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Abstract

Leager programming, a portmanteau of “lazy” and “eager” or “limit” and “eager,” is an
evaluation strategy that mixes lazy evaluation and eager evaluation. This evaluation strategy
allows iterators to precompute the next value in a separate thread, storing the result in a
cache until it is needed by the caller. Leager programming often takes the form of an
iterator, which alone allows data to be prefetched, and when chained together can be used
to form concurrent pipelines. We found a dramatic reduction in latency on par with code
written with asynchronous callbacks, while making minimal modifications to the initial
sequential code.
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ABSTRACT

Leager programming, a portmanteau of “lazy” and “eager” or “limit” and “eager,” is

an evaluation strategy that mixes lazy evaluation and eager evaluation. This evaluation

strategy allows iterators to precompute the next value in a separate thread, storing the

result in a cache until it is needed by the caller. Leager programming often takes the form

of an iterator, which alone allows data to be prefetched, and when chained together can

be used to form concurrent pipelines. We found a dramatic reduction in latency on par

with code written with asynchronous callbacks, while making minimal modifications to the

initial sequential code.
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CHAPTER 1

INTRODUCTION

Many programming tasks have sequential implementations that are pleasant to read,

but fail to exploit the opportunities for better performance through the concurrency and

parallelism inherent to the task. For example, files can be fetched from a server by issuing

requests in a sequential loop, but looking ahead and prefetching the request in parallel

can speed up the download by hiding the latency. Similarly, a file processing task can be

expressed naturally by looping over a list of files with a sequence of steps that load one file,

apply a filter, and save the file back to disk — but streaming files through separate parallel

processes for those steps can improve performance using the CPU and I/O in parallel.

Programming language designers and implementers have long recognized the potential

for performance improvements by parallelizing otherwise sequential operations. Fully auto-

matic parallelization would be ideal [14], but automatic parallelization has so far succeeded

only for certain kinds of problems. Instead of fully automatic parallelization, programmers

can recast their problem using features such as asynchronous programming [24], futures [23],

and parallel for loops [28]. In those cases, the programmer must adopt a slightly different

mental model of the computation, but hopefully one that is not too far from the sequential

model.

This text presents another mental model for parallel programming with a particular

emphasis on staying close to sequential constructs. It focuses on exploiting the opportunities

for concurrency and parallelism inherent in the evaluation of expressions by exploring the

space in between two well known evaluation strategies: eager evaluation and lazy evaluation

— which I call leager programming.

Leager programming is about when: when an expression should be evaluated. In eager

evaluation, also called “greedy evaluation” or “strict evaluation,” the expression is evaluated

as soon as it is bound to a variable. This presents a problem, for example, when iterating
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over an expression that enumerates the natural numbers. In eager evaluation, the entire list

is evaluated before iteration begins, which would require infinite time and memory. In lazy

evaluation, also called “call-by-need,” the expression is evaluated only when it is actually

used by another expression. This allows, for example, iteration over an enumeration of the

natural numbers without requiring infinite space, and allows the caller to begin consuming

the natural numbers without having to wait an infinite amount of time (but enumerating

all elements in the iterator would still take an infinite amount of time).

Leager programming seeks to straddle the space in between these two evaluation strate-

gies. It can be thought of as lazy evaluation that eagerly precomputes the next value, or

another way to look at it is it limits the eagerness to only the next value ahead of the

consuming caller. For this reason, the term, “leager,” is a portmanteau of “lazy” and

“eager” or “limits” and “eager.”

The precomputation in leager programming takes place in a separate thread or threads,

concurrent to the consuming caller (or callers). Structured in this way, the thread or threads

tasked with producing the precomputed values can be thought of as the eager portion of

the leager iterator. Likewise, the thread or threads consuming the precomputed values can

be thought of as the lazy portion of the a leager iterator, and the degree to which the leager

iterator is lazy or eager can be precisely controlled through thread based synchronization

primitives such as locks and signals.

To demonstrate a proof of concept of this evaluation strategy and to ground the con-

cepts and terminology, leager programming was implemented in the Python programming

language, specifically CPython 3.6.4, as a library of higher order functions and classes

whose source code is given in Appendix A on pg. 45. This implementation encapsulates the

complexity of managing the thread overhead, and allows the programmer to convert lazy

Python generators and eager Python functions (mapped over an iterator) into a leager

iterator by passing them to one of the higher order functions or classes in the leager

programming library.



CHAPTER 2

BACKGROUND

Leager programming straddles the space between eager evaluation and lazy evaluation.

While some texts restrict the definition of eager and lazy to only refer to when the expres-

sions passed into functions are evaluated [12], this text uses a broader definition that can be

applied to all expressions, which is similar to how other texts within the Python community

apply the concept [13].

2.1 Eager evaluation vs lazy evaluation

Eager evaluation, also called “greedy evaluation” or “strict evaluation,” evaluates an

expression as soon as it is bound to a variable. Lazy evaluation, also called “call-by-need,”

defers the evaluation of an expression until when it is actually used by another expression.

A prototypical example that highlights the difference is to construct a function that does

not use its formal argument as shown in Listing 2.1.

1 f = lambda x: None

2 f(1/0)

Listing 2.1: A prototypical test used to determine whether the language is eager or lazy.

In languages that eagerly evaluate argument expressions, when the function is called with

the expression 1/0 as its argument, the expression is immediately evaluated, which results in

a divide by zero exception. On the other hand, in languages that lazily evaluates argument

expressions (such as in Haskell), no exception is raised; the expression is never evaluated

because the function never uses its formal argument. Because argument expressions are

eagerly evaluated in Python, Listing 2.1 results in a divide by zero exception.

Even though Python is an eager language, laziness can be introduced by wrapping the

expression in a lambda, also called thunking. While the lambda itself is eagerly evaluated,

the programmer can explicitly control when its contents, the original expression, is evaluated
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by calling the function — thus creating laziness as shown in Listing 2.2.

1 f = lambda x: None

2 f(lambda: 1/0)

Listing 2.2: Creating laziness in an eager language by thunking the expression.

2.2 Generators

In Python, generators can be viewed as another kind of explicit evaluation-control

construct, similar to thunks, where a generators is created eagerly but its body is evaluated

on demand (lazily). An example of these generators is given in Listing 2.3, which implements

an enumeration of the natural numbers.

1 # generator function

2 def natural_numbers():

3 i = 1

4 while True:

5 yield i

6 i += 1

7

8 # generator expression

9 nat_num = (i for i in natural_numbers())

Listing 2.3: An enumeration of the natural numbers expressed as a generator function
and as a generator expression.

To evaluate the body of a generator, both generator functions (after it has been applied)

and generator expressions are iterators, which means they can be used in a for loop or by

calling the Python built-in function next as shown in Listing 2.4.

1 for i in natural_numbers():

2 print(i)

3 if i >= 3:

4 break

5 # 1

6 # 2

7 # 3

8

9 next(nat_num) # 1

10 next(nat_num) # 2

11 next(nat_num) # 3

Listing 2.4: Extracting values from generator functions and generator expressions.
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2.3 The space in between eager evaluation and lazy
evaluation

In eager evaluation, expressions are evaluated whether they are needed or not, and values

that may not be needed are computed anyway, consuming both time and memory. This

can be disastrous, as expressions that represent, for example, an enumeration of the natural

numbers consume infinite time and memory if eagerly evaluated. On the other hand, lazy

evaluation does eliminate the waste from computing expressions whose values may not be

needed, but deferring the evaluation requires book keeping overhead in addition to losing

out on the opportunity of computing the value and having it already available when it is

needed.

