
ANALYZING SIMULTANEOUS ITERATIONS

by

Benwei Shi

A Senior Thesis submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Bachelor of Computer Science

School of Computing

The University of Utah

May 2018

Approved:

Jeff Phillips Date
Supervisor

H. James de St. Germain Date
Director of Undergraduate Studies
School of Computing

Ross Whitaker Date
Director
School of Computing

Jeff Phillips
April 10, 2018

ABSTRACT

Simultaneous Iteration (or Block Power Iteration) is a fast and simple method to ap-

proximate low-rank singular value decomposition for any matrix. This paper introduces

a new error bound of the approximation matrix, and analyzes it in the two dimensional

case. We show the error independent on the gaps between singular values, by providing a

formula for the required number of iterations.

CONTENTS

ABSTRACT . ii

CHAPTERS

1. INTRODUCTION . 1

2. BACKGROUND AND PRIOR WORK . 3

2.1 Matrix Approximation . 3
2.2 Simultaneous Iteration . 3

3. RESULT . 5

4. TWO DIMENSION ANALYSIS . 6

4.1 Bound error by angle . 7
4.2 Thinking in two dimension and proof idea . 8
4.3 Lemmas needed in two dimension . 8
4.4 Proof the Theorem in two dimension . 12

5. CONCLUSIONS . 14

REFERENCES . 15

CHAPTER 1

INTRODUCTION

In recent years, the demands on data number and dimension have grown rapidly. To

use or analyze data in such ultra big matrices, several new algorithms have been developed

to sketch approximations of these matrices. Usually an approximation is provided as a

matrix factorization containing the underlying principle structure of the original matrix.

But in the big-data regime, both dimension and data number can be too big even for

sketching the approximation by using standard algorithms, due to the time and/or space

complexity. Fortunately, most of the ultra high dimensional data are also ultra sparse, so

we can only represent the non-zero entries. And streaming is a solution for huge number

of data points.

Recent research has developed several algorithms to deal with this situation. One

of them is Sparse Frequent Directions described in [2] by Dr. Mina Ghashami, Dr. Edo

Liberty, and Dr. Jeff M. Phillips. They then found a simplified version called Fast Sparse

Frequent Directions (FSFD), which is composed by two algorithms. First is called Simulta-

neous Iteration (SimItr), a space efficient implementation of the popular randomized block

power method, designed to deal with high dimensional ultra sparse data and the low rank

approximation. Second is a efficient streaming-friendly Frequent Directions algorithm,

designed to merge the summaries by SimItr, makes the algorithm friendly to streaming

and parallelizing.

The algorithm FSFD is very successful in practice, but the error bound is still incom-

plete. Since the SimItr is a part of FSFD, we should analyze the error of SimItr first. There is

an unfinished error bound analysis by the authors of [2] and Dr. Christopher Musco. That

is basically only missing a proof of an appropriate error bound of SimItr. There are several

error bounds of Simultaneous Iteration studied, like Frobenius Norm Error, Spectral Norm

Error, and Per Vector Error, see [3]. However, for analyzing the error bound of FSFD, we

2

need to bound the error of Simultaneous Iteration in another way:

Vector Norm Error: kAwk2 � (1 � e)kPwk2 (1.1)

for any unitary vector w, where P is the low rank approximation of A by Simultaneous

Iteration. Let’s call this as the vector norm error, which is the subject of this paper. This

vector norm error can also answer a natural question about the accuracy of P, when kPwk2

is big, how we can guarantee that kAwk2 is also big. In particular, the goal will be to bound

the number of iterations required for SimItr in terms of e and only the dimensions of A, so

that this property holds.

CHAPTER 2

BACKGROUND AND PRIOR WORK

We provide the background about matrix approximation and Simultaneous Iteration

in this chapter.

2.1 Matrix Approximation
Singular value decomposition (SVD) is one of the best ways to understand the under-

lying principle structure of a matrix and many linear algebra concept. Using SVD, any

data matrix A 2 Rn⇥d can be written as A = USV
T. U and V have orthonormal columns

called A’s left and right singular vectors. S is a nonnegative diagonal matrix contain A’s

singular values in nondecreasing order.

The A’s best rank k approximation is Ak = UkSkV
T

k
, where Uk, Sk, and Vk contain only

top k columns of U, S, and V respectively. We can also project A to it’s top k singular

vectors Vk to get Ak = AVkV
T

k
. Finding out the top principle subspace is the most common

way to approximate a matrix. This implies that, to estimate the approximation, we only

need to estimate the top principle subspace.

To find out the dominant principle subspace, we can work on the A’s covariance matrix

A
T

A (or AA
T when n < d).

