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Abstract

Researchers in the field of connectomics are working to reconstruct a map of neu-
ral connections in the brain, in order to understand at a fundamental level how the brain
processes information. Constructing this wiring diagram is done by tracing neurons
through high resolution image stacks acquired with fluorescence microscopy imaging
techniques. While a large number of automatic tracing algorithms have been pro-
posed, these frequently rely on local features in the data and fail on noisy data or
ambiguous cases, requiring time consuming manual correction. As a result, manual
and semi-automatic tracing methods remain the state-of-the-art for creating accurate
neuron reconstructions. We propose a new semi-automatic method which uses topo-
logical features to guide users in tracing neurons and integrate this method within a
virtual reality (VR) framework previously used for manual tracing. Through evalua-
tion with experts we find that our topologically guided approach is able to accurately
trace neurons and improves trace time compared to both manual tracing in VR and
existing semi-automatic tracing methods. Furthermore, users reported the topology
guided tool to be less fatiguing, and more helpful when resolving noisy or low resolu-
tion regions.
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ABSTRACT

Researchers in the field of connectomics are working to reconstruct a map of neural

connections in the brain, in order to understand at a fundamental level how the brain pro-

cesses information. Constructing this wiring diagram is done by tracing neurons through

high resolution image stacks acquired with fluorescence microscopy imaging techniques.

While a large number of automatic tracing algorithms have been proposed, these fre-

quently rely on local features in the data and fail on noisy data or ambiguous cases,

requiring time consuming manual correction. As a result, manual and semi-automatic

tracing methods remain the state-of-the-art for creating accurate neuron reconstructions.

We propose a new semi-automatic method which uses topological features to guide users

in tracing neurons and integrate this method within a virtual reality (VR) framework

previously used for manual tracing. Through evaluation with experts we find that our

topologically guided approach is able to accurately trace neurons and improves trace time

compared to both manual tracing in VR and existing semi-automatic tracing methods. Fur-

thermore, users reported the topology guided tool to be less fatiguing, and more helpful

when resolving noisy or low resolution regions.
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INTRODUCTION

A central goal within the field of neuroscience is to understand how the dense inter-

connected neural circuits in the brain communicate and process information, and how this

processing relates to behavior. The field of connectomics was founded to understand the

fundamental wiring map of the brain, to comprehend these neural circuits at a mechanistic

level. Through analyzing neuron structure and connectivity, neuroanatomists can gain a

deeper understanding of fundamental brain functions, leading to new insights about brain

diseases and potential treatments.

However, obtaining a comprehensive wiring diagram for even relatively small and

simple mammalian brains, such as that of a mouse, is a massive undertaking [5, 9, 44, 54].

Projects focusing on species with larger brains more similar to humans, such as non-

human primates (NHP) are even more challenging. Although recent advancements in

high-resolution tissue labeling [36], optical tissue clearing [11, 42, 58] and imaging [44, 54]

have made it possible to image NHP brains at large scales and high-resolutions, the tech-

nology for extracting the imaged neuron morphologies has struggled to keep up.

Current efforts to improve the speed of neuron morphology extraction have largely

focused on fully automatic techniques. Automatic techniques take a stack of images and

attempt to extract the imaged neuron structures, without user input. The DIADEM (DIgital

reconstructions of Axonal and DEndritic Morphology) Challenge [21] was proposed in

2009 to motivate improvement of these techniques. The ultimate goal of this community

effort was to increase the speed that neurons could be traced by 20×. However, at the end

of the challenge no algorithm had achieved this goal due to the laborious post-processing

required to correct errors [35]. Peng et al. [48] reported that this post-processing step can

take longer than a manual tracing. Although additional efforts to improve automatic re-

construction are ongoing [49], in practice the bulk of neuron tracing is done manually [39]

or with a semi-automatic method.

Manually tracing neurons is a difficult and time consuming process. Tracing is typically

done on a desktop, using standard software such as NeuroLucida [38] or Vaa3D [50]. The

data is displayed as a 2D set of images or 3D volume, and the user clicks along the neuron
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to draw a line. The lack of ability to directly make selections in 3D or navigate the data in

3D introduces additional usability challenges on top of the already difficult task of tracing.

To address this issue, Usher et al. [56] proposed a Virtual Reality (VR) based tool for

manual neuron tracing and found that neuroscientists using the tool performed similar

quality traces in less time.

Semi-automatic neuron tracing methods have been proposed to provide a compelling

alternative to both manual and fully automatic neuron tracing [37,43,47,50]. When using a

semi-automatic method the user provides coarse guidance to the algorithm, e.g., through

a set of start and end points or clicks. The algorithm then extracts the neuron structure

between these guide points. Semi-automatic methods can significantly reduce the amount

of time taken to trace a neuron by integrating the neuroscientist’s guidance into the algo-

rithm, reducing the amount of post-processing manual cleanup required.

In this work we propose a new semi-automatic neuron tracing framework which builds

off topological analysis methods [22]. Our approach uses the Morse-Smale Complex to pre-

compute a superset of potential paths that follow neurons. Having access to this superset

of traces allows neuroscientists to quickly trace along the neuron of interest by selecting

subsets of these paths. We implement our semi-automatic method within a virtual reality

neuron tracing system to provide an intuitive environment to work with the 3D data. In a

pilot study with neuroanatomists we find that our approach provides significant benefits,

retaining trace accuracy while improving speed and reducing fatigue. Our contributions

are:

• A novel topologically guided framework for real-time semi-automatic neuron trac-

ing;

• An intuitive interaction design for using this framework in VR; and

• A comparison of our approach against widely used semi-automatic methods as well

as previous manual tracing methods.



TECHNICAL BACKGROUND

Computational topology is a field that combines mathematics and computer science

to determine topological features through the efficient use of algorithms. In recent years

computational topology has played an important role in visualizing and analyzing sci-

entific data, especially for large and complex data sets. Topology allows for the analysis

of how features in data are connected, rather than focusing on raw spatial relationships

in data. Important structural features in scientific data sets can be extracted to enhance

visualization and analysis and remove extraneous noise.

2.1 Morse Functions
Morse Theory, a fundamental building block of differential topology, is useful for an-

alyzing the topological features in context of real valued smooth functions. While every

derivative of a function must exist in order for it to be smooth, for the purpose of Morse

theory studied in a computational topology context, only the first and second derivatives

of the function must be defined [16].

Let M be a smooth d-manifold. Consider a real valued smooth mapping f : M → R.

This mapping induces a linear mapping between the tangent spaces TM and TR, which

is the derivative D f . That is to say, the derivatives of f are real valued linear maps on

the tangent spaces. A point x that exists on manifold M is a critical point if the first order

partial derivatives of points in a neighborhood of x are equal to zero. In other words, for x

to be critical, the gradient of f at x must be zero. To further classify the critical points, the

second order derivatives are used. A critical point is non-degenerate if the Hessian of f , the

matrix of its second derivatives is non singular, or the determinant of the Hessian matrix

is not equal to zero. The function f : M → R is a Morse function if all of the critical points

on M are non-degenerate, and if the critical points have distinct function values.