The space in between eager evaluation and lazy evaluation exists in the time between

when an expression is bound to a variable and when it is needed. Leager programming

seeks to straddle this space. Similar to generators, leager programming lets the programmer

explicitly delay the evaluation, but evaluation is more eager than generators, allowing some

values to be computed before they are needed. This takes advantage of the opportunity

of having a value already available before it is needed, while also being able to express

sequences that have infinite size and limiting the waste of computing values that may not

be needed.



CHAPTER 3

RELATED WORK

Improving performance by optimizing when work should be done is not novel, and nu-

merous examples exist within computing and outside of it. While these examples implement

aspects of leager programming, the goal of this text is to distill these concepts into its own

library, independent of specific application, that expands on public libraries in the Python

Package Index (PyPI) [20].

3.1 The Toyota Production System

The initial inspiration for leager programming came from the Toyota Production System.

The Toyota Production System, also referred to as lean manufacturing, focuses on the

“absolute elimination of waste” [15]. It was a response to the manufacturing practices of

the early 20th century, which is often referred to as the “push” method of manufacturing

that shares many similarities with eager evaluation.

In push manufacturing, parts are produced in large batches with little regard for the

capacity at each stage of the manufacturing process, let alone whether the product will

be wanted by the consumer in the end. This created a situation where parts piled into

large warehouses, which cost factories valuable space and resulted a logistical nightmare of

maintaining massive inventories that in some cases never made it to the customer.

Replace push with eager, warehouse with memory, and process with program — and the

similarities between manufacturing parts and computing objects become clear. In response

to push manufacturing, the Toyota Production System seeks to approach zero inventory,

storing only enough raw materials for that day’s production and emphasizing a “pull”

system where only what is needed should be produced [15]. Leager programming is the

Toyota Production System applied to computing. It seeks to maintain a cache between

stages of computing only big enough for the expected demand for data. For this reason,

leager programming tips to the side of lazy evaluation where only what is needed should
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be computed (as opposed to trying compute as much as possible within the constraints of

time and memory).

3.2 Analogies in hardware and software

In digital logic design, a sequential circuit is comprised of latches that pass through a

block of combinational logic back into latches [5]. This can be viewed programmatically as

a block of memory feeding into a pure function back into a block of memory. Attach a clock

to the circuit, and the circuit starts looking like a generator function consuming an iterator.

Extend the sequential circuit into a pipeline and allow for prefetching [17], and how to apply

leager programming begins to become apparent. Imperatively, leager programming works

by layering a cache between function applications in the same way a sequential circuit layers

latches between blocks of combinational logic.

Unix pipes redirect the standard output from one program through a cache and into the

standard input of another program [27]. Graphics pipelines pass data through a series of

computations with memory shared in between stages [1]. Browsers can overcome the effects

of network latency by preloading web pages into caches [10]. Similar to how sequential

circuits layer latches between blocks of combinational logic, these specific applications across

different domains of computing all share a commonality: the layering of functionality and

memory that regulates when work is done — which I claim can be parameterized and

distilled into a library of its own.

3.3 Automatic parallelization and parallelism by annotation

While hardware already introduces concurrency and parallelism in machine code through

instruction level parallelism [17], another approach for introducing concurrency and paral-

lelism to larger programming constructs would be to use an automatic parallelization tool.

These tools often use either compile time or run-time techniques that analyze the source

code detecting dependencies and identifying sections of code that can be broken into tasks

and run concurrently or in parallel. Such techniques, however, have only succeeded for

certain kinds of problems. For this reason, most attention in recent years have been in

tools where the programmer annotates parallelizable sections of the program in addition to

providing other hints to help the automatic parallelization tool parallelize the program [14].
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One such tool is OpenMP, which uses parallelism by annotation as shown in Listing 3.1.

OpenMP implements multithreading through a fork-join model where starting with a master

thread, which is executed sequentially, OpenMP forks a number of slave threads that divide

a problem that can be run in parallel before rejoining the master thread [16]. This approach

is shared by leager programming, which likewise uses both parallelism by annotation and

worker threads forked from a caller thread.

1 int main()

2 {

3 const int SIZE = 1000;

4 int a[SIZE];

5

6 #pragma omp parallel for

7 for (int i = 0; i < SIZE; i++)

8 {

9 a[i] = i;

10 }

11

12 return 0;

13 }

Listing 3.1: Example of parallelism by annotation in OpenMP.

Where automatic parallelization tools such as OpenMP differ from leager programmming

is in its evaluation strategy. Automatic parallelization tools seek to introduce parallelism

into what would otherwise be sequential code, retaining the evaluation strategy of the

underlying code. Leager progrmaming on the other hand seeks to introduce a new evaluation

strategy that uses concurrency and parallelism.

3.4 Futures (programming construct)

Futures — also called promises, delays, deferred, and eventuals — are perhaps the

programming construct most similar to leager programming. In fact, applying the definition

by Prasad and others, “a future or promise can be thought of as a value that will eventually

become available” [18], leager programming may be considered a type of future. More

importantly, however, a future takes advantage of the time between when a value is needed,

and when it can be evaluated. For example, the expression passed as an argument to a

function is known (and can begin execution) at the start of a function’s execution, but may

not be used until much later in the function’s execution.
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Futures have a long history with unique challenges. Evolving from thunks (zero argument

functions constructed to delay the evaluation of an expression) in argument expressions [18],

futures were first implemented in the Multilisp language as an annotation [7]. One challenge

facing futures is scheduling when it should be evaluated. Quite often this is done by the

operating system, regulated only by limiting the number of futures that can be evaluated

at a time to a particular thread pool [23].

Scheduling futures is a difficult problem — one that has been explored since the original

paper on futures [2] to as recently as something Kostyukov faced while developing the

finagle library at Twitter [11]. The problem with futures isn’t in situations where the

future performs some operation, usually blocking, and then returns. A scheduler, however

simple, will still complete such tasks, even if done suboptimally. The problem is scheduling

futures that depend on other futures, such as in recursive functions.

Recursive functions, such as quick sort (as shown in an example in Multilisp [7]), have

an attractive property where the parallelism grows at each level of the recursion. This is a

double edged sword however, and the challenge is two fold. The first is if the implementation

does not restrict the number of futures active at any one time, the stack or heap could

overflow as the number of futures grows at each level of recursion. The second is if the

implementation does restrict the number of futures that can be active at any one time, the

program could deadlock as the futures already active depend on the values of additional

futures (that cannot be started due the restriction on the number of futures that can be

active at any one time) to unblock. This latter problem is highlighted in Listing 3.2.

1 from concurrent.futures import ThreadPoolExecutor

2 executor = ThreadPoolExecutor(max_workers=4)

3

4

5 def fib(n):

6 assert n >= 0, ’n cannot be less than zero’

7 if n < 2:

8 return n

9 fib_1 = executor.submit(fib, n-1)

10 fib_2 = executor.submit(fib, n-2)

11 return fib_1.result() + fib_2.result()

Listing 3.2: A recursively defined Fibonnaci function using futures. Deadlocks at
fib(5).

