
Automated Database Workload

Characterization, Mapping, and Tuning

through Machine Learning

Madeline MacDonald

University of Utah

UUCS-18-007

School of Computing

University of Utah

Salt Lake City, UT 84112 USA

10 December 2018

Abstract

Database management systems (DBMS) have numerous configuration settings, such as buffer or

memory sizes, that have an impact on the database’s performance. These settings require tuning to

optimize performance, and the optimal values for each setting are highly dependent on the server’s

workload and hardware. The process of tuning a DBMS requires a highly skilled database admin-

istrator (DBA) to manually test different configurations, but this is an long and expensive process.

Furthermore, the final tuning configuration is specific to the workload, DBMS version, and hard-

ware, and if any of those factors change the tuning process must be redone.

OtterTune, a project by the Database Group at Carnegie Mellon University, solves this tuning prob-

lem by using machine learning techniques to automatically tune databases. OtterTune observes a

new database workload, isolates the most important system metrics from that workload, and then

maps the new workload to a similar previously tuned workload. It learns from previous tuning

results for the similar workload and generates a new configuration recommendation automatically.

In this work, analyze OtterTune’s architecture and approach to automating database tuning, specif-

ically focusing on the workload characterization and mapping techniques. We then implement a

lightweight version of OtterTune that automatically tunes PostgreSQL 9.6 databases. We utilize

open source OtterTune code from Carnegie Mellon in this solution to ensure that the results are

comparable. Finally, we test our implementation of OtterTune on a selected set of database bench-

marks and analyze our results.

1

ABSTRACT

Database management systems (DBMS) have numerous configuration settings,

such as buffer or memory sizes, that have an impact on the database’s perfor-

mance. These settings require tuning to optimize performance, and the optimal

values for each setting are highly dependent on the server’s workload and hard-

ware. The process of tuning a DBMS requires a highly skilled database admin-

istrator (DBA) to manually test different configurations, but this is an long and

expensive process. Furthermore, the final tuning configuration is specific to the

workload, DBMS version, and hardware, and if any of those factors change the

tuning process must be redone.

OtterTune, a project by the Database Group at Carnegie Mellon University,

solves this tuning problem by using machine learning techniques to automatically

tune databases. OtterTune observes a new database workload, isolates the most

important system metrics from that workload, and then maps the new workload

to a similar previously tuned workload. It learns from previous tuning results for

the similar workload and generates a new configuration recommendation auto-

matically.

In this work, analyze OtterTune’s architecture and approach to automating

database tuning, specifically focusing on the workload characterization and map-

ping techniques. We then implement a lightweight version of OtterTune that auto-

matically tunes PostgreSQL 9.6 databases. We utilize open source OtterTune code

from Carnegie Mellon in this solution to ensure that the results are comparable.

Finally, we test our implementation of OtterTune on a selected set of database

benchmarks and analyze our results.

CONTENTS

ABSTRACT . ii

CHAPTERS

1. INTRODUCTION . 1

2. BACKGROUND AND RELATED WORK . 3

2.1 Motivation . 3
2.2 Related work . 3

3. OTTERTUNE . 6

3.1 Overview . 6
3.2 Workload Statistics Collection . 7

3.2.1 Workload Characterization Methods . 7
3.2.2 Factor Analysis . 8
3.2.3 K-Means Clustering . 8
3.2.4 Workload Mapping . 8
3.2.5 Similarity Score Calculation . 9
3.2.6 Tuning . 10

4. METHODS . 11

4.1 Data Collection . 11
4.1.1 Challenges . 11
4.1.2 Approach . 12

4.2 The OtterTune Architecture . 13

5. RESULTS . 15

5.1 Mapping Evaluation . 15
5.2 Tuning Evaluation . 17
5.3 Conclusions from Evaluations . 19

6. FUTURE WORK . 20

6.1 Factorization Machines . 20

7. CONCLUSIONS . 22
Bibliography . 23

CHAPTER 1

INTRODUCTION

In modern business, efficiently managing data is vital to success. Having a

database that quickly allows access to inventory records, or that efficiently handles

large volumes of order placement, has a huge impact on profit. To make sure that

enterprise databases are up to the task, it’s necessary to configure each database

to be specialized for the hardware it runs on, the data it stores, and the ways

in which it’s used to read or write data. Each database system has dozens of

setting parameters that can be changed to increase throughput or to reduce latency,

but their optimum values are dependent largely on the nature of the database

workload.

