
Predicate Abstraction for Murphi

Xiaofang Chen and Ganesh Gopalakrishnan

UUCP-06-002

School of Computing
University of Utah

Salt Lake City, UT 84112 USA

Abstract

Predicate abstraction is a technique used to prove properties in a finite or infinite state
system. It employs decision procedures to abstract a concrete state system into a finite
state abstraction system, which will then be model checked and refined. In this paper,
we present an approach for implementing predicate abstraction for Murphi[1] using CVC
Lite[2]. Two cases for each property(i.e. SAT and UnSAT), are tried in model checking.
When a fixed point is reached finally, the validity of each property is declared. We applied
our tool(called PAM) on the FLASH[3] and German[4] protocols. The preliminary result
on these protocols is encouraging.

1 Introduction

To verify interesting properties in a concurrent system, traditional approaches based on
simulation and testing are often not adequate. This is because many concurrent systems,
such as cache coherence protocols, are characterized by very large state spaces so that
simulation and testing cannot achieve a reasonable coverage. To overcome this limitation,
model checking[5] is widely used in verification, as it provides full state space coverage.

However, model checking also has the well known problem of state explosion, which makes
it unable to verify large scale systems. The idea of predicate abstraction was first described
by Graf and Saı̈di[6]. It is a technique trying to abstract large-scale or infinite-state systems
into tractable finite-state systems. The states in the abstract systems correspond to the
truth values of a set of predicates in the original concrete systems. The abstraction is
conservative, meaning that if a property is shown to hold on the abstract system, there is a
concrete version of the property that holds on the original system. However, if the property
fails to hold on the abstract system, it may or may not hold on the concrete system.

In this paper, we present an implementation of predicate abstraction for Murphi using CVC
Lite(CVCL). We use it both as a symbolic simulation library and a decision procedure.
The result is encouraging as it is able to process cache coherence protocols such as German
and FLASH.

2 Related Work

Over-approximation[7] and under-approximation[8] are two types of abstractions used in
predicate abstraction. Over-approximation based abstraction is conservative. It usually in-
troduces more concrete states than those in the real system when abstraction is concretized.
It also requires that an abstract transition relation be derived from the concrete system. On
the other hand, under-approximation based abstraction is often more precise: any prop-
erty that holds on a concrete system also holds on the abstract system. Over-approximation
based abstraction usually generates abstract states directly from the concrete states, without
knowing an abstract transition relation.

Because of the over-approximation introduced in abstraction and concretization, refinement
is often required to improve the precision of the abstract transition relation in predicate ab-
straction. Counter-example guided abstraction refinement [9, 6, 10, 11] is one approach to
extract information from false negatives (“spurious counterexamples”). Another approach,

such as overlapping projections[12] and lazy abstraction[13], uses both forward and back-
ward transition relations to do refinement. Recently, unsat core extraction[14, 15] has been
tried in SAT solvers [] as another approach of refinement.

There are other approaches to generate abstract state graphs. For example, [13] abstracts
C programs into boolean programs, in which the control flow of the boolean program is
the same with the C program, and each boolean variable corresponds a C program predi-
cate. However, this approach has the disadvantage of losing information permanently after
abstraction, which makes it unable to do enough refinement in the abstracted program.

Our work is derived from Das and Dill[7], which uses over-approximation based abstrac-
tion. However the original implementation of [7] was not publicly available and several
technical details cannot be inferred from the paper. As an initial trial, we implemented the
predicate abstraction for Murphi (called PAM) using CVCL. It first converts a protocol
described in the Murphi modeling language into a symbolic mode, and then use CVCL as
a decision procedure library to infer the truth values of predicates.

3 Predicate Abstraction

In this section, we first describe the features of the Murphi model checker, then illustrate the
theoretic basis of PAM, and finally present an example to show how the algorithm works.

