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Abstract

We are building a system that harnesses the idle resourpesgiorage, and bandwidth)
of nodes (e.g., home desktops) distributed across thenkttéo build useful distributed
services like content distribution or remote backup. Useescompensated in return for
contributing their nodes’ idle resources to the system.lectl’e managers bundle and
manage the contributed resources and resell them to enohoeist.

For such a collective system to work, the system must disgmicheating (e.g., cheating
users who lie about how many resources they have provided@maeourage nodes to stay
in the collective for extended periods of time. To achiewasthgoals, we have designed an
incentive system based on game theory and the economig/thebmnd law enforcement
that motivates just these behaviors. In this paper we desaur incentive system and
analyze its economic underpinnings to gain insight into kid#erent players in the system
will behave. We demonstrate how our incentive system mt&s/aodes to stay in the
system for prolonged duration and deters cheating. For igalypystem configuration,
we show that even if we can only detect cheaters 4% of the timeam create sufficient
economic deterrents to demotivate cheating.
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Abstract

We are building a system that harnesses the idle resoungesstorage, and bandwidth) of nodes (e.g.,
home desktops) distributed across the Internet to builtlbdistributed services like content distribution or
remote backup. Users are compensated in return for cotitigotheir nodes’ idle resources to the system.
Collective managers bundle and manage the contributednesand resell them to end customers.

For such a collective system to work, the system must disgmicheating (e.g., cheating users who lie
about how many resources they have provided) and encouatpss mo stay in the collective for extended
periods of time. To achieve these goals, we have designedcantive system based on game theory and
the economic theory behind law enforcement that motivatststhese behaviors. In this paper we describe
our incentive system and analyze its economic underpisniagain insight into how different players in
the system will behave. We demonstrate how our incentiveesysnotivates nodes to stay in the system
for prolonged duration and deters cheating. For a typicstesy configuration, we show that even if we can
only detect cheaters 4% of the time we can create sufficiemanic deterrents to demotivate cheating.

1 Introduction

Modern computers are becoming progressively more poweithlever-improving processing, storage, and
networking capabilities. Typical desktop systems haveensomputing/communication resources than most
users need and are underutilized most of the time. Theseutilided resources provide an interesting plat-
form for building distributed applications and servicesiolimportant obstacles to successfully harnessing
these idle resources are ensuring prolonged participatidhe nodes in the system and deterring selfish
behaviors.

We are building a system to harness idle resources as maoaltgtives. Rather than employing purely
P2P mechanisms, a collective usefiective managers that manage the available resources of large pools
of untrusted, selfish, and unrelialparticipating nodes. Participating nodes contact collective managers to
make their resources available, in return for which theyeekpo receive compensation. Each participating
node runs a virtual machine (VM) image provided by the cdéilecmanager(CM). CMs remotely control
these VMs and use these processing, storage, and networkces to build distributed services needed
by customers. Collectives are similar to computational grids [8] in thiére is a degree of centralized
management and control, but a key difference is that thesodmprising a collective do not belong to a
single administrative entity, are inherently untrustea in and leave the collective (churn) more rapidly
than typical grid nodes. Figure 1 illustrates a possibledfisecollective to implement a content distribution
service that distributes large content files (e.g., moviassic, or software updates) to thousands of clients
in a cost-effective way.

Since individual participants in a collective are selfishtimal) nodes, it is important to mitigate the
negative effects of selfish behavior. Selfish nodes cantresoneating for earning more than their fair share
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Figure 1: Collective Content Distribution Service

of compensation. Cheating behavior has been observedsasbnin distributed systems, e.g., free riding
in Gnutella [1] and software modifications to get more créuin earned in SETI@home [12].

Another challenge faced by collectives is ensuring thaesaday in the system for prolonged durations,
which improves the system stability and allows tasks to bedaled more efficiently. For example, a
collective manager can use historical data of node aviétlabh make informed decisions regarding issues
such how many replicas of a particular datum to maintain.welodegree of replication needed to ensure a
given level of availability using nodes that tend to pergigthe collective for a long time or quickly rejoin
when they temporarily leave.

To address these challenges, we have designed an inceygieensbased on game theory and the eco-
nomic theory behind law enforcement that motivates justéhgehaviors. In 1968, Becker [3] presented
an economic model of criminal behavior where actors comffa&xpected costs and expected benefits of
offending, and only commit crimes when the expected gaineex the expected costs. Since then there
has been significant research extending the work of BecketirdRy et. al [16] provides a comprehensive
overview of the research dealing with deterrents in law exdiment.

In Section 2 we present a brief overview of our system desighiis novel incentive system that mo-
tivates participating nodes to remain in the system for |grgdictable durations. Our incentive model
employs a currency-based system that rewards work perthrasewvell as the consistency of the work. Fur-
ther, it is a well known phenomenon in game theory that reqokatteractions give rise to incentives that
differ fundamentally from isolated interactions [15]. Huhe collective manager employs offline analysis
of data provided by participating nodes, partners, clieatsl collective managers to determine future pay
rates for each node. Consistently desired behavior leadsreased rewards, e.g., the pay rate of nodes in-
creases in response to predictable long term availabilindesirable behavior results in decreased rewards,
e.g., the pay rate of nodes decreases in response to beiglgt dgimg about work done in an attempt to
receive undeserved compensation.

