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Abstract

Since cloud users do not have direct visibility into the cloud provider’s infrastructure, cloud
users generally depend on the information provided by the cloud providers when they need
to know about states of their virtual resources. In this document, we introduce an approach
to monitor the update time of infrastructure level virtual firewalls (called Security Group)
from the cloud user’s side and technical details for practical deployment of this approach in
an OpenStack environment.
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Figure 1: Monitoring update times of a virtual firewall

1 Introduction

In a cloud environment, cloud users can simply operate their virtualized data centers on the
neat abstract layer; all complicated infrastructure level details are handled by the provider
under the hood. However, such ‘too good’ abstraction also limits the visibility of the cloud
users into their own resources. For instance, even if a cloud user needs to know about detailed
states of his resources, there would be simply no way for him to obtain such information
if the cloud provider does not explicitly provide it. In addition, for security and privacy, it
could be undesirable for the cloud providers to reveal such additional infrastructure level
information to the users.

In this context, we introduce an approach for cloud users to monitor their virtual resources.
Especially, this document aims to provide technical details about a mechanism to monitor
the update time of infrastructure level virtual firewalls (called Security Group) from a cloud
user’s virtual machine (VM). We describe the approach based on an OpenStack environment
where virtual firewalls are implemented using Linux Iptables and Connection Tracking
System [4]. Similar approaches can be applied to other IaaS cloud platforms.

2 Mechanism

Figure 1 illustrates a basic architecture for monitoring update times of virtual firewalls. When
a cloud controller receives a request to add a firewall rule allowing a probing packet p, it
forwards the request to the local agent, the agent lets the iptables add the rule correspondingly,



and the rule is finally added to the iptables (at time t). Meanwhile, a series of probing packets
p is being sent to the monitoring VM and, naturally, only the probing packets arrived at
the iptables after t can be successfully sent to the VM. Therefore, the VM can estimate the
update time of the iptables from the arrival times of probe packets.

In Section 3, we describe different strategies to deploy this technique under various environ-
mental conditions. In Section 4, we describe practical network protocols and firewall rules
that can be utilized for this technique.

3 Deployment Environment

3.1 With helper nodes

The simplest way to probe changes in iptables is to have another VM (say a helper node)
send (or receive) the probe packets. For example, to probe an egress rule xi, the VM sends
probe packets to the helper node which replies once it receives any probe packet for xi.
The problem with this approach is it requires one more VM. Though this might be a trivial
problem in cases where the attacker has its own dedicated resources, it can be a challenging
problem in some other cases where the attacker uses a compromised node in an isolated
environment.

3.2 Without helper nodes

In case there exist no available helper nodes, the VM should be able to send probe packets
which can go through the firewall and come back to itself. We term packets with such
property ‘boomerang packets’. To be more precise, we define a boomerang packet for a
firewall rule xi is a uniquely identifiable packet that (i) leaves from the source node and (ii)
makes itself to come back to the source (iii) without bypassing1 the firewall rule xi. There are
several mechanisms by which this can be accomplished, and different ones work in different
network environments. In the following paragraphs, we discuss different environmental

1In a cloud environment, sometimes, a packet may legitimately pass through a virtual firewall by an implicit
rule. Since this implicit rule is not visible to cloud users, the packet may seemingly bypass a virtual firewall
from the cloud user’s perspective. Because we describe this attack from the cloud user’s perspective, we also
say the packet bypasses the firewall



setups (from the simplest to the most complicated) and suitable mechanisms under each
setup.

Multiple interfaces – Layer-2 boomerang: The simplest (and least common) environment is
the case in which the VM has multiple virtual interfaces connected to the same virtual net-
work (i.e., the same virtual switch). In this environment, the VM can generate a boomerang
packet by simply setting the source layer-2 (MAC) address to one interface’s MAC and
the destination to the MAC address of the other interface. The switch will simply forward
packets from one interface to the other.

Multiple interfaces – Layer-3 boomerang: If the two virtual interfaces are connected to
different networks, but there is routing between those networks, the VM can apply a similar
approach; instead of setting the MAC addresses, it can set the source and destination layer-3
(IP) addresses of the boomerang packet.