3.1 The Murphi Model Checker

The Murphi[1] model checker was designed for verification of asynchronous high-level
systems. It consists of two components: the description language and the compiler. The
description language can be used to model an asynchronous system to be verified, and the
compiler compiles the model into a special purpose verifier. This verifier uses an explicit
state enumeration algorithm to check the properties of the system, such as error assertions,
invariants and deadlocks. If the system fails to observe these properties, a counter-example
is generated and reported by the verifier.

The Murphi modeling language describes the transitions of a system using a set of guarded
commands (also known as rules). Each guarded command consists of a boolean expression
(called guard) and a collection of statements (called action). A rule is said to be enabled
if the guard expression evaluates to true. Given the current state of the system, one of the

enabled rules is chosen nondeterministically and the corresponding action is executed to
compute the next state of the system. The initial state(s) of a system is described using a
rule without guard.

3.2 Abstraction and Concretization

In this paper, we regard all the states in a system before abstraction as concrete states, and
the truth values of a set of predicates in the concrete system as abstract states. A concrete
state can only have one corresponding abstract state, while an abstract state may represent a
set of concrete states. For example, suppose a concrete system is described using variables
{pc, y1, y2, z}, and there are two predicates {φ1, φ2}: φ1 ≡ (pc = 1) ∧ (y1 = 1); φ2 ≡
¬(pc = 1) ∨ (y2 = 2). If a concrete state has the value of {pc = 1, y1 = 1, y2 = 0, z =
false}, then the corresponding abstract state is (φ1, φ2) = (true, false).

We now formally define the terms used in the rest of this paper. We denote all the concrete
states in a system as C, the concrete transition relations in C as RC , and the set of predi-
cates as {φ1, φ2, . . . , φn}. Thus, a concrete state y is a successor of a concrete state x iff
RC(x, y) = true. On the other hand, we denote all the abstract states as A, and the ab-
straction function as α, which maps a concrete state to an abstract state. The concretization
function γ is defined as the inverse of α. It maps an abstract state to a set of concrete states.
The above formal definitions are shown as following:

RC : C × C → Bool

α : C → A

α(x) = (φ1(x), . . . , φn(x))
γ : A→ 2C

γ(s) = {x | s = (s1, ..., sn), φi(x) = si, ∀i ∈ [1, n]}

3.3 Predicate Abstraction Algorithm

3.3.1 Initial Abstract States

To generate all the reachable states in the abstract system, we first compute the initial
abstract states. This can be done by first computing the initial concrete state s0, and then
set predicate i to be false if (s0 ∧ φi) is UnSAT, and to true otherwise. The satisfiability
check is done by CVCL, and it is equivalent to compute φi(s0).

When ruleset[16] is used in the rule construction, it can be thought of as syntactic sugar
for creating a copy of its component rules for every value of its quantifier. In this case,
the satisfiability check over the combination of each predicate, including both φi and ¬φi

is performed. This is similar with the H() function in Section 3.3.2. The result will be
stored in a BDD structure, and each satisfiable assignment in this BDD will be taken out
separately to generate its own reachable abstract state space.

3.3.2 Generating Next Abstract States

Suppose x is a set of concrete states, y is a set of next concrete states corresponding to
x, and S is a set of abstract states. To generate a set of abstract successor states of S in
at most one step, i.e. generating successor states or keeping current states, the function
“H()” is used defined as following. It is a recursive function with the initial input of value
{ψ = γ(S)(x) ∧ Rc(x, y), i = 1,bdd = bddfalse}. Here S is an initial abstract state, and
γ(S)(x) represents a set of concrete states concretized from S. Concretization is done by
replacing the satisfiability value of each predicate in abstract states with the corresponding
predicate formula, i.e. true with φi(x) and false with ¬φi(x). bdd is a BDD structure. It
is a pointer in H(), with the initial value being true.

H(ψ, i, bdd) =

false if ψ(x, y) UnSAT

true if i > n

H(ψ(x, y) ∧ φ i(y), i+ 1, bdd & bddvar(i))

∨ H(ψ(x, y) ∧ ¬φ i(y), i+ 1, bdd & !bddvar(i)) otherwise

When H() returns true, bddwill contain the set of successor reachable abstract states. These
states will be used to check if a fixed point has been reached. The computation of H() will
continue with a new set of (ψ, i, bdd) if no fixed point has been reached, and exit otherwise.
Following is an example illustrating how the predicate abstraction algorithm works.