Kostyukov resolved this problem by prioritizing futures along a specific branch of a
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recursion tree [11]. This is analogous to resolving the recursion tree using depth first search

as opposed to bread first search (which can cause the stack or heap to overflow). However,

this scheduling technique, if applied too aggressively, causes any benefit arising from the

concurrency that futures provide to evaporate as the recursion tree would be resolved

sequentially. In contrast, leager programming side steps this problem by constraining

recursion to iteration, in which the restraints on concurrency (which may be understood as

a restraint on eagerness) can be better defined.

3.5 Python concurrent.futures

Perhaps the closest standard library to leager programming is the concurrent.futures

module in the Python standard library [23]. In fact, early versions of the leager programming

library were built using concurrent.futures. Similar to how leager programming precom-

putes the next value of an iterator in a separate thread, concurrent.futures execute

functions concurrently in a separate thread or process. Where the two differ is deciding

when such functions should be computed.

Python concurrent.futures leans towards eagerness, as soon as a thread or process

within its thread or process pool becomes available, the function is scheduled to be com-

puted. On the other hand, a lazy future doesn’t make sense. If a program waits until the

result of a function is needed, the caller would block as the function is computed, eliminating

whatever benefits concurrent.futures would have had over sequential code.

Leager programming is in fact a form of call-by-future, but it differs from Python

concurrent.futures by adding a small amount of intelligence in deciding when such

functions should be computed. It neither waits until when the result is needed to begin

computation, nor does it attempts to compute all the values. It is somewhere in between:

eagerly computing until its cache is full and then waiting until the caller consumes a value

before it begins computing again.

Another area where Python concurrent.futures differs from leager programming is

Python concurrent.futures has two main methods for scheduling work: submit, which

takes a function and its arguments; and map, which takes a function and an iterable.

While map in Python concurrent.futures works roughly the same way as lmap in leager

programming, submit takes only a single function and produces only a single value. As



11

discussed in Section 3.4 on pg. 5, for expressions that produce a single value, the degree

to which it is eager or lazy depends on the scheduler, and scheduling futures is a difficult

problem. For this reason, leager programming uses a higher order function, leager, which

takes a generator function that produces multiple values instead of a function that produces

a single value.

3.6 async and await

Concurrency is a core feature of leager programming, which for this reason shares

similarities with async and await found in many languages. First appearing in C# 5 in

2012 [3], async and await has spread to other languages such as JavaScript (ECMA-262) [6]

and Python 3.5 [24]. It is a recent revival of an old concept: cooperative multitasking (also

called coroutines). In contrast to futures, which achieves concurrency through preemptive

multitasking with each task assigned to a separate thread, async and await achieves

concurrency through cooperative multitasking by yielding control to an event loop within

a single thread. This allows concurrency without the cost of context switching between

threads.

async and await are implemented in the asyncio package in the Python Standard

Library [24], and allow tasks to yield control back to an event loop through the keyword

await for functions tagged with async. This is similar to how producer threads and

consumer threads in leager programming are scheduled by the operating system to allow for

concurrency. Where the two differ is leager programming uses its concurrency to eagerly

precompute values into a cache while asyncio lazily finds something else to do when it hits

a blocked awaitable task. For this reason, where concurrent.futures leans eager, asyncio

leans lazy, and leager programming seeks to be somewhere in between.

3.7 PyPI prefetch generator, async prefetch, and
pythonflow

Perhaps the closest library to leager programming is the prefetch generator package in

the Python Package Index (PyPI) [9] and the async prefetch recipe on Nikki Bowe’s blog

[4]. Both prefetch generator and async prefetch implement a decorator for generator

functions that uses a producer thread to populate a queue with precomputed values. The

leager programming library provides the same feature, but in a cleaner implementation that
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allows garbage collection if the caller leaves scope before the generator function terminates

in addition to more precise control over the number of precomputed values at any one time.

Where the leager programming library differs the most from prefetch generator and

async prefetch, however, is that in addition to using eagerness to precompute the values of

lazy generators, laziness is used to throttle the values produced by eager functions. This is

done through lmap and lmap unordered in the leager programming library where it applies

an eager Python function over an iterator.

Leager programming also expands on the prefetch use case in prefetch generator and

async prefetch to include chaining leager iterators together to form concurrent pipelines.

This pushes leager programming in the direction of data flow programming similar to the

pythonflow package in the Python Package Index (PyPI) [8] — although not to the extreme

where the programmer is required to define a directed acyclic graph of operations.



CHAPTER 4

METHODS

The leager programming library is comprised of the following higher order functions and

classes intended to convert lazy Python generators and eager Python functions (mapped

over an iterator) into leagerly evaluated iterators:

• leager and LeagerIterator

• lmap

• lmap unordered.

The source code for the python implementation of leager programming is given in

Appendix A on pg. 45. A helper library was developed to simplify the development of

decorator functions for the Python implementation of leager programming library. The

source code for this helper library is given in Appendix B on pg. 50.

4.1 Python decorators

For those who may be unfamiliar with Python decorators, this section is intended to

be a review. A Python decorator is pure syntactic sugar used to modify the behavior of a

function or class [26]. For example, Listing 4.1 is equivalent to Listing 4.2.

1 @decorator

2 def decorated():

3 pass

Listing 4.1: Python decorators.

1 def decorated():

2 pass

3

4 decorated = decorator(decorated)

Listing 4.2: Python decorators desugared.
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Decorators are defined as high order functions that receive the decorated function as

an argument, and composes a new object to be returned as the decorated function’s

replacement. For example, Listing 4.3 defines a decorator that modifies a function such

that it prints how long it runs every time it is called.

1 from time import time

2

3

4 def print_runtime(func):

5 def timed_func(*args, **kwargs):

6 start_time = time()

7 return_value = func(*args, **kwargs)

8 print(time() - start_time)

9 return return_value

10 return timed_func

Listing 4.3: Example of a decorator that modifies a function such that it prints how long
it runs every time it is called.

4.2 leager and LeagerIterator

Python generators are defined as functions with one or more yield statements, an

example is shown in Listing 4.4. It is lazily evaluated, beginning execution when a value

is needed in an iteration and pausing after a value has been yielded. Because Python

generators are defined as functions, to modify its behavior, leager was defined as a higher

order function intended to be used as a Python decorator.

1 def example_generator():

2 i = 1

3 while True:

4 yield i

5 i += 1

Listing 4.4: Example of a lazily evaluated Python generator.
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1 from leager import *

2

3

4 @leager

5 def example_generator():

6 i = 1

7 while True:

8 yield i

9 i += 1

Listing 4.5: Example of a lazily evaluated Python generator converted into a leagerly
evaluated Python generator.

leager receives the generator function as one of its arguments, and then composes a

leager version of the generator function that it then uses to replace the original generator

function. Thus, converting a lazy Python generator function into a leager Python generator

function as shown in Listing 4.5. The degree to which a leager generator is eager or lazy

can be precisely controlled by adjusting the cache size, which is passed as an optional first

argument to the leager decorator as shown in Listing 4.6.

1 @leager(5)

2 def example_generator():

3 i = 1

4 while True:

5 yield i

6 i += 1

Listing 4.6: Example of a leagerly evaluated generator with a larger cache.

Inside the composition, leager applies the generator function to acquire its iterator,

which it then uses to initialize LeagerIterator. LeagerIterator maintains the cache,

which takes the from of a queue, in addition to starting two daemon threads. The first is

the eager portion of the leager iterator, which precomputes values until the cache is full.

The second is a custom garbage collector.