In Section 3, we analyze the impact of our incentive modeinfran economic standpoint to derive
key properties of our incentive system. We examine the impldecisions made by dishonest nodes and
analyze the gain vs loss possibilities for participatinglemas we vary the likelihood of bad actors being
caught. We show that while we cannot prevent users from iclggadur mechanisms mitigate cheating
behavior by making it economically unattractive. We showatth small probability of catching cheaters
(under 4%) is sufficient for creating a successful deteremgainst cheating. We further show that our
incentive system can be used successfully to motivate rtodesain in the system for prolonged durations.



2 Collective System

Design Overview

In our model, a collective supports the development of ithsted services built using the idle resources
of untrusted end nodes. There are two main types of nodesdliextive: participating nodes (PNs) and
collective managers (CMs).

Participating nodes are end nodes that have idle compotagst, or network resources. They are typi-
cally connected to the Internet though some sort of broadibarvice. PNs have different compute/communication
capabilities, go up and down in unpredictable ways, andrdrerently untrusted.

Collective managers are service providers to whom indadicodes provide their idle resources. A CM
uses these resources to provide a set of meaningful setaiaients, in return for which it compensates
PNs. Multiple competing CMs can co-exist, each providinfedent services and/or pricing models.

A typical distributed service built on a collective consisf components that run colocated on the CM
(calledservice managers) and other components that run on the PNs. A service managesponsible for
converting client service requirements into small compd®@nd distributing these components to a set of
PNs. Typically each service component will be replicategrtavide availability and scalability.

Figure 1 shows how we might provide a collective contentritlistion service (CCDS). A content dis-
tributor contracts with a CM to purchase access to resouraagged by the CM. The content distributor
interfaces with a service manager co-located on the CM nekieh divides the content into multiple (prob-
ably encrypted) chunks and caches them across multiple ®idsits contact the content distributor’s server
to purchase content and are given the location and decrykégs of encrypted chunks of content. Clients
then contact individual PNs to download the purchased obnta this scenario, the content distributor is
responsible for advertising and selling content, but theaaontent delivery is handled by nodes in the
collective. In particular, it does not need to maintain ieacontent distribution network, ala Akamai [2],
or data centers with large bandwidth pipes, but rather é&spltie bandwidth of hundreds or thousands of
end nodes, ala BitTorrent [7]. Unlike BitTorrent, the conttdistributor can be receive guarantees regarding
availability, average download latency, and other qualitgervice issues that are critical when building a
successful Internet business.

Incentive Model

In a collective system, a PN’s compensation is based on hoghntsi resources contribute to the success
of services running on the collective. A CM shares its prafith PNs in proportion to their contribution
towards different services. For example, in the CCDS exanmNs will receive a fraction of the money
paid by the content distributor roughly proportional to freetion of the total content that they deliver. The
basic unit of compensation is a CM-specific credit that asts kind of currency. Users can convert credits
to cash or use them to buy services from the CM or associatéuaeps.

For the incentive system to work, the CM needs an accurataatag of each PN'’s contribution. The
CM cannot simply trust the contribution reported by eachenaihce dishonest nodes can exaggerate their
contributions. In this section we discuss how we discoudigleonest behavior economically.

Contribution accounting is mostly done at the service leval depends on the design of the service
involved. The basic idea is to collect information from nipl# sources (e.g., PNs, partners, clients, and
the CM) and do offline data analysis to decide the individwalas contribution. We employ the following
mechanisms:

Credits Earned oc Work Performed: The work performed to support a service invocation, e gwrd
loading a movie, should be credited to the appropriate PN&ehEPPN sends a detailed daily report of its
activities to the CM. In the absence of dishonest PNs, easficseactivity can be credited to unique con-



tributing PNs. If nodes are dishonest, more than one nodeagjliest credit for the same work. To resolve
conflicts, the accounting system needs additional infdonat

Accountability: Each PN and each client is identified by a unique publicipenkey pair. The CM acts
as the root of the public key infrastructure (PKI) employgdtb collective. Each PN and client is issued a
certificate signed by the CM that associates the public kéfie@PN or client with their unique IDs. These
keys and certificates are used to create secure communicdiimnels and to digitally sign the reports sent
to the CM.

Offline Cheater Detection: To identify dishonest nodes, the system collects data frovs, -CM
scheduling records, service scheduling records, pattsatss records, and even completion reports by
client applications (if available). This data is used taies conflicts by comparing what work nodes claim
they did against what other entities claim was done. Confdisblution is done offline periodically (e.qg.,
daily). With multiple information sources, itis possibéedetect dishonest/cheating behaviors by PNs. How-
ever, we do not assume that CMs will be able to detect all irests of cheating behaviors — in Section 3.4
we show that our incentive model works even when we can orilctld%-5% of cheating behaviors.

