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Abstract

With Android being the most widespread mobile platform, protecting it against malicious
applications is essential. Android users typically install applications from large remote
repositories, which provides ample opportunities for malicious newcomers. In this paper,
we propose a simple, and yet highly effective technique for detecting malicious Android
applications on a repository level. Our technique performs automatic classification based
on tracking system calls while applications are executed in a sandbox environment. We
implemented the technique in a tool called MALINE, and performed extensive empirical
evaluation on a suite of around 12,000 applications. The evaluation yields an overall de-
tection accuracy of 93% with a 5% benign application classification error, while results
are improved to a 96% detection accuracy with up-sampling. This indicates that our tech-
nique is viable to be used in practice. Finally, we show that even simplistic feature choices
are highly effective, suggesting that more heavyweight approaches should be thoroughly
(re)evaluated.



Android Malware Detection Based on System Calls
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Abstract—With Android being the most widespread mobile
platform, protecting it against malicious applications is essential.
Android users typically install applications from large remote
repositories, which provides ample opportunities for malicious
newcomers. In this paper, we propose a simple, and yet highly
effective technique for detecting malicious Android applica-
tions on a repository level. Our technique performs automatic
classification based on tracking system calls while applications
are executed in a sandbox environment. We implemented the
technique in a tool called MALINE, and performed extensive
empirical evaluation on a suite of around 12,000 applications.
The evaluation yields an overall detection accuracy of 93% with
a 5% benign application classification error, while results are
improved to a 96% detection accuracy with up-sampling. This
indicates that our technique is viable to be used in practice.
Finally, we show that even simplistic feature choices are highly
effective, suggesting that more heavyweight approaches should
be thoroughly (re)evaluated.

I. INTRODUCTION

The global market for mobile devices has exploded in the
past several years, and according to some estimates the number
of smartphone users alone reached 1.7 billion worldwide in
2014. Android is the most popular mobile platform, holding
nearly 85% of the global smartphone market share [1]. One of
the main advantages of mobile devices such as smartphones
is that they allow for numerous customizations and extensions
through downloading and installing applications from public
application markets. The largest of such markets (e.g., Google
Play, Apple App Store) have more than one million applica-
tions available for download each, and there are more than
100 billion mobile device applications installed worldwide.

This clearly provides a fertile environment for malicious
activities, including development and distribution of malware.
A recent study [2] estimates that the total amount of malware
across all mobile platforms grew exponentially at the rate of
600% between 03/2012 and 03/2013. Around 92% of malware
applications found in this study target Android. In a related
study [3], similar statistics are reported — the number of
malicious applications in the Google Play store grew around
400% from 2011 to 2013, while at the same time the number
of malicious applications removed annually by Google has
dropped from 60% in 2011 to 23% in 2013. Due to the sharp
increase in the total amount of malware, the percentage of
removed malware dropped significantly despite the fact that
the absolute number actually increased from roughly 7,000
in 2011 to nearly 10,000 in 2013. While companies such
as Google regularly scan their official application market
using advanced, proprietary tools, this process is still often

ineffective as the above numbers illustrate. There are also
unofficial, open markets where often no scanning is being
performed, partially because there is a lack of solid freely
available solutions and tools. As a consequence, Android
malware detection has been an active area of research in the
past several years, both in industry and academia. Currently,
published approaches can be broadly categorized into manual
expert-based approaches, and automatic static- or dynamic-
analysis-based techniques.

Expert-based approaches detect malware by relying on
manually specified malware features, such as requested per-
missions [4] or application signatures [5], [6]. This requires
significant manual effort by an expert user, is often easy to
circumvent by malware writers, and targets existing, specific
types of malware, thereby not providing protection from
evolving malicious applications.

Static-analysis-based techniques typically search for simi-
larities to known malware. This often works well in practice
since new malware is typically just a variation of the existing
ones. Several such techniques look for code variations [7],
[8], which becomes ineffective when faced with advanced
code obfuscation techniques. Hence, researchers have been
exploring more high-level properties of code that can be
extracted statically, such as call graphs [9]. Unfortunately,
even those approaches can be evaded by leveraging well-
known drawbacks of static analysis. For example, generated
call graphs are typically over-approximations, and hence can
be obfuscated by adding many dummy, unreachable function
calls. In addition, native code is hard to analyze statically, and
hence malicious behavior can be hidden there.

Dynamic analysis techniques typically run applications in a
sandbox environment or on real devices in order to extract in-
formation about the application behavior. The extracted behav-
ior information is then automatically analyzed for malicious
behavior using various techniques, such as machine learning.
Recent techniques is this category often observe application
behavior by tracing system calls in a virtualized environ-
ment [10]–[12]. However, both static analysis and dynamic
analysis proponents made various claims, often contradicting
ones — including claims that are based on questionably
designed experiments — on effectiveness of malware detection
based on system calls.

In this paper, we propose a dynamic Android malware
detection approach based on tracking system calls, and we
implement it as a free and open-source tool called MALINE.
Our work was initially inspired by a similar approach proposed



for desktop malware detection [13], albeit we provide simpler
feature encodings, an Android-specific tool flow, and extensive
empirical evaluation. We provide several encodings of behav-
ior fingerprints of applications into features for subsequent
classification. We performed an extensive empirical evaluation
on a set of more than 12,000 Android applications. We analyze
how the quality of malware classifiers is affected across several
dimensions, including the choice of an encoding of system
calls into features, the relative sizes of benign and malicious
data sets used in experiments, the choice of a classification
algorithm, and the size and type of inputs that drive a dynamic
analysis. Furthermore, we show that the structure of system
call sequences observed during application executions conveys
in itself a lot of information about application behaviors. Our
evaluation sheds light on several such aspects, and shows
that the proposed combinations can be effective: our approach
yields overall detection accuracy of 93% with a 5% benign
application classification error. Finally, we provide guidelines
for domain experts when making choices on malware detection
tools for Android, such as MALINE.

