
Kinodynamic RRT*: Optimal Motion Planning for
Systems with Linear Differential Constraints

Dustin J. Webb, Jur van den Berg

Abstract—We present Kinodynamic RRT*, an incremental
sampling-based approach for asymptotically optimal motion
planning for robots with linear differential constraints. Our
approach extends RRT*, which was introduced for holonomic
robots [8], by using a fixed-final-state-free-final-time controller
that exactly and optimally connects any pair of states, where the
cost function is expressed as a trade-off between the duration
of a trajectory and the expended control effort. Our approach
generalizes earlier work on extending RRT* to kinodynamic sys-
tems, as it guarantees asymptotic optimality for any system with
controllable linear dynamics, in state spaces of any dimension.
Our approach can be applied to non-linear dynamics as well
by using their first-order Taylor approximations. In addition,
we show that for the rich subclass of systems with a nilpotent
dynamics matrix, closed-form solutions for optimal trajectories
can be derived, which keeps the computational overhead of
our algorithm compared to traditional RRT* at a minimum.
We demonstrate the potential of our approach by computing
asymptotically optimal trajectories in three challenging motion
planning scenarios: (i) a planar robot with a 4-D state space and
double integrator dynamics, (ii) an aerial vehicle with a 10-D
state space and linearized quadrotor dynamics, and (iii) a car-
like robot with a 5-D state space and non-linear dynamics.

I. INTRODUCTION

Much progress has been made in the area of motion
planning in robotics over the past decades, where the basic
problem is defined as finding a trajectory for a robot between
a start state and a goal state without collisions with obstacles
in the environment. The introduction of incremental sampling-
based planners, such as probabilistic roadmaps (PRM) [9] and
rapidly-exploring random trees (RRT) [11] enabled solving
motion planning problems in high-dimensional state spaces
in reasonable computation time, even though the problem is
known to be PSPACE-hard [10]. PRM and RRT are asymp-
totically complete, which means that a solution will be found
(if one exists) with a probability approaching 1 if one lets
the algorithm run long enough. More recently, an extension of
RRT called RRT* [8] was developed that achieves asymptotic
optimality, which means that an optimal solution will be found
with a probability approaching 1.

While RRT* has successfully been applied in practice [16],
a key limitation of RRT* is that it is applicable only to
systems with simple dynamics, as it relies on the ability to
connect any pair of states with an optimal trajectory (e.g.
holonomic robots, for which straight lines through the state
space represent feasible motions). For kinodynamic systems,
however, straight-line connections between pairs of states are
typically not valid trajectories due to the system’s differential
constraints. Finding a feasible trajectory between two states

Fig. 1. An asymptotically optimal trajectory computed by our algorithm for
a quadrotor helicopter with linearized dynamics in a 10-D state space.

for differentially constrained systems is known as the two-
point boundary value problem [12], and is non-trivial to solve
in general. Numerical approaches, such as the shooting method
[1, 3], are computationally intensive and their solutions may
not satisfy any notion of optimality. Prior works on extending
RRT* for kinodynamic systems have therefore focused on
simple specific instances of kinodynamic systems [7], or have
serious limitations as they do not in fact succeed to compute
an optimal trajectory between any pair of states [3, 17] (see
our discussion in Section II).

In this paper, we present Kinodynamic RRT*, an extension
of RRT* that overcomes the above limitations by introducing
into the algorithm a fixed-final-state-free-final-time controller
[13] that exactly and optimally connects any pair of states for
any system with controllable linear dynamics in state spaces
of arbitrary dimension. Our approach finds asymptotically
optimal trajectories in environments with obstacles and bounds
on the state and control input, with respect to a cost function
that is expressed as a tunable trade-off between the duration
of the trajectory and the expended control effort. Moreover,
we show that for the rich subclass of systems with a nilpotent
dynamics matrix, expressions for optimal connections between
pairs of states can be derived in closed-form, and can hence
be computed quickly. This means that our algorithm computes
asymptotically optimal trajectories for such kinodynamic sys-
tems at little additional computational cost compared to RRT*
for holonomic robots. Also, our approach can handle non-
linear dynamics by linearizing them about the state that is

sampled in each iteration of the algorithm.
We note that while we focus our presentation on extending

RRT* to kinodynamic systems, also the application of PRM
[9] and path smoothing by iterative shortcutting [4] have thus
far been limited to holonomic systems, for these methods too
require connecting pairs of states by feasible trajectories. Our
approach is equally suited for making PRM and smoothing
applicable to robots with differential constraints, and may
particularly align well with recent interest in constructing
roadmaps containing near-optimal trajectories [14].

We demonstrate the potential of our approach by computing
asymptotically optimal trajectories in three challenging motion
planning scenarios: (i) a planar robot with a 4-D state space
and double integrator dynamics, (ii) an aerial vehicle with a
10-D state space and linearized quadrotor dynamics (see Fig.
1), and (iii) a car-like robot with a 5-D state space and non-
linear dynamics.