A
T

A = VSU
T

USV
T = VS2

V
T

It is well know that the singular values of A are the square roots of the eigenvalues of A
T

A

or AA
T, and the right or left singular vectors of A are the eigenvectors of A

T
A or AA

T.

2.2 Simultaneous Iteration
Simultaneous iteration is also called as block power iteration. The idea of SimItr is

to apply the power iteration to several vectors simultaneously. It takes an input matrix

A 2 Rn⇥d (d < n), and three parameters k ⌧ d, # 2 (0, 1), and d 2 (0, 1), generate a rank k

4

approximation P of A, within the error bound by e, with probability 1 � d.

Algorithm 1 SIMULTANEOUS ITERATION

Input: A 2 Rn⇥d, an integer k ⌧ d, and # 2 (0, 1), d 2 (0, 1)
t = f (d, e, d)
Z = qr((A

T
A)t

G)
[U, L] = SVD(Z

T
A

T
AZ) #s.t. ULU

T = Z
T

A
T

AZ

Return P =
p

LU
T

Z
T

It first calculates the required number of iterations t = f (d, e, d) using only d, e, and d,

initializes k random vectors by a random Gaussian matrix G with 0 mean and 1 standard

deviation. After t times, the subspace (A
T

A)t
G should converge to the subspace Vk with

suitable assumptions:

1. V
T

k
G is nonsingular.

2. There is enough gap between sk and sk+1.

We use d to represent the probability of getting G not good enough for the first assump-

tion.

The second assumption seems like the result should depend on the properties of A.

The algorithm returns high quality principal values, but the quality of the principal com-

ponents still depends on the gaps between the singular values. But we don’t have to worry

about it. We may not get a good subspace close to the top k principle subspace, just because

the gaps between the singular values are not big enough. In other words, if there are some

singulars are similar, then the importances of these subspace are also similar, failing to find

the right subspace in this case should not effect the error that much. Therefore, we can say

SimItr returns the dominant subspace if there are any. This makes it possible to find the

t for required e independently of the properties of A. If we measure the error by residue

spectral norm or Frobenius norm, the speed and accuracy are independent of singular

value gaps, the required number of iterations is t = O(log(d)/e) with probability at least

99/100. This property has been well studied by Musco [3], Woodruff [4], and Boutsidis,

Drineas, Magdon-Ismail [1]. However, none of these works address the vector norm error

bound we seek.

CHAPTER 3

RESULT

The result of this paper is summarized in Theorem 3.0.1. This theorem gives exact

required t for given e and d.

Theorem 3.0.1. Let A 2 Rn⇥2
be any given data matrix, g 2 R2

be a Gaussian random vector,

z be the unit vector of (A
T

A)t
g, P = Azz

T
. Then for a given e 2 (0, 1), it holds that kAwk2 �

(1 � e)kPwk2
for any unit vector w 2 R2

with probability 1 � d, as long as

t � log(e�1) + 2 log(d�1)

2 log
⇣

1+
p

e
1�

p
e

⌘ +
1
2

Sometimes, we see e as a constant, and only want the big O notation. Foe instance, to

analyze FSFD, we only need e = 1/2.

Corollary 3.0.1. In Theorem 3.0.1, when e = 1/2, we require

t = O

⇣
log(d�1)

⌘

Figure 3.1 on this page is the chart about a = 1 � e and t with d = 0.01.

5 10 15 20
t

0.2

0.4

0.6

0.8

1.0
a

Figure 3.1. Plot of function t = � log(1�a)�2 log(0.01)
2 log

⇣
1+

p
1�a

1�
p

1�a

⌘ + 1
2 .

CHAPTER 4

TWO DIMENSION ANALYSIS

In this section, we analyze the Simultaneous Iteration by proving the main result in two

dimension (the simplest) case. In other words, we want to show that, given an e 2 (0, 1)

close to 0, find out the required t as small as possible, so that, kAwk2 � (1 � e)kPwk2 with

a high probability.

In 2D, we have d = 2, k = 1. The input matrix A 2 Rn⇥2 has singular vectors V =

[v1, v2], U = [u1, u2], and singular values S = diag(s1, s2), s1 � s2 � 0. Since k = 1, there

is only 1 column vector in matrix Z, we let z1 = Z = SimItr(A, 1, e, d), let z2 be the null

space of z1, or a unit vector orthogonal to z1 in other words. Let q be the angle between

v1 and z1, g be the angle between Az1 and Az2. To simplify equations, we use s = s2
s1

. Let

w1 = hw, z1iz1 = z1z
T

1 w be the project vector of w onto z1, so that Pw = Az1z
T

1 w = Aw1.