Single interface – Layer-2 boomerang: If the previously described conditions are not met,
the attacker may try similar techniques with a single interface if the network environment
satisfies some other conditions. For example, the layer-2 address manipulation technique
may work if the connected virtual switch does not drop packets with the same source and
destination MAC addresses. However, we have found this to be unlikely in most production
clouds, since it is one of the most primitive features of layer-2 switch devices to maintain
the MAC address table and forward/drop packets based on the table. According to our test
results, this layer-2 boomerang packet is silently dropped by virtual switches in OpenStack
Icehouse (released in 2014) and Mitaka (released in 2016).

Single interface – Layer-3 boomerang: As with the case of the layer-2 boomerang, if the
gateway router is allowed to forward packets through the interface that the packets came
from, the layer-3 address manipulation technique works with a single interface. To be
specific, if the attacker VM send its gateway router a fabricated packet whose source and
destination IP addresses are its own but with the destination MAC address of the gateway’s,
the gateway router will naturally forward the packet back to the destination, the VM.

In contrast to layer-2 switch devices, this ‘U-turn’ forwarding is commonplace for routers –
in a network, even if the source node does not know the correct route to a destination, its
gateway router is in charge of forwarding its packet through a proper route; therefore, most
commercial routers are configured to forward a packet back through its ingress port in case
its routing table is indicating the port. Though some routers may also send an ICMP redirect
packet to the source node to ‘recommend’ it to use the better route, they still forward the
original packets back to its destination.



There can of course be commercial routers which are manually configured to drop packets
with the same source and destination IP addresses. However, we argue that it is unlikely to
be found in our target environment because (1) in a current cloud environment, the virtual
routers are typically less feature-rich than commercial routers, and (2) it is not a common
practice for operators to block this type of boomerang packets if they are not generated
aggressively to be suspected as DoS attacks. We have tested the behavior of virtual routers
in two different versions of OpenStack, Icehouse (released in 2014) and Mitaka (released
in 2016). In both versions, the virtual routers were not prevented from forwarding packets
destined to the source, and they were also configured to send ICMP redirect packets. In
addition, in both versions, there were no configurable options related to this issue not only
for cloud users but also for cloud providers. In the following Section 4, we explain details
about protocols and rules for the single-interface layer-3 boomerang scenario.

4 Protocols and Rules

When we make a firewall rule to allow a certain type of connections, it is natural to allow
both request packets in one direction and its counterpart responses in the opposite direction.
For instance, if you make a rule to allow SSH connections from your external terminal
node (say A) to your VM in a cloud (say B), you must allow not only TCP traffic from A
to B’s port 22, but also TCP traffic from B’s port 22 to A’s port used for the connection.
Then, should we always make a pair of (or more) rules to allow a type of connection?
Fortunately, the answer is No since security group rules in the most of the cloud platforms
are stateful [2, 1, 3].

In OpenStack, the statefulness of security group rules is enabled by Connection Tracking
System (conntrack) [4]. Briefly speaking, conntrack is a module that estimates current
states of network connections by inspecting the header of each packet. This connection state
information can help iptables to dynamically filter the packets related to existing connections.
In the previous SSH example, if we set a firewall rule for A to B’s port 22 and if we send a
SSH request from A’s port 56789 to B’s port 22, the conntrack will tell iptables that packets
from B’s port 22 to A’s port 56789 is related to an existing connection, and then the iptables
will implicitly let the egress packets pass through the firewall.

For monitoring infrastructure level activities through firewalls, a problem with conntrack
is that it may or may not let our boomerang packets work: probe packets may be silently
dropped at the firewall or bypass the firewall rules, depending on protocols, rules and system
versions. Therefore, the attacker must be careful when they choose protocols and rules for
the side channel. In this section, we introduce several representative protocols and rules for



Table 1: Protocols and Rules for probing
EB: the probe may bypass the egress-firewall even after the allowing rule is deleted, IB: the probe bypasses the ingress-firewall, D: the
probe is silently dropped by firewall. For the case of EB, the attacker need to consider the connection time-out duration. For the case
of IB and D, the probing mechanism will not work. In OpenStack Juno, a connection can be reused for probing a rule if the previous
connection is timed out. In OpenStack Mitaka, a connection is terminated when the corresponding rule is deleted, so a connection can
be reused regardless of the state of the previous connection.

Mechanism Rule Direction Juno Mitaka Note

ICMP Echo Rquest-Reply
Egress EB OK Default connection time-out: 30 sec.