When analyzing a database workload, the issue isn’t trying to gather more data,

but rather learning how make sense of the data we have. Modern database man-

agement systems (DBMS) expose huge amounts of information about database

workloads, everything from the queries themselves to table schema information

to system metrics, but knowing what information is relevant and what to ignore

poses an ongoing question. The process of determining which parameters are

relevant, analyzing the data values for that subset of parameters, and classifying

database workloads based on those values, is referred to as workload characteri-

zation.

Selecting relevant metrics to gather statistics on is central to workload char-

acterization, and recent work has shown that machine learning models have a

huge potential to improve metric selection and characterization. This thesis fo-

cuses on the work done by the Database Group at Carnegie Melon University,

2

and their project OtterTune, which uses a multi-stage workload characterization

and mapping algorithm to generate system knob tuning recommendations [10].

Under OtterTune’s structure, a database workload is observed while running, and

its runtime metrics are collected and sent to a server to be processed. This full set

of runtime metrics is then analyzed and pruned until all redundant and uninfor-

mative metrics are removed, and the remaining metrics are used to characterize

the workload. This system allows workloads to be characterized without making

any assumptions about the workload type, and even allows for previously char-

acterized workloads to be re-characterized more accurately as new data comes in.

Because this method can generalize across different workload types and different

DBMS’s, it’s a powerful new tool for gaining insight into database usage. Ulti-

mately, these workload insights are useful because they enable automated tuning

for DBMS systems, and allow previous tuning configurations to be reused and

learned from. The OtterTune architecture learns from previous tuning configura-

tions so that it can automatically generate configurations that will optimize latency

or throughput for a workload.

This thesis focuses on implementing a simplified version of OtterTune, and

evaluating OtterTune’s performance on mapping and tuning workloads. Because

the results of mapping and tuning workloads are highly dependent on server

hardware, database versions, and workload settings it isn’t feasible to recreate all

of OtterTune’s findings. Instead, this project takes a narrower scope of analyzing

tuning performance, including using a smaller training data set and focusing on

tuning only PostgreSQL 9.6 databases. Experimental evaluations of this simplified

version of OtterTune show up to 7x increase in throughput when compared to

default configurations.

CHAPTER 2

BACKGROUND AND RELATED WORK

In this section I will explain the motivation for database tuning, the challenges

inherent in database tuning, and previous work in the field.

2.1 Motivation
Modern database systems ship with default configurations that are meant to

meet the broad needs of many users, but that aren’t specialized for any one task.

In generalizing settings for quick start up out of the box most settings are passable,

but performance won’t be anywhere near its full potential. For example, default

configuration settings in PostrgreSQL don’t make use of parallel query execution,

or allocate the full amount of memory available for use on the hardware [1]. By

making simple changes to database configurations users can see incredible latency

reductions or throughput increases, but knowing how and where to make those

simple changes is challenging and intimidating to many users. Effectively tuning

a database requires an understanding of how the mechanics of a database work,

knowing details of your hardware configuration, and knowing what type of work

your database will be doing [12]. Even if a user knows all of those details, many

knobs interact with each other, which requires a thorough understanding of the

relationships between the settings. Furthermore, with each new database version

release the number of database knobs increases [10] which makes it even more

complicated to keep up.

2.2 Related work
Workload characterization has been an ongoing research problem for a long

time, which means that there have been a variety of different attempts to improve

on it. Overall, there are two main approaches to workload characterization: Anal-

4

ysis at the logical level of queries and database schemas, and analysis of internal

runtime metrics provided by the DBMS.

The first approach, characterization of workloads from queries and database

schemas, relies on collecting statistics about the language used in queries, the

way users interact with tables and views, and the differences in how transactions

are used between workloads [11]. This can give a rather comprehensive view of

how users interact with the database in the workload, and provide insight into

the impact of design choices on workloads, making analysis on the logical level

a practical choice in some cases. That said, this approach focuses purely on the

commands issued and the database structure, and not on query behavior at run

time. There are many applications of workload mapping that rely on runtime

performance, such as distributed database systems and client-server architectures,

and analysis at a logical level doesn’t account for those needs [3].