The remainder of this paper is organized as follows. We
begin by discussing related work in Section II and formally
defining the problem we discuss in this paper in Section III.
Section IV describes how an optimal trajectory is computed
between any pair of states, and Section V describes our
adapted RRT* algorithm. We describe the extension to non-
linear dynamics in Section VI, discuss experimental results in
Section VII, and conclude in Section VIII.

II. RELATED WORK

The term kinodynamic planning was first introduced in 1993
in [2], which presented a resolution-complete algorithm for
optimal planning of robots with discretized double integrator
dynamics in low-dimensional workspaces. Kinodynamic plan-
ning has since been an active area of research. Incremental
sampling-based algorithms, in particular the rapidly-exploring
random tree (RRT) approach [11], proved to be effective in
state spaces of high dimensionality, and is applicable to general
dynamics systems as it builds a random tree of trajectories,
and complex dynamics can be forward integrated to expand
the tree.

Unfortunately, RRT does not produce optimal trajectories.
In fact, the probability that it finds an optimal path is zero
[8]. Recently, RRT* was introduced to overcome this problem
and guarantees asymptotic optimality [6]; it iteratively builds
a tree of trajectories through the state space whose probability
of containing an optimal solution approaches 1 as the number
of iterations of the algorithm approaches infinity. However,
RRT* requires for its rewiring step critical to achieving
asymptotic optimality that any pair of states can be optimally
connected. Therefore, RRT* was introduced for holonomic
systems, where any pair of states can be optimally connected
by a straight-line trajectory through the state space.

Several attempts have been made to extend RRT*’s ap-
plicability to kinodynamic systems for which a straight-line
connection between a pair of states is typically not a valid
trajectory due to the system’s differential constraints. In [7],
sufficient conditions were established to ensure asymptotic
optimality of the RRT* algorithm for systems with differential

constraints, and it was shown how to apply RRT* to two
specific instances of kinodynamic systems: the Dubin’s car and
the double integrator. The approach of [3] generalizes this to
arbitrary kinodynamic systems, but has several limitations: to
connect pairs of states, it uses the shooting method [1] with a
constant control input, which is inherently suboptimal. Also,
the shooting method can only reach a neighborhood of the final
state in general, which requires costly repropagation of the
trajectories in the tree descending from such states. Recently,
LQR-RRT* was proposed in [17], and uses an infinite-horizon
LQR controller to connect pairs of states. Unfortunately, also
this controller will not reach the final state exactly or within
a guaranteed neighborhood, even in case of linear dynamics,1

which inherently leads to suboptimality.
Our approach improves upon this prior work by connecting

any pair of states exactly and optimally for systems with
controllable linear dynamics, which guarantees that asymptotic
optimality is in fact achieved. We accomplish this by extending
the well-studied formulation for a fixed final state and fixed
final time optimal control problem [13] to derive an optimal,
open-loop, fixed final state free final time control policy. A
similar approach has been adopted by [18] for extending RRTs
in state space under a dynamic cost-to-go distance metric [5].
In comparison to the latter work, we present a numerical
solution that is guaranteed to find a global optimum for the
general case, and an efficient closed-form solution for the
special case of systems with a nilpotent dynamics matrix.

III. PROBLEM DEFINITION

Let X = Rn and U = Rm be the state space and control
input space, respectively, of the robot, and let the dynamics
of the robot be defined by the following linear system, which
we require to be formally controllable:

ẋ[t] = Ax[t] +Bu[t] + c, (1)

where x[t] ∈ X is the state of the robot, u[t] ∈ U is the control
input of the robot, and A ∈ Rn×n, B ∈ Rn×m, and c ∈ Rn
are constant and given.

A trajectory of the robot is defined by a tuple π =
(x[],u[], τ), where τ is the arrival time or duration of the
trajectory, u : [0, τ] → U defines the control input along the
trajectory, and x : [0, τ] → X are the corresponding states
along the trajectory given x[0] with ẋ[t] = Ax[t] +Bu[t] + c.

The cost c[π] of a trajectory π is defined by the function:

c[π] =

∫ τ

0

(1 + u[t]TRu[t]) dt, (2)

which penalizes both the duration of the trajectory and the
expended control effort, where R ∈ Rm×m is positive-definite,
constant, and given, and weights the cost of the control inputs
relative to each other and to the duration of the trajectory.

1Imagine a system with double integrator dynamics where the state is
defined by the robot’s position and velocity: an infinite-horizon LQR controller
can either reach a state with a specified velocity, or a state with a specified
position, but cannot satisfy both as time approaches infinity.

