaches, including POST, MAST and MASTsi — a variant of MAST that incorporates

the side information. We also compared with state-of-the-art static tensor decomposition

algorithms. On one real-world datasets which is a set of streaming tensor entries from

a fixed-size tensor, our extended approach outperforms its predecessor. On four real-

world datasets with the dynamic mode extension setting, our approach in most cases

outperforms the competing streaming decomposition approaches, and is better than or
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comparable to the static decomposition approaches.
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1.1 Background and preliminaries
In this section, we first introduce a few key concepts used to develop the POSTsi. Then

we introduce our notations.

Here, let’s first discuss what Probabilistic Streaming Tensor Decomposition with Side

Information means term by term. 1.) A tensor decomposition algorithm aims to express a ten-

sor as a collection of operations acting on simpler tensors. CANDECOMP/PARAFAC (CP)

and Tucker are two classical and widely used model for tensor decomposition algorithm.

POSTsi is a tensor decomposition algorithm which builds on the CP decomposition model.

2.) POSTsi is a probabilistic algorithm. We design and use a probabilistic version of the CP

decomposition model, such that POSTsi can provides uncertainty quantification on latent

factors and predictions. 3.) POSTsi is a streaming algorithm. Upon a new batch of tensor

elements, POSTsi updates the posterior distribution of latent factors with the likelihood of

new tensor elements. POSTsi updates the posterior distribution of latent factors upon a

new batch of tensor elements. 4.) Side information is any information that does not belong

to the streaming tensor data but includes useful information to learn. One major aspect

of POSTsi is to improve the quality of incremental decomposition by exploiting the side

information coupled with the tensor.

1.1.1 CANDECOMP/PARAFAC (CP) Decomposition

A CP Decomposition is one of the most widely used and one of the oldest tensor de-

composition models [13]. An exact CP Decomposition, a.k.a. tensor rank decomposition,

is a linear higher-order extension of a famous matrix decomposition, the singular value

decomposition. A CP Decomposition is an approximated version of exact CP Decompo-

sition. The idea of exact CP Decomposition was first proposed along with the concept of

tensor decomposition by Hitchcock in 1927 [8, 9, 13]. Kolda and Bader’s survey Tensor De-

composition and Applications [13] has a comprehensive introduction on CP Decomposition,

including its history, properties, its algorithms and applications.
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Figure 1.1: Singular Value Decomposition, A Matrix Decomposition

Assume A
d1×···×dN

is an N-modes tensor, where di denotes the size of i-th mode of the

tensor A. With an exact CP decomposition algorithm, A can always be decomposed as

the sum of R N-modes rank one tensor. Each N-modes rank one tensor can be further

decomposed as an outer-product ⊗ of N vectors.

Figure 1.2: Exact CP Decomposition, a.k.a. tensor rank decomposition

However, finding the rank of a specific given tensor is an NP-hard problem. We have

not found a straightforward algorithm to decide the rank of a specific given tensor nowa-

days. Thus, we also interested in CP Decomposition, an approximated version of exact CP

Decomposition. The only differences between them is that we needs to manually supply a
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parameter R to replace the rank of the given tensor. And the R is not necessarily equals to

the rank of the given tensor. Thus, given an N-mode tensor A
d1×···×dN

and a hyperparameter

R, with CP Decomposition, we have the following form:

A ≈
R

∑
r=1

a1i ⊗ · · · ⊗ aNi

Here we call each decomposed vector ani a latent vector, or a latent factor, of A. If we

arrange all the latent vectors for the same mode of A together, we get a matrix which is

called a factor matrix. Then, an element-wise CP Decomposition form can be written if

we view each factor matrix as a collection of row vectors instead of a collection of column

vectors, as shown in Figure 1.3.

Figure 1.3: Factor matrix in two perspectives

Then, the following is a form of an element-wise CP Decomposition:

yi ≈ 1T(u1i1 ◦ · · · ◦ uNiN )

where i = [i1, · · · , iN ] denotes an index of a tensor entry of an N-mode tensor; the

operator ◦ denotes the Hadamard product which performs element-wise multiplication.
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1.1.2 Streaming Variational Inference

Given batches of data, the latent factor’s and a linear classifier’s prior, and the likelihood of

latent factors and linear classifier, theoretically we can compute the exact posterior of the

latent factors and linear classifier using Bayesian inference. However, we do not know

the dependency among factors and linear classifier; and often the computation of the

exact posterior with real-world prior models is intractable. So it is infeasible to learn the

exact posterior of each latent factor and linear classifier with a straightforward Bayesian

inference.