The second approach, analyzing runtime metrics from observed workloads

during execution, accounts for the needs of more complicated system architectures

by giving insight into the behavior of the workload during execution. Most pre-

vious work in this area follows a well established procedure for mapping. First,

based off of knowledge of the system and expected workloads, a set of runtime

metrics is selected that is believed to be able to characterize a workload. This is

usually done by a DBA, or another expert who uses personal knowledge of the

workload to select metrics for characterization. Second, data is collected during an

observation period as the workload runs. Finally, the collected metric values are

analyzed to characterize the workload[3].

The major downside to this approach in practice, is that as systems and soft-

ware evolve, the set of metric parameters selected isn’t guaranteed to generalize or

remain relevant. Over time the work done to select a set of parameters must be re-

peated, which takes expertise about the system and is inaccessible for many users.

Workload characterization approaches that require specially selected parameter

5

sets cannot usually be generalized across different types of systems or workloads,

and may not even remain optimal on the same system as software updates over

time.

CHAPTER 3

OTTERTUNE

One of the most recent, and most promising, approaches to workload char-

acterization comes from the OtterTune project from Carnegie Mellon University

[10], lead by Dana Van Aken and Andy Pavlo. Their work is a departure from the

previous methods, in that it relies on analyzing runtime metrics but doesn’t use

a predefined set of metrics to characterize workloads. Instead, OtterTune collects

and stores data about workloads it observes, and uses innovative machine learning

models to prune away irrelevant metrics until a small subset of metrics remain that

characterize the workload. This approach is incredibly powerful, because it allows

the same characterization process to be applied to a wide variety of workloads

without requiring supervised metric selection.

OtterTune uses workload characterization as part of a larger process of automating

DBMS system knob tuning, so it only requires system information that comes from

runtime metrics and ignores information about query structures or higher level

database organization.

3.1 Overview
Ottertune works through an iterative tuning process in conjunction with a large

repository of existing database tuning results to automatically generate new knob

configurations. Ottertune collects system runtime metrics, observes the workload

for five minutes, then collects metrics again. These before and after metric files

are uploaded to the tuning server where they are processed and compared with

all previous workloads in the repository to find the closest match. Using the large

amounts of tuning data from the repository for the mapped workload, a Gaussian

Process Regression model is constructed to optimize throughput, and from that

model a new DBMS configuration file is created with recommended settings.

7

3.2 Workload Statistics Collection
In OtterTune statistics collection for workloads is done using a controller that

runs on the database server for the target database. When the controller is run

it’s given a config file containing the type of DBMS to target, connection info

for the target database, and connection info for the OtterTune server. OtterTune

uses a modular architecture that allows each type of database to collect statistics

differently, which allows for easy testing and implementation.

The stats collector first collects the dbms metrics prior to running the work-

load, then collects knob configuration data. It then waits for a set time period

for the workload to run before collecting metrics again. Finally a summary file is

compiled with information about the database type and version and the start and

end observation time. Four files are uploaded to OtterTune: A summary of the

data collection, the knob configuration, metrics before the workload, and metrics

after the workload.

3.2.1 Workload Characterization Methods

Next the server determines which metrics best describe the given workload.

This happens in two main phases, factor analysis and K-means clustering. Both of

these stages are meant to remove unimportant information and to isolate the most

descriptive workload metrics. To start, OtterTune collects all previous runtime

metric data for each workload previously seen and puts the information into a

matrix X which represents a single workload, where each row represents a metric

and each column is a vector representing a certain knob configuration.

X =

k1 ki x11 · · · x1j m1
... . . .

xi1 xij mj

Figure 3.1. The input matrix to factor analysis which represents a single workload.
Here each k is a vector representing a single knob configuration, and each m is a
numerical metric. xij represents the value of metric m with configuration k.

8

3.2.2 Factor Analysis

OtterTune’s source code implementation uses the SKlearn library for factor

analysis [7]. It assumes that the data can be described as a linear transformation

of lower dimensional latent factors, with some additional Gaussian noise. The

output of the factor analysis step is another matrix U, which again has each row

representing a numerical metric, however this time each column represents a factor

found in the factor analysis step.