Morse Lemma: Let p be a non-degenerate critical point for f . Then there is a local co-

ordinate system (x1x2, ..., xn) in a neighborhood U of p with xn(p) = 0 and such that the

identity
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f (x) = f (p)− x2
1 − ...− x2

q + x2
q+1 + ... + x2

n (2.1)

holds throughout U [41].

The Morse Lemma provides a few key properties for Morse functions. First of all, it

allows for the distinct classification of non degenerate critical points, which is the number

of minus signs in the quadratic polynomial, and is independent by the index of the coor-

dinates. This index also corresponds to the number of negative eigenvalues in the Hessian

matrix. For a 2-dimensional manifold, the critical points can be classified based on these

indices. A minimum has index 0, a saddle has index 1, and a maximum has index 2. The

critical points in a 3 dimensional manifold are characterized by four possible index values

instead of three: a minimum of index 0, a 1-saddle of index 1, a 2-saddle of index 2, and a

maximum of index 3. In addition to lending itself to a classification of critical points, the

Morse Lemma also indicates that non-degenerate critical points are isolated, and therefore

there are a finite number of critical points on a compact manifold.

2.2 The Morse-Smale Complex
Given a Morse function f , the manifold is decomposed by following the gradient. To

do this, we define an integral line that follows this gradient field starting at a critical point

and ending at another, the critical points being the origin and destination respectively. We

can now decompose f into manifolds of its critical points and classify these manifolds as

either an descending manifold and a ascending manifold. The descending manifold of a critical

point u is the point itself together with all regular points whose integral lines end at u.

The ascending manifold of a critical point u is the point itself together with all regular points

whose integral lines originate at u [16]. The Morse function f is a Morse-Smale function

Figure 2.1: The MS complex tracks the topology of level sets in a sweep from ∞ to −∞ (left to right). New level set
components are created at maxima (red dots), and either join or split at saddles (green dots). The 1-skeleton of the MS
complex is orthogonal to the level sets at all points. At each point in the sequence, we show the portion of the 1-skeleton
above the level set. Note that the saddle-maximum lines (red) trace ridge-like structures.
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if the ascending and descending manifolds of f intersect transversely. By extension, the

Morse-Smale complex (MS complex) is the intersection of the ascending and descending

manifolds of f .

The 0- and 1-dimensional cells of the intersection of ascending and descending mani-

folds form the 1-skeleton of the Morse-Smale complex (Fig. 2.1). Practically, the MS complex

1-skeleton is formed by nodes and arcs. Nodes are the critical points of the MS complex, and

arcs are the integral lines connecting critical points which differ in index by one. For a

complete visual overview of the components of the MS complex we refer to Gyulassy et

al. [29].

2.2.1 Persistence and Cancellation

When using computational topology to analyze scientific data, noise within the data

inherently adds topological features to the data that often distract from the desired features

that are being extracted. The question arises: is there a way to remove topological features

produced by noise in the data without changing the core topology being computed?

One solution, that has been shown to be particularly effective, is the notion of persis-

tent homology. Persistence, at a high level, is a measure of how important a particular

topological feature is in relation to the complete topology of the data. It is defined by the

absolute difference in function value between a critical point pair. Topological features

that are more likely to be attributed to noise have a low persistence, while features that

are more likely to be important in the data set have a high persistence. Edelsbrunner et al.

introduced the idea of topological persistence, and extended it as a method for simplifying

a MS complex [18].

The MS complex can be simplified through the cancellation of critical point pairs under

certain restrictions. A cancellation is valid if the indices of the critical points differ by one.

This means that in two dimensions only saddle-extremum pair cancellations are allowed,

and in 3D there arises the possibility of cancelling a 1-saddle and 2-saddle. As the Morse

function f changes locally with every cancellation, the gradient vector field is smoothed,

and therefore f is smoothed as well. Another feature that arises through the cancellation

of critical points is the ability to create a structural hierarchy based on persistence. If

cancellations are performed in order of persistence, then it is possible to have multiple
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representations of the MS complex based on topological resolution.

2.2.2 Algorithmic Approaches

Because perfectly smooth functions are rarely found in scientific data, in order to com-

pute the MS complex for non smooth functions it is necessary to either find a non smooth

function that approximates a smooth function, or find a series of non smooth functions that

approach the limit of a smooth function [16]. Two ways of accomplishing this have been

studied, using either piecewise linear (PL) functions or utilizing discrete Morse theory.

An algorithm for computing the MS complex was first proposed by Edelsbrunner et.

al. [15] The method was designed for computing the MS complex along a two dimensional

PL function. Because PL functions are not smooth, and because line integrals along a

PL function are ill-defined, the proposed algorithm set forward a number of steps to

reach the final approximation of the MS complex. First, a quasi MS complex is computed

on a given triangulation of the PL function through the creation of monotonic curves

following a sequence of steepest edges in the triangulation that never cross and always

have infinitesimal distance from each other. At each critical point, these curves are either

duplicated or extended in order to reduce the number of arcs per saddle. Next, the quasi

MS complex is transformed into the MS complex through a sequence of transformations

that follow the path of steepest ascent along the edges of the triangulation more closely.

Edelsbrunner et al. also introduced the concept of persistence to create a hierarchy of MS

complexes through cancellation of minimum-saddle and saddle-maximum critical point

pairs.

This method for computing the MS complex of a triangulated 2D PL field was im-

proved upon by Bremer et al. [7]. Rather than using the edges of the triangulation of

the data, their approach constructed the MS complex by following the steepest lines of

ascent or descent rather than the triangulation. In addition, a new hierarchy was proposed

for simplifying the MS complex. In addition to having ordered cancellations based on

persistence, this hierarchy is built on the segmentation of the MS complex into ’diamonds,’

each having a one maximum and a one minimum as vertices. This allows independent

cancellations of critical point pairs, which in turn allows cancellations for view dependent

simplifications of the MS complex. Finally, the authors also introduced a new way of
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reconstructing the geometry of the MS complex after a cancellation has been made by

faithfully following the topology and steepest gradient within a certain error bound.

An algorithm for the computation of the MS complex for three dimensional data was

again first proposed by Edelsbrunner et al. [17]. The algorithm was essentially an extension

of the 2D quasi MS complex algorithm proposed in [15]. While the authors proposed the

idea of a MS complex hierarchy, they did not provide an implementation. Because of the

addition of a third type of critical point, there is no longer just one type of cancellation,

e.i. saddle-extremum. In three dimensions, there must also be a method for saddle-saddle

cancellation. The first comprehensive method for computing a hierarchy for the MS com-

plex on a 3D manifold was proposed by Gyulassy et al. [24]. Unlike saddle-extremum

cancellations, where the cancellation of a critical point pair can be thought as a merging

of three critical points as one extremum, saddle-saddle cancellations may create new cells

in the MS complex. In order to preserve the separation of the two extrema separated by

the saddle-saddle pair, it is necessary to fill in the space with new cells by re-routing the

arcs extending from the extrema. Note that this operation still smooths the function, and a

future cancellation of one of the new saddle-extremum pairs will remove all of the newly

created cells.