--
Concrete System

ruleset i: 0..3 rule "1"
p := 0; p := p + 1; phi1 = (p=0)
q := i; q := q + 1; phi2 = (q=1)

(init state) (transition rule) (predicates)
--

Abstract System
{(1,0)} --> {(0,0), (0,1)} --> {(0,0), (0,1)}
{(1,1)} --> {(0,0)} --> {(0,0), (0,1)} --> {(0,0), (0,1)}

(init states) (successor states) (2 fixed points reached)
--

4 Implementation

We have implemented the predicate abstraction algorithm described in Section 3.3 with
the Murphi modeling language called PAM. Given a model with user provided predicates,
PAM first converts data types described in Murphi into CVCL data types, and then creates
a record type REC which contains all the global variables in the model. Two CVCL
expressions of the type REC are declared: Expr X, Y , which represent the current and
next concrete states in the system.

The Murphi data types that PAM currently supports include the following. Complex data
types can be declared by nesting “record” or “array”.

boolean array record enum subrange

In the following sections, we will illustrate how PAM deals with “rule”, “startstate”, “state-
ment” and “expression”. Because the body of a “predicate” is just an “expression”, it will
be covered in Section 4.3.

4.1 Rules

There are three types of rules in the Murphi modeling language: “startstate”, “rule” and
“invariant”. As the names indicate, “startstate” specifies an initialization of concrete states,
“rule” defines a concrete transition relation, and “invariant” specifies a user-provided pred-
icate.

To support the nondeterministic syntax of multiple startstates, PAM selects one startstate
each time, computes its initial abstract state and then generates all possible successor states
until it finally reaches a fixed point. For each startstate rule, PAM implements a method

“void get startstate expr(Expr *start expr)”, in which start expr is an
output CVCL expression. This method symbolically executes each statement in the start-
state rule sequentially. The satisfiability check described in Section 3.3.1 will be performed
on start expr when computing the initial abstract states.

4.1.1 The Concrete Transition Relation

The concrete transition relation Rc() is computed by logically disjuncting all the “rule”
transition rules defined in a model. In the Murphi modeling language, a “rule” is repre-
sented by a “guard-action” pair, in which guard is a boolean expression working as the
prerequisite to execute the action, and action is a collection of statements to compute the
next concrete state. When multiple rules are enabled (with their guards being satisfied),
one of them is selected to execute nondeterministically.

PAM computesRc() by having each transition rule implement a method “void get rule expr
(Expr &rc)”, in which rc expr is an output CVCL expression. This method first obtains
the guard expression by calling the method “generate expr()” defined in Section 4.3.
It then symbolically executes each statement in the action body sequentially. The logical
conjunction of the guard and action expressions is the output of rc expr.

As an example, considering a rule with the guard being (p = 0) and the action being
{p := p+ 1; q := p; }, the method “get rule expr()” will work as following:

(1) void get rule expr(Expr &rc) {
(2) Expr guard = vc->eqExpr(vc->recSelctExpr(X, ”p”), vc->ratExpr(0);
(3) Expr Z = X;
(4) Z = vc->recUpdateExpr(Z, ”p”,
(5) vc->plusExpr(vc->recSelectExpr(Z, ”p”), vc->ratExpr(1)));
(6) Z = vc->recUpdateExpr(Z, “q”, vc->recSelectExpr(Z, “p”));
(7) rc = vc->andExpr(guard, vc->eqExpr(Y,Z));
(8) }

Finally, Rc() is the logical disjunction of all the rc expressions corresponding to all the
“rules” defined in a model, representing a one-step transition relation. Any of the enabled
rules can be fired and the corresponding action will be executed to compute the next state.
When none of the guards is enabled, the next state Y will have the same value as the current

state X . The following formula illustrates Rc (assuming there are t transition rules)

Rc() = ((rule no=1) ∧ rc 1
∨ . . .