Let Xfree ⊂ X define the free state space of the robot,
which consists of those states that are within user-defined
bounds and are collision-free with respect to obstacles in the
environment. Similarly, let Ufree ⊂ U define the free control
input space of the robot, consisting of control inputs that are
within bounds placed on them. This brings us to the formal
definition of the problem we discuss in this paper: given a
start state xstart ∈ Xfree and a goal state xgoal ∈ Xfree, find
a collision-free trajectory π∗free between xstart and xgoal with
minimal cost:

π∗free = argmin{π |x[0] = xstart ∧ x[τ] = xgoal ∧
∀{t ∈ [0, τ]} (x[t] ∈ Xfree ∧ u[t] ∈ Ufree)} c[π]. (3)

We note that the cost function of Eq. (2) obeys the optimal
substructure property; let π∗[x0,x1] = (x[],u[], τ) be the
optimal trajectory between x0 ∈ X and x1 ∈ X , irrespective
of bounds and obstacles, and let c∗[x0,x1] be its cost:

c∗[x0,x1] = min{π |x[0] = x0 ∧ x[τ] = x1} c[π]. (4)
π∗[x0,x1] = argmin{π |x[0] = x0 ∧ x[τ] = x1} c[π], (5)

then for all 0 < t < τ we have: c∗[x0,x1] = c∗[x0,x[t]] +
c∗[x[t],x1]. Hence, an optimal collision-free trajectory π∗free
between start and goal consists of a concatenation of
optimal trajectories between a series of successive states
(xstart,x1,x2, . . . ,xgoal) in Xfree.

IV. OPTIMALLY CONNECTING A PAIR OF STATES

A critical component of our approach to solve the problem
as defined in Eq. (3) is to be able to compute the optimal
trajectory π∗[x0,x1] (and its cost c∗[x0,x1]) between any two
states x0 ∈ X and x1 ∈ X , as defined in Eqs. (5) and (4). In
this section we discuss how to compute these. It is known from
[13] what the optimal control policy is in case a fixed arrival
time τ is given, as we review in Section IV-A. We extend this
analysis to find the optimal free arrival time in Section IV-B
and show how to compute the corresponding optimal trajectory
in IV-C. We discuss practical implementation in Section IV-D.

A. Optimal Control for Fixed Final State and Fixed Final Time

Given a fixed arrival time τ and two states x0 and x1, we
want to find a trajectory (x[], u[], τ) such that x[0] = x0,
x[τ] = x1, and ẋ[t] = Ax[t] +Bu[t] + c (for all 0 ≤ t ≤ τ),
minimizing the cost function of Eq. (2). This is the so-called
fixed final state, fixed final time optimal control problem.

Let G[t] be the weighted controllability Gramian given by:

G[t] =

∫ t

0

exp[A(t− t′)]BR−1BT exp[AT (t− t′)] dt′, (6)

which is the solution to the Lyapunov equation:

Ġ[t] = AG[t] +G[t]AT +BR−1BT , G[0] = 0. (7)

We note that G[t] is a positive-definite matrix for t > 0 if the
dynamics system of Eq. (1) is controllable.

Further, let x̄[t] describe what the state x (starting in x0 at
time 0) would be at time t if no control input were applied:

x̄[t] = exp[At]x0 +

∫ t

0

exp[A(t− t′)]c dt′, (8)

which is the solution to the differential equation:

˙̄x[t] = Ax̄[t] + c, x̄[0] = x0. (9)

Then, the optimal control policy for the fixed final state,
fixed final time optimal control problem is given by:

u[t] = R−1BT exp[AT (τ − t)]G[τ]−1(x1 − x̄[τ]), (10)

which is an open-loop control policy. We refer the reader to
[13] for details on the derivation of this equation.

B. Finding the Optimal Arrival Time

To find an optimal trajectory π∗[x0,x1] between x0 and x1

as defined by Eq. (5), we extend the above analysis to solve
the fixed final state, free final time optimal control problem,
in which we can choose the arrival time τ freely to minimize
the cost function of Eq. (2).

To find the optimal arrival time τ∗, we proceed as follows.
By filling in the control policy of Eq. (10) into the cost
function of Eq. (2) and evaluating the integral, we find a
closed-form expression for the cost of the optimal trajectory
between x0 and x1 for a given (fixed) arrival time τ :

c[τ] = τ + (x1 − x̄[τ])TG[τ]−1(x1 − x̄[τ]). (11)

The optimal arrival time τ∗ is the value of τ for which this
function is minimal:

τ∗ = argmin{τ > 0} c[τ], (12)

and the cost of the optimal trajectory between x0 and x1 as
defined in Eq. (4) is given by c∗[x0,x1] = c[τ∗].

The optimal arrival time τ∗ is found by taking the derivative
of c[τ] with respect to τ (which we denote ċ[τ]), and solving
ċ[τ] = 0 for τ . The derivative is given by:

ċ[τ] = 1− 2(Ax1 + c)Td[τ]− d[τ]TBR−1BTd[τ], (13)

where we define:

d[τ] = G[τ]−1(x1 − x̄[τ]). (14)

It should be noted that the function c[τ] may have multiple
local minima. Also, note that c[τ] > τ for all τ > 0, since
G[τ] is positive-definite (see Fig. 2).