If the caller leaves scope before the eager portion of the LeagerIterator finishes con-

suming the iterator as shown in Listing 4.7, thus releasing its reference, the LeagerIterator

will still have references in two other threads — thus preventing the object from being freed

by Python’s garbage collector. In order to rectify this memory leak, the custom garbage

collector regularly checks the number of references to the LeagerIterator. If the number

of references drops to the number of references in the daemon threads, the custom garbage
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collector signals for both daemon threads to terminate, thus freeing the references and

allowing the LeagerIterator to be freed by Python’s garbage collector.

1 def example_scope():

2 for i in example_generator():

3 print(i)

4 if i >= 3:

5 return # example_generator leaves scope, eager threads terminate

6

7 example_scope()

Listing 4.7: Example of a leager generator leaving scope and getting garbage collected.

The two daemon threads are implemented using the threading package in Python’s

standard library [21]. The producing eager thread and the consuming caller thread maintain

synchronization through Python Lock and Condition objects. A shared Lock maintains

the consistency of the cache, while Condition allows the producer and consumer to notify

one another when the cache has been mutated. The producer blocks when the cache is

full, and is notified by the consumer when it dequeues a value. Likewise, if the cache is

empty, the consumer blocks, and the producer notifies the consumer when a value becomes

available.

LeagerIterator contains a stop function that signals the producing eager thread to

terminate, thus reverting the behavior of a LeagerIterator back to being lazy as shown

in Listing 4.8.

1 leager_gen = example_generator()

2

3 for i in leager_gen: # leagerly evaluated

4 print(i)

5 if i >= 3:

6 leager_gen.stop() # stop eager threads, revert behavior back to lazy

7 break

8

9 for i in leager_gen: # lazily evaluated

10 print(i)

11 if i >= 6:

12 break

Listing 4.8: Reverting a leager generator back to being lazily evaluated.

While leager adds eagerness to inherently lazy generators to produce a leager iterator,

laziness can be added to inherently eager functions (applied over an iterator) to produce
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a leager iterator — which is the direction lmap and lmap unordered approaches leager

programming.

4.3 lmap

Similar to Python’s built-in map, which is lazily evaluated [25], and imap in the multi-

processing module of Python’s standard library, which is eagerly evaluated [22] — lmap

leagerly applies a function over an iterator as shown in Listing 4.9. Similar to leager, the

degree to which lmap is eager or lazy can be precisely controlled by adjusting the size of

the cache size, which is passed as an optional third argument.

1 from random import randint

2 from time import sleep

3 from leager import *

4

5

6 def square(i):

7 sleep(randint(0, 5))

8 return i * i

9

10 for sqr in lmap(square, range(20), 5):

11 print(sqr)

12 input(’Press [enter] to show the next perfect square.’)

Listing 4.9: Example use of lmap.

Unlike LeagerIterator, lmap does not use a single eager producer thread, but instead

spawns a thread for each function application. Each function application is given an index,

which is used to ensure that the order in which values are yielded matches that of the

iterator lmap is mapped over. Because each value is associated with an index, the cache

uses a dictionary instead of a queue. And because each function application takes place in

its own thread, a higher degree of concurrency can be achieved when compared to leager.

Synchronization is maintained through Lock and Condition objects, similar to Lea-

gerIterator. However, since there is no single producer thread to notify, the consumer

thread spawns producer threads as needed in order to maintain the cache.

4.4 lmap unordered

Similar to imap unordered in the multiprocessing module of Python’s standard li-

brary [22], which is eagerly evaluated — lmap unordered leagerly applies a function over
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an iterator. Similar to lmap, the degree to which lmap unordered is eager or lazy can be

precisely controlled by adjusting the size of the cache, which is passed as an optional third

argument as shown in Listing 4.10.

1 from random import randint

2 from time import sleep

3 from leager import *

4

5

6 def square(i):

7 sleep(randint(0, 5))

8 return i * i

9

10 for sqr in lmap_unordered(square, range(20), 5): # may come out of order

11 print(sqr)

12 input(’Press [enter] to show another perfect square.’)

Listing 4.10: Example use of lmap unordered.

Unlike lmap, order is not maintained. No function application is given an index, and

adds its value to the cache as soon as it becomes available. For this reason, lmap unordered

can be faster than lmap. Because order is not maintained, the cache uses a queue instead

of a dictionary similar to LeagerIterator.

Synchronization is maintained similar to lmap.



CHAPTER 5

RESULTS

A summary of the run times comparing the different programming styles for the examples

discussed in this chapter is given in Table 5.1.

Style Prefetch example1 Pipeline example2 CPU-bound example3

Regular Python 0.67 6.75 2.16
Leager programming 0.12 0.86 2.16
concurrent.futures 0.12 0.85 2.16

async and await 0.01 0.88 2.16
prefetch generator 0.12 5.63 2.16

pythonflow 0.67 6.76 2.16

Table 5.1: Run times in seconds comparing example programs written using different
styles.

1See Section 5.1 on pg. 20.

2See Section 5.2 on pg. 28.

3See Section 5.3 on pg. 36.
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5.1 Example: prefetching data

Leager programming can be used to prefetch data, which may dramatically improve

the performance of programs with blocking operations. An example program is shown in

Listing 5.1, which retrieves and prints archived articles on Wikipedia with random prime

ids. This program is then accelerated using leager programming to prefetch articles in

Listing 5.2, which results in a decrease in latency from 0.67 seconds to 0.12 seconds.

As shown in Listing 5.3, this decrease in latency is similarly observed when using

concurrent.futures to accelerate the program, taking 0.12 seconds. However, concur-

rent.futures requires a more extensive rewrite of the sequential code in Listing 5.1 when

compared to leager programming. Using async and await as shown in Listing 5.4 resulted

in the lowest latency of 0.01 seconds by avoiding thread overhead, but requires the entire

program to be rewritten using coroutines. As shown in Listing 5.5, prefetch generator

does not come with a map, but one can easily be created by composing map in Python with

background in prefetch generator. Using prefetch generator resulted in the same

latency of 0.12 seconds as leager programming. pythonflow is not a library aimed at

improving performance or creating concurrency. It instead focuses on introducing dataflow

programming to Python. For this reason, pythonflow, as shown in Listing 5.6 and with a

latency of 0.67, did not result in any improvement when compared to the regular python

for this example.
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1 from random import randint

2 from urllib.request import urlopen

3 from time import time

4

5 base_url = ’https://en.wikipedia.org/w/index.php?oldid=%s’

6

7

8 def is_prime(num):

9 for i in range(2, num):

10 if not num % i:

11 return False

12 return True

13

14

15 def random_prime():

16 while True:

17 num = randint(0, 1000000)

18 if is_prime(num):

19 yield num

20

21

22 def main():

23 start_time = time()

24 for req in map(urlopen, (base_url % oldid for oldid in random_prime())):

25 print(req.read())

26 print(’Execution time %s seconds’ % (time() - start_time))

27 input(’Press [enter] to show the next article.\n’)

28 start_time = time()

29

30

31 if __name__ == ’__main__’:

32 main()

Listing 5.1: Example program retrieving articles on Wikipedia.