All of the approximations of the MS complex using PL functions are limited in their

practical applications for large data sets because of the complexity of each algorithm. This

was overcome by Gyulassy et al. [23], in which an algorithm for computing the MS com-

plex based on a discretized domain, rather than using PL functions as an approximation

for a smooth function, was proposed. This algorithm is based on discrete Morse theory,

which encompasses the ideas presented in smooth Morse theory but for a discrete setting.

This algorithm was significantly more efficient than the previous fastest algorithm [31],

although it sacrificed some speed for better memory usage.

While all of the algorithms mentioned above, with the exception of [17], have been

implemented to visualize the MS complex for scalar data, they still only produce an ap-

proximation of the MS complex in the form described in [15]. The geometric inaccuracies

produced by these algorithms are generally the result of the greedy local assignment of

gradient vectors that tend to accumulate large global errors. To more accurately capture

the correct geometry for the MS complex Gyulassy et al. proposed two algorithms that
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follow the gradient field of the data more faithfully. The first algorithm is a randomized

algorithm that follows the framework of [23], but replaces the local optimization with

carefully designed random selection. An important feature of this algorithm is that the

standard deviation of the mean converges to 0 as mesh resolution increases. The second

algorithm is a deterministic variant of the first, and integrates the probabilities of the first

to directly extract near optimal geometry and connectivity [25].

The advances made by [23] and [25] have enabled the opportunity for accurate compu-

tation of the MS complex using normal desktop computational power, and thus enables the

viability for using the MS complex as a framework for our semi automatic tracing method.

We will use a parallel computation variant of [23] to compute the MS complex for neuron

data sets.

2.3 Applications of the MS Complex
The components of the MSC have been used in practice to extract features of interest in

a range of application domains. For example, these components define features in the

electron density field in the quantum theory of atoms in molecules: maxima occur at

atom locations; 2-saddle-maximum arcs are covalent bonds; and descending 3-manifolds

are atomic basins [4]. In other domains, specially selected subsets of the MSC can be

used to extract features: descending 2-manifolds represent bubbles in mixing fluids [34];

2-saddle-maximum arcs can be used to extract the core of a porous solid [27] or the filamen-

tary structure of galaxies [55]; descending 2- and 1-manifolds identify lithium diffusion

pathways [28]; and ascending 2-manifolds define burning regions in combustion simula-

tions [8]. In each application, the features of interest were computed by identifying the

appropriate topological abstraction, and then selecting a subset of the topological features

which correspond to the quantities under study.

While our work is inspired by these approaches, the images generated from fluores-

cence microscopy pose a massive challenge for automated analysis. In addition to high-

intensity noise, images of neurons have uneven staining, shadows, alignment artifacts, and

other unexplained gaps in the signal which require manual intervention. This poses a chal-

lenge to topological methods which report what is in the scalar function itself, faithfully

representing artifacts and noise along with the desired signal.



RELATED WORK

The neuron morphology reconstruction workflow has a number of components, one

of the most time consuming being the physical tracing of neurons. To provide context

for neuron tracing we describe the typical reconstruction workflow in practice (Sect. 3.1).

We then review current automatic and semi-automatic neuron tracing methods and their

limitations (Sect. 3.2).

3.1 Neuron Tracing Workflow
Modern methods for acquiring neuron microscopy data use viral vectors carrying genes

for fluorescent proteins [36]. When injected into the tissue these vectors induce fluores-

cence within the structures to be imaged, labelling them at high resolution. The brain

tissue is then rendered optically transparent using a clearing technique such as CLAR-

ITY [11], PACT [58], or SWITCH [42], and imaged in blocks with a confocal or two-photon

microscope. These methods allow for imaging large blocks of tissue or entire brains, and

can produce terabytes of high-resolution image stacks.

To reconstruct the labeled neurons from these image stacks, neuroanatomists use com-

mercial tools like NeuroLucida [38], or open-source tools like Vaa3D [50]. These tools

display the collected image stacks as either a set of 2D slices or as a 3D volume, where

the user can trace manually by drawing lines along the structures of interest, or guide a

semi-automatic algorithm along the structures to extract them. Once the desired neurons

have been reconstructed they can be used in brain function simulations or overlaid on top

of functional maps of the brain, to understand the connectivity between brain regions.

Although fully automatic algorithms are also supported by standard tools, they are less

widely used in practice due to issues with image or labeling quality and ambiguity. It is

common for a lab to employ several trained undergraduates responsible for the bulk of

the neuron tracing work, with additional tracing done by graduate students and research

scientists.
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3.2 Automatic and Semi-Automatic Neuron Tracing
Today, neuron tracing remains a crucial bottleneck in the field of connectomics [39]. A

large body of work has been devoted to developing new methods to accelerate this process,

either through fully automatic algorithms or semi-automatic user-guided algorithms.

A significant ongoing effort in the community has sought to develop and evaluate fully

automatic algorithms for neuron reconstruction. Two community efforts, the DIADEM

Challenge [21] and the ongoing BigNeuron Project [46, 49], seek to provide a test bed for

evaluating new reconstruction algorithms. Results from the DIADEM challenge suggest

that the current state of the art automatic tracing algorithms are not suitable for widespread

use in practice. This is attributed to the significant manual post-processing effort required

to correct the output from the algorithm [48]. For a full review of recent advances in

automatic neuron reconstruction we refer to the survey by Acciai et al. [3].

Due to the challenges in using fully automatic methods in practice, semi-automatic

algorithms have found a growing interest in the community. When using a semi-automatic

reconstruction algorithm, the user guides the algorithm along the neuron by tracing roughly

along the neuron or clicking to mark start, branch, and end points to connect. By integrat-

ing more guidance from the neuroscientist into the algorithm the amount of additional

post-processing cleanup required can be reduced, while still decreasing the time spent

tracing compared to a fully manual trace. For example, Vaa3D’s semi-automatic approach

uses a pixel based shortest path algorithm [47] to connect the start point and one or more

markers placed by the user. NeuroLucida 360’s [37] semi-automatic tracing works simi-

larly, where the user traces along the feature to guide the algorithm to important features.

Neuromantic [43] uses a 3D extension of Meijering et al.’s 2D steerable Gaussian filter

algorithm [40] for semi-automatic reconstruction.

However, these methods all work in the context of traditional desktop software, taking

2D inputs from a mouse and providing 2D imagery through a monitor. For example,

Vaa3D’s Virtual Finger [51] casts rays through the volume to find the potentially selected

objects as the user draws a line with the mouse. Thus users may need to perform multiple

interactions and camera rotations to find and select the desired feature, to work around

occluders or ambiguous hits in the ray casting process.
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3.3 Immersive Environments
There has been a growing interest in using virtual reality or immersive environments

for neuron tracing and visualization in general to overcome the limitations of traditional

2D desktop interaction and visualization modalities. Existing tools such as Vaa3D have an-

nounced early VR system support, and other new VR-specific tools have been released [1,

56]. In contrast to desktop software, VR and immersive systems allow users to visualize

and interact with their data directly in 3D, providing a more intuitive interface and allow-

ing for better understanding of 3D structures [19, 32, 33].