U =

f1 fi u11 · · · u1j m1
... . . .

ui1 uij mj

Figure 3.2. The output matrix from factor analysis. Here each f is a factor found in
the factor analysis phase, and each m is a numerical workload metric. uij represents
the coefficient of metric m for the factor f .

3.2.3 K-Means Clustering

The next phase of pruning redundant metrics is K-Means clustering, which

clusters closely related metrics together and selects one metric from each cluster.

This phase starts by scatter-plotting data from matrix U. Each metric in U is plotted

using the elements of its row (the coefficients to each of the factors) as coordinates.

Two metrics will be close together if they have similar coefficients, which indicates

redundancy and signals that these metrics can be pruned.

Following this initial scatter-plot and removal step, a heuristic using the gap

statistic is used to choose an ideal number of clusters k. K-means clustering is ap-

plied, and then one metric from each cluster is retained while the rest are pruned.

The final output from this step is a list of pruned metrics that best characterize the

given workload.

3.2.4 Workload Mapping

Now that OtterTune has a list of the most relevant metrics to characterize a

workload, these metrics can be used to calculate a similarity score between a new

9

workload and existing workloads. When a new workload is received OtterTune

looks at the workload summary file which tells which database type and version

it is. Using this information OtterTune retrieves a set of N matrices, where N is the

number of relevant metrics found in the workload characteristics step. Each matrix

in this set has identical row and column labels, where each row is a workload

that has been run on this DBMS version previously, and each column is a vector

representing a certain knob configuration.

S =



k1 ki x11 · · · x1j w1
... . . .

xi1 xij wj

1

, · · · ,

k1 ki x11 · · · x1j w1
... . . .

xi1 xij wj

n


Figure 3.3. The set S of matrices for similarity score calculation. Here each k is
a vector representing a knob configuration, and each w is a previously observed
workload. xmij is the value of metric m when executing workload i with knob
configuration j.

Before a similarity score can be calculated, preprocessing must be done to make

the data in S usable. First, there’s the issue that each matrix in S may be very

sparse, as not every workload is run on multiple knob configurations. To prevent

this issue, a Gaussian Process Regression model is trained on each metric to predict

the performance of that metric on a given knob configuration.

In addition, some of these metrics have much larger values than others, so

to reduce issues from differing magnitudes OtterTune calculates deciles for each

metric, bins the values according to their deciles, and then replaces the metric

values with their bin numbers.

3.2.5 Similarity Score Calculation

Now that S is ready for workload mapping, each relevant metric from the target

workload to be mapped is compared to each previous workload in S, and the

Euclidean distance between them is calculated. Similarity scores for each workload

are calculated by summing the distances across all previously seen instances of that

10

workload. Because the goal in finding a similar workload is to minimize distance,

the the workload with the lowest similarity score is selected as the most similar.

3.2.6 Tuning

Before OtterTune can recommend knob settings, it must choose which knobs

to tune. PostgreSQL 9.6 contains 30 tunable knobs, but instead it uses an iterative

approach to only select and tune the most impactful knobs on each tuning itera-

tion. This allows for quicker convergence towards an optimal value. Ranking the

DBMS knobs by impact is done using linear regression with scikit-learn’s Lasso

library [7]. Prior to ranking the knobs preprocessing steps are performed that use

onehot encoding to encode enumerated knob values, and standardizes the knob

values so that the results aren’t skewed.

Finally, using previously observed tuning configurations from the mapped work-

load and previous tuning attempts from the target database, a Gaussian Process

Regression model is trained to estimate the value of the tuning target objective

metric under different knob configurations [10]. To find the recommended optimal

configuration OtterTune creates an initialization set of starting points from previ-

ous configurations of the workload. These include top performing configurations

from the current tuning session, and previously seen random configurations of

knobs that were generated to create training data. Gradient descent finds a set of

potential optimized configurations using the initialization set as starting points.

The configuration in the potential set with the highest estimated improvement is

selected as the final configuration recommendation. At configurations that have al-

ready been tested there is very little expected improvement upon the result value,

since it’s already been tested and running it again wouldn’t change the results.