22

1 from random import randint

2 from urllib.request import urlopen

3 from time import time

4 from leager import *

5

6 base_url = ’https://en.wikipedia.org/w/index.php?oldid=%s’

7

8

9 def is_prime(num):

10 for i in range(2, num):

11 if not num % i:

12 return False

13 return True

14

15

16 @leager

17 def random_prime():

18 while True:

19 num = randint(0, 1000000)

20 if is_prime(num):

21 yield num

22

23

24 def main():

25 start_time = time()

26 for req in lmap(urlopen, (base_url % oldid for oldid in random_prime())):

27 print(req.read())

28 print(’Execution time %s seconds’ % (time() - start_time))

29 input(’Press [enter] to show the next article.\n’)

30 start_time = time()

31

32

33 if __name__ == ’__main__’:

34 main()

Listing 5.2: Using leager programming to prefetch archived articles on Wikipedia.



23

1 from random import randint

2 from urllib.request import urlopen

3 from time import time

4 from concurrent.futures import ThreadPoolExecutor

5

6 pool = ThreadPoolExecutor()

7 base_url = ’https://en.wikipedia.org/w/index.php?oldid=%s’

8

9

10 def is_prime(num):

11 for i in range(2, num):

12 if not num % i:

13 return False

14 return True

15

16

17 def random_prime():

18 next_num = pool.submit(randint, 0, 1000000)

19 while True:

20 num = next_num.result()

21 next_num = pool.submit(randint, 0, 1000000)

22 if is_prime(num):

23 yield num

24

25

26 def main():

27 random_prime_generator = random_prime()

28 next_req = pool.submit(urlopen, base_url % next(random_prime_generator))

29 while True:

30 start_time = time()

31 req = next_req.result()

32 next_req = pool.submit(urlopen, base_url % next(random_prime_generator))

33 print(req.read())

34 print(’Execution time %s seconds’ % (time() - start_time))

35 input(’Press [enter] to show the next article.\n’)

36

37

38 if __name__ == ’__main__’:

39 main()

Listing 5.3: Using concurrent.futures to prefetch archived articles on Wikipedia.



24

1 from random import randint

2 from urllib.request import urlopen

3 from time import time

4 import asyncio

5

6 oldid_queue = asyncio.Queue(1)

7 request_queue = asyncio.Queue(1)

8 base_url = ’https://en.wikipedia.org/w/index.php?oldid=%s’

9

10

11 def is_prime(num):

12 for i in range(2, num):

13 if not num % i:

14 return False

15 return True

16

17

18 def random_prime():

19 while True:

20 num = randint(0, 1000000)

21 if is_prime(num):

22 yield num

23

24

25 async def oldid_producer(loop):

26 rp = random_prime()

27 while True:

28 oldid = await loop.run_in_executor(None, lambda: next(rp))

29 await oldid_queue.put(oldid)

30

31

32 async def request_producer(loop):

33 while True:

34 oldid = await oldid_queue.get()

35 request = await loop.run_in_executor(None, urlopen, base_url % oldid)

36 await request_queue.put(request)

37

38

39 async def user_prompt(loop):

40 while True:

41 start_time = time()

42 request = await request_queue.get()

43 print(request.read())

44 print(’Execution time %s seconds’ % (time() - start_time))

45 print(’Press [enter] to show the next article.’)

46 await loop.run_in_executor(None, input)

47

48

49 def main():

50 loop = asyncio.get_event_loop()

51 loop.create_task(oldid_producer(loop))

52 loop.create_task(request_producer(loop))

53 loop.create_task(user_prompt(loop))
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54 loop.run_forever()

55 loop.close()

56

57

58 if __name__ == ’__main__’:

59 main()

Listing 5.4: Using async and await to prefetch archived articles on Wikipedia.
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1 from random import randint

2 from urllib.request import urlopen

3 from time import time

4 from prefetch_generator import background

5

6 pgmap = lambda f, it, max_size=1: background(max_size)(map)(f, it)

7 base_url = ’https://en.wikipedia.org/w/index.php?oldid=%s’

8

9 def is_prime(num):

10 for i in range(2, num):

11 if not num % i:

12 return False

13 return True

14

15

16 @background()

17 def random_prime():

18 while True:

19 num = randint(0, 1000000)

20 if is_prime(num):

21 yield num

22

23

24 def main():

25 start_time = time()

26 for req in pgmap(urlopen, (base_url % oldid for oldid in random_prime())):

27 print(req.read())

28 print(’Execution time %s seconds’ % (time() - start_time))

29 input(’Press [enter] to show the next article.\n’)

30 start_time = time()

31

32

33 if __name__ == ’__main__’:

34 main()

Listing 5.5: Using prefetch generator to prefetch archived articles on Wikipedia.
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1 from random import randint

2 from urllib.request import urlopen

3 from time import time

4 import pythonflow as pf

5

6 base_url = ’https://en.wikipedia.org/w/index.php?oldid=%s’

7

8

9 def is_prime(num):

10 for i in range(2, num):

11 if not num % i:

12 return False

13 return True

14

15

16 def random_prime():

17 while True:

18 num = randint(0, 1000000)

19 if is_prime(num):

20 yield num

21

22

23 def main():

24 with pf.Graph() as graph:

25 oldid = pf.placeholder(name=’oldid’)

26 url = pf.map_(lambda oldid: base_url % oldid, oldid)

27 request = pf.map_(urlopen, url)

28

29 start_time = time()

30 for req in graph(request, oldid=random_prime()):

31 print(req.read())

32 print(’Execution time %s seconds’ % (time() - start_time))

33 input(’Press [enter] to show the next article.\n’)

34 start_time = time()

35

36

37 if __name__ == ’__main__’:

38 main()

Listing 5.6: Using pythonflow to retrieve archived articles on Wikipedia.
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5.2 Example: building a pipeline

Leager programming can be used to form concurrent pipelines. An example program is

shown in Listing 5.7 as archived articles are downloaded from Wikipedia and saved to local

storage. This program is then accelerated using leager programming to form concurrent

pipelines allowing for a high degree of both horizontal and vertical parallelism as shown in

Listing 5.8. This results in a decrease in run time from 6.75 seconds to 0.86 seconds.

As shown in Listing 5.9, this decrease in run time is similarly observed when using con-

current.futures, taking 0.85 seconds, but with a more extensive rewrite of the sequential

code when compared to leager programming in Listing 5.8. The decrease in runtime is also

shared when using async and await as shown in Listing 5.10, taking 0.88 seconds, but

it resulted in the entire program being rewritten using coroutines. prefetch generator,

as shown in Listing 5.11, did result in a decrease in run time taking 5.63 seconds, but

the high level of horizontal concurrency found in leager programming could not be created

by composing background in prefetch generator with map in Python. pythonflow, as

shown in Listing 5.12, is not a performance library and did not result in an improvement

in performance when compared to regular python, taking 6.76 seconds.
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1 from urllib.request import urlopen

2 from time import time

3

4 base_url = ’https://en.wikipedia.org/w/index.php?oldid=%s’

5

6

7 def make_request(oldid):

8 req = urlopen(base_url % oldid)

9 req.oldid = oldid

10 return req

11

12

13 def save_request(req):

14 fn = ’scratch/%s.htm’ % req.oldid

15 with open(fn, ’wb’) as f:

16 return ’fn: %s, bytes_written: %s’ % (fn, f.write(req.read()))

17

18

19 def main():

20 start_time = time()

21

22 stage_1 = map(make_request, range(16))

23 stage_2 = map(save_request, stage_1)

24

25 for status_message in stage_2:

26 print(status_message)

27

28 print(’Execution time: %s seconds’ % (time() - start_time))

29

30

31 if __name__ == ’__main__’:

32 main()

Listing 5.7: Example program downloading archived articles on Wikipedia to local
storage.
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1 from urllib.request import urlopen