Let w2 = w � w1 be the project vector of w onto z2. Figure 4.1 on the current page shows

most of the notations in a typical case.

v1

v2

z1

z2
w

w1

w2

q) s1u1

s2u2

Az1

Az2
Aw

Aw1

Aw2
g

Figure 4.1. w in V space and Aw in U space.

7

4.1 Bound error by angle
Lemma 4.1.1. Let A 2 Rn⇥2

, Z 2 R2⇥2 = [z1, z2] be an arbitrary basis of R2
space. Let

P = Az1z
T

1 , g be the angle between Az1 and Az2. For any unit vector w 2 R2

kAwk2/kPwk2 � 1 � cos2 g

Proof. Let w1 = hw, z1iz1 = z1z
T

1 w be the project vector of w onto z1, so that Pw =

Az1z
T

1 w = Aw1. Let w2 = w � w1 be the project vector of w onto z2.

We first expand kAwk2 and kPwk2 separately,

kAwk2 =kA(w1 + w2)k2 = kAw1 + Aw2k2

=kAw1k2 + kAw2k2 + 2hAw1, Aw2i

=kAw1k2 + kAw2k2 + 2kAw1kkAw2k cos g

and

kPwk2 =kAz1z
T

1 wk2 = kAw1k2

Combining above two, we have

kAwk2

kPwk2 =
kAw1k2 + kAw2k2 + 2kAw1kkAw2k cos g

kAw1k2

=1 +
kAw2k2

kAw1k2 + 2 cos g
kAw2k
kAw1k

�1 � cos2 g

The last inequality follows ax
2 + bx + c � c � b

2

4a
for a � 0, where x = kAwNk

kAwZk , a = 1,

b = 2 cos g, and c = 1. So c � b
2

4a
= 1 � (2 cos g)2

4 = 1 � cos2 g.

This result is a great starting point to analyze our problem in any dimension, not only

in two dimension. It replaces e with a well defined cos2 g without introducing any extra

error. Furthermore, this implies the next step, to find out the minimum angle between

all possible pairs of vectors in subspace AZ and AN, which is known as the minimum

principal angle between them. In two dimension case, there are only one principal angle,

which is also the angle between Az1 and Az2.

8

4.2 Thinking in two dimension and proof idea
By Lemma 4.1.1 we have kAwk2

kPwk2 � 1 � cos2 g. This gives us a way to think this problem

geometrically especially in two dimension case. To show that e can be close to 0, now

we can show cos2 g can be close to 0 instead, that is g can be close to p/2. Actually, we

will consider how the right angle between z1 and z2 changes by matrix A. For a vector x,

Ax = USV
T

x, we can think the change between x and Ax as a linear transformation by

matrix A, which is a map from V space to U space with squeeze and stretch. For examples,

Av1 = s1u1, and Av2 = s2u2, v1, v2 map to u1, u2 with scale s1, s2 respectively.

Now we can see there are two special cases, in both of them, g is guarantee to be exactly

p/2. First, when s = 1 (s1 = s2), the squeeze or stretch is uniform, so the angle remains

p/2. Second, when s = 0 (s2 = 0), we should get z1 = ±v1 as a result of Simultaneous

Iteration algorithm, and z2 = ±v2. So Az1 = ±s1u1, Az2 = ±s2u2. Since u1, u2 are

orthogonal to each other, therefore g = p/2.

Note that the Simultaneous Iteration algorithm with k = 1 is just a Power Method, it

can generate z1 very close to v1 with very high probability, as long as there is some gap

between s1 and s2, we analysis this in Lemma 4.3.3 for two dimensional case. Now we

can expand the above special cases to the more general case. First, when s is close to 1, g

is close to p/2, no matter where z1 lives, this is shown in Lemma 4.3.2. Second, when s is

small, z1 should close to v1, so we have g close to p/2 again, this is shown in Lemma 4.3.4.

See Figure 4.1 on page 6 for a better understanding.

To analysis g in this way, we introduce q as the angle between v1 and z1, so we can

measure the closeness between them by tan2 q. Lemma 4.3.1 express cos2 g as a function

of s and tan2 q. With all the mentioned lemmas, we can start to prove the theorem.

4.3 Lemmas needed in two dimension
In this section, we prove all the lemmas needed in the proof of the theorem in two

dimension. The ideas behind the lemmas have been stated in the last paragraph of the last

section.

Lemma 4.3.1. Let A 2 Rn⇥2
, let U, S, V

T = SVD(A), where V = [v1, v2], S = [s1, s2], let

s = s2
s1

. Let Z 2 R2⇥2 = [z1, z2] be an arbitrary basis of R2
space. Let q is the angle between v1

and z1, g be the angle between Az1 and Az2.