Usher et al. [56] proposed a virtual reality system for manual neuron tracing. In their

evaluation, they found that domain experts could perform similar quality traces to stan-

dard desktop software in less time, achieving a roughly 2× speedup. Moreover, they

found that experts reported the VR tool to be more intuitive and less fatiguing, with the

immersive visualization aiding their understanding of the data. However, their tool only

supports manual tracing and thus, while faster than working on a desktop, would still

require a significant amount of time to trace large data sets.

Immersive systems have also been proposed for visualization of wide-field microscopy

data, Boorboor et al. [6] proposed a data processing and feature extraction pipeline, the

output of which could be visualized in an immersive display wall visualization system

implemented with Unity. Sicat et al. [53] presented DXR, a Unity based toolkit for easily

developing immersive visualization applications. Fulmer et al. [20] presented a web-based

immersive neuron visualization system using Unity to explore online databases of neuron

data in a Hololens.



TOPOLOGY GUIDED NEURON TRACING

In this section, we describe in detail the topological framework developed as the basis

for semi-automatic neuron tracing, and the design considerations when integrating this

method into a virtual reality neuron tracing system.

4.1 Computing Ridge Graphs
In the images produced through the fluorescence microscopy imaging process described

in Sect. 3.1, high-intensity values correspond to the labeled soma, dendrites, and axons,

which form the structure of each neuron. When tracing these structures manually, the user

aims to produce a path which follows the center-line of these ridge-like structures. Our

approach in this work is to generate every possible ridge-like path first, turning the neuron

reconstruction task into a sub-selection task which can be performed quickly by users. This

is in sharp contrast to existing semi-automatic and automatic methods, which attempt to

mimic the manual extraction process by computing the single most-likely path for the user.

Our first task is to extract the set of all possible ridge lines from the scalar field. His-

torically, ridge lines have been defined with techniques relating to the alignment of the

principle directions of curvature and the gradient, Eberly et al. [14] provide an excellent

overview. However, locally defined ridge lines have major limitations for the task of acting

as an acceleration structure for neuron reconstruction. Height ridges do not necessarily

form an interconnected network, with segments ending where the local image no longer

looks like a ridge. Furthermore, pruning ridge lines by intensity further disconnects the

network, exacerbating the problem.

Instead, we use a topological approach that identifies ridge-like structures which are

close enough to true ridge lines, but easier to compute. Our use of the MS complex is

motivated by the observation that the ridge-like structures formed by the 1-skeleton of

the MS complex, composed of the arcs between 2-saddles and maxima, correspond to

the center lines of the vast majority of neurons in the data (Fig. 4.1). We then leverage

persistent homology (Sect. 2.2.1) to produce a simplified representation of the 1-skeleton

of the MS complex.
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Figure 4.1: From left to right: the full MS complex and its simplification at different persistence thresholds. Red lines
represent 2-saddle-maximum arcs and blue lines represent 1-saddle-minimum arcs. The ridge graph is composed of the red
arcs.

The subset of the 1-skeleton which includes just the maxima, 2-saddles, and the arcs

connecting them after simplification provides the desired set of ridge-like structures. We

refer to this subset as the ridge graph. Fig. 4.1 illustrates the full MS complex and its suc-

cessive coarsening through persistence simplification. The steps for computing the ridge

graph are: image preprocessing, MS complex computation and persistence simplification,

and ridge graph post-processing.

Image Preprocessing. A standard approach for working with microscopy data is to

apply an image preprocessing step [3], e.g., filtering or blurring, to remove large-amplitude

and high-frequency noise. As the MS complex traces gradient trajectories, noisy images

will lead to a poor geometric reconstruction of the gradient paths (Fig. 4.2a). We preprocess

the input images using a median filter with a radius of 2 and a subsequent Gaussian blur

with the same radius, which we found sufficient to remove noise without overblurring.

The ridge graph computed on these preprocessed images is sparser and has a higher-

quality geometric embedding, while retaining the major neuron structures of interest (Fig.

4.2b).

MS complex Computation and Simplification. We use a standard approach based

on discrete Morse theory to construct a discrete gradient field [26, 52], available in the

open-source MSCEER [22] library. The library computes a discrete representation of the

gradient using a parallel local filter, after which it traces integral paths in the gradient

field to construct the 1-skeleton of the MS complex. MSCEER also supports computing

the MS complex at a user-specified persistence simplification threshold [30], which we

use to simplify out extraneous features created by noise. Higher thresholds will produce
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(a) The original image data. (b) After filtering and blurring.
Figure 4.2: The image preprocessing step significantly reduces the effect of noise, allowing for the computation of a more
accurate ridge graph.

coarser complexes and sparser ridge graphs; however, selecting too high of a threshold

may remove faint but desirable features. We found that selecting a low threshold—as low

as 1% of the function range—is sufficient to remove a large portion of the noise while

keeping the majority of faint neurons (Fig. 4.3). Finally, the ridge graph is extracted as the

2-saddle-maximum arcs of the MSC.

Ridge Graph Post-Processing. The discrete gradient used in computing the MS com-

plex and ridge graph produces arcs whose segments are aligned to the underlying grid

axes. These arcs are smoothed using a simple averaging of neighbor positions to produce

more aesthetically pleasing results (Fig. 4.4).

4.2 Virtual Reality Neuron Tracing Framework
We integrate our Morse-Smale Complex guided (MSC-guided) method within an ex-

isting virtual reality framework for manual neuron tracing [56] for the HTC Vive. The VR
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(a) Persistence threshold near 0. (b) Persistence threshold at 1%.
Figure 4.3: Persistence simplification removes extraneous features due to noise while preserving faint but desirable ones.

Figure 4.4: The arcs and critical points from the original ridge graph in its discretized form (left), and after applying the
smoothing process (right).

framework supports intuitive interaction modes for navigating large volumetric data and

manual neuron tracing. Furthermore, the framework supports streaming and rendering

large data through the IDX format [45] and integrated caching system, combined with a

fast GLSL volume ray caster. We briefly summarize the framework’s existing functionality

for manual tracing and rendering, then discuss the design and integration of our MSC-

guided semi-automatic tracing tool (Sect. 4.3).

4.2.1 Tracing and Navigation

Tracing neurons and navigating the data are the two primary 3D interactions per-

formed when working on a neuron reconstruction, and as such must be quick and intuitive

to do. In the VR tool one of the Vive controllers is mapped to tracing, and the other mapped

to navigation. Both interactions are initiated by holding the trigger on the respective

controller and moving it, to either trace along a structure, or directly grab the volume

and translate it. To trace a neuron the user moves the controller through space following
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the structure, as a line is painted along it from the tip of the controller. Releasing the trigger

then ends the interaction, either stopping the trace or releasing the volume. The user can

also navigate by walking in the virtual space, with the navigation interaction used to either

stream new data from disk, or reduce the amount of walking needed.