Variable Pay Rates (Raises and Cuts)To provide an incentive for nodes to provide stable resource
levels and to penalize node churn, the amount of creditsvest®y a node in return for work depends on
the node’s long ternconsistency. A node that remains in the CM'’s pool for long periods of tinme dhat
provides continuous predictable performance receive® mr@dit for a unit of work than a node that flits in
and out of the CM’s pool.

Credit-per-unit-work (pay) rates are divided into leva®\s enter the system at the lowest pay rate; a
node’s pay rate increases as it demonstrates stable @msisntributions to the collective. The number of
levels and the behavior required to get a “pay raise” are gordble parameters for any given service.

To discourage dishonest behavior, the system can apply eypayhen it identifies a node mis-reporting
the amount of work it performs. The size of the pay cut can idigored on a per-service basis. Dishonest
behavior in one service leads to pay cuts in other servigesmithat node. As an alternative, we could ban
PNs from the system when they are caught cheating, but doimjrminates nodes who might “learn their
lesson” after finding that cheating does not pay in the long fifia node continues to cheat, its pay rate
becomes negative (i.e., it accumulates debt that must bieedaff before being paid), which has the same
effect as simply banning them.

Other factors can be applied to determine a particular sopay rate. For example, nodes that are
particularly important to a given service due to their lomator unique resources (e.g., a fat network pipe
or extremely high availability) may receive a bonus pay tatencourage them to remain part of the CM'’s
pool.

3 Economic Analysis

This section explores the design of our incentive systemm fam economic perspective. In particular, we
use game theory and probabilistic analysis to gain betsiglin into the implications of our design choices.

Our economic analysis focuses on the two main entities irsgsiem, collective managers and partic-
ipating nodes. Participating nodes are assumed to be $etésted, rational parties, which from a game
theory standpoint means that they act in ways that maxinhigie bbong term financial gain even if this in-
volvescheating. A collective manager is a trusted party that manages tlmiress of participating nodes
to support commercial services. Its goal is to build a swsfaédusiness providing services to external
customers using its PNs’ resources.

In game theory, systems are modeledjases played betweeplayers. Players are faced with a series
of options from which they must choose. The outcome of eantegahoice) depends on the player’s choice
and the choice(s) made by their opponent(s). The most famxarsple of game theory is the Prisoner’s



Dilemma [11], where two prisoners who are both accused afhaecare separated and individually given the
option of either “cooperating” (staying silent) or “defen}” (confessing to the crime and testifying against
the other prisoner). If both prisoners stay silent, theyrgra 6-month sentence. If both prisoners defect,
they both receive a 5-year sentence. If one prisoner cotgseaad the other defects, the one who defects is
set free, while the one who cooperates is given 10-year sesitén a variant of the game where the players
play the game repeatedly, researchers have found thatghdya learn to cooperate with one another and
thus receive light sentences [11]. We exploit this phenamen our incentive model.

We model the interaction between participating nodes aad:ttiective manager using a basic game
theoretic utility model. At any given time, we present PNshwiiwo orthogonal choices: (i) should they
remain in the collective or not and (ii) should they repos tiorrect amount of work for the last reporting
period or attempt to claim they did more work than they didgoeive a higher (undeserved) payment from
the CM. In this game at any time slet a rational PN node can either choose to share or not share its
resources based on the expected reward of each choice. Weprarent the choices available to PNs and
the collective manager using simple tables like Tables Eath column represents the options available to
the collective manager and each row represents the opti@ilalale to a PN. Entries in table take the form
a/b wherea is the payoff (reward) for the row player (i.e., PN) aé the payoff for the column player
(CM). In a typical game theory situation, the two players maknultaneous decisions, but in our scenario
PNs make their decision (share, no share) and then CMs maikel&ctision (reward or not reward the PN).

The “games” played as a part of collective are non zero-sumegameaning that one player’s gain is
not necessarily another player’s loss (and vice versa). @dlsot assumed to be altruistic, but rather we
want to derive an incentive model where it is in each node®mal self-interest to cooperate. In other
words, it is our goal to design rules for the “game” such théibnal actors will find cheating economically
unattractive. In the remainder of this section, we consdifferent scenarios and determine whether the
outcome realized achieves this goal.

3.1 Perfect Monitoring

We start by assuming a perfect monitoring scenario, i.e cthllective manager has perfect information
about the contributions made by PNs it manages. In this c&¢ @annot successfully lie to a CM about
how much work it performs, because if they lie, they are guiaed to be caught.

Table 1 shows the payoff structure for this scenario. A dashmma that a particular case is not possible
in this scenario, e.g., it is not possible for a PN to chooset'8hare” and have the CM choose to “Reward”
it. Assuming a CM shares its income 50%-50% between itselftaa PN concerned, we get the value of
Gs/Gg for the PN share case. This means that if a PN share its resyurcth it and the CM receiv@g
benefit. Herg~g is a positive number, which denotes the gain (payoff) rexkior sharing.