Our approach provides several key benefits. By guarding
the users at the repository level, a malicious application is
detected early and before it is made publicly available for
installation. This saves scarce energy resources on the devices
by delegating the detection task to a trusted remote party,
while at the same time protecting users’ data, privacy, and
payment accounts. System call monitoring is out of reach of
malicious applications, i.e., they cannot affect the monitoring
process. Hence, our analysis that relies on monitoring system
calls happens with higher privileges than those of malicious
applications. In addition, tracking system calls entering the
kernel (and not calls at the Java library level) enables us to
capture malicious behavior potentially hidden in native code.
Since our approach is based on coupling of a dynamic analysis
with classification based on machine learning, it is completely
automatic. We require no source code, and we capture dynamic
behavior of applications as opposed to their code properties
such as call graphs; hence, our approach is mostly immune
to common, simple obfuscation techniques. The advantages
of our approach make it complementary to many existing
approaches, such as the ones based on static analysis.

Our contributions are summarized as follows:
• We propose a completely automatic approach to An-

droid malware detection on the application repository
level using system calls tracking and classification based
on machine learning, including a novel heuristics-based
encoding of system calls into features.

• We implement the approach in a tool called MALINE,
and perform extensive empirical evaluation on more than
12,000 applications. We show that MALINE effectively
discovers malware with a very low rate of false positives.

• We compare several feature extraction strategies and
classifiers. In particular, we show that the effectiveness
of even very simplistic feature choices (e.g., frequency of
system calls) is comparable to much more heavyweight
approaches. Hence, our results provide a solid baseline
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Fig. 1: Abstraction layers of the Android architecture.

and guidance for future research in this area.

II. PRELIMINARIES

A. System Calls

A system call is a mechanism for a program to request
a service from the underlying operating system’s kernel. In
Android, system calls are created by information flowing
through a multi-layered architecture depicted in Figure 1. For
example, an Android text messaging application, located at the
highest level of the architecture, might receive a user request
to send an SMS message. The request is transformed into a
request to the Telephony Manager service in the Application
Framework. Next, the Android runtime receives the request
from the service, and it executes it in the Dalvik Virtual
Machine.1 The execution transforms it into a collection of
library calls, which eventually result in multiple system calls
being made to the Linux kernel. One of the system calls will
be sendmsg:

sendmsg(int sockfd, const struct msghdr* msg,

unsigned int flags)

It is a system call used to send a message on a socket.
The generated sequence of system calls represents a low-level
equivalent of the SMS message being sent in the application
at the highest level of abstraction. Information flows in the
opposite direction in a similar fashion.

B. Machine Learning

Our malware detection problem is an instance of a classi-
fication problem in machine learning, and is solved using a
classifier algorithm. More specifically, it is an example of a
binary classification problem since it explores connections be-
tween the behavior of an application and its goodware/malware
(only two choices) label. The two groups are commonly called
a positive and a negative group. If a positive example (e.g., an
application in our case) is classified into the positive (resp.,
negative) group, we obtained a true positive/TP (resp., false
negative/FN). Analogously, we define true negative/TN and
false positive/FP. Table I gives standard measures of the
quality of classification prediction used in machine learning
based on these terms.

1As of Android version 5.0, the Dalvik Virtual Machine is replaced with
an application runtime environment called ART.



measure formula

accuracy, recognition rate TP+TN
P+N

errorrate, misclassification rate FP+FN
P+N

sensitivity, true positive rate, recall TP
P

specificity, true negative rate TN
N

precision TP
TP+FP

TABLE I: Standard measures of the quality of classifiers. P
(resp, N ) is the number of positive (resp., negative) examples.

Classification is usually conducted through individual mea-
surable heuristic properties of a phenomenon being investi-
gated (e.g., height of people, their weight, a number of system
calls in one run of an Android application). Such properties are
called features, and a set of features of a given object is often
represented as a feature vector. Feature vectors are stored in a
feature matrix, where every row represents one feature vector.

More about machine and statistical learning can be found
in related literature [14], [15].

III. OUR APPROACH

Our approach is a three-phase analysis, as illustrated in
Figure 2. The first phase is a dynamic analysis where we
track system calls during execution of an application in a
sandbox environment and record them into a log file. In
the second phase, we encode the generated log files into
feature vectors according to several representations we define.
The last phase takes all such feature vectors and applies
machine learning in order to learn to discriminate benign from
malicious applications.

A. Dynamic Analysis Phase

As our approach is based on concrete executions of appli-
cations, the first phase tracks and logs events at the operating
system level that an application causes while being executed
in a sandbox environment. The generated event logs serve
as a basis for the subsequent phases of our analysis. Unlike
numerous static analysis techniques, this approach reasons
only about events pertaining to the application that are actually
observed in the operating system.

A user’s interaction with Android through an application
results in events being generated at the operating system
level, which are rendered as system calls. In our work, we
automatically emulate this interaction as explained in detail
in Section IV. For that reason, we execute every application
in a sandbox environment and observe resulting system calls
in a chronological order, from the very beginning until the
end of its usage. The output of this phase is a log file
containing chronologically ordered system calls: every line
consists of a time stamp, the name of the system call, its
input values, and the return value, if any. Having the system
calls recorded chronologically enables us to construct various
feature vectors that characterize the application’s behavior with
different levels of precision, as explained in the next section.

More formally, let S = {s1, s2, . . . , sn} be a set of system
call names containing all the system calls available in the
Android operating system for a given processor architecture.
Then a system call sequence σ of length m, representing the
chronological sequence of recorded system calls in a log file, is
a sequence of instances of system calls σ = (q1, q2, . . . , qm),
where qi ∈ S is the ith observed system call in the log file.
Such call sequences are passed to the feature extraction phase.