Neurons are branching structures, and thus supporting an intuitive way to trace them

is crucial. The user can start a trace off any point on an existing line to begin a new branch

off the trace, or follow a branch back to its parent trace and reconnect it. If mistakes are

made during the tracing process a quick undo operation can be performed by pressing the

trackpad. Corrections can be made when reviewing a trace by selecting portions of the

trace with the controller, and deleting them by pressing the trackpad. The user can then

re-trace the removed section to correct it.

To assist the user in navigating and tracing the data, a small minimap is displayed to

the side of the data set. The minimap shows the bounds of the currently loaded region of

data within the entire data set, along with the user’s current traces to provide a summary

of previously visited regions of the data.

Finally, the tool uses haptic feedback to improve user’s perception of selecting branch

points or start and end points on existing traces. When hovering the controller near an

existing trace close enough that starting a new trace will be connected to it the controller

gives a “click” pulse, to give the sensation of having physically selected the object.

4.2.2 Rendering

As scientists may need to use the tool for hours on end, providing a comfortable ex-

perience is critical to avoid motion sickness or discomfort. To meet the high resolution

and frame rate demands of VR, the framework follows best practices from VR game de-

velopment [57]. All work on the main thread is tightly budgeted to fit within the 11 ms

frame time, with a 3 ms budget left for unexpected interference or costs. The renderer

only displays a 2563 subregion of the volume to keep the volume rendering cost within

this time budget, and limits the amount of data paged onto the GPU each frame. The

volume is stored in a sparse 3D texture, which is rendered by a standard GLSL volume ray

caster. To further reduce the number of pixels (and thus rays) which must be shaded each

frame the renderer uses the NV clip space w scaling extension to reduce the rendering
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resolution at the edges of the eye, approximating a foveated rendering approach.

4.3 Semi-Automatic Tracing in Virtual Reality

Figure 4.5: Semi-automatic tracing with the MS complex. Left to right: the MS complex live preview shows the hovered
segment of a neuron. The user selects this as a start point and moves to the end of the desired segment, viewing the
preview (orange). The user then accepts the previewed trace (white).

Our MSC-guided semi-automatic tracing tool allows the user to use the ridge graph to

assist in tracing neurons. In designing the tool, our primary focus is on ease of use for neu-

roscientists, who are unlikely to be familiar with the underlying topological framework.

Exposing the MS complex in a way that is intuitive to use for tracing in the VR environment

poses some challenges. Displaying the entire set of arcs computed in the ridge graph is

distracting and overwhelming (Fig. 4.3a), and may lead to following arcs in the ridge graph

which do not correspond to neurons. Instead, we put the data and the neuroscientist’s

interpretation of it first, and only display the arcs on-demand as the user hovers the tracing

controller over regions of the data (Fig. 4.5). To show the on-demand display of the arcs

we implemented a unique querying system for the MS complex, discussed in Sect. 4.3.2.

A second issue can arise if the scalar field topology leads the MS complex to follow

some other path than the neuron being traced (Fig. 4.6a) or find a shorter path through

the ridge graph than is actually desired (Fig. 4.6b). To allow users to quickly work around

these cases in our tool, we support switching between the MSC-guided tool and manual

tracing. As both tools operate on the same neuron data structure they can be used inter-
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changeably as desired by the user. This removes the need to accept a bad trace and return

to correct it later, alleviating a common issue with existing semi-automatic and automatic

methods. Instead, manual intervention can be done immediately on the fly by switching

to the manual tracing tool when necessary.

(a) Features due to background noise. (b) Selecting an incorrect shorter path.
Figure 4.6: In some cases the scalar field topology can lead to incorrect selections made by the MSC-guided tool, due to
extraneous features created by background noise, or the tool finding a shorter path through the ridge graph than desired.
The live preview is used to view and catch these cases before selecting the trace.

4.3.1 Tracing

When using the MSC-guided tracing tool the arc in the ridge graph which is closest

to the controller is highlighted, giving a small live preview of the arcs in the underlying

complex. To begin an MSC-guided trace the user places the controller next to the arc they

want to start at and presses the trigger to select it. As they move the controller along the

neuron being traced, additional arcs are selected from the ridge graph and added to the

preview. To end the trace and add the displayed preview to the neuron tree they press

the trigger again at the desired end point (Fig. 4.5). By viewing the live preview, users

can check that the selected path accurately follows the desired neuron before selecting the

trace.

In contrast to tracing manually, where the trigger must be held for the duration of the

trace and each neuron segment individually and carefully traced, the two click interaction

of the MSC-guided tool provides a significant reduction in fatigue. When using the MSC-
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guided tool, the user simply picks a start point and navigates to the desired endpoint,

while checking that the preview follows the desired structure. If the preview begins to

drift due to the potential issues discussed above, the user can add the set of arcs before the

problematic section and continue a new MSC-guided trace or short manual trace off the

endpoint.

Capturing the branching structure of each neuron is critical to extracting the connec-

tivity of the neuron, which is used in subsequent analysis tasks. To trace the branches of

a neuron, the user can choose between starting a manual trace or an MSC-guided trace to

start from some point on the existing trace. When starting an MSC-guided branch, it is

possible that no arc exists in the graph to connect the new branch back to the parent tree.

In this case, we create a short arc to join the branch with the nearest point on the tree. The

branch can then be traced as before using the MSC-guided tool.

4.3.2 A Fast and Efficient Querying Framework

Prior work on semi-automatic neuron tracing is frequently limited by the time it takes

to compute the trace when following the user’s guidance. The computation can frequently

take tens of seconds to minutes, requiring the user to wait before selecting the next section

to trace. This wait time impacts productivity on a desktop and is exacerbated in VR,

where waiting for computation to complete while blocking the UI or other interactions

is unacceptable. To ensure our MSC-guided tracing tool is comfortable to use we impose

a hard requirement that it work in real-time with no noticeable frame rate drops. The

benefits of imposing this requirement are two-fold: avoiding dropped frames is critical to

providing a comfortable experience in VR, and the immediate feedback provided makes

the tool faster and easier to use.

We use a k-d tree to quickly select start and end points from the ridge graph. Each arc

in the MS complex is discretized into smaller line segments (Fig. 4.4 left), and we store the

start and end points that compose these segments in a k-d tree. To select a point in the ridge

graph, we query the k-d tree to find the point which is closest to the tracing controller. By

querying just the nearest point without any restriction on query radius, users can easily

pick start and end points in the ridge graph without having to click exactly on the desired

point in space, avoiding the need for precise interactions and thereby reducing fatigue.
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The MS complex ridge graph is a connected graph. The vertices are represented by

the MS complex 2-saddle and maxima nodes, and edges are represented by the 2-saddle-

maxima arcs of the MSC. To compute the preview trace or selection between a designated

start and end point in this graph we use Dijkstra’s shortest path algorithm [13] between

the vertices of the arcs that contain the designated start and end points. To allow for finer

grained previews and selections, we allow for starting and ending at points within arcs, to

select subsets of the arcs themselves.