Reward | No Reward
Share | Gs/Gs -
Not Share - 0/0

Table 1: Payoffs for Perfect Monitoring Case

If we apply standard game theory analysis to this utilitydalboth (share/reward) and (no-share/no-
reward) areNash equilibrium [11]. Informally, a strategy is a Nash equilibrium if no péycan do better
by unilaterally changing his or her strategy. Even thoudiag/reward) is pareto optimal, meaning that it
leads to both players receiving their highest reward, baies are equally possible from a Nash equilibrium
point of view.

This analysis assumes that both players choose their admolependently, which as we mentioned
above is not the case in our design. In our case, a CM makekdiseconly after analyzing the action of



the PN concerned, which is why the two dashed states are seilgb® Hence, a PN knows that the CM
will always chooseeward in response tshare, which tilts the equilibrium balance towar@hare/reward)
instead of(no-share/no-reward). This behavior of the collective manager greatly simplibes analysis of
the various scenarios discussed throughout the paper adsl e pareto optimal choices for rational PNs.
Cost of Sharing Table 1 does not model the fact that there is a cost assdaiatke performing a job
(e.g., power charges). Letbe the cost of performing a job, which typically will be smaihce we are
exploiting idle resources, but positive. Table 2 shows aiffeztireward structure that accounts for this cost.

Reward No Reward
Share | (Gs —¢)/Gs -
Not Share - 0/0

Table 2: Payoffs for Perfect Monitoring Case with cost ofrstgincluded

3.2 Imperfect Monitoring

The previous analysis assumes that the CM has perfect kdge/leegarding whether a PN is accurately
reporting how much work it performs. Table 3 shows a paydifadf we assume that a CM can only detect
PN lies with some non-zero probability. Hereontinues to represent the cost for a PN to perform a unit
of work. Rational PNs now have an additional choice avadablthem; they can chose li@ to the CM,
claiming to do work that they have not dong@.;..: is the expected reward that a PN will receive if it lies,
and L is the loss incurred by the CM due to incorrect awarding oflitse If the system cannot detect lies,
thenG.eq 1S €qual toGg, in which case a rational PN will always lie, since this ldtseceive a reward
without doing any work. Thus, if CMs cannot detect lying PN® system will destabilize since cheating
PNs will always claim to do work, but not do it.

Reward No Reward
Share | (Gs —«¢)/Gs -
Cheat Geheat/ — L -

Not Share - 0/0

Table 3: Payoffs for Imperfect Monitoring Case

Our collective service is designed to make it nearly impwesfor PNs to successful lie about their
contributions. However, it is impractical to track enougformation to catch all instances of a PN lying. If
we assume that only a fraction of all lies will be detected,cal analyze the impact of undetected lies to
determine what probability of lie detection is hecessargadivate selfish PNs to report the truth. Assume
that the probability of detecting a lie (offense)is In that case, thexpected payoff for lying (G peqt) iS:

Gcheat = (1 - po) * GS

We can create a deterrent that punishes PNs when they arbtazhenting, i.e., when they provide
incorrect accounting information. If' is the amount we penalize PNs when we catch them lying, the
expected payoff for lying (Gcneqt) becomes:

Gcheat = (1 - po) * GS + Po * —F

We can represent’ as a certain fraction afrs, i.e., a PN is penalized a fraction (definedba®f pay for
each unit of work it falsely claims to have done. Adding thimalty results in an expected reward for lying
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(Gcheat) as.

F = bxGgwhereb>0
Gcheat - (1 _po) *GS _po*b*GS
Gcheat - GS * (1 — Po — Do * b)

This results in the payoff table shown in Table 4:

Reward No Reward
Share (Gs - C)/Gs -
Lie | Gs*x(1—po—poxb)/ —L -

Table 4: Payoffs for Imperfect Monitoring with Penalties

Figure 3.2 plots possible payoff for a single unit of rewatt (= 1) as a function op,, the probability
of being caught. Different curves in the graph represenipthff for different values ob, i.e., different
sized penalties relative to the standard reward. We obdkatehe potential payoff of lying drops below
zero when the probability of being caught crosses a thrdshak depends ol Specifically, we can derive
Gepear < 0 as follows:

1
GS*(I—pO—pO*b)<0 — p0>1—+b

So forb = 1, a probability of0.5 or more is required to make fake sharing economically urésteng to a
user. A collective manager can effectively use differetti@s ofb to create different degrees of deterrence.



3.3 \Variable Pay Rates

In the previous analysis, we considered only single-rouaches. However, in our system, PNs typical
participate in a series of games, which lets us employ theegédmory of repeated interactions [11] to
analyze the impact of repeated interactions on the behaf/il®Ns.

A simple solution treats repeated interactions as indem@ndising the rules presented in earlier sec-
tions. In this case, we can use the sum of the individual rgaydffs to understand the dynamics of repeated
interactions. However, this approach does not exploit dilittato employ a variable pay rate mechanism
that responds to observed PN behavior to motivate ratioNsl 8 cooperate. We use pay variability to
acheieve two types of positive behaviors from PNs: (i) tooemage nodes to remain in the collective for
extended, predictable periods and (ii) to punish cheaters.