No ingress rule is needed.
Ingress IB IB

Request-type ICMP Boomerang
Egress EB OK

Default connection time-out: 30 sec.
Ingress EB OK

Non-repqeust-type ICMP Boomerang
Egress D OK

Does not make any connection entry.
Ingress D OK

TCP SYN or ACK Boomerang
Egress EB OK Default connection time-out:

120 sec (SYN), 300 sec (ACK).Ingress EB OK

Other TCP Boomerang
Egress D OK

Does not make any connection entry.
Ingress D OK

UDP Boomerang (sport 6= dport)
Egress EB OK

Default connection time-out: 30 sec.
Ingress EB OK

UDP Boomerang (sport = dport)
Egress EB OK Default connection time-out: 120 sec.

No ingress rule is needed.
Ingress IB IB

Boomerang using Other Protocols
Egress EB OK Default connection time-out: 600 sec.

No ingress rule is needed.
Ingress IB IB

generating boomerang packets.

4.1 ICMP Ping

Before we talk about the details of boomerang packets and conntrack, we first start with the
simpler protocol – ICMP ping.

Assume an attacker’s VM (say A) has a reachable node (say B) in the network, and the node
B replies to ICMP echo requests. Under this setup, the attacker VM A can use ICMP echo
request/reply as probe packets for a firewall rule:

Allow Egress ICMP type:8 code:0 dst:B_IP



To probe if this firewall rule is established, the attacker VM can start to ping the node B with
the probe packets as follows:

srcIP:A IP dstIP:B IP proto:ICMP
type:8 code:0 id:123 seq:0-65535

If a probe packet successfully pass through the firewall rule, it will arrive at the node B, and
the node will send back a corresponding echo reply packet with the same id and sequence
number. This echo reply packet can also successfully pass through the firewall because
the conntrack makes a special ingress rule for it when it first sees the counterpart echo
request packet2. Therefore, the attacker node can estimate the time when the firewall rule is
established by checking the departure time of the echo request packet which corresponds to
the firstly arrived echo reply packet.

However, this approach may not work if the attacker node reuses the same rule. Once the
conntrack observes a ping request packet, it creates a new connection entry for the ping
based on the following five tuples of the packet – source IP, destination IP, ICMP type,
ICMP code and ICMP ID. From this point, any packets that have the same tuples bypass the
firewall until the connection entry expires. This means, in the previous example, except for
the very first ping request packet, every ping request packets generated by the ping process
will bypass the firewall, even after the rule is deleted.

For this reason, the attacker cannot simply use the vanilla ping program, which does not
support an option to change ICMP code and ID values. Alternatively, if the attacker can
directly generate ICMP echo request packets, the attacker can use ICMP rules and probe
packets as follows:

<Rule x>
Allow Egress ICMP type:8 code:k

<Probes for the rule x>
srcIP:A IP dstIP:B IP proto:ICMP
type:8 code:k id:0-65535 seq:0-65535

2To be more precise, the iptables will check the echo reply packet against a special rule, and the rule will
query the conntrack to determine the packet is related or belongs to any existing connections.



where k ∈ {0, . . . , 255}. Here, there exist 256 of different ICMP echo request rules
(differentiated by the code). Also, each rule has 65,536 of different matching connection
entries (differentiated by the ID), each of which has 65,536 different uniquely identifiable
packets (differentiated by the sequence number). This means, the attacker can reuse the
same rule and still avoid egress-firewall bypassing by using different ID values. In practice,
this number of rules is enough to continuously monitor iptables update events. For example,
with default conntrack and OpenStack setup, the time-out duration of ICMP connection
entry is 30 seconds3 and OpenStack’s iptables update period is 2 seconds.

The egress-firewall bypassing problem may or may not happen depending on the specific
cloud platform and its configuration. For example, in earlier versions of OpenStack, we can
observe the egress-firewall bypassing problem. Likewise, according to the Amazon AWS
user guide [1], AWS security groups also have the same firewall-bypassing phenomenon4.
However, in newer versions of OpenStack, the same problem does not occur because the
connection entries in the conntrack are explicitly terminated when their corresponding
firewall rules are deleted [3].

A limitation of this approach is that we cannot use ingress rules for probing; since ICMP
request packets make corresponding reply packets bypass the firewall, ingress rules matching
these ICMP echo reply packets can never be probed through this mechanism. This can be a
serious limitation depending on the situation of the attacker VM, which we will discuss in
Section 4.6.