It is worth noting that this selection framework could be implemented in a desktop en-

vironment, by either querying arc points projected to the screen in 2D, or performing a ray

cast into the scene to find the most likely 3D selection. While the topological framework

and querying method would remain the same, the user’s ability to interact with the data

would be impacted. Due to the limitations of performing selections on 3D structures in a

2D desktop environment, we chose to evaluate our method only in VR.



EVALUATION

To evaluate the effectiveness of our topology guided semi-automatic neuron tracing

method we study both the effectiveness of the underlying topological framework, and the

design of our semi-automatic tracing tool in VR. First, to demonstrate that the Morse-

Smale Complex provides an effective framework for neuron tracing we perform an of-

fline comparison against semi-automatic methods available in current desktop software

(Sect. 5.1). We then evaluate our MSC-guided tracing tool in virtual reality through a pilot

study with trained neuroanatomists and undergraduates, collecting extensive quantitative

(Sect. 5.2) and qualitative feedback (Sect. 5.3).

Data and Reference Traces. We evaluate our approach on the Neocortical Layer 1 Ax-

ons data set [12] made publicly available for the DIADEM challenge [10]. The data set

is a 1464 × 1033 × 76 volume made from six aligned subvolumes containing 34 axons

imaged from a mouse brain. The resolution of the data is ≈ 0.08µm/pixel in X and Y

and ≈ 1µm/pixel along Z. The data set includes a reference trace for each neuron, which

we use as one point of comparison in our evaluation. The reference traces were used

for comparison in the DIADEM challenge and produced manually using NeuroLucida.

Throughout the text we will refer to these traces as the “DIADEM traces.” To provide a

second point of comparison, we also compare against traces created manually by an expert

Figure 5.1: The DIADEM reference (blue) was made using standard desktop software, and consists of coarse line segments.
The VR reference (orange) consists of finer segments, and follows the neuron more closely.
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in VR during a previous study [56], referred to as the “VR reference traces.” As neuron

traces are produced by hand by experts, there is an inherent subjectivity in each trace, and

no real “ground truth” available to compare against. During a review of the provided

DIADEM traces we observed that they would often drift from the neuron, following a

more linear path than the underlying data, while the VR reference traces followed the

structure more closely (Fig. 5.1).

Comparison Metrics. We use two metrics to evaluate the quality of traces produced

using our MSC-guided tracing tool. The DIADEM metric [21] accounts for the length and

connectivity of a trace, scoring how well a trace captures the branch points and branching

structure of a neuron on a scale of 0 (dissimilar) to 1 (identical). The score is penalized for

missing branches, excess branches, incorrectly placed branches, and differences in branch

length. DIADEM scores correlate well with expert judgement and provide a reasonable

proxy for accuracy; however, it does not account for geometric differences.

To score the geometric quality of a trace we use the Fréchet distance. The Fréchet

distance is a similarity measure for comparing curves which takes into account the spatial

distance between the curves. The distance measured is the minimum maximal distance

between points on the two curves. As the Fréchet distance operates on curves, not trees,

we compare two neurons by matching the arcs making up the trees based on their start and

end points. Arcs are matched based on a search radius to find those starting and stopping

at the same location, in which case they are considered to be tracing the same feature.

5.1 Offline Comparison
In the offline evaluation we focus on assessing the quality of the neurons computed

by each method and their computation time, with the aim of evaluating how well the

ridge graph can serve as a framework for tracing neurons. We perform our comparison

against Vaa3D’s semi-automatic neuron tracing method [47, 50]. Vaa3D is a widely used

open-source software suite for neuron reconstruction, and is the designated platform for

testing algorithms in the Big Neuron Project [46]. Vaa3D’s semi-automatic tracing works

similar to our MSC-guided tool: given a start and end point it will attempt to trace the

neuron between these two points.

We generate the guide points for each method to trace between by extracting the start,
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Reference Trace Vaa3D MSC-guided Improvement

DIADEM 0.45 ± 0.37 0.74 ± 0.26 1.64×
VR 0.53 ± 0.38 0.81 ± 0.22 1.53×

Table 5.1: DIADEM scores for traces extracted with Vaa3D and our MSC-guided method on the reference traces. We find
that the MSC-guided method computes better and more consistent traces on average.
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(b) Compared to the VR reference.

Figure 5.2: The Fréchet distances for traces extracted with Vaa3d’s semi-automatic method and our MSC-guided approach
on the reference traces. The MS complex provides better and more consistent quality traces compared to existing methods

branch, and end points from each neuron in the DIADEM and VR reference traces. Our

MSC-guided method works just between a single start and end point, thus we trace the

entire neuron by performing a depth first traversal to produce the individual start and end

points of each segment. This traversal gives a good approximation of how a user would

interact with a semi-automatic method, by clicking along the structure to mark key points

along the neuron and letting the algorithm extract the structure. Along with supporting

single start and end point extraction, Vaa3D can trace from a start point to connect to a set

of points, we use this mode in our evaluation.

When comparing trace quality, we find that those computed by the MSC-guided method

follow the neuron more accurately than those computed by Vaa3D’s semi-automatic method.

We compute the DIADEM scores of each method compared to the respective reference

trace used to create the guide points (Table 5.1). Our MSC-guided method captures the

branching structure of the neurons more accurately, corresponding to a 1.58× higher score

overall. This can be partly attributed to the MSC-guided method placing greater weight on

the user’s guidance, extracting the shortest path between the given end points as they are

clicked in order. In Vaa3D’s semi-automatic method, the landmarks serve more as hints

and the algorithm is not guaranteed to directly connect them in order.

When comparing the geometric accuracy of the methods, we find the MSC-guided
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method follows the desired neuron structure more closely than Vaa3D’s semi-automatic

method (Fig. 5.2). Across both reference traces Vaa3D’s semi-automatic method achieves

an average Fréchet distance of 28.5 voxels, while the MSC-guided method averages 16.3

voxels, providing a 1.75× improvement. We note that on the DIADEM reference traces

Vaa3D’s semi-automatic method failed to trace 9 of the 34 neurons.

Although the MSC-guided method achieves significant improvement in accuracy and

consistency, the absolute accuracy could be improved further. The average diameter of a

neuron in the data set is roughly 5–8 voxels, and thus a deviation beyond this corresponds

to a significant error which would require correction. When using the MS complex for

guidance in VR this issue is alleviated, as the user can perform corrections on the fly while

tracing.

Our MSC-guided approach is also able to provide much greater interactivity by signif-

icantly reducing the trace computation time. We found that on average Vaa3D took 28.64s

per-neuron, while our MSC-guided method took just 0.029s, achieving a speedup of 986×.