To overcome these problems, we can resort to Variational Inference, an approximate

Bayesian inference method, to estimate the posterior distributions of latent factors and

linear classifier using well-studied distributions. Furthermore, we use the streaming Vari-

ational Inference framework from [4] to do real-time estimation and updating on the pos-

terior of each latent factors and linear classifier.

The main idea of Variational Inference is to approximate an intractable posterior p(θ|D)

with a distribution q(θ) from a well-studied distribution family Q. It achieves this by min-

imising a KL divergence of the two distributions or equivalently maximising its evidence

lower bound. Variational Inference turns the approximation problem into an optimisa-

tion problem. As for the streaming Variational Inference framework, it demonstrates a

framework to allow real-time updates of the estimated posterior upon streaming data.

Specifically, whenever a batch of streaming data arrives, we estimate the posterior of

parameters using Variational Inference and use it as the prior parameters for processing

the next batch of streaming data.

Variational Inference and streaming variational framework are essential concepts for

our algorithm. Blei, Kucukelbir and McAuliffe’s recent survey Variational Inference: A

Review for Statisticians [3] provided an overview of the history, mathematical logic and re-

search status of Variational Inference. Bishop’s book Pattern Recognition and Machine Learn-

ing [2] also has a good overview of the mathematical logic and properties of Variational

Inference. Broderick, Boyd, Wibisono, Wilson and Jordan’s paper Streaming Variational

Bayes [4] has a full description of the streaming variational inference framework.
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1.1.3 Probabilistic Streaming Tensor Decomposition

Probabilistic Streaming Tensor Decomposition (POST) [6] is a recently published Prob-

abilistic Streaming Dynamic Tensor Decomposition algorithm [27]. To the best of our

knowledge, it is the first and only Bayesian inference algorithm that adapts the recently

proposed multi-aspect streaming setting [20]. This paper first designs a probabilistic ver-

sion of the CP decomposition model by providing prior to each latent parameters and

likelihood of a single tensor entry. Then, it applies the Streaming Variational Inference on

these priors and likelihood to achieve real-time update of latent parameters estimation.

Since POST uses a Bayesian model, it naturally provides uncertainty quantification for all

latent parameters.

1.1.4 Side Information

Side information is also known as auxiliary information. It is defined as “data that are

neither from the input space nor from the output space of the function, but include use-

ful information for learning it” [12]. In POSTsi, side information is data that does not

belong to target tensor but is relevant to at least one mode of target tensor. Here is a

concrete example. The MovieLens dataset [7] contains a three-mode (user, movie, week)

target tensor describing “whether x user rated y movie in z week”. Dataset also contains

additional binary and categorical features describing the user’s gender, occupation, age,

movie’s genre, etc. These extra features are considered as side information to POSTsi and

can be exploited to improve the quality of tensor decomposition.

1.1.5 Preliminaries

In this paper, we use notations similar to ones in Probabilistic Streaming Tensor Decompo-

sition [6]. Scalars (0-mode tensor) are denoted by lowercase or upper case letters (e.g., v or

K). Vectors (1-mode tensor) are denoted by boldface lowercase (e.g., i). Matrices (2-modes

tensor) are denoted by boldface uppercase (e.g., U). Higher-order tensors (3-modes tensor

or higher) are denoted by calligraphic letters (e.g., Y). The value of a tensor entry, of which
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is an N-mode tensor, located at index i = [i1, · · · , 1N ] is denoted as yi

We assume that each tensor entry yi is coupled with an external feature vector ji =

[j1, · · · , jF]i. These external feature vector is from the side information which we choose

from the raw dataset. Index of a tensor entry, value of the tensor entry and the external

feature ji coupled to the tensor entry compose one data unit in a streaming batch. Then,

we can denote one data unit as {[i, ji, yi]} and denote all {[i, ji, yi]} observed at time t as St.

Latest observed entries at time instance t are denoted as T = {[i, ji, yi]}i∈St . The value of

all the observed tensor entries before time t are denoted as Dt = {[i, ji, yi]}i∈S1,··· ,St−1 . All

observed entries are denoted as D = {[i, ji, yi]}i∈S1,··· ,St = T ∪ Dt
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1.2 POSTsi
In this section, we present the Probabilistic Streaming Tensor Decomposition with Side

Information algorithm (POSTsi). This extension enables the joint exploitation of side infor-

mation and preserves uncertainty quantification on the learned linear classifier. In other

words, POSTsi can 1.) utilize the side information which comes along with streaming

tensor data to improve the quality of tensor decomposition and 2.) provide the uncertainty

quantification of every latent factor and linear classifier.