B. Feature Extraction Phase

As explained earlier, how features are picked for the feature
vector is important for the machine learning classification task.
Therefore, we consider two representations for generating a
feature vector from a system call sequence σ. Our simpler
representation is concerned with how often a system call
happens, while our richer representation encodes information
about dependencies between system calls. Both representations
ignore system call information other than their names and
sequence numbers (e.g., invocation time, input and output
values), as it can be seen from the definition of σ. Once we
compute a feature vector x for every application under analysis
according to a chosen representation, we form a feature matrix
by joining the feature vectors such that every row of the matrix
corresponds to one feature vector.

1) System Call Frequency Representation: How often a
system call occurs during an execution of an application
carries information about its behavior [16]. A class of applica-
tions might be using a particular system call more frequently
than another class. For example, some applications might be
making considerably more I/O operation system calls than
known goodware, indicating that the increased use of I/O
system calls might be a sign of malicious behavior. Our
simple system call frequency representation tries to capture
such features.

In this representation, every feature in a feature vector
represents the number of occurrences of a system call during
an execution of an application. Given a sequence σ, we define
a feature vector x = [x1x2 . . . x|S|], where xi is equal to the
frequency (i.e., the number of occurrences) of system call si
in σ. In experiments in Section V, we use the system call
frequency representation as a baseline comparison against the
richer representation described next.

2) System Call Dependency Representation: Our system
call dependency representation was inspired by previous work
that has shown that a program’s behavior can be characterized
by dependencies formed through information flow between
system calls [17]. However, we have not been able to find a
tool for Android that would provide us with this information
and also scale to analyzing thousands of applications. Hence,
we propose a novel scalable representation that attempts to
capture such dependencies by employing heuristics. As we
show in Section V, even though our representation is simpler
than the one based on graph mining and concept analysis from
the original work [17], it still produces feature vectors that
result in highly accurate malware detection classifiers.
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Fig. 2: Maline tool flow divided into three phases.

For a pair of system calls qi and qj in a sequence σ,
where i < j, we define the distance between the calls as
d(qi, qj) = j − i. We then approximate a potential data flow
relationship between a pair of system calls using the distance
between the calls in a sequence (i.e., log file). For example,
if two system calls are adjacent in σ, their distance will be
1. Furthermore, let wg,h denote the weight of a directed edge
(sg, sh) in a system call dependency graph we generate. The
system call dependency graph is a complete digraph with the
set of vertices being the set of all the system call names S,
and hence having |S|2 edges. Then, wg,h for a sequence σ is
computed as:

wg,h =





0, if g = h∑
i<j<k,

qi=sg,qj=sh

1
d(qi,qj)

, otherwise

where k is the minimal index such that qi = qk and i <
k ≤ |σ|. Informally, the closer the pair is in a sequence, the
more it contributes to its edge weight in the graph. Hence,
instead of explicitly observing a data flow between system
calls, our representation captures it implicitly: it is based on
a simple observation that the closer a pair of system calls is
in a sequence, the more likely it is that there is a data flow
between the pair.

From a sequence σ, we compute weights wg,h for every
system call pair (sg, sh) ∈ S2. For g and h such that wg,h = 0,
we still consider edge (sg, sh) to exist, but with the weight
of 0. Since each application is executed only once during
our dynamic analysis phase, we generate one system call
dependency graph per application.

We generate a feature vector x of an application by taking
edge weights from its system call dependency graph. For every
directed edge (sg, sh) there is a corresponding feature in x,
and hence the dimensionality of x is |S|2. Given a sequence
σ, we define a feature vector x = [x1x2 . . . x|S|2 ], where xi
is equal to wg,h such that i = (g − 1) · |S|+ h.

C. Machine Learning Phase

We use the generated feature vectors for our applica-
tions (i.e., feature matrices) together with provided mal-
ware/goodware labels to build classifiers. The choice of a
classification algorithm for a given problem is not an easy one.
Hence, we experimented with several of the most popular and
effective ones: support vector machines (SVMs) [18], random
forest (RF) [19], LASSO [20], and ridge regularization [21].

Some classification models are tuned using various parameters
(e.g., linear kernel in SVMs depends on the regularization
parameter c), and hence the quality of classifiers heavily
depends on the chosen values for these parameters.

When a probabilistic classifier is used, a threshold that
appropriately tunes the trade-off between sensitivity and speci-
ficity can be studied using receiver operating characteristic
(ROC) curves [22]. A ROC curve is created by evaluating the
class probabilities for the model across a continuum of thresh-
olds. For each candidate threshold, the resulting sensitivity and
specificity are plotted. Generating ROC curves is especially
valuable to the users of malware detectors such as ours,
since they can use them to fine-tune sensitivity vs. specificity
depending on the intended usage. Hence, we generate ROC
curves for the most interesting classifiers.

We have chosen to use around 33% samples as malware
and the rest as goodware. Although this approach does not
generate a perfectly balanced design, (the same number of
malware and goodware samples), it tries to represent the
goodware population as best as possible while still keeping
the high percentage of malware samples and computational
costs at a practical level. In addition, we explored what can be
achieved by balancing the design through resampling strategies
of up-sampling (or over-sampling) the minority class and
down-sampling (or under-sampling) the majority class [23]
implemented through bootstrapping.

IV. IMPLEMENTATION

We implemented our approach in a tool called MALINE,
and Figure 2 shows its tool flow. The implementation comes
as a free software reproducible research environment in order
to foster Android security analyses and further research in
this area.2 MALINE heavily utilizes our own build of the
Android Software Development Kit (SDK). The SDK includes
the Android Emulator, which runs a virtual machine (VM)
with the Android operating system. Every application MALINE
analyzes is installed, executed, and monitored in the VM. The
tool primarily resides on the host machine and relies on the
Android Debug Bridge (adb) to communicate with the VM.

A. Host and Emulator

MALINE consists of a number of smaller components. We
implemented multiple interfaces on the host side, ranging from
starting and monitoring an experiment with multiple emulator

2The MALINE tool is available at https://github.com/soarlab/maline.



instances running in parallel to machine-learning differences
between applications based on the processed data obtained
from emulator instances. It is the host side that coordinates and
controls all such activities. For example, it creates and starts a
pristine installation of Android in an emulator instance, waits
for Android to boot, then installs an application in it, starts the
application, and waits for it to finish so it can analyze system
calls the application has made during its execution.