2 from time import time

3 from leager import *

4

5 base_url = ’https://en.wikipedia.org/w/index.php?oldid=%s’

6

7

8 def make_request(oldid):

9 req = urlopen(base_url % oldid)

10 req.oldid = oldid

11 return req

12

13

14 def save_request(req):

15 fn = ’scratch/%s.htm’ % req.oldid

16 with open(fn, ’wb’) as f:

17 return ’fn: %s, bytes_written: %s’ % (fn, f.write(req.read()))

18

19

20 def main():

21 start_time = time()

22

23 stage_1 = lmap_unordered(make_request, range(16), 16)

24 stage_2 = lmap_unordered(save_request, stage_1, 16)

25

26 for status_message in stage_2:

27 print(status_message)

28

29 print(’Execution time: %s seconds’ % (time() - start_time))

30

31

32 if __name__ == ’__main__’:

33 main()

Listing 5.8: Using leager programming to form a concurrent pipeline to download
archived articles on Wikipedia to local storage.
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1 from urllib.request import urlopen

2 from time import time

3 from concurrent.futures import ThreadPoolExecutor

4

5 pool = ThreadPoolExecutor()

6 base_url = ’https://en.wikipedia.org/w/index.php?oldid=%s’

7

8

9 def make_request(oldid):

10 req = urlopen(base_url % oldid)

11 req.oldid = oldid

12 return req

13

14

15 def save_request(req):

16 fn = ’scratch/%s.htm’ % req.oldid

17 with open(fn, ’wb’) as f:

18 return ’fn: %s, bytes_written: %s’ % (fn, f.write(req.read()))

19

20

21 def main():

22 start_time = time()

23

24 stage_1 = pool.map(make_request, range(16))

25 stage_2 = pool.map(save_request, stage_1)

26

27 for status_message in stage_2:

28 print(status_message)

29

30 print(’Execution time: %s seconds’ % (time() - start_time))

31

32

33 if __name__ == ’__main__’:

34 main()

Listing 5.9: Using concurrent.futures to form a concurrent pipeline to download
archived articles on Wikipedia to local storage.
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1 from urllib.request import urlopen

2 from time import time

3 import asyncio

4

5 OBJ_COUNT = 16

6 stage_1_queue = asyncio.Queue(OBJ_COUNT)

7 stage_2_queue = asyncio.Queue(OBJ_COUNT)

8 base_url = ’https://en.wikipedia.org/w/index.php?oldid=%s’

9

10

11 def make_request(oldid):

12 req = urlopen(base_url % oldid)

13 req.oldid = oldid

14 return req

15

16

17 def save_request(req):

18 fn = ’scratch/%s.htm’ % req.oldid

19 with open(fn, ’wb’) as f:

20 return ’fn: %s, bytes_written: %s’ % (fn, f.write(req.read()))

21

22

23 async def stage(loop, func, args, out_queue):

24 result = await loop.run_in_executor(None, func, *args)

25 await out_queue.put(result)

26

27

28 async def stage_1(loop):

29 for oldid in range(OBJ_COUNT):

30 loop.create_task(stage(loop, make_request, (oldid,), stage_1_queue))

31

32

33 async def stage_2(loop):

34 items_processed = 0

35 while items_processed < OBJ_COUNT:

36 request = await stage_1_queue.get()

37 loop.create_task(stage(loop, save_request, (request,), stage_2_queue))

38 items_processed += 1

39

40

41 async def consumer(loop):

42 items_processed = 0

43 while items_processed < OBJ_COUNT:

44 status_message = await stage_2_queue.get()

45 await loop.run_in_executor(None, print, status_message)

46 items_processed += 1

47 loop.stop()

48

49

50 def main():

51 start_time = time()

52

53 loop = asyncio.get_event_loop()
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54 loop.create_task(stage_1(loop))

55 loop.create_task(stage_2(loop))

56 loop.create_task(consumer(loop))

57 loop.run_forever()

58 loop.close()

59

60 print(’Execution time: %s seconds’ % (time() - start_time))

61

62

63 if __name__ == ’__main__’:

64 main()

Listing 5.10: Using async and await to form a concurrent pipeline to download
archived articles on Wikipedia to local storage.
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1 from urllib.request import urlopen

2 from time import time

3 from prefetch_generator import background

4

5 pgmap = lambda f, it, max_size=1: background(max_size)(map)(f, it)

6 base_url = ’https://en.wikipedia.org/w/index.php?oldid=%s’

7

8

9 def make_request(oldid):

10 req = urlopen(base_url % oldid)

11 req.oldid = oldid

12 return req

13

14

15 def save_request(req):

16 fn = ’scratch/%s.htm’ % req.oldid

17 with open(fn, ’wb’) as f:

18 return ’fn: %s, bytes_written: %s’ % (fn, f.write(req.read()))

19

20

21 def main():

22 start_time = time()

23

24 stage_1 = pgmap(make_request, range(16), 16)

25 stage_2 = pgmap(save_request, stage_1, 16)

26

27 for status_message in stage_2:

28 print(status_message)

29

30 print(’Execution time: %s seconds’ % (time() - start_time))

31

32

33 if __name__ == ’__main__’:

34 main()

Listing 5.11: Using prefetch generator to form a concurrent pipeline to download
archived articles on Wikipedia to local storage.
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1 from urllib.request import urlopen

2 from time import time

3 import pythonflow as pf

4

5 base_url = ’https://en.wikipedia.org/w/index.php?oldid=%s’

6

7

8 def make_request(oldid):

9 req = urlopen(base_url % oldid)

10 req.oldid = oldid

11 return req

12

13

14 def save_request(req):

15 fn = ’scratch/%s.htm’ % req.oldid

16 with open(fn, ’wb’) as f:

17 return ’fn: %s, bytes_written: %s’ % (fn, f.write(req.read()))

18

19

20 def main():

21 with pf.Graph() as graph:

22 oldid = pf.placeholder(name=’oldid’)

23 stage_1 = pf.map_(make_request, oldid)

24 stage_2 = pf.map_(save_request, stage_1)

25

26 start_time = time()

27

28 for status_message in graph(stage_2, oldid=range(16)):

29 print(status_message)

30

31 print(’Execution time: %s seconds’ % (time() - start_time))

32

33

34 if __name__ == ’__main__’:

35 main()

Listing 5.12: Using pythonflow to download archived articles on Wikipedia to local
storage.
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5.3 Python Global Interpreter Lock (GIL)

An important limitation in the Python implementation of leager programming is the

Python Global Interpreter Lock (GIL), which allows only one thread to execute in CPython

3.6.4 at a time [19]. This prevents any improvement for CPU bound tasks to be made as

both the sequential implementation in Listing 5.13 and the leager implementation execute

in about 2.16 seconds.