C. Computing the Optimal Trajectory

Given the optimal arrival time τ∗ as defined above,
we find the corresponding optimal trajectory π∗[x0,x1] =
(x[],u[], τ∗), as defined in Eq. (5), as follows. Let us define:

y[t] = exp[AT (τ∗ − t)]d[τ∗], (15)

such that the optimal control policy (see Eq. (10)) is given by:

u[t] = R−1BTy[t]. (16)

0 1 2 3 4 5 6

Τ

3

4

5

6

cHΤL

Fig. 2. Plot of the function c[τ] for a robot moving on the 1-D line with
double integrator dynamics (A = ((0, 1), (0, 0)), B = (0, 1)T , c = 0,
R = 1) between x0 = (0, 0)T and x1 = (1, 1)T . The optimal arrival time
is τ∗ =

√
7− 1 ≈ 1.65, which is where the function c[τ] is minimal.

Filling in this optimal control policy into Eq. (1) gives us the
differential equation for the state x[]:

ẋ[t] = Ax[t] +BR−1BTy[t] + c, x[τ∗] = x1. (17)

Noting that Eq. (15) is the solution to the differential equation:

ẏ[t] = −ATy[t], y[τ∗] = d[τ∗], (18)

and combining this with Eq. (17) gives us the composite
differential equation:[
ẋ[t]
ẏ[t]

]
=

[
A BR−1BT

0 −AT
] [

x[t]
y[t]

]
+

[
c
0

]
,

[
x[τ∗]
y[τ∗]

]
=

[
x1

d[τ∗]

]
,

(19)

which has as solution:[
x[t]
y[t]

]
= exp

[[
A BR−1BT

0 −AT
]

(t− τ∗)
] [

x1

d[τ∗]

]
+∫ t

τ∗
exp

[[
A BR−1BT

0 −AT
]

(t− t′)
] [

c
0

]
dt′. (20)

This gives us x[t] and, using Eq. (16), u[t] for all 0 < t < τ∗,
which completely determines π∗[x0,x1].

D. Practical Implementation

For the implementation of the above computations in prac-
tice, we distinguish the special case in which matrix A is
nilpotent, in which case we can derive a closed-form solution
for the optimal trajectory, from the general case, in which case
we can find the optimal trajectory numerically.

If matrix A ∈ Rn×n is nilpotent, i.e. An = 0, which is
not uncommon as we will see in Section VII, exp[At] has a
closed-form expression in the form of an (n−1)-degree matrix
polynomial in t. As a result, the integrals of Eqs. (6) and (8)
can be evaluated exactly to obtain closed-form expressions
for G[τ] and x̄[τ]. Solving ċ[τ] = 0 for τ to find the optimal
arrival time τ∗ then amounts to finding the roots of a (high-
degree) polynomial in τ . Various methods exist to find all roots
of a polynomial [1], which gives us the global minimum of c[τ]
and the corresponding optimal arrival time τ∗. Subsequently,
the nilpotence of A implies that the matrix

[
A BR−1BT

0 −AT

]
is

nilpotent as well, which means that Eq. (20) can be evaluated
exactly to obtain a closed form expression for the optimal

trajectory (states and control inputs) between any two states
x0 and x1.

For a general (not nilpotent) matrix A, we integrate Ġ[t]
and ˙̄x[t] forward in time according to Eqs. (7) and (9) using
the 4th-order Runge-Kutta method [1], which gives us G[τ],
x̄[τ], and c[τ] for increasing τ > 0. We keep track of the
minimal cost c∗ = c[τ] we have seen so far and the corre-
sponding arrival time, as we perform the forward integration
for increasing τ > 0. Since c[τ] > τ for all τ > 0, it suffices
to terminate the forward integration at τ = c∗ to guarantee that
a global minimum c∗ of c[τ], and the corresponding optimal
arrival time τ∗, has been found. This procedure also gives us
d[τ∗], which we use to subsequently reconstruct the optimal
trajectory between x0 and x1, by integrating the differential
equation (19) backward in time for τ∗ > t > 0 using 4th-order
Runge-Kutta.

V. KINODYNAMIC RRT*

To find the optimal collision-free trajectory π∗free as defined
in Eq. (3), given the ability to find an optimal trajectory
between any pair of states as described above, we use an
adapted version of RRT*, since RRT* is known to achieve
asymptotic optimality; that is, as the number of iterations of the
algorithm approaches infinity, the probability that an optimal
path has been found approaches 1. The algorithm is given in
Fig. 3.