In regions between known configurations expected improvement can increase de-

pending on the training data. As tuning continues more unknown regions will

be tested, reducing the expected improvement values. Each time, OtterTune will

always select either an unknown configuration that it thinks has potential, or a well

known configuration that it doesn’t believe can be significantly improved upon.

CHAPTER 4

METHODS

My approach to this project can be broken down into three main phases: train-

ing data collection, implementing the OtterTune pipeline, and experimental evalu-

ation. In this section I’ll describe the methodology behind collecting training data

and implementing the OtterTune system.

4.1 Data Collection
As with any machine learning project, OtterTune is only as good as its data. In

order to work effectively OtterTune requires a robust repository workload metrics

under a variety of randomly generated knob configurations. This requires building

a data collection pipeline that generates a postgresql.conf file with random knob

settings, starts a database server, runs the workload, collects metrics, then stops

the server. This process must be repeated thousands of times to generate a large

enough training set.

4.1.1 Challenges

Generating random knob configurations took a substantial amount of effort,

because in order to be useful all knobs must be within a realistic range of val-

ues, while also testing unusual configurations and maintaining awareness of knob

relationships. One major challenge is that there is a wide range of knob value

types, including strings, integers, Boolean variables, enumerated variables, or real

numbers. Additionally, knobs that manage memory may need to be incremented

by 8kB at a time [1], while other memory knobs have no such limitations. Com-

plicating the matter, many knobs are hardware dependent, and nowhere is there a

concrete guide on what constitutes a reasonable range for all knobs. PostgreSQL

12

offers a list of valid ranges for each knob, but these ranges are often unhelpful.

For example, PostgreSQL has a seq page cost with a listed range between 0 and

1.79769e + 308, but reasonable values in practice are between .1 and 1.5 [6].

Additionally, knobs cannot be tuned in isolation from one another. Many knobs

interact, and so while both may have reasonable values individually the final im-

pact is disastrous. One example of this is in the write-ahead logging configu-

rations, where the valid ranges for min wal size and max wal size have substan-

tial overlap. If both settings had values randomly selected from their reasonable

ranges the max could be lower than the min, which would lead to issues [2]. A

less obvious example of connected knobs is maintenance work mem and autovac-

uum max workers, or work mem and max parallel workers per gather. In both cases,

each worker is allocated the set amount of memory, which means that if both knobs

are randomly assigned high values within their ranges memory is quickly used up.

In the case of work mem and max parallel workers per gather, a parallel query with

4 workers can use up to 5 times as much memory and other resources as a query

with no parallel workers [1].

4.1.2 Approach

To keep track of all the requirements for each knob, a detailed knobs.json file

as shown in Figure 4.1 was used that contained metadata about each PostgreSQL

knob such as data type, range, default value, what resource it manages, and if it’s

tunable. The base .json file was taken from the original OtterTune project files,

so that all non-hardware dependent knobs would stay true to the original paper.

From this base file I manually researched each tunable knob to narrow down the

value range to only include reasonable numbers. This included configuring mem-

ory settings to fit the machines running the data collection tests, and evaluating

knob interactions to minimize conflicting value ranges. A parser then uses this

configuration data to generate a new postgresql.conf file, which is then uploaded

to the database server.

13

Figure 4.1. Sample knob metadata entry from knobs.json

The database server is restarted to use the new configuration files, and oltp-

bench [5] is used to execute a benchmark as a sample workload. Following the

completion of the workload or the end of the five minute observation interval,

whichever comes first, the metric data and knob configurations are gathered and

uploaded to the processing server, along with a summary file with info about the

workload execution. This process is repeated 500 times for each workload. For

the purposes of this project I chose 8 different workloads to initialize my data

repository with. To stay true to the approach of the original OtterTune paper I

selected 5 variations of TPC-C [9] and 3 variations of smallbank, and used those

workloads to populate the repository. I selected these benchmarks as they are

both widely used, and can be easily configured to represent a variety of different

workload characteristics.