Let Y ∈ RI1×I2×···×IN be a N-mode tensor. With CP Decomposition, each tensor entry yi

can be decompose into yi ≈ λT
i (u

1
i1
◦ · · · ◦ uK

iK
), a set of latent vectors and scalars. Then, a

few recent tensor analysis works discover that side information could improve the quality

of tensor decomposition. To exploit the potential of side information, we add a linear

classifier component into the CP Decomposition model. Such that linear classifier can

cooperation with side information. We call it CPDsi model and is defined as:

yi ≈ λT
i (u

1
i1
◦ · · · ◦ uK

iK
) + wTji

In this model, the location of tensor entry i, value of tensor entry yi and side informa-

tion ji are provided as input data. Ultimately we want to develop an algorithm to learn the

λi, uk
ik

and w.

Yet, we can only learn point estimation of λi, uk
ik

and w with this model. Providing

probabilistic distribution of the learned parameters are helpful in many real-world scenar-

ios. For example, it can provide uncertainty quantification on the prediction of missing

entries. So we further develop this model by converting it to a Bayesian model.

1.2.1 Bayesian CP Decomposition with Side Information model

To build the Bayesian version of the CP Decomposition with Side Information model,

we design a Bayesian generative model. Assume that we generate latent vectors from

a Gaussian prior p(U ) = ∏K
k=1 ∏dk

s=1N (uk
s |mk

s , v1I), the weight vector λ from a Multi-

variate Gaussian prior p(λ) = N (λ|µλ, v2I), and weight scalars from a Gaussian prior

p(W) = ∏F
f=1 ∏dF

s=1N (w f
s |µ

f
s , v3), where K denotes the number of modes the target tensor

has, F denotes the number of features available as side information, d f denotes the size of
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f -th mode, dF denotes the largest size of all side information features. Then, we define

the likelihood of each observed tensor entry yi given all the latent factors as a Probit

likelihood p(yi|U , λ, W) = Φ((2yi− 1)(λTti +wT
j j)). We embed multiplier v1, v2 to control

the variance/covariance of priors. The smaller the value of v1, v2, the more concentrate the

samplings will be.

1.2.2 Probabilistic Streaming Tensor Decomposition with Side Information
algorithm

Given the Bayesian CP Decomposition with Side Information model, we propose the Prob-

abilistic Streaming Tensor Decomposition with Side Information (POSTsi) algorithm.

We use the streaming variational inference framework [4] and Mean Field Variational

Inference [24] to achieve real-time update of posterior approximation upon each observed

streaming batch St. In the Bayesian model described hereinabove, we used a Probit likeli-

hood for processing binary tensor entry value. To derive a closed-form update, we want it

to contain exponential family distribution. So we expand the likelihood by introducing a

random variable zi which has Gaussian distribution:

p(yi|U , λ, W) =
∫

zi

p(yi, zi|U , λ, W)dzi

=
∫

zi

p(zi|U , λ, W, D)p(yi|zi,U , λ, W, D)dzi

=
∫

zi

N (zi|λTti + wT
j j), 1)p(yi|zi,U , λ, W, D)dzi

=
∫

zi

N (zi|λTti + wT
j j), 1)1((2yi − 1) ≥ 0)dzi

= Φ((2yi − 1)(λTti + wT
j j))

Now we have a likelihood function in a new form that contains an exponential family

distribution.

Then, we derive the joint probability of all latent parameters,
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p(U , λ, W, D) = p(D|U , λ, W) · p(U ) · p(λ) · p(W)

=
∫

zi

N (zi|λTti + wT
j j), 1)1((2yi − 1) ≥ 0)dzi

· (
K

∏
k=1

dk

∏
s=1
N (uk

s |mk
s , v1I)) · N (λ|µλ, v2I)

·
F

∏
f=1

dF

∏
s=1
N (w f

s |µ
f
s , v3)

On the other hand, we can further derive an update equation for posterior

p(U , λ, W|D) =
p(D|U , λ, W)p(U , λ, W)

p(D)

∝
p(D|U , λ, W)p(U , λ, W)

p(Dt)

= p(T|U , λ, W)
p(Dt|U , λ, W)p(U )p(λ)p(W)

p(Dt)