We use the emulator, which is built on top of QEMU [24],
in the dynamic analysis phase of our approach (see Figure 2).
For every application we create a pristine sandboxed environ-
ment since the emulator enables us to easily create a clean
installation of Android. It is important that each application
is executed in a clean and controlled environment to make
sure nothing is left behind from previous executions and to
be able to monitor the execution. Hence, every application’s
execution is completely independent of executions of all the
other analyzed applications.

1) Custom Build of Android SDK: In our implementation,
we used the Android 4.4.3 KitKat release, which utilizes
Android API version 19. However, we have our own build of
the Android system implemented on top of the official source
code repositories. The main reason for the custom build is
to prevent bugs we found in the Android SDK throughout
multiple releases. Our build is a compilation of parts from
different versions such that the functionality we needed from
the SDK works as expected.

Our build also features a modification to the Monkey
tool (we describe the tool later) to have better control over
experiments. The default Monkey version injects an event
into a system queue and moves onto the next event right
away, without waiting for the queued event to be executed.
However, to make Android more responsive, its developers
decided to drop events from the queue when under heavy
load. In our experiments, this would mean that events that
Monkey injects might be discarded, thereby compromising the
dynamic analysis of an application under test. To make sure
the Android system does not drop events, we have slightly
modified Monkey so that it waits for each event to be executed
before proceeding to the next event.

B. Automatic Execution of Applications

In order to scale to thousands of applications, our dynamic
analysis phase implements an automatic application execution
process. The process starts with making a clean copy of
our default virtual machine. The copy contains only what
is installed by default in a fresh installation of the Android
operating system from the Android Open Source Project. Once
the installation boots, we use adb to send an application from
the host machine to the VM for installation. Next, we start
the application and immediately begin tracing system calls
related to the operating system process of the application with
the strace tool. The system calls are recorded into a log file.

We simulate a user interaction with an Android device by
injecting both internal and external events into the emulator.
Internal events are sent to the application itself, such as

screen clicks, touches, and gestures. We use the Monkey
tool [25] as our internal event generator (see Figure 2). It
sends a parameterized number of the events to the application,
with a 100 ms pause period between consecutive events if
applicable3. Unlike internal events, which are delivered to the
application, external events are delivered to the emulator and
include events that come from interacting with an external
environment. In our experiments, for external events we focus
on generating text messages and location updates only since
those are sometimes related to malicious behaviors.

Even though a system calls log file, forming a chronological
sequence of low-level operations, contains rich information
(e.g., time stamp, input and output values), we preserve only
system call names and their order. We stop an application
execution when all internal events generated by Monkey are
delivered and executed. Finally, the log file is pulled from the
VM to the host machine for parsing.

In the next step we apply a feature vector representation,
either the system call frequency representation or the system
call dependency representation as explained in Section III.
The output is a textual feature vector file per log file, i.e.
per application, listing all the features. Finally, we combine
all the feature vectors into a single matrix where each matrix
row corresponds to one feature vector, i.e. one application.

C. Classification

Using the feature matrix generated from logs and previously
obtained labels denoting malware/goodware for applications,
we proceed with performing a classification. We experimented
with several classification algorithms: random forest, SVMs,
LASSO, and ridge regression. An implementation of SVMs
is based on libSVM [26], while all the other algorithms are
implemented in R [27] using the language’s libraries [28]. The
scripts are heavily parallelized and adjusted to be run on clus-
ters or supercomputers. For example, running a random forest
model on a feature matrix from a system call dependency
graph sample takes at least 32 GB of RAM in one instance of
5-fold cross-validation.

V. EVALUATION

We evaluated MALINE by utilizing a set of 32-core machines
with 128 GB of RAM running Ubuntu 12.04. The machines
are part of the Emulab testing infrastructure [29]. We wrote
scripts to automatize and parallelize all of our experiments,
without which our extensive experimental evaluation would
not be possible. In our experiments, we use only the x86
Android emulator; the resulting x86 system call set S has 360
system calls.

A. Input Data Set

In order to evaluate MALINE, we obtained applications from
Google Play as goodware and the Drebin dataset [30] as
malware. Before we could start using the collected applications

3The pause between two consecutive events may not be applicable for
actions that are time-dependent, such as screen tapping.



in MALINE, we needed to perform a filtering step. First, we re-
moved applications that we failed to consistently install in the
Android emulator. For example, even though every Android
application is supposed to be self-contained, some applications
had dependencies that were not installed at the time; we do
not include such applications in our final data set. Second,
we removed all applications that we could not consistently
start or that would crash immediately. For example, unlike
typical Android applications, application widgets are miniature
application views that do not have an Android Activity, and
hence they cannot be started from a launch menu.

Applications in the Drebin dataset were collected between
August 2010 and October 2012, and filtered by their col-
lectors to contain only malicious applications. The malicious
applications come from more than 20 malware families, and
are classified based on how an application is installed and
activated, or based on its malicious payloads [31]. The aim of
our work is not to explore specifics of the families; many other
researchers have done that. Therefore, in our experiments, we
make no distinction between malicious applications coming
from different families. The Drebin dataset contains 5560
malware applications; after filtering, our malicious data set
contains 4289 of those applications.

We obtained the benign application data set in February
2014 by utilizing a crawler tool. The tool searched Google
Play for free-of-charge applications in all usage categories
(e.g., communication, education, music and audio, business),
and randomly collected applications with at least 50,000
downloads. To get a good representation of the Google Play
applications while keeping the ratio of malware/goodware at
an acceptable level for future classification (see Section III-C),
we have decided to download roughly three times more
goodware applications than the number of the obtained mal-
ware applications. Hence, we stopped our crawler at 12789
collected Google Play applications; after filtering, our benign
data set contains 8371 of those applications. Note that we
make a reasonable assumption that all applications with more
than 50,000 downloads are benign; the extent to which the
assumption is reasonable has a direct impact on classification
results presented in this section. The list of all applications in
our input set is published in the MALINE repository.