For the same reason, concurrent.futures as shown in Listing 5.15, async and await

as shown in Listing 5.16, prefetch generator as shown in Listing 5.17, and pythonflow as

shown in Listing 5.18 — all resulted in the same run time as the sequential implementation,

taking about 2.16 seconds.
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1 from time import time

2

3

4 def cpu_bound_task(i):

5 n = 1000000

6 while n > 0:

7 n -= 1

8 return i

9

10

11 def main():

12 start_time = time()

13

14 stage_1 = map(cpu_bound_task, range(10))

15 stage_2 = map(cpu_bound_task, stage_1)

16

17 for i in stage_2:

18 print(i)

19

20 print(’Execution time: %s seconds’ % (time() - start_time))

21

22

23 if __name__ == ’__main__’:

24 main()

Listing 5.13: Example program with a CPU bound task.
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1 from time import time

2 from leager import *

3

4

5 def cpu_bound_task(i):

6 n = 1000000

7 while n > 0:

8 n -= 1

9 return i

10

11

12 def main():

13 start_time = time()

14

15 stage_1 = lmap_unordered(cpu_bound_task, range(10), 4)

16 stage_2 = lmap_unordered(cpu_bound_task, stage_1, 4)

17

18 for i in stage_2:

19 print(i)

20

21 print(’Execution time: %s seconds’ % (time() - start_time))

22

23

24 if __name__ == ’__main__’:

25 main()

Listing 5.14: Using leager programming to break a CPU bound task into a concurrent
pipeline. Due to the Global Interpreter Lock, no improvement is made.
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1 from time import time

2 from concurrent.futures import ThreadPoolExecutor

3

4 pool = ThreadPoolExecutor()

5

6

7 def cpu_bound_task(i):

8 n = 1000000

9 while n > 0:

10 n -= 1

11 return i

12

13

14 def main():

15 start_time = time()

16

17 stage_1 = pool.map(cpu_bound_task, range(10))

18 stage_2 = pool.map(cpu_bound_task, stage_1)

19

20 for i in stage_2:

21 print(i)

22

23 print(’Execution time: %s seconds’ % (time() - start_time))

24

25

26 if __name__ == ’__main__’:

27 main()

Listing 5.15: Using concurrent.futures to break a CPU bound task into a concurrent
pipeline. Due to the Global Interpreter Lock, no improvement is made.
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1 from time import time

2 import asyncio

3

4 OBJ_COUNT = 10

5 stage_1_queue = asyncio.Queue(OBJ_COUNT)

6 stage_2_queue = asyncio.Queue(OBJ_COUNT)

7

8

9 def cpu_bound_task(i):

10 n = 1000000

11 while n > 0:

12 n -= 1

13 return i

14

15

16 async def stage(loop, func, args, out_queue):

17 result = await loop.run_in_executor(None, func, *args)

18 await out_queue.put(result)

19

20

21 async def stage_1(loop):

22 for i in range(OBJ_COUNT):

23 loop.create_task(stage(loop, cpu_bound_task, (i,), stage_1_queue))

24

25

26 async def stage_2(loop):

27 items_processed = 0

28 while items_processed < OBJ_COUNT:

29 result = await stage_1_queue.get()

30 loop.create_task(stage(loop, cpu_bound_task, (result,), stage_2_queue))

31 items_processed += 1

32

33

34 async def consumer(loop):

35 items_processed = 0

36 while items_processed < OBJ_COUNT:

37 result = await stage_2_queue.get()

38 await loop.run_in_executor(None, print, result)

39 items_processed += 1

40 loop.stop()

41

42

43 def main():

44 start_time = time()

45

46 loop = asyncio.get_event_loop()

47 loop.create_task(stage_1(loop))

48 loop.create_task(stage_2(loop))

49 loop.create_task(consumer(loop))

50 loop.run_forever()

51 loop.close()

52

53 print(’Execution time: %s seconds’ % (time() - start_time))
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54

55

56 if __name__ == ’__main__’:

57 main()

Listing 5.16: Using async and await to break a CPU bound task into a concurrent
pipeline. Due to the Global Interpreter Lock, no improvement is made.
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1 from time import time

2 from prefetch_generator import background

3

4 pgmap = lambda f, it, max_size=1: background(max_size)(map)(f, it)

5

6

7 def cpu_bound_task(i):

8 n = 1000000

9 while n > 0:

10 n -= 1

11 return i

12

13

14 def main():

15 start_time = time()

16

17 stage_1 = pgmap(cpu_bound_task, range(10), 4)

18 stage_2 = pgmap(cpu_bound_task, stage_1, 4)

19

20 for i in stage_2:

21 print(i)

22

23 print(’Execution time: %s seconds’ % (time() - start_time))

24

25

26 if __name__ == ’__main__’:

27 main()

Listing 5.17: Using prefetch generator to break a CPU bound task into a concurrent
pipeline. Due to the Global Interpreter Lock, no improvement is made.
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1 from time import time

2 import pythonflow as pf

3

4

5 def cpu_bound_task(i):

6 n = 1000000

7 while n > 0:

8 n -= 1

9 return i

10

11

12 def main():

13 with pf.Graph() as graph:

14 it = pf.placeholder(name=’it’)

15 stage_1 = pf.map_(cpu_bound_task, it)

16 stage_2 = pf.map_(cpu_bound_task, stage_1)

17

18 start_time = time()

19

20 for result in graph(stage_2, it=range(10)):

21 print(result)

22

23 print(’Execution time: %s seconds’ % (time() - start_time))

24

25

26 if __name__ == ’__main__’:

27 main()

Listing 5.18: Using pythonflow decompose a CPU bound task into a directed acyclic
graph of operations. Due to the Global Interpreter Lock, no improvement
is made.



CHAPTER 6

CONCLUSIONS

Leager programming is about: when an expression should be evaluated. It straddles

the space in between eager evaluation and lazy evaluation, improving performance by

introducing concurrency into what would otherwise be sequential code.

While improving performance by optimizing when work should be done is not novel, the

goal of the leager programming library is to distill these concepts into its own library,

independent of specific applications, that expand on publicly available libraries in the

Python Package Index (PyPI).

Built using the threading package in Python’s standard library, it is comprised of higher

order functions and classes taking the form of decorators and substitutions of well known

functions in Python. Used in asynchronous callbacks, leager programming can be used to

prefetch data; and chained together, it can be used to form concurrent pipelines.



APPENDIX A

PYTHON IMPLEMENTATION OF

LEAGER PROGRAMMING

1 """Tools that intelligently combine eager evaluation and lazy evaluation."""

2

3 from collections import deque, abc

4 from functools import wraps

5 from sys import getrefcount

6 from threading import Lock, Condition, Thread, current_thread

7 from time import sleep

8

9 from funchelp import default, unwrap

10

11

12 __all__ = [’leager’, ’LeagerIterator’, ’lmap’, ’lmap_unordered’]

13

14

15 @default

16 @unwrap

17 def leager(gen_func, max_size=1):

18 """

19 Allow generator function to precompute the next value in a separate thread.

20

21 >>> @leager

22 ... def example_generator():

23 ... from time import sleep

24 ... while True:

25 ... sleep(5) # example blocking operation

26 ... yield

27

28 :param gen_func: generator function

29 :param max_size: maximum number of values to precompute

30 :return: generator function that precomputes

31 """

32 @wraps(gen_func)

33 def leager_gen_func(*args, **kwargs):

34 return LeagerIterator(gen_func(*args, **kwargs), max_size)

35 return leager_gen_func

36

37

38 class LeagerIterator(abc.Iterator):

39 """

40 Create a leager iterator object that precomputes the next value from a

41 provided iterator object in a separate thread.
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42 """

43 def __init__(self, iterable, max_size=1):

44 self.DAEMON_REF_COUNT = 5 # number of references in daemon threads

45 self.GC_CHECK_INTERVAL = 1 # seconds between garbage collection checks

46

47 assert max_size > 0, ’invalid max_size’

48 self.iterator = iter(iterable)

49 self.max_size = max_size

50

51 self.cache = deque()

52

53 self.stop_signal = False

54 self.worker_stopped = False

55

56 self.mutex = Lock()