The algorithm builds a tree T of trajectories in the free
state space rooted in the start state. In each iteration i of the
algorithm, a state xi is sampled from the free state space Xfree

(line V) to become a new node of the tree (line V). For each
new node a parent is found among neighboring nodes already
in the tree, i.e. the nodes x for which c∗[x,xi] < r for some
neighbor radius r. The node x that is chosen as parent is
the node for which the optimal trajectory π[x,xi] to the new
node is collision-free (i.e. the states and control inputs along
the trajectory are in the respective free spaces) and results
in a minimal cost between the root node (xstart) and the new
node (lines V-V). Subsequently, it is attempted to decrease the
cost from the start to other nodes in the tree by connecting the
new node to neighboring nodes in the tree, i.e. the nodes x for
which c∗[xi,x] < r. For each state x for which the connection
is collision-free and results in a lower cost to reach x from
the start, the new node xi is made the parent of x (lines V-V).
Then, the algorithm continues with a new iteration. If this is
repeated indefinitely, an optimal path between xstart and xgoal

will emerge in the tree.
The algorithm as given in Fig. 3 differs subtly from the

standard RRT* algorithm. First of all, we have defined our
problem as finding a trajectory that exactly arrives at a goal
state, rather than a goal region as is common in RRT*. As
a consequence, we explicitly add the goal state to the set of
states that is considered for a forward connection from a newly
sampled node in line V, even if the goal is not (yet) part of
tree. Also, typical RRT* implementations include a “steer”
module, which lets the tree grow towards a sampled state (but
not necessarily all the way), and adds the endpoint of a partial

KINODYNAMICRRT*[xstart ∈ Xfree,xgoal ∈ Xfree]

1: T ← {xstart}.
2: for i ∈ [1,∞) do
3: Randomly sample xi ∈ Xfree.
4: x← argmin{x ∈ T | c∗[x,xi] < r ∧

COLLISIONFREE[π∗[x,xi]]} (cost[x] + c∗[x,xi]).
5: parent[xi]← x.
6: cost[xi]← cost[x] + c∗[x,xi].
7: for all {x ∈ T ∪ {xgoal} | c∗[xi,x] < r ∧ cost[xi] +

c∗[xi,x] < cost[x] ∧ COLLISIONFREE[π∗[xi,x]]} do
8: cost[x]← cost[xi] + c∗[xi,x].
9: parent[x]← xi.

10: T ← T ∪ {xi}.
Fig. 3. The adapted RRT* algorithm. The tree T is represented as a set
of states. Each state x in the tree has two attributes: a pointer parent[x]
to its parent state in the tree, and a number cost[x] which stores the cost
of the trajectory in the tree between the start state and x. Further, we define
COLLISIONFREE[x[],u[], τ] = ∀{t ∈ [0, τ]} (x[t] ∈ Xfree∧u[t] ∈ Ufree).

trajectory as node to the tree [8]. Since it is non-trivial given
our formulation to compute a partial trajectory of a specified
maximum cost, our algorithm attempts a full connection to the
sampled state, and adds the sampled state itself as a node to
the tree. These changes do not affect the asymptotic optimality
guarantee of the algorithm.

In the original RRT* algorithm, the neighbor radius r can
be decreased over the course of the algorithm as a function
r = ((γ/ζd) log[i]/i)1/d of the number of nodes i currently in
the tree, without affecting the asymptotic optimality guarantee,
where d is the dimension of the state space, ζd is the volume
of a d-dimensional unit ball, γ > 2d(1 + 1/d)µ[Xfree], and
µ[Xfree] is the volume of the state space [6]. For non-Euclidean
distance measures, such as our function c∗[x0,x1], let R[x, r]
be the set of states that can reach x or are reachable from x
with cost less than r:

R[x, r] = {x′ ∈ X | c∗[x,x′] < r ∨ c∗[x′,x] < r}. (21)

Then the neighbor radius r must be set such that a ball of
volume γ log[i]/i is contained within R[x, r] [7]. A finite
radius r always exists in our case such that this holds, since we
require that the system’s dynamics are formally controllable.

VI. SYSTEMS WITH NON-LINEAR DYNAMICS

We have presented our algorithm for linear dynamics sys-
tems of the type of Eq. (1), but we can apply our algorithm
to non-linear dynamics as well through linearization. Let the
non-linear dynamics of the robot be defined by a function f :

ẋ[t] = f [x[t],u[t]]. (22)

We can locally approximate the dynamics by linearizing the
function f to obtain a system of the form of Eq. (1), with:

A =
∂f

∂x
[x̂, û], B =

∂f

∂u
[x̂, û], c = f [x̂, û]−Ax̂−Bû,

(23)

where x̂ is the state and û is the control input about which
the dynamics are linearized. The resulting linear system is a

first-order Taylor approximation of the non-linear dynamics,
and is approximately valid only in the vicinity of x̂ and û.

We adapt the algorithm of Fig. 3 to non-linear dynamics
by (re)linearizing f in each iteration of the algorithm about
x̂ = xi and û = 0 after a new state xi is sampled in line V.
The resulting linear dynamics are then used in the subsequent
computations of the functions c∗ and π∗ (note that this only
works if the linearized dynamics are controllable). We choose
x̂ = xi since it is either the start or the end point of any
trajectory computed in that iteration of the algorithm, and we
choose û = 0 since the cost function (see Eq. (2)) explicitly
penalizes deviations of the control input from zero.