B. Configurations

We explore effects of several parameters in our experiments.
The first parameter is the number of events we inject with
Monkey into the emulator during an application execution.
The number of events is directly related to the length of the
execution. We insert 1, 500, 1000, 2000, and 5000 events.
It takes 229 seconds on average (with a standard deviation
of 106 seconds) for an application execution with 500 events
and 823 (±816) seconds with 5000 events.4 That includes the
time needed to make a copy of a clean virtual machine, boot

4The standard deviations are relatively large compared to the averages
because some applications crash in the middle of their execution. We take
recorded system call traces up to that point as their final execution traces.

it, install the application, run it, and download log files from
the virtual machine to the host machine.

The second parameter is a flag indicating if a benign
background activity should be present while executing the ap-
plications in the emulator. The activity comprises of inserting
SMS text messages and location updates into the emulator.
We experiment with the activity only in the 500-Monkey-event
experiments, while for all the other experiments we include no
background activity.

It is important to ensure that consistent sequences of events
are generated across executions of all applications. As Monkey
generates pseudo-random events, we use the same pseudo-
random seed value in all experiments.

C. Experimental Results

The total number of system calls an application makes
during its execution directly impacts its feature vector, and
potentially the amount of information it carries. Hence, we
identified the number of injected events, which directly influ-
ences the number of system calls made, as an important metric
to track. The number of system calls observed per application
in the dynamic analysis phase of an experiment varies greatly.
For example, in an experiment with 500 Monkey events it
ranges from 0 (for applications that failed to install and are
filtered out) to over a million. Most of the applications in this
experiment had less than 100,000 system calls in total.

1) Feature Matrices: After the dynamic analysis and fea-
ture extraction phases (see Section III) on our filtered input set,
MALINE generated 12 different feature matrices. The matrices
are based on varying experiment configurations including: 5
event counts (1, 500, 1000, 2000, 5000), 2 system call repre-
sentations (frequency- and dependency-graph-based), and the
inclusion of an optional benign activity (SMS messages and
location updates) for experiments with 500 events. We refer to
these matrices with Xsize

rep , where rep ∈ {freq , graph} is the
used representation of system calls and size is the number of
generated events. In addition, we denote an experiment with
the benign background activity using ∗.

Obtained feature matrices generated according to the system
call dependency representation exhibited high sparsity. This is
not surprising since the number of possible system call pairs is
129600. Hence, all columns without a nonzero element were
removed from our matrices. Table II gives the dimensions of
the obtained matrices and their level of sparsity.

Both the frequency and dependency feature vector repre-
sentations resulted in different nonzero elements in the feature
matrices. However, those differences could have only a small
or no impact on the quality of classification, i.e., it might be
enough only to observe if something happened encoded as
zero/one values. Therefore, we have created additional feature
matrices by replacing all nonzero elements with ones hoping to
catch the effect of feature matrix structure on the classification.

2) Cross-validated Comparison of Classifiers: Reduced
feature matrices (just feature matrices from now on) and good-
ware/malware labels are input to the classification algorithms
we used: support vector machines (SVMs), random forest



full matrix reduced matrix
Type non-zero (%) columns non-zero (%)
X1

freq 12.48 118 38.09

X500
freq∗ 17.30 137 45.48

X500
freq 17.27 138 45.07

X1000
freq 17.65 136 46.72

X2000
freq 17.93 138 46.79

X5000
freq 18.15 136 48.04

X1
graph 1.49 11112 17.42

X500
graph∗ 3.01 15101 25.83

X500
graph 2.99 15170 25.61

X1000
graph 3.12 15137 26.79

X2000
graph 3.22 15299 27.34

X5000
graph 3.29 15262 27.97

TABLE II: Comparison of the number of nonzero elements in
the reduced (zero-columns removed) and full feature matrices.

(RF), LASSO, and ridge regression. To avoid possible over-
fitting, we employed double 5-fold cross-validation on the set
of applications to tune parameters and test models. To enable
comparison between different classifiers for different feature
matrices, the same folds were used in the model building
among different classification models. Prior to building the
final model on the whole training set, all classifiers were first
tuned by appropriate model selection techniques to derive the
best parameters. The SVMs algorithm in particular required an
expensive tuning phase: for each dataset we had to run 5-fold
cross-validation to find the best C and γ parameters. Hence,
we had to run the training and testing phases with different
values of C (ranging from 2−5 to 215) and γ (ranging from
2−15 to 23) for the 5 different splits of training and testing set.
In the end, the best kernel to use with SVMs was the Radial
Basis Function (RBF) kernel.

The built classifiers were then validated on the appropriate
test sets. Figure 3 shows measures of the quality of predic-
tion (i.e., accuracy, sensitivity, specificity, and precision; see
Table I) averaged between cross-validation folds for different
classifiers. For exact values that are graphically presented in
Figure 3 consult Table III in the Appendix. The threshold for
probabilistic classifiers was set at the usual level of 0.5. Since
changes to this threshold can have an effect on the sensitivity
and the specificity of classifiers, a usual representation of the
effect of these changes is given by ROC curves (see Figure 4
for an example). In the paper we give ROC curves only for the
random forest models (as the best classifiers judging from the
cross-validated comparison) with the largest number of events
(5000).

As it can be seen from Figure 3, 1-event quality measures
are consistently the worst in each category, often with a
large margin. This indicates the importance of leveraging
during classification the information gathered while driving
an application using random events. Moreover, the random
forest algorithm consistently outperforms all other algorithms
across the four quality measures. In the case where feature

matrices have weights instead of zeros and ones, it shows
only small variations across all the input parameters, i.e.,
the number of events inserted by Monkey, whether there was
any benign background activity, and the chosen feature vector
representation. Other classification algorithms perform better
on the dependency than on the frequency representation. Of
the other algorithms, the SVMs algorithm is most affected
by the presence of the background activity, giving worse
sensitivity with the presence, but on the other hand giving
better specificity.