∨ ((rule no=t) ∧ rc t
∨ ((rule no=0) ∧ (Y=X) ∧ (¬guard 1 ∧ . . . ∧ ¬guard t))

4.2 Statements

PAM currently supports five types of statements in the Murphi modeling language, in-
cluding assignment, ifstmt, forstmt, proccall and returnstmt. It implements the method
“generate action()” shown as following for each type of statement.

virtual void generate action(char *state,
map<char *, char *>& locals,
map<char *, char *>& proc params,
char *cond,
vector<ReturnStmtClass *>& retn stmts)

In this method, state is a string representing whether the method is processing the action of
the current state “X”, the next state “Y”, or a temporary state “Z”. Note this method is part
of the PAM compiler, which will generate a C++ file for a model described in the Murphi
modeling language.

locals in this method is a map from the names of local variables (including ruleset)
to names of unique CVCL expressions; proc params is a map from procedure/function
parameters to names of vector variables which specify how to do the get and update opera-
tions on each parameter, as the Murphi modeling language supports the “call-by-reference”
syntax. cond is a CVCL expression which stores the path constraints up to the current state-
ment, i.e. the condition expressions in nested “if-then-else” statements. Finally, retn stmts

will record all the return statements in a rule, startstate, funcdecl or procdecl. Each
ReturnStmtClass object in the vector contains the path constraint of a returnstmt, its
call type (from a rule/startstate or funcdecl/procdecl), the output parameters values, and the
returned value. Because PAM does symbolic execution on Murphi models, when there are
multiple returnstmts in a code block, it has to execute to the end of the block, gather all the
returnstmts information and return the combined value.

4.2.1 assignment

Assignment is defined as “target := src”. It is the most commonly used statements in the
Murphi modeling language. Based on the class of target and whether its top level name is
in the locals or proc params mapping, PAM will perform the update operation recursively
on the corresponding local variable, procedure/function parameter, or a global variable.

4.2.2 proccall

The syntaxes of procedure calls and function calls are similar. In the Murphi modeling lan-
guage, procedure calls are regarded as statements, while function calls are regarded as ex-
pressions in Section 4.3. Because call-by-reference is allowed in procedure calls,
PAM converts each parameter in a procedure call into “vector<ProcParamClass
*> vec” or a pair “vector< ProcParamClass *> vec, Expr &ex“ depend-
ing on whether the parameter is updatable or not (i.e. declared as var in the model). Here,
vec specifies how to read and update the value of the parameter, and ex does the real oper-
ation for that CVCL expression. As an example, if the parameter is “var a” and the value
to be passed is “X.p.f [e]”, When a is updated in the procedure, X should be updated by
recursively updating its field “p”, subfield “f” and array element “e”.

Procedure calls correspond to procedure declarations. In PAM, procedure declarations are
implemented as functions to support conditional mutual calls (e.g. A() calls B()) and
recursive calls. Because recursions depending on symbolic values may not necessarily
terminate, PAM currently only supports recursions based on concrete values, and the same
strategy is used for the forstmts.

4.3 Expressions

PAM currently supports 13 types of expressions in the Murphi modeling language shown
as following. Complex expressions can be constructed by nesting, i.e. binaryexpr and
designator.

unaryexpr binaryexpr boolexpr notexpr equalexpr compexpr

arithexpr unexpr mulexpr quantexpr condexpr designator funccall

For each type of expression, PAM converts it to a CVCL expression by implementing the

following method.

virtual char* generate expr(map<char *, char *>& locals,
map<char *, char *>& proc params,
char *state);

Here locals, proc params and state have the same functionality as in Section 4.2. Take the
expression type designator as an example, this method needs to consider 18 cases of
situations, depending on whether there are path constraints over the expression, whether the
top level name is a local variable, a procedure/function parameter or a global variable, and
whether its type is Base, FieldRef, or ArrayRef as defined in the Murphi modeling
language.