The linearization is only a valid approximation if the
computed trajectories do not venture too much away from
the linearization point. As over the course of the algorithm
the distances between states get shorter (due to a decreasing
neighbor radius r) and the trajectories in the tree get more
optimal (hence having control inputs closer to zero), this
approximation becomes increasingly more reasonable. It can
be helpful, though, to let the neighbor radius r not exceed
a certain maximum within which the linearizations can be
assumed valid.

VII. EXPERIMENTAL RESULTS

We experimented with our implementation on three kino-
dynamic systems; a double integrator disk robot operating in
the plane, a quadrotor robot operating in three space, and a
non-holonomic car-like robot operating in the plane, which
are discussed in detail in Sections VII-A, VII-B, and VII-C,
respectively. Simulation results are subsequently analyzed in
Section VII-D.

A. Linear Double Integrator Model

The double integrator robot is a circular robot capable of
moving in any direction by controlling its acceleration. Its
state space is four-dimensional, and its linear dynamics are
described by:

x =

[
p
v

]
, A =

[
0 I
0 0

]
, B =

[
0
I

]
, R = rI, (24)

u = a, and c = 0, where p describes its position in the plane,
v its velocity, and a its acceleration. Further, we set bounds
such that p ∈ [0, 200] × [0, 100] (m), v ∈ [−10, 10]2 (m/s),
and u = a ∈ [−10, 10]2 (m/s2). The control penalty r was set
to 0.25 as this permitted the robot to reach velocities near its
bounds but not frequently exceed them.

We experimented with this model in the environment of
Fig. 4. Clearly, A is nilpotent as A2 = 0, so we can use
both the closed-form and the numerical method for computing
connections between states.

B. Linearized Quadrotor Model

The quadrotor helicopter was modeled after the Ascending
Technologies’ ResearchPilot. Its state x = (pT ,vT , rT ,wT)T

is 12-dimensional, consisting of three-dimensional position p,
velocity v, orientation r (rotation about axis r by angle ||r||),

Fig. 4. Asymptotically optimal trajectory for double integrator robot after
100,000 nodes were added to the tree.

and angular velocity w. Its dynamics are non-linear [15], but
are well-linearizable about the hover point of the quadrotor.
The linearization is (very) sensitive though to deviations
in the yaw. Fortunately, the yaw is a redundant degree of
freedom, so in our linearization, we constrain the yaw (and
its derivative) to zero. This gives a reduced ten-dimensional
state and three-dimensional control input, with the following
linearized dynamics:

x =

p
v
r
w

 , u =

ufux
uy

 , A =

0 I 0 0

0 0
[0 g
−g 0
0 0

]
0

0 0 0 I
0 0 0 0

,
(25)

B =

0 0[
0
0

1/m

]
0

0 0
0 `I/j

, c = 0, R =

 1
4 0 0
0 1

2 0
0 0 1

2

 , (26)

where r and w are two-dimensional (with their third compo-
nent implicitly zero), g = 9.8m/s2 is the gravity, m is the mass
of the quadrotor (kg), ` the distance between the center of the
vehicle and each of the rotors (m), and j is the moment of
inertia of the vehicle about the axes coplanar with the rotors
(kg m2). The control input u consists of three components:
uf is the total thrust of the rotors relative to the thrust needed
for hovering, and ux and uy describe the relative thrust of
the rotors producing roll and pitch, respectively. Further, the
bounds are defined as p ∈ [0, 5]3 (m), v ∈ [−5, 5]3 (m/s),
r ∈ [−1, 1]2 (rad), w ∈ [−5, 5]2 (rad/s), uf ∈ [−4.545, 9.935]
(N), and ux, uy ∈ [−3.62, 3.62] (N). The matrix R was chosen
such that producing force is penalized equally for each rotor.

The quadrotor simulations were performed in the envi-
ronment of Fig. 5 for the linearized dynamics. Clearly, A
is nilpotent as it is strictly upper diagonal, so we can use
both the closed-form and the numerical method for computing
connections between states.

C. Non-Linear Car-Like Model

The car-like robot has a five-dimensional state x =
(x, y, θ, v, κ)T , consisting of its planar position (x, y) (m), its
orientation θ (rad), speed v (m/s), and curvature κ (m−1). The

Fig. 5. Asymptotically optimal trajectory for quadrotor robot after 60,000
nodes were added to the tree.

control input u = (uv, uκ)T is two-dimensional and consists
of the derivatives of speed and curvature, respectively. The
dynamics are non-linear, and described by ẋ = f [x,u], with
f given by:

ẋ = v cos θ, ẏ = v sin θ, θ̇ = vκ, v̇ = uv, κ̇ = uκ.
(27)