= p(T|U , λ, W)p(U , λ, W|Dt)

This equation means that we can recursively update the optimized latent parameters

upon each observed streaming batch T. However, our goal is to find the optimized pos-

terior of each latent parameters. This recursive update only provides us with one joint

posterior. Therefore, with Mean-Field Approximation, we approximate the joint posterior

with a factorized posterior

q(U , λ, W) = (
K

∏
k=1

dk

∏
s=1
N q(uk

s)) · q(λ) ·
F

∏
f=1

dF

∏
s=1

q(w f
s )

Now, we have a framework for POSTsi. To summarize, we first initialize factorized

posterior q(U , λ, W) with defined priors p(U ), p(λ), p(W). Next, upon each latest stream-

ing batch T, use q(U , λ, W) as p(U , λ, W|Dt) to calculate the optimized factorized poste-

riors q∗(U ), q∗(λ), q∗(W), or say q∗(U , λ, W). Then assign the result q∗(U , λ, W) back to

p(U , λ, W|Dt, T) and wait for next batch of streaming data.

With this framework, we use variational inference [24] to calculate the optimized pos-

terior q∗(U , λ, W) given latest streaming batch T and the previous posterior p(U , λ, W|Dt).

Kullback Leibler (KL) divergence converts this inference problem into an optimization

problem. The optimization problem is to find the posterior of each type of factorized latent
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parameters, q∗(uk
s), q∗(λ), q∗(w f

s ), which together minimize the KL divergence between

p(U , λ, W|D) and p(T|U , λ, W)q(U , λ, W), i.e.,

q∗ = argmin
q∈Q

KL(q(U , λ, W)||p(T|U , λ, W)q(U , λ, W))

However, the KL divergence

KL(q(U , λ, W)||p(T|U , λ, W)q(U , λ, W))

= −(Eq∗ [log
p({yi}i∈St |U , λ,W)q(U , λ,W)

q∗(U , λ,W)
]) + logp({yi}i∈St)

= −(L) + log p(D)

contains the model evidence p(D) which in often time is very hard to compute. Luckily,

we can convert the problem of minimizing the KL Divergence to a problem of maximizing

the corresponding Evidence Lower Bound L [24]. Because the model evidence p(D) is a

constant, maximizing KL(q(U , λ, W)||p(T|U , λ, W)q(U , λ, W)) is equivalent to minimizing

L. The following is the expansion of Evidence Lower Bound L:

L = Eq∗ [log
p({yi, zi}i∈St |U , λ, W)q(U , λ, W)

q∗(U , λ, W)q(z)
]

To solve the minimization problem, we first take the functional derivative of L w.r.t.

each factorized posterior q∗(uk
s), q∗(λ), q∗(w f

s ). Then set the derivative to zero and solve

the equation. We obtain closed-form update functions for the posterior of each latent

parameter,

q∗(uk
ik
) = N (uk

ik
|µk

ik

∗
, Σk

ik

∗
) (1.1)

q∗(λ) = N (λ|µλ
∗, Σ∗λ) (1.2)

q∗(w f
j f
) = N (w f

j f
|µ f

j f

∗
, Σ

f
j f

∗
) (1.3)

and the closed-form calculation of q(zi) as a truncated Gaussian distribution,

q(zi) ∝ 1((2yi − 1)zi ≥ 0)N (zi| < λTti + wT
i j >, 1)

The following is the supplement of the close-form update we get by solving the mini-

mization problem:
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Σk∗
ik
= [Σk

ik

−1
+ ∑
{g,j}∈St,gk=ik

〈(tg,¬k ◦ λ)(tg,¬k ◦ λ)T〉]−1

µk∗
ik
= Σk∗

ik
[Σk

ik

−1
µ + ∑

{g,j}∈St,gk=ik

(〈zi〉 − wT
j j)〈tg,¬k ◦ λ〉]

Σ∗λ = [Σ−1
λ + ∑

{i,j}∈St

〈titT
i 〉]−1

µ∗λ = Σ∗λ[Σ
−1
λ µλ + ∑

{i,j}∈St

[〈ti〉(〈zi〉 − 〈wj〉Tj)]]

Σ f ∗
j f

= [Σ f
j f

−1
+ ∑
{i,g}∈St,g f =j f

〈g f gT
f 〉]−1

µ
f ∗
j f

= Σ f ∗
j f
[Σ f

j f

−1
µ

f
j f

+ ∑
{i,g}∈St,g f =j f

g f (〈zi〉 − 〈λ〉T〈ti〉 − 〈wg¬ f 〉Tg¬ f )]