To address our first goal, that of encouraging nodes to reimaie collective for extended periods, the
amount of payment that a node receives in return for workngsgaepending on its long term “consistency”.
A node that remains in the CM’s pool for long periods of timel dhat provides continuous predictable
performance receives more credit for a unit of work than aertbdt flits in and out of the CM’s pool.

In our design, pay rateR) are divided intdl levels, R, R, ...R;), whereby each pay rate is a fixed
constant above/below the level below/above it, as follows:

R,=Ri+1*(n—1R,<=R, 1)

PNs enter the system at the lowest pay rdl¢){a node’s pay rate increases as it demonstrates stable con-
sistent contributions to the collective. If a node contrésusuccessfully to collective fdr..;s. consecutive

time periods, its pay rate is increased. Periods duringhvhicwork is scheduled on a node are not counted
for this calculation. The number of levelg,(initial pay rate R;), pay rate increment/§, and effort needed

to warrant a rais€l(..;sc) are configurable parameters for a given service, and arendept on the profit
margins of the service.

To discourage cheating, the system can apply a pay cut whidentifies a node mis-reporting the
amount of work it performs. When such an offense is dete¢kedPN’s pay rate is reduced by the amount
of pay increases that would normally accrue 1¢y,; steps (periods) of useful work. Typicall§.,; is a
multiple of T}.4ise (i.€., Tewr = 0 * Traise Whereo > 1), so pay is dropped by some configurable number
of pay levels. The size of the pay cut.(;) can be configured on a per-service basis, depending upon the
criticality of the offense committed.

We can represent a PN'’s pay rate at any timeR&s:

cut
- Ndetected * I x ——

raise raise

R(t) = Ry + I %

Heretl represents the number of timeslots where some useful woskpsgormed or claimed to have
been performed and the lie went undetected. After tilne node will receivd x* t1/T,4se Pay increases.
Naetected represents the number of detected offenses; each suclseffeads to a decrease in pay rate
equivalent tdl,.,.; steps.

3.4 Evaluating the Incentive Model
Let us use this model to analyze the accumulated payoffsiffereht node profiles to understand how our
mechanisms affect node behavior.

3.4.1 Short Lived vs Long Lived Nodes

To analyze the difference between short-lived and longdliplayers, we plot the average pay rate received
by different honest nodes of similar capabilities with @ifnt active life times in the system. We assume
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Figure 3: Short Lived vs Long Lived Player

Ry =1, a sample increment of2 with 10 levels and/}.,;sc = 7 (e.g., 7 days). Figure 3 plots the average
payrate vs the life of a player in the system. This graph blesirows that patient long-lived players gain
clear advantage over short-lived players.

3.4.2 Deterring Cheating Behavior

A rational node will cheat only if the gain from cheating is mdhan that of honest behavior. Earlier we
discussed the expected gain for a single unit of the worke Mar discuss the expected gain for a series of
interactions.

A PN that performs work on behalf of a collective can completdy a limited amount of work per
time unit given its available resources. In comparison,eatihg PN can fake the completion of an almost
unbounded amount of work, irrespective of its resource luidipes. In this section we analyze the expected
accumulated gain of a node over a period of time ¢iime periods, e.gs days {(ve use summation of gain
over ¢ from 1 to n to show this). We consider two scenarios. In the first scenario nodesvieehanestly,
while in the second scenario nodes claim to complete mork than they really performed (i.e., they cheat).

Let Gronest b€ the expected gain of behaving honestly éhg..; be the expected gain of cheating. If
Geheat 1S more than,.,¢5:, then a rational node will always take the cheating route &gimize its gain.
We can represent the difference betwégn,.; andGyonest by D:

D = Gcheat - Ghonest

To remain effective in the face of cheating nodeshould be less than zero in our system.
We can divide a node’s offenseflies about work done) into two categories, detected ofisrand
undetected offenses. As explained in previous sectionstextid offense not only leads to a fine but also

1We use the termffense to denote instances when a node attempts to cheat the syEténthoice of terms is motivated by the
fact that the following analysis is derived from the gametiyeassociated with criminal law, where offenses refer tmes [3, 16].



impacts a node’s pay rate. Here we analyze the accumulatedd®f a cheating node over a period of time
to understand the long term impact of cheating.

Do Probability of detecting offenses
R(t) Pay Rate at time period
b fine ratio, Fine = b x R(t)
Nost Number of offenses per time period
Nactual Number of work units that can be completed
by an honest node per time period
Traise Time periods required for a pay raise
Teut Time period equivalent to a pay
rate cut for an offense
10 Ratio of pay cut rate to pay raise rate
(Tcut =0 * T’r‘aise)
I Pay raise increment
Niotar | Total number of offenses committed ) )" | Nog (¢)
l Number of Levels (max pay rate B;)

Table 5: Glossary of Mathematical Symbols Used

We first consider the case of perfect monitoring where eviense is successfully detected by the CM.
Since every offense is detected, a cheater will suffer alpefwa every offense.