4.2 ICMP Boomerang Packets

The aforementioned limitation of ICMP ping as a probing mechanism is fundamentally
because the conntrack module expects the ingress probe packet to come when it first sees
the egress probe packet. This means, if an ingress probe packet is seemingly unrelated to its
egress counterpart, the pair of packets can be utilized for probing regardless of the behavior
of the conntrack module.

Fortunately, we can make use of the previously introduced layer-3 boomerang mechanism
to make probe packets with this property. For example, if we make a layer-3 boomerang

3The connection entry expires if no related packet comes for the time-out duration.
4Since cloud providers do not reveal their infrastructure level details, it is difficult to precisely understand

internal connection tracking mechanism of each cloud provider. However, for Amazon AWS, the description
about behavior of their security group’s connection tracking mechanism is exactly the same as that of Linux
conntrack-tool. Thus, we may guess that AWS utilizes similar iptables and connection tracking system to
implement their security group system.



(a) Iptables chain of OpenStack Juno

(b) Iptables chain of OpenStack Mitaka

Figure 2: Snapshot of exemplary Iptables chains of different OpenStack. We can see the
rule to drop INVALID packet is placed at the top of the iptables chain in OpenStack Juno,
but at the bottom in OpenStack Mitaka

packet with ICMP echo request header as follows:

<Egress Probe Packet>
srcMAC:A MAC dstMAC:GW MAC
srcIP:A IP dstIP:A IP proto:ICMP
type:8 code:0 id:123 seq:355

(where GW MAC refers to the MAC address of the gateway), then the gateway will forward
this packet back to A after it changes MAC addresses as follows:

<Ingress Probe Packet>
srcMAC:GW MAC dstMAC:A MAC
srcIP:A IP dstIP:A IP proto:ICMP
type:8 code:0 id:123 seq:355

In contrast to the case of ICMP ping, this ingress probe packet does not bypass the ingress
firewall because this does not match what the conntrack expects – conntrack waits for the
corresponding ICMP echo reply. Therefore, as long as we do not send ICMP echo replies,
the boomerang probe packet goes through the ingress-firewall and may or may not be filtered



depending on the status of the ingress firewall rule. This feature allows us to utilize both the
ingress and egress rules for probing the iptables update time.

However, the result may vary depending on ICMP type. For request-type ICMP packets
(i.e., type ∈ {8, 13, 15, 17}), conntrack initializes a new connection once it observes an
egress packet and waits for the corresponding ingress packet as we described above. For
other ICMP types, however, the probe packets are recognized as neither initializing a new
connection nor related to any existing connection. Thus, conntrack marks these packets
as INVALID. A problem here is that the measure against INVALID packets may vary
depending on cloud platform. In older versions of OpenStack, every security group has
an implicit rule with highest priority that drops any INVALID packets, and this rule has
fundamentally prevented any INVALID packet to pass the firewall regardless of whether
there exist a matching rule or not. Yet, this has been corrected in the newer version of
OpenStack where other firewall rules have higher priority so that INVALID packets also
pass the firewall if there exist a matching rule. Figure 2 shows snapshots of iptables in
different OpenStack versions where the priority of the rule to drop INVALID packet is
different. For this reason, non-request-type ICMP cannot be used for probe packets in older
versions of OpenStack.

4.3 TCP Boomerang Packets

For TCP packets, since conntrack initializes a new connection only if it sees a TCP SYN or
ACK packet, the attacker may generate TCP SYN and ACK boomerang packets in a similar
manner to request-type ICMP boomerang packets. For example, for TCP rule:

<Rule x>
Allow Egress TCP dport:k dst:A_IP

the attacker make use of the following sets of probe packets:

<Probes for the rule x>
srcIP:A IP dstIP:A IP
proto:TCP flags:SYN or ACK
sport:0-65535 dport:k seq:0-4294967295

Other TCP packets (including TCP SYN/ACK) are treated as INVALID similar to non-
request-type ICMP packets, so they can be used as boomerang packets for newer versions of



OpenStack.