〈zi〉 = 〈λ〉T〈ti〉+ 〈wj〉Tj +
(2yi − 1)φ(〈λ〉T〈ti〉+ 〈wj〉Tj)

Φ((2yi − 1)(〈λ〉T〈ti〉+ 〈wj〉Tj))

ti = u1
i1
◦ · · · ◦ uK

iK

tj,¬k = u1
j1
◦ · · · ◦ uk−1

jk−1
◦ uk+1

jk+1
◦ · · · ◦ uK

jK

〈wj¬ f 〉 = [〈wj1〉, · · · , 〈wj f−1〉, 〈wj f+1〉, · · · , 〈wjF〉]

〈t¬k ◦ λ〉 = µ1
j1

∗ ◦ · · · ◦ µk−1
jk−1

∗ ◦ µk+1
jk+1

∗ ◦ · · · ◦ µK
jK

∗ ◦ µ∗λ

〈(t¬k ◦ λ)(t¬k ◦ λ)T〉 = 〈u1
j1

u1
j1

T〉 ◦ · · · ◦ 〈uk−1
jk−1

uk−1
jk−1

T〉

◦ 〈uk+1
jk+1

uk+1
jk+1

T〉 ◦ · · · ◦ 〈uK
jK

uK
jK

T〉 ◦ 〈λλT〉

〈ul
su

l
s
T〉 = Σl

s
∗
+ µl

s
∗
µl

s
∗T

〈λλT〉 = Σλ
∗ + µλ

∗µλ
∗T

〈titT
i 〉 = 〈u1

j1
u1

j1

T〉 ◦ · · · ◦ 〈uK
jK

uK
jK

T〉

〈j f jT
f 〉 = j2

f

1.2.3 Computational Cost

Assume we do not perform any parallelization. Also assume that matrix inversion, mul-

tiplication, division cost O(n3),O(1),O(1) correspondingly. Then, the time complexity to

optimize all factorized posteriors, including {q∗(uk
ik
)}{i,j}∈St,k∈[1,··· ,K], q∗(λ), q∗(w f

j f
){i,j}∈St, f∈[1,··· ,F],
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q∗(zi){i,j}∈St at time instance t is O(|St|KR3 + |St|KR2) + O(|St|KR3 + |St|K(F + KR)) +

O(R3) +O(R3 + |St|F) +O(|St|F) +O(|St|F) +O(|St|F) = O(|St|(KR3 + KF + KR)). On

the other hand, the space complexity necessary to perform POSTsi is O((∑K
k=1 dkR2) +

(∑K
f=1 dF + |St|K)), which includes the space for all latent parameters information and

streaming data with side information Dt.
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1.3 Related Work
In the past two decades, several tensor decomposition works have been proposed

under the setting that a target tensor expands along one dimension, typically the time

mode. For example, [21,22] proposed the Incremental Tensor Analysis (ITA), which is con-

sidered as pioneer works in the Dynamic Tensor Decomposition topic [16,27]. More recent,

tensor decomposition under the setting that a target tensor can expands simultaneously

along multiple dimensions (multi-aspect streaming) emerged. The Multi-aspect Stream-

ing Tensor (MAST) algorithm proposed in [20] is a pioneer work on this more advance

streaming setting. It utilizes existing latent factors of observed target tensor to estimate the

latent factors of expanded target tensor. The Probabilistic Streaming Tensor Decomposition

(POST) algorithm [6] uses a Bayesian approach to solve the multi-aspect streaming tensor

decomposition problem, which enables quantification measurement on latent parameters

and the prediction of latent factors. And because POST is built on element-wise CP Decom-

position model, it can process arbitrary order streaming data, which is even more flexible

than the Multi-aspect Streaming and might enable more applications. One the other hand,

the Side Information infused Incremental Tensor Analysis (SIITA) [16] is proposed more

recently. It is a new framework that developed under the multi-aspect streaming setting

and incorporated side information to improve the prediction accuracy of missing tensor

entries.
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1.4 Experiments
In this section, we conduct experiments to evaluate the effectiveness of proposed POSTsi

algorithm on recovering missing-tensor-entries. Specifically, we aim to answer the follow-

ing questions:

• How does POSTsi’s prediction accuracy compare with POST and TNCP under arbitrary-

order streaming setting?