Z Nactual * R(t)

t=1

n
Z Nactual * R(t) - Noff * I
t=1

Ghonest =

Gcheat =

Here N ..o represents the number of units of work per unit of time thatrtbde can perform given its
available resources, amd, s ; represents the number of units of work faked by a cheating.nod

If the cheating node commits one (detected) offense in eumkyslot, it will always be paid at or below
the base pay raté,. Effectively,

n
Gcheat < ZNactual * Rl - Noff * F>
t=1

whereF' is the fine levied by a CM upon detecting an offense. In thi® 08s,cqt > Ghronest, SO Cheating
is not economically attractive. Even when nodes only cheagdn a while, the fine and lower pay rate lead
to less net income than honest nodes, which is unsurprisueg ¢he assumption of perfect monitoring.

In case ofimperfect monitoring, the system does not detect all offenses. jdbe the probability that a
offense is successfully detected by the CM. In this caseathamulated gain over a period of time depends
upon the distribution over time of offenses performed byrtbde.

We first consider a case where a node perforfyg, offenses during every time period (e.g., every
day). GivenN,; offenses in a time period, each having a probability of detawf p,, we can represent
the probability of all offenses going undetected hy;,. p.4o iS the cumulative probability that none of
N, offenses is detected, which ($ — po)Noff. Givenp,q4,, We can estimate the pay rate at any time
interval using the following equation:

Pndo =

R(t) =

(1-— po)Noff

R(t —1) — po* Nosg * 0% I 4 Dpdo *

Traz'se
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Figure 4: D for Different Number of Offenses

Herep, x N, s ¢ represents the expected number of detected offenses. Etetltetl offense leads to pay rate
cut equivalent t@ « . Note thatR(¢) is capped aR;.
We can represent the accumulated gain of a cheating G&gg,:, as follows:

SU = (1 _pO) * Noff +Nactual

Geheat = Y _SU*R(t) —pox Nogs + F
t=1

HereSU represents the number of units of work successfully billed PN, which includes both real work
and undetected falsely claimed workK.represents the fine for a detected offense, which we refrasem
multiple of the equivalent reward for performing a unit ofrkpi.e., ' = b« R(t) whereb > 0

To visualize the implication of these equations, let us @rghe case of accumulated gain over a period
of 25 days, where each time slot is one day. We Rge= 0.1 (initial pay rate), a sample increment@f)2
(pay increase per day of sustained honest operation) wiktve®s, T qise = 7, Trwt = 7y Nyctuar = 50, and
F = 1% R(t). In Figure 4 we plotD, the difference between the accumulated gain of cheatidganuine
node as we vary,r from 1 to 25.

The results make clear that increasing the probability téctang offenses leads to a very sharp decrease
in the value ofD. If p, is 0 meaning no offenses are ever detecfeds positive and increases with each
offense, so nodes are motivated to cheat. Howeveguickly becomes negative for, values of 0.05, 0.1
and 0.15. Thus rational nodes will determine that it is inrtbe/n best interest to not cheat even when the
chance of being caught is small, and the disincentive totéhegeases as the number of offenses increases.

As an alternative to fining and reducing the pay rate of PNswmhe CM catches them lying about work
performed, we could simply ban users found to commit an s#e®ur approach warns misbehaving nodes
to mend their ways, and rational nodes will realize thatehierno benefit from cheating and cooperate.
If individual nodes persist in misbehaving, their pay rat# soon turn negative (due to cuts), which for



practical purposes is as effective as banning the node.

3.4.3 Worst Case Analysis

In this section we investigate the maximum expected benBfji,{) that a dishonest node can gain from
cheating. We can divide the gain/loss from cheating intedtrategories: (i) the payoff from undetected
cheating (cpeqt), (ii) the loss due to fines for detected cheatiig,(..), and (iii) the losses accrued from

receiving a pay cut due to detected cheatibg,{..)-

Dmax = Gcheat - Lfines - Lpaycut

Given a particular finef" = b * R(t), we can estimaté&l ... andL ., using the following equations:
Gcheat = ZNoff 1 _po) *R( )
Lfines = ZNoff(t) * Do *x bx R(t)

Gcheat - Lfines = Z R off (1 - (b + 1)p0)

The maximum value of R(t) i&;, which we can use to refine our estimate as follows:

Gcheat_Lfines < ZRlNoff 1_(b+) )

Gcheat_Lfines < Rl*(l_ b+1po ZNoff

Gcheat - Lfines < Rl * (1 - (b + )po)Ntotal

Here N4 is the total number of offenses over the time period aiyd; (t) represents the number of units
of work faked by a cheating node for time slat

When a PN is caught cheating, its pay rate is decreased itiautti it receiving a fine, which decreases
how much it receives for work it actually performs. Since thax pay rate is capped &, the impact of a
pay cut persists only until a PN’s pay rate recover&tpwhich occurs if it is honest or not caught cheating
for a period of time. Thus, the impact of pay cuts is minimizdten pay raises are frequent. If we assume
that all cheating occurs when a PN's pay ratdzjs we can calculate the minimum loss induced by being
caught cheating.