When the weights in the feature matrices are replaced
with zeros and ones, thereby focusing on the structure of
the features and not their values (see Section V-C1), all the
algorithms consistently perform better on the dependency than
on the frequency feature vector representation. However, a
comparison within an algorithm based on the weights or
zeros and ones in the feature matrices is not straightforward.
Random forest clearly performs worse when zeros and ones
are used in the feature matrices. LASSO and ridge typically
perform better in all the quality measures apart from sensitivity
for the zeros and ones compared to the weights. We have not
performed the same comparison for 1-event experiments but
for random forest due to significantly higher resource demands
of the algorithms; we plan to have that data ready as well for
the final version of the paper.

If a domain expert in Android malware detection is consid-
ering to apply MALINE in practice, there are several practical
lessons to be learned from Figure 3. The expert can choose
to use only the random forest algorithm as it consistently
provides the best outcomes across all the quality measures. To
reduce the time needed to dynamically analyze an application,
it suffices to provide 500 Monkey events as an application
execution driver. Furthermore, the presence of the benign
background activity does not make much of a difference. On
the other hand, to provide few execution-driving events to an
application does not suffice. Finally, if the time needed to
learn a classifier is crucial and the expert is willing to sacrifice
sensitivity, the expert can choose the frequency feature vector
representation since it yields almost as good results as the
dependency one, but with far smaller feature vectors, which
implies a much smaller demand on computational resources.

Figure 4 shows that there is not much variability between 5
different folds from the cross-validation of the best-performing
algorithm, namely random forest. This indicates a high stabil-
ity of the random forest model on the input data set regardless
of the choice of training and test sets. It is up to the domain
expert to make the trade-off choice in tuning a classifier
towards either high sensitivity or specificity. The choice is
directly related to the cost of having false positives, the benefits
of having more true positives, etc. For example, the domain
expert may choose the dependency graph feature vector rep-
resentation and fix the desired specificity level to 95%; from
the right-hand side ROC curve in Figure 4 it follows that the
sensitivity level would be around 93%. Figure 6 in Appendix A
gives two more ROC curves for a random forest classifier
with up-sampling, where the variability is even smaller and



the overall performance of the classifier is better than when
no up-sampling is performed.

3) Exploring the Effect of Matrix Sparsity: Sparsity of fea-
ture matrices can sometimes lead to overfitting. Although we
significantly reduce the sparsity with the removal of columns
with all zeros, this just removes non-informative features and
sparsity is still relatively high (25% for graph representations).
To be sure that the effect seen in the cross-validation compar-
ison is real, we performed additional exploration by adopting
the idea of permutation tests [32].

Due to prohibitively high computational costs, only one
classification model was used to explore the effect of sparsity.
We chose the random forest classifier, since it gave the best
results on the cross-validation comparison, and the 5000-event
matrices. Prior to building a classifier, we permute application
labels. On permuted labels the same procedure (5-fold cross-
validation) as in Section V-C2 was used, thus obtaining
quality of prediction on the permuted sample. This procedure
is repeated 1000 times. Average accuracies of the obtained
classifiers were compared to the accuracy of the RF model
from Section V-C2 and they were all significantly lower — the
best is at 83% for the system call dependency representation.
Although 1000 simulations is not much in permutation models,
it still reduces the probability of accidentally obtaining high
quality results just because of sparsity.

4) Exploring the Effect of Unbalanced Design: Since the
number of malware applications in our input set is half the
number of goodware, we have an unbalanced design. In order
to explore if we could get better results using balanced designs
(the same number of malware and goodware), we employed
down-sampling and up-sampling through bootstrapping. We
used only the random forest classifier on different feature
matrices to keep computational costs feasible.

Up- and down-sampling exhibited the same effect on the
quality of prediction for all feature matrices: increasing sensi-
tivity at the cost of decreasing specificity. This does not come
as a surprise since we have equated the number of malware
and goodware applications, thereby giving larger weights to
malware applications in the model build. However, the overall
accuracy for models with down-sampling was lower than for
the unbalanced model, while for models with up-sampling
it was higher (up to 96.5% accuracy with a 98% sensitivity
and 95% specificity). To explore the stability of results under
down- and up-sampling, these methods were repeated 10
times; the standard deviation of accuracies between repeats
(on percentage scale) was 0.302. Figure 5 in Appendix A
provides a comparison of random forest classifiers with up-
and down-sampling, while Figure 6 shows ROC curves for a
random forest classifier with up-sampling.

VI. RELATED WORK

There is a large body of research on malware detection
in contexts other than Android (e.g., [12], [13], [17], [33]–
[39]). While our work was originally inspired by some of
these approaches, we primarily focus in this section on more
closely related work on Android malware detection. Ever since

Android as a mobile computing platform has become popular,
there is an increasing body of research on detecting malicious
Android applications. We split Android malware detection
work into static and dynamic analysis techniques.
Static Techniques. Static techniques are typically based on
source code or binary analyses that search for malicious
patterns (e.g., [6], [40]). For example, static approaches in-
clude analyzing permission requests for application installa-
tion [4], [41], [42], control flow [43], [44], signature-based
detection [5], [6], and static taint-analysis [45].

Stowaway [46] is a tool that detects over-privilege requests
during the application install time. Enck et al. [47] study
popular applications by decompiling them back into their
source code and then searching for unsafe coding security
issues. Yang et al. [48] propose AppContext, a static program
analysis approach to classify benign and malicious applica-
tions. AppContext classifies applications based on the contexts
that trigger security-sensitive behaviors, by using machine
learning techniques. It builds a call graph from an application
binary and after different transformations it extracts the context
factors via information flow analysis. It is then able to obtain
the features for the machine learning algorithms from the
extracted context. In the paper, 202 malicious and 633 benign
applications from the Google Play store are analyzed. App-
Context correctly identifies 192 malicious applications with
an 87.7% accuracy.