• How does POSTsi’s prediction accuracy compare with state-of-the-art algorithms

under Multi-aspect Streaming [16, 20] settings?

All training and testing were run with MATLAB 2019R on Intel i7-4790 (3.6GHz), GeForce

GTX 970, 32GB memory, Linux.

1.4.1 Data

Here we introduce the four real-world datasets used in our experiments.

Click-Through Rate Prediction1 is a Kaggle contest dataset sponsored by Avazu Inc. It

is structured as a target tensor 7(banner pos)× 2075(site id)× 2309(app id)× 4581(device model)

where each tensor entry coupled with an anonymized categorical vector [7(C1)× 606(C14)×

8(C15) × 9(C16) × 162(C17) × 4(C18) × 41(C19) × 161(C20) × 35(C21)]. Tensor entry

value indicates whether an advertisement with given properties was clicked or not. Notice

that the side information is already anonymized and coupled with target tensor, it is

unclear which modes did the side information coupled on. So we are not able to struc-

ture a complete tensor with side information coupled. Thus we used this dataset in the

arbitrary-order streaming setting which does not need a complete tensor coupled with

side information.

YELP [16]2 is structured as a target tensor 1000(user)× 992(business)× 93(year-month)

coupled with a side information matrix 992(businesses) × 56(cities) on business mode.

Tensor entry value indicates whether a user rated a business in a given time or not. This

1https://www.kaggle.com/c/avazu-ctr-prediction/data

2https://github.com/madhavcsa/SIITA/blob/master/datasets



18

dataset is used in the multi-aspect streaming setting. The initial size is 200 × 200 × 93.

Then we added 40 new users and 40 new businesses in each time step until maxed out.

Retail [5]3 is an online transaction dataset. It is structured as a target tensor 4070(product)×

38(country)× 54(week) coupled with one side information matrix on each mode. So we

have three side information matrices in total: 1.) 4070(product) × 99(product quantity)

represents the total quantity of each distinct product. 2.) 38(country)× 14(country quantity)

represents the total quantity of products sold to each country. 3.) 54(week)× 19(week quantity)

represents the total quantity of products sold in each week.

MovieLens [7]is a movie recommendation dataset which is downsampled to simulate

the MovieLens dataset used in [6]. To create this dataset, we identified the 400 most active

users and the 400 most rated businesses in the first 31 weeks out of the origin MovieLens-

1M dataset [7]4. Then structure a target tensor 400(user) × 400(movie) × 31(week) cou-

pled with a side information tensor 400(user) × 2(gender) × 7(age) × 21(occupation) ×

170(country)× 49(state) on user mode. Tensor entry value indicates whether a user rated

a movie in a given time or not. This dataset is used in the multi-aspect streaming setting.

The initial size is 50× 50× 31. Then we add 10 new users and 10 new movies in each time

step.

1.4.2 Baseline Methods

Here we introduce the four state-of-the-art baseline algorithms used in our experiments.

POST [6] is POSTsi without the ability of processing side information, in terms of func-

tionality. It uses Streaming Variational Inference to solve a probabilistic CP decomposition

model of target tensor.

SIITA [16] is an multi-aspect streaming tensor extension of the inductive framework

from the matrix completion with side information [11,15,19]. To the best of our knowledge,

SIITA is the only dynamic tensor completion algorithm that incorporates side information

to improve accuracy performance.

TNCP [14] is a state-of-the-art static tensor decomposition algorithm. It optimizes a

3https://archive.ics.uci.edu/ml/datasets/online+retail

4https://grouplens.org/datasets/movielens/
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factor matrix trace norm problem with the ADMM algorithm.

MAST [20], as its name would suggest, is a tensor completion algorithm built for Multi-

aspect Streaming Tensor setting.

For the arbitrary-order streaming experiment, only POST and POSTsi are compared

because other baselines TNCP, MAST, SIITA are not capable of processing this type of

streaming data.

1.4.3 Experimental Setup and Metric

To evaluate the effectiveness of POSTsi and baseline algorithms, we followed a commonly

used approach [6, 16, 20] to generate training and test datasets. We first decided a fixed

missing percentage of whole target tensor, and randomly marked this many tensor entries

as missing. Then we used the remaining tensor and corresponding side information as

training data, and used the missing tensor entries as testing data for performance evalu-

ation. To further investigate the impact of sparsity, we tested various tensor missing per-

centage {50%, 80%, 90%} in Multi-aspect Streaming setting. Similarly, we tested various

rank {3, 5, 8, 10} in both streaming settings to investigate the impact of rank.