4.2 The OtterTune Architecture
Following the construction of the data repository, I set up the full OtterTune

pipeline to evaluate tuning performance on target workloads. This implemen-

tation had two main goals. First, since my data collection systems varied from

14

the original OtterTune data collection formats, it was important to implement my

own workload data parser so that I could ensure that the data repository was

fully functional. To achieve the first goal I used sample OtterTune workload data

from the Carnegie Mellon Database Group to ensure that my repository met the

requirements for the later analysis steps. Second, this implementation needed to

be lightweight, and utilize exiting OtterTune code [4] where possible to minimize

the chance of programming errors skewing performance results. The existing

OtterTune code is highly modular, so I broke down the different elements of the

processing and tuning pipeline to isolate only the relevant code for tuning Post-

greSQL 9.6. At the conclusion of this process I had an efficient and lightweight

version of OtterTune that stayed true to the original approach while eliminating

unnecessary code.

CHAPTER 5

RESULTS

The goal in implementing and testing OtterTune’s mapping and tuning perfor-

mance was to demonstrate a proof-of-concept for the characterization, mapping,

and tuning approach taken in the original paper. To achieve this I collected data

on three core tests. First, the system’s workload mapping abilities are evaluated by

calculating the probability of correctly mapping a workload across various sample

sizes. Following the analysis of workload mapping performance I tuned an new

variant of the TPC-C workload, and a completely unseen YCSB workload. The

data suggests that impressive improvements in throughput are possible with a

robust repository of previous workloads, but the tuning performance degrades

sharply for unseen workloads.

5.1 Mapping Evaluation
To evaluate the accuracy of OtterTune’s workload mapping system I used cross

validation to calculate the chances that n randomly selected samples from a given

workload would be accurately mapped to the same workload. For each sample

size n between 1 − 10, n samples were randomly selected and removed from each

workload. Those n samples were then characterized and mapped back to the rest

of the training data, and the selected mapping was recorded. This was repeated 15

times for each workload at each sample size,across all workloads in the repository.

The result is percentage of trials in which a sample set of n tuning results from

workload w was correctly mapped to other instances of workload w.

16

Figure 5.1. Workload mapping performance

The results of this mapping evaluation, shown in Figure 5.1, demonstrate that

while the mapping accuracy is initially very good, with an average of 70% of

workloads being correctly mapped, the mapping accuracy increases with sam-

ple size. The accuracy of the mapping results varies across workload type, with

workloads that ran the smallbank benchmark generally mapping more accurately

than TPC-C workloads. This is expected behavior, since there were more exam-

ples of TPC-C workloads in the training set there were often two workloads with

very close similarity scores, whereas with only three smallbank examples in the

training repository there were larger differences between each workload, which

17

meant better distinctions between workload mappings. The mapping results for

the tpcc 5 workload are of particular interest, because unlike errors in the other

TPC-C workloads, this workload’s mapping errors weren’t caused by close dif-

ferences in other TPC-C workloads. In fact, in every case where tpcc 5 was inac-

curately mapped, it selected smallbank 1 as the most similar workload. Nothing

substantially differentiates tpcc 5 from the other TPC-C workloads, it just seems

that the TPC-C configurations for tpcc 5 lead to very similar workload metrics to

smallbank 1. This is an interesting example of how OtterTune’s decision to ignore

logical features, such as schema or query structure, can lead to errors in workload

mapping. An increase in the number of tpcc 5 workloads randomly sampled for

mapping doesn’t seem to have a significant effect on the mapping accuracy. This

issue could become further magnified in an enterprise instance of OtterTune with

a much larger variety of workloads to map to, which indicates a need to consider

other logical features as well when mapping a workload.

Overall, the results from the mapping evaluation are encouraging. OtterTune

heavily relies on accurately identifying similar workloads to learn from while tun-

ing, and these results indicate that initial mappings from a single observation

period are generally fairly accurate, and increase in accuracy as more workload

tuning results are considered. This evaluation shows that there is potential room

for improvement in mapping accuracy if logical features of the workload are con-

sidered in addition to system metrics, but shows that in the majority of cases

OtterTune’s mapping structure holds.

5.2 Tuning Evaluation
To evaluate the tuning performance of OtterTune two workloads were selected

and tested. The first was a TPC-C workload executed on a database 3 times larger

than the TPC-C database the training instances used. This workload represents

an ideal case, where the workload type is already well represented in OtterTune’s

repository but the system metrics will vary due to the increased database size. The

second workload selected was a YCSB workload with an equal balance of read and

write queries. This workload was chosen because it’s a departure from the data in

18

the repository, and represents a completely unknown workload type.