Gascon et al. [9] propose to use function call graphs
to detect malware. Once they extract function call graphs
from Android applications, they apply a linear-time graph
kernel in order to map call graphs to features. These features
are given as input to SVMs to distinguish between benign
and malicious applications. They conducted experiments on
a total of 135,792 benign applications and 12,158 malware
applications, detecting 89% of the malware with 1% of false
positives.
Dynamic Techniques. Dynamic analysis techniques consist
of running applications in a sandbox environment or on real
devices in order to gather information about the application
behavior. Dynamic taint analysis [49], [50] and behavior-based
detection [16], [51] are examples of dynamic approaches.
Our approach analyzes Android applications dynamically and
captures their behavior based on the execution pattern of
system calls. Some existing works follow similar approaches.

Dini et al. [51] propose a framework (MADAM) for An-
droid malware detection which monitors applications at the
kernel and user level. MADAM detects system calls at the
kernel level and user activity/idleness at the user level to
capture the application behavior. Then, it constructs feature
vectors to apply machine learning techniques and classify
those behaviors as benign or malicious. Their extremely pre-
liminary and limited results, considering only 50 goodware
and 2 malware applications, show 100% of an overall detection
accuracy.

Crowdroid [16] is another behavior-based malware detector
for Android that uses system calls and machine learning
techniques. As opposed to our approach, Crowdroid collects
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Fig. 3: Comparison of the quality of different classifiers through different quality measures (averaged on cross-validation folds).
Labels on the x axis are written in the short form where wo stands for without background, with stands for with background,
f stands for freq, g stands for graph, o at the end denotes that 0-1 matrices were used, and the numbers at the beginning
represent numbers of generated events. 1-event experiments have a 2.3% smaller set of applications.

Frequency

Specificity (%)

S
en

si
tiv

ity
 (

%
)

80
85

90
95

10
0

100 80

Graph

Specificity (%)

S
en

si
tiv

ity
 (

%
)

80
85

90
95

10
0

100 80

Fig. 4: ROC curves created from 5-fold cross-validation with random forest model on X5000
freq and X5000

graph matrices.



information about system calls through a community of users.
A lightweight application, installed in the users’ devices,
monitors system calls (frequency) of running applications and
sends them to a centralized server. The server produces feature
vectors and applies a K-means clustering to classify the ap-
plications as malware or goodware. Crowdroid was evaluated
on a limited number of goodware applications and only 2 real
malware applications, obtaining detection accuracies of 100%
for the first one and 85% for the second one.

VII. THREATS TO VALIDITY

Application Crashes. Given that Monkey generates sequences
of pseudo-random input events, it is to be expected that it can
drive an application into a state that does not handle certain
kinds of events, causing a crash. Depending on an experiment,
we observed from 29% to 49% applications crash, which could
bias our empirical results. However, it is important to note
that the crash rate of goodware and malware applications is
roughly the same. Therefore, application crashes do not bring
in a classification bias.
Age of Applications. Our goodware data set comprises of
applications downloaded in 2014, while our malware applica-
tions are from 2010 – 2012. Because the Android operating
system’s API evolved from 2010 to 2014, it could mean our
approach learns differences between APIs, and not differences
between benign and malicious behaviors. Unfortunately, we
could not obtain older versions of applications from Google
Play as it hosts only the most recent versions. In addition,
to the best of our knowledge, a more recent malware data
set does not exist. Hence, we manually downloaded 2010
– 2012 releases of 92 applications from F-Droid [52], an
Android application repository offering multiple releases of
free and open-source applications; we assumed the applica-
tions to be benign. We classified them using MALINE, and we
got specificity of around 88%. Compared to the specificities
from Figure 3, which were typically around 96%, this might
indicate that MALINE performs API difference learning to
some extent. However, a comparison with a much bigger set
of the same applications across different releases would need
to be performed to draw strong conclusions. This suggests that
the difference in age of applications used in our experiments
does not create a considerable bias.
Hidden Malicious Behavior. Malicious behavior may oc-
casionally be hidden and triggered only under very specific
circumstances. As our approach is based on random testing,
we might miss such hard-to-reach behaviors, which could
affect our ability to detect such application as malicious. Such
malware is not common though, and ultimately we consistently
get sensitivity of 87% and more using MALINE.
Detecting Emulation. As noted in previous work [35], [36],
[53], malware could potentially detect it is running in an
emulator, and alter its behavior accordingly. MALINE does not
address this issue directly. However, an application trying to
detect it is being executed in an emulator triggers numerous
system calls, which likely leaves a specific signature that can
be detected by MALINE. We consistently get sensitivity of 87%

and more using MALINE. If we are to assume that all the re-
maining malware went undetected only due to its capability of
detecting the emulator and consequently changing its behavior
without leaving the system call signature, it is at most 13%
of malware in our experiments that successfully disguise as
goodware. Finally, Chen et al. [35] show that only less than
4% of malware in their experiments changes its behavior in a
virtualized environment.
System Architecture and Native Code. While the majority
of Android-powered devices are ARM-based, MALINE uses
an x86-based Android emulator for performance reasons.
Few Android applications — less than 5% according to
Zhou. et al. [54] — contain native libraries typically compiled
for multiple platforms, including x86, and hence they can
be executed with MALINE. Nonetheless, the ARM and x86
system architectures have different system calls: with the x86-
based and ARM-based emulator we observed applications
utilizing 360 and 209 different system calls, respectively.
Our initial implementation of MALINE was ARM-based, and
switching to an x86-based implementation yielded roughly the
same classification results in preliminary experiments, while
it greatly improved performance.
Randomness in MALINE. We used only one seed value for
Monkey’s pseudo-random number generator; it is possible the
outcome of our experiments would have been different if
another seed value was used. However, as the seed value has
to be used consistently within an experiment consisting of
thousands of applications, it is highly unlikely the difference
would be significant.

