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Abstract
We present a constructive lemma that we believe will make possible
the design of nearly optimal O(dlog 2) cost algorithms for computing e-
residual approximations to the fixed points of d-dimensional nonexpansive
mappings with respect to the infinity norm. This lemma is a generalization
of a two-dimensional result that we proved in [1].

1 Introduction

In [1, 2] we presented two-dimensional optimal complexity algorithms for com-
puting residual e-approximations to the fixed points of non-expansive mappings
with respect to the infinity norm. These algorithms are based on bisection-
envelope constructions and are derived from Theorem 3.1 of [1]. This theorem
makes possible construction of a sequence of rectangles that contain fixed points
and converge to the residual e-approximation of some fixed point. At every it-
eration of the process the previous rectangle is cut by a factor of at least two,
to obtain a new rectangle containing a fixed point.

In this paper we generalize the constructive theorem to an arbitrary number
of dimensions d > 3, however, we are unable to utilize this new result in the
construction of optimal algorithms.

The main obstacle in such construction is the ability to bound a new set
containing fixed points by an “easy-to-construct” convex set of smaller volume
and similar topological features to the previous set in this process. We stress
that the two-dimensional sets in the optimal algorithm are rotated rectangles.
What would be the proper sets in an arbitrary number of dimensions that
would bound the non-convex sets resulting from the application of our general
d-dimensional lemma?

2 Problem formulation

Given dimension d > 2, we define D = [0,1]%and the class F' of functions,
f : D — D, that are Lipschitz continuous with constant 1 with respect to the



infinity norm, i.e.,

1f (@) = fWll < llz —yll,Vo,y € D

where ||| = |||, henceforth. We seek an algorithm which, for every f € F,
computes a solution & = Z(f) € D that satisfies the residual criterion
() -2l <e 1)

where 0 < € < 0.5. (If ¢ > 0.5 then z = (0.5,0.5) satisfies [1]). The
algorithm requires n(f) function evaluations, where n(f) = O(dlog1). In the
case of d = 2 the algorithm is based on Theorem 3.1 of [1], utilizes bisection of
rectangles and envelope constructions, and has cost 2log, % Here we present a
generalization of this theorem to the case of d > 3. We believe that the general
result will provide the basis for construction of a future algorithm having the
desired efficiency. So far we have been unable to construct such an algorithm.
We stress that computing x,||z. — a|| < €, an e-absolute approximation to the
fixed point «, in the class of expanding functions is of infinite complexity in the
worst case [3].

3 Definitions

For a given f € F and i = 1,...,d we define the fixed point sets F; such that
for each i,

E(f) ={z e D: fi(x) = 2:}.

We define F(f) = NL, F;(f), the nonempty set of all fixed points of f. For
allz € RY i =1,...,d, and s € {—1,1} we define the “open-ended” pyramid
sets

As(x) ={y e R : |ly — x| = s(yi — 20)}.
For all z € R i = 1,...,d, s € {—1,1}, and ¢ > 0, we also define the
“flat-top” pyramid set

Qi (x,¢) = U{A3 (y) 1y € R [ly — | < c}.

4 Constructive Lemma

In this section we prove our constructive lemma. It is a generalization of Theo-
rem 3.1 of [1] to an arbitrary number of dimensions d > 3.

Lemma 4.1

For any f € F,i=1,...,d, we let z € D be such that f;(z) # x;. Then the
following holds:
(i) If fi(z) > z; then Q; (=, (fi(x) — x;)/2) N DN EF(f) = @.



(ii) If fi(x) < x; then Q}(z, (z; — fi(z))/2) N DN F;(f) = @.

Proof. To show (i) we take any y such that ||y — x| < (fi(z) — x;)/2, and
z € A; ' (y) N D. Then

11i(z) = fi)| < If ) = F@ < Iz =yl = 4 — 2

and
fiy) —vi = fi(x) = (fi(x) = fiy)) — @ — (yi —2) = fi(x) —2i = 2|y — 2
> fi(x) — i — (fi(w) —2;) = 0,

which implies

fi(2) = fily) + (fi(2) = fi(y)) > vi — (i — 2i) = 2.

To show (ii) we take any y such that ||y — x| < (z; — f(x:))/2, and z €
Al(y) N D. Then

11i(z) = fi) < If 2) = F@ < Iz =yl = zi — v

and
fiy) —vi = fi(x) + (fi(y) = fi(zx)) — @i + (2 — ys) < fi(x) —2i + 2|y — 2

< fi(w) —z; + (z; — fi(z)) =0,
which implies

fiz)=fily) + (fi(z) = fi(y) <wi+ (zi —pi) =z W

Comments

The above Lemma 4.1 states that after evaluating f at x we can remove from
the original domain D the “flat-top” pyramid sets Qf(z,¢;) for all ¢ such that
¢i = |f(x;) — x;| /2 are not zero, since they do not contain fixed points of f;,
implying that they do not contain any fixed point of f as well. If this happens
for all i = 1,...,d then we can reduce the volume of the set containing fixed
points by a factor of at least two.

Open problems

The main obstacle in constructing a recursive algorithm (for d > 3) based on
Lemma 4.1 is our apparent inability to construct a sequence of sets S; that each
contain a fixed point, are topologically “similar”, decrease in volume, and are
easy to represent, and then evaluating f at the “centers” of S;. Also, it needs to
be decided which sets can be removed from S; in the case where f;(z) —z; =0,
i.e., when the current evaluation point z is a fixed point of some components of
f

We believe that by solving those problems we can obtain an optimal O(dlog 1)
cost algorithm for finding e-residual solutions to the fixed points of functions in
our class. We hope to address these issues in a future paper.
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