9

cos2 g =

�
s

2 � 1
�2

1 + s4 + s2(tan2 q + cot2 q)

Proof.

cos2 g =

✓
hAz1, Az2i
kAz1kkAz2k

◆2

=
(zT

1 A
T

Az2)2

(zT

1 AT Az1)(zT

2 AT Az2)

=
(zT

1 VS2
V

T
z2)2

(zT

1 VS2VTz1)(zT

2 VS2VTz2)
since A

T
A = VSU

T
USV

T = VS2
V

T

=

�
(VT

z1)TS2(VT
z2)

�2

((VTz1)TS2(VTz1)) ((VTz2)TS2(VTz2))

=

�
⌥s2

1 sin q cos q ± s2
2 sin q cos q

�2

�
s2

1 cos2 q + s2
2 sin2 q

� �
s2

1 sin2 q + s2
2 cos2 q

� V
T

z1 = (cos q, sin q), V
T

z2 = (cos(q ± p/2), sin(q ± p/2))

=

�
s2

1 � s2
2
�2

�
s2

1 + s2
2 tan2 q

� �
s2

1 + s2
2 cot2 q

� dividing by sin2 q cos2 q

=

�
1 � s

2�2

�
1 + s2 tan2 q

� �
1 + s2 cot2 q

� dividing by s4
1

=

�
1 � s

2�2

1 + s4 + s2
�
tan2 q + cot2 q

�

Lemma 4.3.2. Let s 2 [0, 1], given a fixed e 2 (0, 1), when s
2 � 1�

p
e

1+
p

e
,

(s
2�1)

2

1+s4+s2(tan2 q+cot2 q)
 e.

Proof.

�
1 � s

2�2

1 + s4 + s2(tan2 q + cot2 q)

=

�
1 � s

2�2

1 + s4 + 2s2 + s2(tan2 q � 2 + cot2 q)

=

�
1 � s

2�2

1 + s4 + 2s2 + s2(tan q � cot q)2


�
1 � s

2�2

1 + s4 + 2s2

=

✓
1 � s

2

1 + s2

◆2

Now we want

10

✓
1 � s

2

1 + s2

◆2

e

1 � s
2

1 + s2 
p

e

1 � s
2 s

2pe +
p

e

1 �
p

e s
2 �1 +

p
e
�

s
2 �1 �

p
e

1 +
p

e

Lemma 4.3.3. Let A 2 Rn⇥2
with singular vectors V = [v1, v2] and singular values s1 � s2 � 0,

let s = s2/s1. Let g 2 R2
be a i.i.d. Gaussian random vector, let z be the unit vector of (A

T
A)t

g,

let q be the angle between v1 and z. With probability 1 � d, after t iterations, tan2 q < s
4td�2

.

Proof. Let g
(0) = g, g

(t) = (A
T

A)t
g. Let q(0) be the angle between v1 and g

(0), q(t) = q be

the angle between v1 and g
(t)(or z).

v1

v2

g
(0)

q(0)

p
2 (1 � d)

Figure 4.2. Gaussian random vector appears in white direction with probability 1 � d.

This is a simple 2D Power Method process. g
(0) is the initial Gaussian random vector,

the distribution of its direction is uniform, with probability 1� d, we have g
(0) in the white

direction shown in the Figure 4.2 on the current page. That is

tan2 q(0)  tan2
⇣p

2
(1 � d)

⌘

11

Now let look at each iteration, or from (t� 1)th iteration to tth iteration in other words,

tan q(t) =
hV2, A

T
Ag

(t�1)i
hV1, AT Ag(t�1)i

=
V

T

2 A
T

Ag
(t�1)

VT

1 AT Ag(t�1) =
V

T

2 VS
2
V

T
g
(t�1)

VT

1 VS2VTg(t�1) =
s2

2 V
T

2 g
(t�1)

s2
1 VT

1 g(t�1) = s
2 hV2, g

(t�1)i
hV1, g(t�1)i

= s
2 tan q(t�1)

Combining above two, we have

tan2 q = tan2 q(t)  s
4t tan2

⇣p

2
(1 � d)

⌘

Since 0  d  1, we know 0  p
2 (1 � d)  p

2 , so

cot
⇣p

2
(1 � d)

⌘
= tan

⇣p

2
� p

2
(1 � d)

⌘
� p

2
d > d

, tan
⇣p

2
(1 � d)

⌘
< d�1

Finally, we have

tan2 q < s
4td�2

Lemma 4.3.4. Let s 2 [0, 1], d 2 [0, 1]. Given a fixed e 2 (0, 1), when s
2 < 1�

p
e

1+
p

e
,

(s
2�1)

2

1+s4+s2(tan2 q+cot2 q)
<

e, if

t � ln(e�1) + 2 ln(d�1)

2 ln
⇣

1+
p

e
1�

p
e

⌘ +
1
2

Proof.