Figure 5.2. Throughput on target workloads during tuning session

As is evident in Figure 5.2, OtterTune’s tuning performance varies widely be-

tween the two workloads. In the case of TPC-C, throughput increased by over

7x within three tuning iterations, and held steady at the higher performance rate.

In stark contrast YCSB’s throughput initially increased before dropping slightly,

and ultimately showed no significant improvement over the default configuration.

These two workloads powerfully demonstrate the impact of the tuning repository

on recommended knob configurations. In the case of TPC-C, there were several

thousand tuning results already stored in the repository, and so even though the

tested TPC-C had a different number of simulated warehouses and terminals the

workload itself was very well understood. Because of this wealth of data it only

took two tuning iterations before throughput increased to over 7x its initial value

with default knobs. For the YCSB workload, there was no tuning data in the

repository that closely resembled the workload. This meant that it was impossible

for OtterTune to accurately identify a workload to learn from, and without useful

previously seen tuning data there was no way to improve performance. This

19

demonstrates the importance of a large repository of training data for workloads,

which is acknowledged in the original OtterTune paper.

5.3 Conclusions from Evaluations
The results from the mapping evaluations and the tuning experiments show

that while OtterTune has incredible potential as a database tuning service, that

potential is contingent on several factors. First, there must be enough training data

for new workloads to be accurately mapped. The training data requirements are

made more difficult by the fact that training data is only useful for one hardware

configuration and DBMS version pair, and so building a general use tuning service

would require a large range of workloads executed on huge numbers of machines,

under many commonly used DBMS versions. These requirements make OtterTune

perfectly suited for use in a large scale cloud computing environment, like AWS,

Azure, or Google cloud, where there are a finite number of hardware configura-

tions and a large amount of databases that could potentially need to be tuned.

The results of the mapping evaluation also show that there is potential for

mapping errors when system metrics are similar, but the workloads are very dif-

ferent. In most cases this issue would be mitigated by a larger variety of workloads

to choose from or by gathering more tuning data from the target workload as

tuning is performed. However, in edge cases where the system metrics may closely

align but the logical structure of the workload differs, inaccuracies in mapping

would mean that a workload is tuned from data that isn’t representative of its

actual performance. This could potentially cause initial bad knob configuration

recommendations and slow down tuning until enough data is gather to improve

mapping accuracy. In some cases, more data might not improve mapping, and

tuning could become impossible. These issues may be mitigated by including data

about the query structure in the mapping process, to differentiate between very

different workloads with similar system metrics.

CHAPTER 6

FUTURE WORK

OtterTune takes an innovative approach to tuning in that it is the first major

database tuner to learn from and reuse previous configurations, but it still is lim-

ited in that it only compares workloads across system metrics. As demonstrated in

Figure 5.1 there is potential for very different workloads to be inaccurately mapped

if the logical structure of the database is ignored during tuning. One interesting

future direction for automated database tuning would be to incorporate the logical

structure of the database as a feature when mapping, or to include details of the

query plan in mapping workloads. Plans for future work involving OtterTune

include vectorizing query plans and using them as a feature in a Factorization

Machine to generate more accurate workload mapping and tuning results.

6.1 Factorization Machines
Factorization Machines [8] are a supervised learning technique that is mixture

of Matrix Factorization and Support Vector Machines. They are recognized as

being highly efficient for classification and regression problems on large sparse

datasets, and are commonly used for prediction of user behavior, specifically click

prediction [8]. Factorization Machines can also be used to generate recommen-

dations, such as generating movie recommendations based on data about other

movies that a user has seen. A diagram of a Factorization Machine setup for movie

recommendations is seen in Figure 6.1. Another appealing quality of Factorization

Machines is that they have a linear complexity, and do not rely on support vectors

like SVMs, which makes them an efficient way to make predictions [8].