For this system, we repeatedly linearize the dynamics about
the last sampled state, as described in Section VI. Let this
state be x̂ = (x̂, ŷ, θ̂, v̂, κ̂)T , then the linearized dynamics are
given by:

A =

0 0 −v̂ sin θ̂ cos θ̂ 0

0 0 v̂ cos θ̂ sin θ̂ 0
0 0 0 κ̂ v̂
0 0 0 0 0
0 0 0 0 0

, B =

0 0
0 0
0 0
1 0
0 1

, (28)

and c = f [x̂,0] − Ax̂, where bounds were set such that
px ∈ [0, 200], py ∈ [0, 100], θ ∈ [−π, π], v ∈ (0, 10],
κ ∈ [−0.25, 0.25]. We note that the velocity must be non-zero,
otherwise the resulting linear dynamics are not controllable.

The car-like robot experiments were performed in the en-
vironment of Fig. 6, the same environment as the double
integrator. Also in this case, the dynamics matrix A is nilpotent
for all linearizations, so we can use both the closed-form
and the numerical method for computing connections between
states.

D. Analysis of Results

We used our algorithm to compute asymptotically optimal
trajectories for the double integrator, the quadrotor, and the
car-like robots. They are shown in Figs. 4, 5, and 6. While
the paths found for the double integrator and quadrotor robots
appear continuous and smooth, in the case of the car-like robot

Fig. 6. Asymptotically optimal trajectory for the car-like robot after 60,000
nodes were added to the tree.

TABLE I
TIMING DATA FOR THE FIRST 5000 NODES OF EACH SIMULATION (S).

Closed Form Runge Kutta 4
nodes DblInt QuadRtr Car DblInt QuadRtr Car
1000 19.75 116.2 5.416 969.8 4644 274.8
2000 43.26 274.9 12.43 3638 10819 331.2
3000 72.59 507.3 21.74 7872 20284 405.6
4000 108.6 841.6 31.99 13479 33401 497.4
5000 150.4 1168 42.94 20772 68703 606.3

effects of linearization are clearly visible; the robot appears to
skid sideways to some extent, as if drifting through the curves.

Table I shows the time required to expand the first 5,000
nodes for all three systems using both the closed form method
and the numerical 4th-order Runge-Kutta (RK4) method for
computing connections between states. It is clear that the
closed-form method executed much more quickly than the
RK4 method in all cases. On average, we see a factor of 45 (!)
difference in running time. Using either of the two methods
resulted in solutions with comparable costs after expanding
the same number of nodes; variations that occurred were a
result of numerical errors.

We also see that nodes were less quickly processed for the
double integrator than for the car-like robot, despite a lower
dimensionality. This is because for the double integrator and
quadrotor experiments, we used a neighbor radius of r =∞,
while in the case of the non-holonomic car-like robot only
connections to states within a tight radius (approximately
corresponding to connections within one width of the road)
were accepted. This radius was imposed on the car-like system
to ensure short connections as the linearization breaks down
over large distances, but it also demonstrates the positive effect
of using a reduced radius on performance. Processing nodes
for the quadrotor experiment appeared most computationally
intensive. This is a result of the high-dimension of its state
space. The numbers of Table I also highlight the quadratic
nature of the algorithm: the total accumulated running time is
a quadratic function of the number of nodes that have been
added to the tree.

Figure 7 shows the cost of the current-best solution for each
experiment as more nodes are added to the tree. A total of
100,000 nodes were expanded in the double integrator robot
simulation, 60,000 nodes in the quadrotor robot simulation,
and 200,000 nodes in the non-holonomic robot simulation. In

Fig. 7. Graphs showing the cost of the current-best solution as a function of
the number of nodes in the tree for (from left to right) the double integrator,
the quadrotor, and the car-like robot experiments.

all cases we see that a high cost solution is found in relatively
few nodes, and that these solutions are quickly refined as
a result of the RRT* rewiring procedure. Necessarily these
refinements plain off as the solutions approach the asymptotic
optimum.

VIII. DISCUSSION, CONCLUSION, AND FUTURE WORK

We have presented Kinodynamic RRT*, an incremental
sampling-based approach that extends RRT* for asymptot-
ically optimal motion planning for robots with differential
constraints. Our approach achieves asymptotically optimality
by using a fixed-final-state-free-final-time optimal control for-
mulation that connects any pair of states exactly and optimally
for systems with controllable linear dynamics. We have shown
that tor the rich subclass of systems with a nilpotent dynamics
matrix, such trajectories can be computed efficiently, making
asymptotically optimal planning computationally feasible for
kinodynamic systems, even in high-dimensional state spaces.
We plan to make the source code of our implementation
publicly available for download.