Assume that cheaters receive a pay rate ct.of = o * T,4sc. IN Other words, being caught cheating
reduces a PN’s pay rate by the equivalent phy raises. In this case, we can calculate the loss a PNsuffer
due to the decreased pay rate from a single detected chea&nt) (;—,qyc.:) as follows:

Ls—paycut 2 Z Nactual * PayRateCUt(k)
k=1

v

o
Ls—paycut Z Nactual * ko* Traz'se * 1
k=1

o(lo+1)

Ls—paycut T * Traise * Nactual * 1

v



The total number of expected detected offenses can be adud, * N;;. Using this, we can refine
the previous equation to finb,, .-

olo+1
Lpaycut > % * Thraise * Nactual * I Do * Ntotal

This lets us calculat®,,,,, as follows:

Doz = Gcheat - Lfines - Lpaycut
Dmam < Rl * (1 - (b + 1)po)Ntotal
_o(o+1)

) Traise * Nactual * 1 * Do * Ntotal

A rational node is motivated to cheat only if the gain fromatiey is more than the gain from behaving
honestly. For our variable pay system to deter cheating,hwald select system paramaters to ensure that
D, 1S negative. Using the above equation, we can determine edmalitions are necessary o, ., to
be negative as follows:

> il
be Rl(b + 1) + O(Ogl)Traise * Nactual *

At first glance, this formula might appear complicated, betagn gain some intuition by solving it for

a sample case. If we use the same parameters that were uségiiar 4 (1-day time slots, a pay scale with
10 levels that increases 20% pEr,;sc = 7 days, a pay decrease when caught cheating equ@al,to= 7
days worth of raisesV,.1ua; = 50, R1 = 0.1, I = 0.02, andb = 1), we need only detect cheaters with a
probability p, greater than% = 0.0395 (roughly 4.0%). This probability remains unchanged fofedeént
values of Ry as long as pay raise increme) {s 20% of R;. In contrast, if we assess fines, but not pay
decreases, when a PN is caught cheating (the model derivigeciion 3.2), the probability, of catching

a cheater must be greater thah to build an effective deterrent. Thus, varying pay basedogévity and
honesty is an important feature for our incentive model.

3.4.4 System Tuning

Even if we are unable to identify a cheating PN, the CM caninlaa estimate of the frequency of cheating
in the system using service-level information. For exampiea collective content distribution system,
clients will retry unsuccessful downloads using a différehl, which will lead to multiple PNs requesting
credit for same work if the first failure was due to a cheatiyy P a CM observes a particular frequency
of undetected cheating, it can tune the parameters usetttdata pay rates and fines (e.g., the fine ratio
the pay cut ratio, the rate of pay increasés,;.., and the pay rate incremenh} to maintain an acceptable
profit margin.

3.5 Other Issues

Motivating Critical Nodes: Other factors can be applied to determine a particular sop@y rate. For
example, nodes that are particularly important to a giveniee due to their location or unigue resources
(e.g., a fat network pipe or extremely high availability) yrr@ceive a bonus pay rate to encourage them
to remain part of the CM’s pool. A service can define thresluitbria that are used to designate a node
as an important player, e.g., delivered bandwidth more thafor more than 70% of the time over the
last 15 day period. Once a node reaches this threshold, ésigited as special and extra pay levels like
Ryiy1, Riy9, Ry3 are made available to them. Additionally,;s. can be reduced to provide extra rewards
to these nodes.



Multiple Identities: A cheating PN can easily change identities in an attempt aadaany penalties it
receives. Our variable pay rate incentive system is dedigmenake this behavior unprofitable. A new user
starts at a low pay rate, and only gets pay raises after ssfotlgscompleting work for a considerable time
period of time. When a node changes identities, its pay natpstto the low base pay rate when it rejoins
the collective. It would be better off to remain in the cotlee and behave honestly. We envision CMs only
paying nodes every 15 to 30 days based on the amount of workh#we performed, similar to how web ad
services like Google Adsense [10] are administered. If thbability of detecting offenses is above the low
4%-5% threshold needed to discourage malfeasance, a 18-dayBpay period is sufficient to ensure that
persistent cheater loses money by cheating. Overall, wectxptional nodes to learn that they earn more
from proper behavior than from cheating, and are willingd¢oegpt nodes recycling their identity to make a
fresh start after they learn this lesson.

4 Related Work

Cheating behaviors have been observed extensively, geg.ritling in Gnutella [1] and software modifi-
cations to get more credits in SETI@home [12]. Our mechan@imandle cheating behaviors based on
multi-party accounting is similar to the role of accountiépin dependable systems [22]. Our system can
use a payout system similar to the one used by Google adsmwam [10] that allows website publishers
to display ads on their websites and earn money.

Unlike SETI@home [17] and Entropia [5], we harness idleagerand networking resources of PNs in
addition to idle processing resources. SETI@home rewasesaredits similar to ours, but has no concept
of penalties or incentives for long term participation.

Unlike P2P systems like Kazaa [13] or Gnutella [9], we do rssieme that PNs are altruistic. Our PNs
are rational nodes that are interested in maximizing ingoroeselflessly helping others.