57 self.consumer = Condition(self.mutex)

58 self.producer = Condition(self.mutex)

59

60 self.worker = Thread(target=self._worker, daemon=True)

61 self.worker.start()

62

63 self.gc = Thread(target=self._gc, daemon=True)

64 self.gc.start()

65

66 def stop(self):

67 """

68 Signal all worker threads to stop precomputing values.

69

70 :return: None

71 """

72 with self.mutex:

73 self._signal_stop()

74

75 def _signal_stop(self):

76 self.stop_signal = True

77 self.producer.notify_all()

78

79 def _stop_worker(self):

80 self.worker_stopped = True

81 self.consumer.notify_all()

82

83 def _worker(self):

84 while True:

85 with self.producer:

86 if self.stop_signal:

87 self._stop_worker()

88 return

89 while len(self.cache) >= self.max_size:

90 self.producer.wait()

91 if self.stop_signal:

92 self._stop_worker()

93 return

94

95 try:
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96 item = next(self.iterator)

97 except StopIteration:

98 with self.producer:

99 self._stop_worker()

100 return

101

102 with self.producer:

103 self.cache.append(item)

104 self.consumer.notify()

105

106 def _gc(self):

107 while True:

108 sleep(self.GC_CHECK_INTERVAL)

109 with self.mutex:

110 if self.worker_stopped:

111 return

112 if getrefcount(self) <= self.DAEMON_REF_COUNT:

113 self._signal_stop()

114

115 def __iter__(self):

116 return self

117

118 def __next__(self):

119 with self.consumer:

120 while not len(self.cache):

121 if self.worker_stopped:

122 return next(self.iterator)

123 self.consumer.wait()

124

125 self.producer.notify()

126 return self.cache.popleft()

127

128

129 class lmap(abc.Iterator):

130 """

131 Create a leager map that precomputes the next value in a separate thread.

132 The order in which values are returned is preserved.

133 """

134 class _Counter:

135 def __init__(self):

136 self.count = 0

137

138 def __call__(self):

139 self.count += 1

140 return self.count

141

142 def __init__(self, func, iterable, max_size=1):

143 assert max_size > 0, ’invalid max_size’

144 self.func = func

145 self.iterator = iter(iterable)

146 self.max_size = max_size

147

148 self.produced = self._Counter()

149 self.consumed = self._Counter()
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150

151 self.cache = {}

152 self.workers = set()

153

154 self.mutex = Lock()

155 self.consumer = Condition(self.mutex)

156

157 with self.mutex:

158 self._spawn_workers()

159

160 def _spawn_workers(self):

161 while len(self.cache) + len(self.workers) < self.max_size:

162 try:

163 item = next(self.iterator)

164 except StopIteration:

165 if not len(self.workers):

166 self.consumer.notify_all()

167 return

168

169 idx = self.produced()

170 worker = Thread(target=self._worker, args=(item, idx), daemon=True)

171 self.workers.add(worker)

172 worker.start()

173

174 def _worker(self, item, idx):

175 value = self.func(item)

176 with self.mutex:

177 self.cache[idx] = value

178 self.workers.remove(current_thread())

179 self.consumer.notify_all()

180

181 def __iter__(self):

182 return self

183

184 def __next__(self):

185 with self.consumer:

186 idx = self.consumed()

187 while idx not in self.cache:

188 if not self.cache and not self.workers:

189 return self.func(next(self.iterator))

190 self.consumer.wait()

191

192 return_value = self.cache.pop(idx)

193 self._spawn_workers()

194 return return_value

195

196

197 class lmap_unordered(abc.Iterator):

198 """

199 Create a leager map that precomputes the next value in a separate thread.

200 The order in which values are returned is arbitrary.

201 """

202 def __init__(self, func, iterable, max_size=1):

203 assert max_size > 0, ’invalid max_size’
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204 self.func = func

205 self.iterator = iter(iterable)

206 self.max_size = max_size

207

208 self.cache = deque()

209 self.workers = set()

210

211 self.mutex = Lock()

212 self.consumer = Condition(self.mutex)

213

214 with self.mutex:

215 self._spawn_workers()

216

217 def _spawn_workers(self):

218 while len(self.cache) + len(self.workers) < self.max_size:

219 try:

220 item = next(self.iterator)

221 except StopIteration:

222 if not len(self.workers):

223 self.consumer.notify_all()

224 return

225

226 worker = Thread(target=self._worker, args=(item,), daemon=True)

227 self.workers.add(worker)

228 worker.start()

229

230 def _worker(self, item):

231 value = self.func(item)

232 with self.mutex:

233 self.cache.append(value)

234 self.workers.remove(current_thread())

235 self.consumer.notify()

236

237 def __iter__(self):

238 return self

239

240 def __next__(self):

241 with self.consumer:

242 while not len(self.cache):

243 if not self.workers:

244 return self.func(next(self.iterator))

245 self.consumer.wait()

246

247 return_value = self.cache.popleft()

248 self._spawn_workers()

249 return return_value

Listing A.1: leager.py
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HELPER LIBRARIES

1 from functools import wraps

2

3 __all__ = [’default’, ’unwrap’]

4

5

6 def default(dec_func):

7 """

8 Allows a decorator function with parameters where all the parameters are

9 optional to use the unapplied form. For example, by specifying

10

11 >>> @default

12 ... def decorator(*args, **kwargs):

13 ... def real_decorator(func):

14 ... @wraps(func)

15 ... def wrapped(*a, **kw):

16 ... func(a, kw, args, kwargs)

17 ... return wrapped

18 ... return real_decorator

19

20 allows

21

22 >>> @decorator

23 ... def decorated():

24 ... pass

25

26 to be equivalent to

27

28 >>> @decorator()

29 ... def decorated():

30 ... pass

31

32 Note that this creates a situation where if the first and only parameter is

33 callable, the behavior is undefined. For example, avoid

34

35 >>> f = lambda *x: x

36 >>> @decorator(f)

37 ... def decorate():

38 ... pass

39

40 :param dec_func: decorator function

41 :return: decorator function that will worked in the unapplied form

42 """

43 @wraps(dec_func)
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44 def default_dec(*args, **kwargs):

45 return dec_func()(args[0]) \

46 if len(args) == 1 and callable(args[0]) and not kwargs else \

47 dec_func(*args, **kwargs)

48 return default_dec

49

50

51 def unwrap(dec_func):

52 """

53 Unwraps a decorator function with parameters forcing the decorated function

54 to be passed as the first argument followed by the decorator’s parameters.

55

56 For example, it allows

57

58 >>> def decorator(*args, **kwargs):

59 ... def real_decorator(func):

60 ... @wraps(func)

61 ... def wrapper(*a, **kw):

62 ... func(a, kw, args, kwargs)

63 ... return wrapper

64 ... return real_decorator

65

66 to be written as

67

68 >>> @unwrap

69 ... def decorator(func, *args, **kwargs):

70 ... @wraps(func)

71 ... def wrapper(*a, **kw):

72 ... func(a, kw, args, kwargs)

73 ... return wrapper

74

75 reducing the nested function depth.

76

77 :param dec_func: decorator function

78 :return: unwrapped decorator function

79 """

80 @wraps(dec_func)

81 def unwrap_dec(*args, **kwargs):

82 return wraps(dec_func)(lambda func: dec_func(func, *args, **kwargs))

83 return unwrap_dec

Listing B.1: funchelp.py
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