The MSC-guided method computes the ridge graph in a preprocess to provide the set of

candidate arcs which the user selects from at runtime, reducing the time they must wait

for the algorithm when using the tool. Moreover, the precomputation to build the ridge

graph is fast and scalable [22,26]. On a laptop with an i7–7700HQ CPU the image filtering

and blurring takes 26s in ImageJ, after which the MS complex is computed in 134s using

MSCEER [22].

5.2 Expert Evaluation
In our expert evaluation we focus on the usability of the tool by experts in practice

through a pilot study (IRB 00099920). We conduct our study with five users with varying

levels of experience from A. A.’s laboratory. Subjects 2 and 5 are senior neuroanatomists,

subjects 1 and 4 are undergraduate students with 2–3 years of experience tracing neurons

using NeuroLucida, and subject 3 is a novice with little prior experience. This range of

experience levels provides a representative sample of a typical connectomics lab, where

senior researchers train inexperienced undergraduates who are hired to do the bulk of the

neuron tracing work.

To compare our MSC-guided tracing method against a fully manual trace we have each
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User Manual Score MSC-guided Score Improvement

Compared to DIADEM Reference

1 0.53 ± 0.38 0.66 ± 0.35 1.25×
2 0.57 ± 0.36 0.60 ± 0.37 1.06×
3 0.39 ± 0.35 0.53 ± 0.37 1.35×
4 0.27 ± 0.32 0.46 ± 0.36 1.69×
5 0.35 ± 0.35 0.38 ± 0.36 1.10×

Compared to VR Reference

1 0.66 ± 0.32 0.57 ± 0.35 0.86×
2 0.66 ± 0.34 0.58 ± 0.40 0.88×
3 0.55 ± 0.55 0.52 ± 0.52 0.94×
4 0.29 ± 0.29 0.53 ± 0.53 1.81×
5 0.49 ± 0.49 0.46 ± 0.46 0.94×

Table 5.2: Average DIADEM scores and standard deviation compared to the DIADEM and VR reference traces. We find
users perform similar or slightly better quality traces when using the MSC-guided tool.

subject trace the set of neurons twice over two separate sessions, spaced at least five days

apart. The first two neurons are used for a short training session to introduce the MSC tool

and VR environment, and the remaining 32 for evaluation. For each neuron the start point

is marked in space and the user is instructed to trace the neuron to its perceived end points.

In each session half the neurons are traced manually and half using any combination of the

MSC-guided tool and manual tracing as desired by the user. In the second session the set

of neurons which are traced manually or with the MSC-guided tool is flipped. On average,

each session took an hour to an hour and a half.

We find that the quality of the traces produced when using fully manual tracing and our

MSC-guided semi-automatic tracing are similar (Table 5.2). When computing DIADEM

scores against the DIADEM reference traces we see a moderate improvement for some

users; however, the scores for each tool are within standard deviation of each other. The DI-

ADEM scores computed against the VR reference traces are similar, with a slight decrease

in score observed for most users. When comparing the difference in score achieved using

the MSC-guided tool against manual tracing for each neuron, we find that the majority of

traces are within acceptable error of each other, with traces slightly more likely to be better

when using the MSC-guided tool (Fig. 5.3). We find similar results when comparing the

Fréchet distance, and see no significant difference in accuracy when using the MSC-guided

tool (Fig. 5.4).

It is interesting to note that the average DIADEM score achieved by the MS complex in
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the offline comparison is higher than that achieved by any user in the evaluation. When

performing the offline comparison the algorithm is given the entire set of start, branch

and end points, and thus cannot miss a branch; however, the experts are only given the

start point and could miss branches, resulting in a lower DIADEM score. Compared to the

offline MS complex traces the experts achieve much lower Fréchet distances, indicating

that the portions of the neuron which are traced are done so with greater accuracy. When

using the MSC-guided tool experts can catch and correct errors in the extracted arcs to

produce a better trace, while the offline comparison cannot.

When comparing the time spent tracing with the manual tool and the MSC-guided

tool the results initially seem disappointing, with little speedup achieved when using the

MSC-guided tool on average (Table 5.3). However, if we compute the speedup achieved

using the MSC-guided tool separately in each session we find that three of the five sub-

jects achieve a significant speedup in the second session, but little to none in the first

(Table 5.4). This result indicates that the MSC-guided tool has a higher learning curve

than we initially anticipated. Users may feel less confident using the MSC-guided tool

during the first session, and spend more time second guessing it or tracing manually. We

collected additional qualitative feedback during the survey and discussions which support

this hypothesis (see Sect. 5.3).

It is also worth noting that the tracing time is inherently dependent on the expert’s
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Figure 5.3: The difference in score when using the MSC-guided method vs. manual tracing, across all users. The majority
of traces using the MSC-guided tool are similar to the manual traces, or slightly better.
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Figure 5.4: Fréchet distances for user manual and MSC-guided user traces. We find that users perform similar quality
traces using both tools.

judgement. For example, if in one session the user misses a large branching structure

and traces it in the next, the second session will take longer. When testing to determine

if speedup achieved using the MSC-guided tool correlates with lower DIADEM scores,

we do not find a correlation (Fig. 5.5, Pearson correlation coefficient 0.28). This indicates

that the speedup achieved using the MSC-guided tool is not due to performing incorrect,

shorter traces than when tracing manually.

5.3 Discussion
In this section we detail our users’ qualitative feedback regarding the design and us-

ability of the MSC-guided tracing tool, discussing both benefits and limitations. During

the study we collected feedback from the users through a survey completed after each
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User Manual (s) MSC-guided (s) Speedup

1 154.44 154.06 1.00×
2 271.83 222.35 1.22×
3 94.78 131.34 0.72×
4 134.67 108.73 1.24×
5 235.38 167.09 1.41×

Table 5.3: Average tracing times for manual tracing and our MSC-guided tool across all sessions.

session and open-ended discussions. The survey focused on the usability and usefulness

of the MSC-guided tool for tracing neurons, with questions rated on a 5-point Likert scale.

The open-ended discussion solicited general feedback on the design of the tool and general

comments or issues regarding using it in practice.

User Experience Overall feedback from users on the MSC-guided tool was positive.

In the survey all subjects reported preferring the MSC-guided tool over manual tracing,

finding it less fatiguing, although more difficult to use at first. Subject 4 mentioned feeling

more comfortable using the MSC tool, as it required paying less attention to closely tracing

each neuron. Users reported that the ability to quickly switch between the manual and

MSC-guided tools was valuable to pick the right tool for the task at hand. When resolving

User 1st Session Speedup 2nd Session Speedup

1 1.04× 0.91×
2 1.28× 1.79×
3 1.02× 0.85×
4 0.94× 2.29×
5 0.83× 2.98×

Table 5.4: A comparison of the speedup achieved using the MSC-guided tool compared to manual tracing in the first vs.
the second session. In the second session 3 of 5 users achieved significantly higher speedups than the first, indicating a
higher learning curve than was originally anticipated.
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Figure 5.5: We find no correlation between speedup when using the MSC-guided tool and lower DIADEM scores, indicating
that the speedup is not the result of performing faster, lower quality traces.
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complex crossings or tracing through regions where the MS complex did not follow the

desired path they would switch to the manual tool, and switch back to the MSC-guided

tool after finishing the section.