Many other projects, e.g., BitTorrent [7], have focused artdring as an incentive model for exploiting
idle resources. In such models, nodes typically partieipatthe system only long enough to perform a
particular transaction such as downloading a song. At ditmers, that node’s idle resources are not utilized
unless the node’s administrator is altruistic. In the aile, a CM will have much larger and more diverse
pools of work than personal needs of individual particisatiius a CM will be better able to consume the
perishable resources of PNs. PNs, in turn, will accumulatditfor their work, which they can use in
the future however they wish (e.g., for cash or for accesioices provided by the CM). Many recent
projects [14, 18] have applied game theory techniques {d gentives models based on bartering. These
projects model nodes as rational self-interested paritigitas to us.

Currencies have been used extensively in the systems comyniruwvarious contexts [21, 4]. Recent
projects [20, 19] have used currencies to handle the probfénee riding in peer to peer systems. Though
none of these incentives techniques address the issue vatimal nodes to stay in the system for extended
durations. Also these projects do not provide any mechanfemdeterring cheating in presence of unde-
tected offenses in the system.

Systems like computational grids [8] also deal with disttédal resources at multiple sites, though again
their main focus is on trusted and dedicated servers.

We can compare a collective to the formation of organizatimms in real life [6]. Similar to employees
in firms, PNs in a collective need to be motivated to do betterkvand demotivated from shirking away
from work.



5 Conclusions

In this paper, we present an analysis of the incentive modatmploy in a distributed designed to harness
the idle cpu, network, and storage resources of large pdalatausted, selfish, and unreliable nodes. Our
analysis focuses on two important challenges: ensurinppged participation by nodes in the collective
and discouraging dishonest behavior. An analysis of the@odc underpinnings of the system allowed us
to gain important insights into the likely behavior of ditéat players in the system, which we used to derive
an incentive model that achieves our goals.

The most important contribution of the paper is to demotsthaw a mix of rewards and punishments
can be used to successfully motivate to behave in ways thdfib¢he collective. We also show how a
real system can sustain profitability even in presence oétautied offenses or deviations from the desired
behavior, as long as we are able to detect even 4%-5% of dishbehaviors.

References

[1] E. Adar and B. Huberman. Free riding on gnutelé:st Monday, 5(10), October 2000.

[2] Akamai.htt p: // www. akamai . cont .

[3] G.S.Becker. Crime and punishment: An economic approBuaJournal of Political Economy, 76(2):169-217,
1968.

[4] R.Buyya, D. Abramson, J. Giddy, and H. Stockinger. Eaoitomodels for resource management and schedul-
ing in grid computing. The Journal of Concurrency and Computation: Practice and Experience, 14(13-15),
2002.

[5] B. Calder, A. Chien, J. Wang, and D. Yang. The entropi&ual machine for desktop grids. Imternational
Conference on Virtual Execution Environment, 2005.

[6] R. H. Coase. The nature of the firfeconomica New Series, 4(16):386—405, 1937.

[7] B. Cohen. Incentives build robustness in bittorrent.Phoceedings of the Workshop on Economics of Peer-to-
Peer Systems, 2003.

[8] I. Foster, C. Kesselman, and S. Tuecke. The anatomy ofStti@ - enabling scalable virtual organization.
Internation Journal of Supercomputer Applications, 15(3), 2001.

[9] Gnutella.ht t p: // www. gnut el | a. com

[10] Google Adsensént t p: / / www. googl e. conf adsense.

[11] S. P. Hargreaves-Heap and Y. Varoufakimme Theory: A Critical Introduction. Routledge, 2004.

[12] L. Kahney. Cheaters bow to peer pressiiéred, 2001.

[13] Kazaahttp://ww. kazaa. com

[14] K. Lai, M. Feldman, I. Stoica, and J. Chuang. Incentifggcooperation in peer-to-peer networks.\Mibrkshop
on Economics of Peer-toPeer Systems, 2003.

[15] G.J. Mailath and L. SamuelsoRepeated Games and Reputations. Oxford University Press, 2006.

[16] A. M. Polinsky and S. ShavellThe Theory of Public Enforcement of Law, volume 1 ofHandbook of Law and
Economics. North Holland, Nov 2007.

[17] SETI@homehttp://seti at honme. ssl . ber kel ey. edu.

[18] J. Shneidman and D. Parkes. Rationality and self-@stein peer to peer networks. 2md Int. Workshop on
Peer-to-Peer Systems (IPTPS 03), 2003.

[19] M. Sirivianos, X. Yang, and S. Jarecki. Dandelion: Cewgiive content distribution with robust incentives. In
NetEcon, 2006.

[20] V. Vishnumurthy, S. Chandrakumar, and E. Sirer. Karmdasecure economic framework for peer-to-peer
resource sharing. IR2P Econ, 2003.

[21] C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O. Kephartd W. S. Stornetta. Spawn: A distributed
computational economysoftware Engineering, 18(2):103-117, 1992.

[22] A. R. Yumerefendi and J. S. Chase. The role of accoulitglim dependable distributed systems. Hirst
Wbrkshop on Hot Topicsin System Dependability, 2005.