VIII. CONCLUSIONS AND FUTURE WORK

We performed a preliminary feature selection exploration,
but were not successful in obtaining consistent results. The
reason could he a high dimensionality of the classification
problem (15,000 features for our dependency representation)
or a strong correlation between features. We left a more exten-
sive feature selection exploration for future work. Another idea
we want to explore in the future is combining several learning
techniques to investigate ensemble learning. We already do use
a form of ensemble learning in the random forest algorithm,
but we are planning to look at combinations of algorithms too.

In this paper, we proposed a free and open-source repro-
ducible research environment MALINE for dynamic-analysis-
based malware detection in Android. We performed an ex-
tensive empirical evaluation of our novel system call en-
coding into a feature vector representation against a well-
known frequency representation across several dimensions.
The novel encoding showed better quality than the frequency
representation. Our evaluation provides numerous insights into
the structure of application executions, the impact of different
machine learning techniques, and the type and size of inputs
to dynamic analyses, serving as a guidance for future research.
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Fig. 5: Comparison of the quality of random forest classifier with up- and down-sampling on different initial data sets (averaged
on 5 cross-validation folds). Labels on the x axis are written in the short form where wo stands for without background, with
stands for with background, f stands for freq, g stands for graph, o at the end denotes that 0-1 matrices were used, and the
numbers at the beginning represent number of events used. In the names of classifiers -u denotes up-sampling while -d denotes
down-sampling.
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Fig. 6: ROC curves created from 5-fold cross-validation with random forest model on X5000
freq and X5000

graph feature matrices with
up-sampling.



Accuracy Precision Sensitivity Specificity
Name lasso ridge rf svm lasso ridge rf svm lasso ridge rf svm lasso ridge rf svm

5000wo-g 82.69 87.84 93.71 90.69 71.70 80.85 92.51 85.63 80.80 83.99 88.63 87.15 83.66 89.81 96.32 92.49
2000wo-g 82.69 88.55 93.76 90.86 71.60 81.63 92.73 85.84 81.06 85.46 88.54 87.52 83.53 90.14 96.44 92.58
1000wo-g 83.43 88.75 93.78 90.91 72.92 81.50 92.87 86.27 81.25 86.41 88.44 87.03 84.54 89.96 96.51 92.89
500wo-g 83.55 89.17 93.85 91.10 73.22 81.47 92.94 86.95 81.08 88.06 88.61 86.75 84.80 89.74 96.55 93.32

500with-g 83.43 88.75 93.78 91.23 72.92 81.50 92.87 86.58 81.25 86.41 88.44 87.74 84.54 89.96 96.51 93.02
1wo-g 79.57 85.79 89.13 77.56 80.69 81.38 90.13 67.38 52.25 75.33 76.28 65.56 93.59 91.17 95.72 83.69

5000wo-f 78.02 81.91 93.52 87.15 64.58 69.22 92.20 77.30 77.74 83.98 88.35 87.95 78.15 80.85 96.16 86.72
2000wo-f 78.02 81.80 93.48 87.27 65.11 69.35 92.56 78.03 75.61 82.99 87.84 86.99 79.25 81.19 96.38 87.43
1000wo-f 78.52 82.18 93.44 88.21 66.38 69.98 93.06 82.53 74.26 82.96 87.16 82.71 80.72 81.77 96.67 91.03
500wo-f 79.05 82.40 93.66 88.39 67.15 70.30 93.14 81.94 74.66 83.22 87.74 84.57 81.29 81.99 96.69 90.38

500with-f 78.52 82.18 93.44 88.61 66.38 69.98 93.06 83.41 74.26 82.96 87.16 82.88 80.72 81.77 96.67 91.56
1wo-f 73.29 72.25 88.52 83.43 72.94 75.23 88.92 80.17 33.72 33.81 75.56 68.01 93.59 92.21 95.17 91.35

5000wo-g-o 85.24 89.51 92.03 86.10 78.71 84.08 88.33 88.76 77.38 85.18 88.14 90.46 89.27 91.73 94.02 77.60
2000wo-g-o 85.28 89.23 91.97 85.94 78.96 83.58 88.50 89.00 77.10 84.88 87.75 89.83 89.48 91.46 94.14 78.32
1000wo-g-o 85.32 89.42 91.64 88.92 78.58 84.12 87.88 91.06 77.88 84.75 87.39 92.30 89.13 91.80 93.82 82.31
500wo-g-o 85.58 89.39 91.72 87.34 78.62 83.97 87.93 90.48 78.89 84.92 87.61 90.34 89.01 91.68 93.83 81.49

500with-g-o 85.32 89.42 91.64 88.05 78.58 84.12 87.88 90.94 77.88 84.75 87.39 90.99 89.13 91.80 93.82 82.31
1wo-g-o 80.69 84.66 87.83 79.42 76.81 79.32 85.44 73.34 61.66 74.05 77.25 61.85 90.46 90.10 93.26 88.42

5000wo-f-o 83.35 84.27 87.92 84.79 76.24 76.40 84.07 88.40 73.85 77.50 79.39 88.63 88.21 87.73 92.29 77.28
2000wo-f-o 83.40 84.33 87.98 84.67 75.89 76.37 84.26 88.27 74.71 77.85 79.34 88.58 87.84 87.65 92.40 77.03
1000wo-f-o 83.48 84.61 87.89 85.60 75.57 76.75 84.33 89.07 75.70 78.26 78.92 89.17 87.47 87.87 92.49 78.64
500wo-f-o 83.25 84.52 88.36 86.28 75.01 76.32 84.71 89.58 75.83 78.73 80.13 89.68 87.05 87.48 92.58 79.66

500with-f-o 83.48 84.61 87.89 84.88 75.57 76.75 84.33 88.99 75.70 78.26 78.92 88.03 87.47 87.87 92.49 78.72
1wo-f-o 75.96 75.87 83.20 75.55 67.63 66.51 80.42 66.84 55.77 58.09 66.68 55.55 86.32 85.00 91.67 85.80

TABLE III: Comparison of the quality of different classifiers through different quality measures corresponding to Figure 3.