Users found the MSC-guided tool’s live trace preview useful to view the trace which

will be selected before actually selecting it. The preview enables users to catch regions

where the MS complex struggles and switch to the manual tool to trace the section, instead

of having to go back and validate each segment traced with the MSC-guided tool after the

fact. The preview helps users trace the data faster by significantly reducing the amount of

proof-editing required of the semi-automatic traces, as the editing task is integrated into

the semi-automatic tracing task itself. In contrast, existing semi-automatic methods do

not provide a live preview as the computation is often too slow to do so, and users must

instead accept and subsequently correct the trace created by the algorithm.

Manual vs. MSC-guided Tracing. When comparing the two tools, the majority of users

reported finding the MSC-guided tool more challenging to learn. A frequent comment

from users was that it took a few traces to become comfortable with the MSC-guided tool,

and to learn the cases where it would accurately trace the neuron and where it would fail.

After learning these cases they trusted the MSC-guided tool more, as they could predict

its behavior in various situations and either quickly mark start and end points or switch

to the manual tool where necessary. One subject commented that it was only in their final

traces of the second session where they felt they truly took advantage of the MSC-guided

tool to accelerate their tracing. Subject 3 reported preferring manual tracing after the first

session, though reversed this preference after the second session.

Users reported the tool to be especially useful when tracing long axons through large

portions of the volume. When using the MSC-guided tool they would let it follow the

neuron for them, and focus on navigating to the end point of the axon to finish the trace.

When tracing manually this task is more difficult, as users must typically swap between

tracing and navigating to create an accurate trace. During the manual portion of the second

session, many subjects lamented not being able to use the MSC-guided method to trace

these sections.

There are a number of regions in the data where a neuron may appear to end or fade

due to issues with the tissue labeling or imaging process. All subjects reported that the
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Figure 5.6: The accuracy differences between an MS complex trace (green) and the corresponding DIADEM (blue) and VR
(orange) reference traces. Our MSC-guided tool helps the user better follow the neuron center line to produce an accurate
trace.

MSC-guided tool was particularly helpful in resolving these portions of the data. One

of the senior neuroanatomists, subject 2, reported that using the MSC-guided tool helped

him analyze these cases more carefully. On one trace this led to him ultimately determining

that a neuron did not end where he initially thought it did. Subjects 4 and 5 made similar

comments, noting that the MSC-guided tool helped them make decisions at branch points

and potential termination points.

When evaluating the traces individually we found some instances where users failed

to correctly connect their traces, either when creating a branch or continuing off an existing

trace. Across all subjects, we found 24 manual traces and 15 MSC-guided traces with at

least one missed connection. These can occur when the user intends to start a branch but

does not quite select the trace to branch from, or stopped tracing to move the volume and

does not restart off the original trace, by slightly missing the end point when continuing

their trace. The latter case is less likely to occur when using the MSC-guided tool, as

users can use it to trace the neuron for them while they navigate the volume, as discussed

previously. Providing clearer feedback when branching or creating a disconnected trace

would be desirable to further reduce these missed connections.

Finally, during a visual inspection of the traces we found that in many cases the MSC-

guided trace followed the neuron more closely than the DIADEM and VR reference traces

(Fig. 5.6). The DIADEM trace clearly shows the limitations of tracing manually on the
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desktop, where users click and place points to construct straight line segments between

them. In VR both the manual and MSC-guided tools create a finer line which can follow

the structure more accurately, as the tools behave more similar to a paint brush. However,

when tracing manually in VR users can have difficulty tracing exactly along the center line

of the neuron. The MSC-guided tool alleviates this issue by automatically following the

ridgeline of the neuron for the user, requiring them to only provide a coarse set of inputs.



SUMMARY AND FUTURE WORK

We have presented a novel semi-automatic neuron tracing method based on the topo-

logical framework of the Morse-Smale Complex. We implemented our Morse-Smale Com-

plex guided tracing tool within an existing VR environment, and demonstrated that it

improves neuron tracing performance over manual tracing in VR and semi-automatic

methods on the desktop. When using our MSC-guided tracing tool, experts were able to

produce high-quality traces with less fatigue and in less time. By leveraging the fast online

computation time of our method, we are able to show a live preview of the trace to the

user, removing the need for extensive post-process proof-editing of the trace. Moreover,

the neuroanatomists’ qualitative feedback indicates that, although more work remains

to be done, our MSC-guided tool is a promising approach to accelerate neuron tracing,

especially in low resolution regions and when tracing long range connections.

Although the results of our pilot study are promising, we have also found areas for im-

provement. In our evaluation the domain scientists noted that the MSC tool was more dif-

ficult to learn than manual tracing, and in the evaluation we observed little or no speedup

when using the tool in the first session. This suggests the need for a more detailed training

process when first introducing users to the MSC tool, to help them more quickly learn

about its strengths and weaknesses. To make the tool more intuitive for first time users it

may be useful to provide a predictive live preview, which shows possible continuations of

the path being traced. During the evaluation, subject 2 expressed interest in being shown

multiple potential paths which could be chosen to connect the start and end points. A

better training process or clearer to use tool would allow new users to become effective

with the tool sooner, which is especially important when training new hires.

During the evaluation we also found that in multiple cases users would fail to connect

the trace correctly. In total we found this mistake was made in 15% of traces when tracing

manually and 9.4% of traces when using the MSC tool. Though the MSC tool does reduce

the frequency of this mistake by making it easier to navigate and trace simultaneously, this

issue could be further addressed by highlighting these disconnected regions and providing

clearer feedback to users when branching or continuing off an existing trace. Subject 1
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noted that it would be useful to be able to mark and return to branch points and other

areas, reducing the chance that users forget to return to a branch point created early on in

the trace.

Another potential avenue for improvement is to evaluate different methods for weight-

ing the ridge graph when computing the shortest path for a trace. For example, weighting

the ridge graph by both distance and the value of a critical point, with higher values

assigned a lower weight, could resolve cases similar to that in fig:msc-bad-shorter-path.

However, finding a good balance between weighting by distance and function value is

key to providing an accurate trace. One possibility is to show multiple options, based on

different weight balances in the graph, as suggested by subject 2. These weights could be

further adjusted on the fly, based on how often one weight ratio is chosen over another to

learn the best weights for the data set. Finally, these previews could be weighted by the

uncertainty in the ridge graph, if the topological framework is able to provide uncertainty

information along with the arcs. Computing uncertain topological structures is currently

an open and active field of research.

We are in the process of publicly releasing our MSC-guided tracing tool to make it

widely available to neuroscientists. Moreover, a public release of the tool will allow us

to explore application of our MSC-guided tracing tool to other tasks and data sets. In

addition, this work has been submitted as a report [2].
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