21

Figure 6.1. An example of a factorization machine for generating movie recom-
mendations. [8]

Because Factorization machines perform well in user behavior prediction, we

believe that they might have applications in predicting workload behavior. Specif-

ically, we believe that there is potential for Factorization machines to be able to

predict the performance of a workload under a given knob configuration, given

information about previous workloads and their performance under different con-

figurations. An example of how a Factorization Machine might be arranged for

this purpose is given in Figure 6.2. Using a Factorization Machine in this way

wouldn’t solve the problem of generating new knob configurations, but it could

serve as an additional tool for evaluating knob recommendations before they’re

tested. Additionally, by changing the inputs to the feature vector, Factorization

Machines could be used to give better recommendations for workload mapping.

Figure 6.2. An example of a factorization machine for predicting performance of a
workload under different knob configurations.

CHAPTER 7

CONCLUSIONS

In this thesis I presented an explanation and analysis of OtterTune’s approach

to automated database tuning, as well as the background and motivation for the

OtterTune Project. I implemented a lightweight version of OtterTune using much

of the same analysis code, but with a newly developed training data generator

and parser. Evaluations of mapping workloads using this new tuner showed that

workload mapping using the OtterTune approach is between 70-85% accurate, but

that certain workloads had significantly lower accuracy of around 40% while oth-

ers had near perfect accuracy. In general, workload mapping accuracy increased

when more samples from a workload were used for mapping and characteriza-

tion, but there are potential improvements to be made in mapping by considering

logical features of the workload such as query plan or table schema. Evaluations

of tuning performance on well known workloads showed significant increases in

throughput, up to a 7x increase from the default knob configuration values in

just three tuning iterations. For workloads that OtterTune hadn’t previously seen,

and that behaved differently from all training workloads, didn’t see significant

changes in performance during tuning. The concept of a factorization machine

based approach to workload characterization and database tuning was introduced,

which will be the focus of future work.

23

Bibliography
[1] 19.4. Resource Consumption. URL: https://www.postgresql.org/docs/9.6/

runtime-config-resource.html.

[2] 19.5. Write Ahead Log. URL: https : / / www . postgresql . org / docs / 9 . 6 /
runtime-config-wal.html.

[3] M. Calzarossa and G. Serazzi. “Workload characterization: a survey”. In: 81
(Aug. 1993), pp. 1136–1150.

[4] cmu-db. cmu-db/ottertune. Nov. 2018. URL: https://github.com/cmu-db/
ottertune.

[5] Djellel Eddine Difallah et al. “OLTP-Bench: An Extensible Testbed for Bench-
marking Relational Databases”. In: PVLDB 7.4 (2013), pp. 277–288. URL: http:
//www.cs.cmu.edu/~pavlo/static/papers/oltpbench-vldb.pdf.

[6] EnterpriseDB. 3.1.3.1 Top Performance Related Parameters. URL: https://www.
enterprisedb . com / docs / en / 10 . 0 / EPAS _ Guide _ v10 / EDB _ Postgres _

Advanced_Server_Guide.1.24.html.

[7] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of
Machine Learning Research 12 (2011), pp. 2825–2830.

[8] Steffen Rendle. “Factorization Machines”. In: Proceedings of the 2010 IEEE
International Conference on Data Mining. ICDM ’10. Washington, DC, USA:
IEEE Computer Society, 2010, pp. 995–1000. ISBN: 978-0-7695-4256-0. DOI:
10 . 1109 / ICDM . 2010 . 127. URL: http : / / dx . doi . org / 10 . 1109 / ICDM .
2010.127.

[9] TPC-C. URL: http://www.tpc.org/tpcc/default.asp.

[10] Dana Van Aken et al. “Automatic Database Management System Tuning
Through Large-scale Machine Learning”. In: Proceedings of the 2017 ACM
International Conference on Management of Data. SIGMOD ’17. 2017, pp. 1009–
1024. URL: http://db.cs.cmu.edu/papers/2017/p1009-van-aken.pdf.

[11] Philip Yu et al. “Workload characterization of relation database environ-
ments”. In: 18 (May 1992), pp. 347–355.

[12] Yuqing Zhu et al. “BestConfig: Tapping the Performance Potential of Systems
via Automatic Configuration Tuning”. In: Proceedings of the 2017 Symposium
on Cloud Computing. SoCC ’17. Santa Clara, California: ACM, 2017, pp. 338–
350. ISBN: 978-1-4503-5028-0. DOI: 10.1145/3127479.3128605. URL: http:
//doi.acm.org/10.1145/3127479.3128605.