Because all the tasks are binary classification, we used the Area Under Curve (AUC)

based evaluation metric in all testing. Specifically, in arbitrary-order streaming setting,

for each predefined rank, we ran involved algorithms on five random training/test split to

predict the missing tensor entries and reported the AUCs from missed tensor entries/ground

truth. In Multi-aspect Streaming setting, we followed the widely used routine [6, 16, 20]

for this setting. We first did the train/test split and decide an initial tensor size, e.g.

{200 × 200 × 93} in YELP, to do a warm-start for all involved algorithms. Then upon

each time step, we trained the algorithms with newly observed incremental data, e.g. 40

new users and 40 new businesses in YELP, and evaluated the average of AUCs on all

incremental data up to current time step. The AUC evaluation approach we used here is

called the running-average Area Under Curve (RA-AUC) [6, 20].

General parameter settings: POSTsi, POST, TNCP and MAST are CP-based algorithms.

We initialized each element of each latent vector u by randomly sampling from the stan-

dard uniform distribution unif(0, 1). Furthermore, because POSTsi and POST are Bayesian
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CP-based algorithm, we also set the covariance of each u to be an identity matrix. Note

that in the Multi-aspect Streaming setting, this initialization was done before the warm-up

phase. On the other side, because SIITA is a Tucker-based algorithm, it cannot use the

CP-based initialization. The original paper [16] suggests to randomly initialize the Tucker-

based latent parameters U and G. We used their implementation5 to initialize U ,G by

randomly sampling from uniform distribution.

For POSTsi, we initialized each weight scalar w f
s to a standard normal distribution

N (0, 1) and λ to a Multivariate normal distribution N (0, I). Unless specified in the ex-

periment section, we followed [6], [16], [20], [14] to set the optimal parameters for POST,

SIITA, MAST and TNCP, respectively.

1.4.4 Evaluation on arbitrary-order streaming

After laying out the general settings of our experiments, including what the baseline algo-

rithms are, how we create train-test data, and how we train and evaluate the algorithms;

what the general parameter settings are, we now list the detail of each experiment, includ-

ing customized parameter setting and experiment results.

In the arbitrary-order streaming setting, we ran POSTsi, POST and TNCP on our Click-

Through Rate Prediction dataset. MAST and SIITA, as Multi-aspect Streaming algorithms,

theoretically do not support arbitrary-order streaming, so we skipped them in this exper-

iment. The available TNCP implementation6 requires a complete tensor to run. In this

experiment, reconstruct a complete tensor requires over 100GB of memory, so we skip

TNCP too. Here we set maxiter = 500 for all involved algorithms; tol = 50 for POST and

POSTsi; tol = for TNCP.

The 5-trial AUC results are shown in Fig. 1.4. Both POSTsi and POST have stable

performance, while POSTsi consistently outperforms POST by about 1%.

5https://github.com/madhavcsa/SIITA/blob/master/proposed/run_mast_si.m\#L90

6https://github.com/yishuaidu/POST/blob/f7ee2fd3fe21b8046f852dfb9f54bb8dac8ff802/code/

MovieLen/NNCP_code/NNCP.m\#L1
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1.4.5 Evaluation on Multi-aspect Streaming

Here we test a various types of side information relations: 1.) One side information matrix

coupled target tensor on one mode 2.) One side information tensor coupled target tensor

on one mode 2.) Multiple side information matrices coupled target tensor on multiple

modes

Coupled Side Information Matrix On Single Mode: In this experiment, we tested

POSTsi, POST, MAST and TNCP on YELP dataset. We skipped SIITA in this one because,

based on their available SIITA implementation7, we were not able to finish SIITA within

a reasonable time given its optimal parameter setting. YELP, among all datasets, contains

the largest target tensor. We set maxiter = 800 for all invovled algorithms; tol = 10−1 for

POST and POSTsi; tol = 10−3 for MAST; tol = 10−2 for TNCP.

The result of each (missing percentage, rank) combination is shown in 1.5. Each subfig-

ure shows the RA-AUC of all involved algorithms against each incremental time instance.

Coupled Side Information Tensor On Single Mode: In this experiment, we tested all

algorithms on Retail dataset. We set maxiter = 800 for all involved algorithms; tol = 10−2

for POST and POSTsi; tol = 10−3 for MAST and TNCP. For SIITA, we set rank = (r, r, r),

K = 1.5 ∗ 104, γ = 1e− 5, alpha step = 1, where r is picked from {3, 5, 8, 10} the various

ranks we want to test.