�
1 � s

2�2

1 + s4 + s2(tan2 q + cot2 q)

<
1

s2(tan2 q + cot2 q)
since 0  s  1

 1
s2(cot2 q)

= s
�2 tan2 q

<s
4t�2d�2 by lemma 4.3.3

<

✓
1 �

p
e

1 +
p

e

◆2t�1

d�2

Now we want

12

✓
1 �

p
e

1 +
p

e

◆2t�1

d�2  e

()
✓

1 �
p

e

1 +
p

e

◆2t�1

 (e)d2

() (2t � 1) log
✓

1 �
p

e

1 +
p

e

◆
 log(e) + 2 log d

() t � log(e) + 2 log(d)

2 log
⇣

1�
p

e
1+

p
e

⌘ +
1
2
=

log(e�1) + 2 log(d�1)

2 log
⇣

1+
p

e
1�

p
e

⌘ +
1
2

4.4 Proof the Theorem in two dimension
We prove Theorem 3.0.1 in this section.

Proof. When s1 = 0, since 0  s2  s1, we know that s2 = 0, therefore kPwk =

kAzz
T

wk = 0. It is easy to see that, when kPwk = 0, a can be any value. We assume

kPwk 6= 0 and s1 6= 0 from now on. So we can do division by kPwk and s1.

By Lemma 4.1.1 we have:

kAwk2

kPwk2 � 1 � cos2 g

Where g is the angle between vectors Az1 and Az2.

Let q 2 [0, p/2], the angle between v1 and z1. By Lemma 4.3.1 we have:

cos2 g =

�
s

2 � 1
�2

1 + s4 + s2(tan2 q + cot2 q)

The rest of the proof is divided into two cases. Both of them show that (s
2�1)

2

1+s4+s2(tan2 q+cot2 q)


e under some conditions.

First, for a given e, when s
2 is big enough, cos2 g can be small enough.

When s
2 � 1 �

p
e

1 +
p

e
,

�
s

2 � 1
�2

1 + s4 + s2(tan2 q + cot2 q)
 e Lemma 4.3.2

Second, when s
2 is not big enough, we need t big enough to generate a good z1 with

small q, see Lemma 4.3.4, so that, cos2 g can be small enough with high probability.

When s
2 <

1 �
p

e

1 +
p

e
,

�
s

2 � 1
�2

1 + s4 + s2(tan2 q + cot2 q)
< 1 � a

with probability 1 � d, and require t � log(e�1) + 2 log(d�1)

2 log
⇣

1+
p

e
1�

p
e

⌘ +
1
2

Lemma 4.3.4

13

Now we can conclude that, given an e 2 (0, 1), with probability 1 � d, kAwk2 � (1 �

e)kPwk2, as long as

t � log(e�1) + 2 log(d�1)

2 log
⇣

1+
p

e
1�

p
e

⌘ +
1
2

.

CHAPTER 5

CONCLUSIONS

We analyzed the behavior of algorithm Simultaneous Iteration in two dimension in

detail. We provided the intuition and proof idea, all the proof detail, and the complete

proof of the main theorem in two dimension. This provide many details of the algorithm

in two dimension, and prepares for understanding it in high dimensions. Based on pastoal

progress, we are confident that this solution is a critical building block towards a full

analysis in the high-dimensional case where d and k are unbounded.

REFERENCES

[1] C. Boutsidis, P. Drineas, and M. Magdon-Ismail, Near-Optimal Column-Based Matrix

Reconstruction, Proceedings - Annual IEEE Symposium on Foundations of Computer
Science, FOCS, (2011), pp. 305–314.

[2] M. Ghashami, E. Liberty, and J. M. Phillips, Efficient Frequent Directions Algorithm for

Sparse Matrices, in Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining - KDD ’16, New York, New York, USA, 2016,
ACM Press, pp. 845–854.

[3] C. C. Musco and C. C. Musco, Randomized Block Krylov Methods for Stronger and Faster

Approximate Singular Value Decomposition, in Proceedings of the 28th International
Conference on Neural Information Processing Systems - Volume 1, MIT Press, apr 2015,
pp. 1396–1404.

[4] D. P. Woodruff, Sketching as a Tool for Numerical Linear Algebra, Foundations and
Trends R� in Theoretical Computer Science, 10 (2014), pp. 1–157.