For our experiments, we have not fully optimized our
implementation, and we believe that running times can be
further improved. In particular, extensions suggested in earlier
work [8], such as using an admissible heuristic that can be
quickly computed and provides a conservative estimate of
the true cost of moving between two states may prune many
(relatively costly) attempts to connect pairs of states. Such
a heuristic can then also be used in a branch-and-bound
technique [8] to prune parts of tree of which one knows it will
never contribute to an optimal solution. Further, the constant
involved in the rate by which the neighbor radius is allowed
to decrease is difficult to estimate for kinodynamic systems,
which prompted us to use very conservative radii. Further
analysis of the reachable set is needed to establish reasonable
estimations. This would potentially also aid in developing a
form of efficient neighbor searching for non-Euclidean state
spaces (we currently use a brute-force approach), which is still
largely an unexplored area.

Other areas of potential improvement include studying non-
uniform sampling to accelerate the convergence to optimal

solutions. One could sample more heavily around the current
optimal solution, or use stochastic techniques to infer distri-
butions of samples that are likely to contribute to an optimal
trajectory. For a quadrotor helicopter for instance, one can
imagine that there is a strong correlation between its velocity
and orientation, which should be reflected in the sampling.
In addition, we note that, as mentioned in the introduction,
the ability to connect any pair of states can be used to
perform trajectory smoothing by iterative shortcutting as post-
processing step. This may improve the quality of solutions
further and provide better estimates of the convergence rate of
the algorithm.

Lastly, we plan to apply our planner to real-world robots,
in particular quadrotors. This would require constructing a
stabilizing controller around the computed trajectory, either
using traditional techniques such as LQR, or by repeatedly
computing reconnections between the current state of the robot
and a state on the trajectory.

REFERENCES
[1] R. Burden, D. Faires. Numerical Analysis. Brooks/Cole, 2001.
[2] B. Donald, P. Xavier, J. Canny, J. Reif. Kinodynamic motion planning.

Journal of the ACM 40(5):1048-1066, 1993.
[3] J. Jeon, S. Karaman, E. Frazzoli. Anytime computation of time-optimal

off-road vehicle maneuvers using the RRT*. IEEE Conf. on Decision
and Control, 2011.

[4] R. Geraerts, M. Overmars. Creating high-quality paths for motion
planning. Int. J. of Robotics Research, 26(8):845-863, 2007.

[5] E. Glassman, R. Tedrake. A quadratic regulator-based heuristic for
rapidly exploring state space. IEEE Int. Conf. on Robotics and Au-
tomation, 2010.

[6] S. Karaman, E. Frazzoli. Incremental sampling-based algorithms for
optimal motion planning. Robotics: Science and Systems, 2010.

[7] S. Karaman, E. Frazzoli. Optimal kinodynamic motion planning using
incremental sampling-based methods. IEEE Conf. on Decision and
Control, 2010.

[8] S. Karaman, E. Frazzoli. Sampling-based algorithms for optimal motion
planning. Int. J. of Robotics Research 30(7):846-894, 2011.

[9] L. Kavraki, P. Svestka, J.-C. Latombe, M. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces.
IEEE Trans. on Robotics and Automation 12(4):566580, 1996.

[10] J.-C. Latombe. Robot Motion Planning, Kluwer Academic Publishers,
Boston, 1991.

[11] S. LaValle, J. Kuffner. Randomized kinodynamic planning. Int. J. of
Robotics Research 20(5):378-400, 2001.

[12] S. LaValle. Planning Algorithms. Cambridge University Press, New
York, 2006.

[13] F. Lewis, V. Syrmos. Optimal Control. John Wiley & Sons, 1995.
[14] J. Marble, K. Bekris. Towards small asymptotically near-optimal

roadmaps. IEEE Int. Conf. on Robotics and Automation, 2012.
[15] N. Michael, D. Mellinger, Q. Lindsey, V. Kumar. The GRASP multiple

mirco-UAV test bed: experimental evaluation of multirobot aerial con-
trol algorithms. IEEE Robotics and Automation Magazine 17(3):56-65,
2010.

[16] A. Perez, S. Karaman, A. Shkolnik, E. Frazzoli, S. Teller, M. Walter.
Asymptotically-optimal path planning for manipulation using incre-
mental sampling-based algorithms. IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, 2011.

[17] A. Perez, R. Platt, G. Konidaris, L. Kaelbling, T. Lozano-Perez. LQG-
RRT*: Optimal sampling-based motion planning with automatically
derived extension heuristics. IEEE Conf. on Robotics and Automation,
2012.

[18] R. Tedrake. LQR-Trees: Feedback motion planning on sparse random-
ized trees. Robotics: Science and Systems, 2009.

	Introduction
	Related Work
	Problem Definition
	Optimally Connecting a Pair of States
	Optimal Control for Fixed Final State and Fixed Final Time
	Finding the Optimal Arrival Time
	Computing the Optimal Trajectory
	Practical Implementation

	Kinodynamic RRT*
	Systems with Non-Linear Dynamics
	Experimental Results
	Linear Double Integrator Model
	Linearized Quadrotor Model
	Non-Linear Car-Like Model
	Analysis of Results

	Discussion, Conclusion, and Future Work