Compared to ICMP, a benefit of the TCP boomerang mechanism is that it has a larger
number of rules and connections available. Since TCP firewall rules are differentiated by the
destination port number and connections are differentiated by the source and destination port
numbers, there can be at most 65,536 different rules and each rule can have at most 65,536
different connections. However, in case of using a small number of rules and connections,
the TCP boomerang mechanism can have a disadvantage because the time-out duration for
TCP connection entries is generally longer than ICMP (120 seconds for TCP SYN and 300
seconds for TCP ACK).

4.4 UDP Boomerang Packets

The behavior of conntrack for UDP packets is very similar to that for request-type ICMP
packets: conntrack initiates a new connection when it sees an UDP packet and waits for
reply packets. Since UDP does not have any specific form of reply, the reply packets are
simply the packets with reversed IP addresses and port numbers. Therefore, for UDP firewall
rule:

<Rule x>
Allow Egress UDP dport:k dst:A_IP

the attacker can probe the iptables update time using probe packets as follows:

<Probes for the rule x>
srcIP:A IP dstIP:A IP proto:UDP
sport:0-65535 dport:k seq:0-4294967295

Since the ingress and egress probe packet have the same port numbers, conntrack does not
treat the ingress probe packets as the reply for the egress probes, and naturally the ingress
probe packets do not bypass the firewall. However, there is an exception: if the source port
and the destination port of a boomerang packet are the same, the ingress probe packet will
be recognized as a response to the egress probe packet by the conntrack. In this case, the
ingress will bypass the firewall as the case of ICMP ping.



4.5 Other Protocols

The Linux conntrack-tool supports TCP, UDP and ICMP, and takes a default behavior for
other protocols – initiate a connection once it sees a packet, and wait for reply packets
from the opposite direction. Here, a connection is differentiated only by three tuples –
protocol number and source/destination IP addresses. Therefore, if we create a boomerang
packet with a random protocol number, the ingress probe packet is always recognized as
a reply to the egress probe. This is almost identical to the case of ICMP ping and UDP
with the same port numbers. However, for these protocols, the default connection time-out
duration is much longer (600 seconds) and the numbers of available rules and connections
are fewer (253 rules and 1 connection per rule), so these protocols are less desirable for use
as boomerang packets.

Table 1 summarizes the properties of aforementioned probing mechanisms in two different
OpenStack versions.

4.6 Ingress rules or Egress rules?

When a rule is updated in iptables, the corresponding probe packets start to pass the firewall
and arrive back at the attacker VM. Therefore, we can measure the arrival time of the
first-arrived ingress probe packet and estimate the time when the iptables is updated. At this
point, there is a difference between ingress rules and egress rules. If an ingress rule is used,
the arrival time of the first passed probe packet is immediate to the iptables update time,
and the attacker VM can immediately notice the event. However, for egress rules, once the
iptables is updated, the first passed probe packet must make a round trip at first before it
arrives back to the attacker VM. In this case, the actual iptables update time will be close to
the departure time the probe packet so the VM should also search for the departure time of
the matching probe packet. Naturally, there will be longer delay between the notification
time and the actual event time in case of utilizing egress rules. Therefore, in cases when the
attacker needs immediate notification of the iptables update event , utilizing ingress rules
is preferred. In addition, since it is commonplace for cloud users to set an egress rule that
allows any traffic, utilizing egress rules may not be an available option in all cases.

However, there is one important benefit of utilizing egress rules. Since egress rules drops
probe packets just after the probe packets depart, most of the probe packets will not go
through the cloud provider’s network and the total amount of the probe traffic can be
significantly decreased. This property can be especially helpful to decrease the chance to be
detected from the cloud administrator’s network monitoring systems.



4.7 Probing deletion of rules

So far, we have estimated the update time of iptables by measuring the time when the
creation of a firewall rule is actually reflected on the iptables. This is because noticing
creation of rules is more immediate and definitive than deletion. When a rule is created,
a probe packet that first passes the firewall will be directly observed by the attacker VM.
However, when deleted, the VM will simply observe there is a long delay in arrival of the
probe packets since the last passed probe packet has arrived, so that it cannot judge whether
the delay is due to the update of the iptables or due to network congestion. Therefore, it is
necessary to conduct statistical analysis on the arrival and departure times of probe packets
to notice iptables update times from deletion of a rule, and this can be an serious obstacle
for reactive systems.

Nevertheless, using rule deletion time can be useful in case the number of available rules
are very limited and the immediate notification of the iptables update event is not required.
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