The result of each (missing percentage, rank) combination is shown in 1.6. Each subfig-

ure shows the RA-AUC of all involved algorithms against each incremental time instance.

Coupled Side Information Matrix On Multiple Mode: In this experiment, we tested

all algorithms on MovieLens dataset. We set maxiter = 800 for all involved algorithms;

tol = 10−2 for POST and POSTsi; tol = 10−3 for MAST and TNCP. For SIITA, we set rank

= (r, r, r), K = 1.5 ∗ 104, γ = 8e− 5, alpha step = 1.06.

The result of each (missing percentage, rank) combination is shown in 1.7. Each subfig-

ure shows the RA-AUC of all involved algorithms against each incremental time instance.

In all cases, POSTsi’s performance is similar to POST in the beginning but surpasses

POST very quickly. POSTsi and POST, comparing with other algorithms, have outstand-

7https://github.com/madhavcsa/SIITA
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ing and stable performance since the very beginning. On Retail and MovieLens, SIITA

is sensitive to the change of missing percentage and rank; Though TNCP outperforms

POSTsi occasionally, it is sensitive to the change of rank; MAST’s performance generally

has a positive correlation with rank and amount of available information, and is worse

than POSTsi mots of the time.
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Figure 1.4: Click-Through Rate Prediction Dataset
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24

1 2 3 4 5 6 7 8 9 10

Time Instant

80%

82%

84%

86%

88%

90%

R
A

-A
U

C

Retail (50% Missing, R = 3)

POST

POSTsi

TNCP

MAST

SIITA

(a)

1 2 3 4 5 6 7 8 9 10

Time Instant

70%

75%

80%

85%

90%

95%

R
A

-A
U

C

Retail (50% Missing, R = 5)

(b)

1 2 3 4 5 6 7 8 9 10

Time Instant

60%

70%

80%

90%

R
A

-A
U

C

Retail (50% Missing, R = 8)

(c)

1 2 3 4 5 6 7 8 9 10

Time Instant

50%

60%

70%

80%

90%

R
A

-A
U

C

Retail (50% Missing, R = 10)

(d)

1 2 3 4 5 6 7 8 9 10

Time Instant

65%

70%

75%

80%

85%

90%

R
A

-A
U

C

Retail (80% Missing, R = 3)

(e)

1 2 3 4 5 6 7 8 9 10

Time Instant

60%

70%

80%

90%

R
A

-A
U

C

Retail (80% Missing, R = 5)

(f)

1 2 3 4 5 6 7 8 9 10

Time Instant

60%

70%

80%

90%

R
A

-A
U

C

Retail (80% Missing, R = 8)

(g)

1 2 3 4 5 6 7 8 9 10

Time Instant

50%

60%

70%

80%

90%

R
A

-A
U

C

Retail (80% Missing, R = 10)

(h)

1 2 3 4 5 6 7 8 9 10

Time Instant

50%

60%

70%

80%

90%

R
A

-A
U

C

Retail (90% Missing, R = 3)

(i)

1 2 3 4 5 6 7 8 9 10

Time Instant

50%

60%

70%

80%

90%

R
A

-A
U

C

Retail (90% Missing, R = 5)

(j)

1 2 3 4 5 6 7 8 9 10

Time Instant

50%

60%

70%

80%

90%

R
A

-A
U

C

Retail (90% Missing, R = 8)

(k)

1 2 3 4 5 6 7 8 9 10

Time Instant

50%

60%

70%

80%

90%

R
A

-A
U

C

Retail (90% Missing, R = 10)

(l)

Figure 1.6: Retail
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Figure 1.7: MovieLens
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1.5 Conclusion
We have developed POSTsi, a streaming probabilistic tensor decomposition algorithm.

Assume we have a tensor that simultaneously grows in multiple dimensions. Also, assume

the tensor coupled with side information. The POSTsi can process the tensor entries stream

in arbitrary order, provide uncertainty quantification on the result of decomposition and

recovered tensor entry, and exploit the side information to enhance the quality of the result

of decomposition. The experiments on real-world datasets show the encouraging potential

of exploiting side information in streaming tensor decomposition algorithms. In future

work, we can explore the possible applications of the decomposed tensor, which contains

uncertainty information; we might also explore the possibility of automatically choosing

the best tensor rank for POSTsi.
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