4.4 Obtaining the Next Abstract State

PAM uses a BDD object to store the abstract states and uses the method H() described
in Section 3.3 to generate the successor abstract states. The following pseudo code illus-
trates the basic control flow to reach a fixed point in the abstract state space. Note that
vc->assertFormula() is to add a formula as a fact expression into the CVCL database.
Following queries of satisfiability will be affected by this database.

(1) main() {
(2) expr rc = Rc()
(3) vc->assertFormula(expr rc)
(4) for (each startstate)
(5) generate abstract state(bdd)
(6) do
(7) bdd old = bdd
(8) for (each SAT asgn in bdd)
(9) ψ = concretization(asgn)
(10) ret = H(ψ, 1, bdd tmp)
(11) if (ret)
(12) bdd = bdd | bdd tmp
(13) while (bdd old != bdd)
(14) }

(1) bool H(ψ, i, bdd) {
(2) unsat1 = true, unsat2 = true
(3) for (j = 0; j < rule num; j ++)
(4) if (! unsat(ψ ∧ preds[i] ∧ rules[j]))
(5) unsat1 = false
(6) if (! unsat(ψ ∧ ¬preds[i] ∧ rules[j]))
(7) unsat2 = false
(8) if (unsat1)
(9 return H(ψ ∧ ¬preds[i], i+1, bdd & !bddvar(i))
(10) if (unsat2)
(11) return H(ψ ∧ preds[i], i+1, bdd & bddvar(i))
(12) return H((ψ ∧ preds[i], i+1, bdd & bddvar(i))
(13) ∨ H(ψ ∧ ¬preds[i], i+1, bdd & !bddvar(i))
(14) }

Figure 1: Algorithm of the optimization

4.5 Optimization and Results

Although CVCL is an efficient and a state-of-the-art decision procedure, its performance
is not so satisfactory when it deals with big expressions. Our optimization applies similar
ideas in [17] to split big expressions into smaller ones. The bottom line is that at any time,
only one of the enabled rules can be executed and the next state is updated accordingly.
As a result, instead of combining all the transition relations rules defined the a model into
one big Rc() formula and using vc->assertFormula() to add it into the fact database, we
use the divide-and-conquer technique to keep each rule separate. PAM implements this by
logically conjuncting the concretized current state into the CVL expression of each rule,
together with the predicates, to check if it is satisfiable or not. Figure 4.5 describes the
basic idea.

By splitting big expressions into smaller ones cannot always guarantee improvement on
performance, because the number of decision procedure calls is also increased at the same
time. Our experiment on the FLASH protocol with 33 transition relation rules showed that
by splitting the Rc() expression into 33 smaller expressions can reduce the computation
time pretty much. However, by removing if-then-else and ruleset in each rule
and introducing subrules cannot gain much in computation time.

We have applied PAM on the 4 protocols shown in Table 1, and compared its performance
before and after the optimization in Figure 4.5. All the experiments were performed on a

machine with Intel Xeon 2.80GHz and 1.3G memory. The result is shown as in Table 11.

PAM Bakery AlternatingBit German FLASH
Before Opt. 8sec 240sec 450sec >24hour
After Opt. 5sec 175sec 150sec 45min

Table 1: Experiment results before and after optimization

5 Conclusion

We present an implementation of predicate abstraction in Murphi using CVC Lite. Ac-
cording to our experiments, we believe that predicate abstraction is an effective verifica-
tion technique. However, it needs to be carefully implemented to achieve both efficiency
and precision. For example, exact symbolic simulation of each statement in the system
can be very expensive, so a light-weighted abstract image computation is needed. Also
refinement, esp. local refinement, is necessary to improve the precision. Overlapping
approximations[12] and lazy abstraction[18] seem to fit well. Our future work will in-
cludes adding lazy abstraction and local refinement into PAM.

References

[1] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang. Protocol verification as a hard-
ware design aid. In IEEE International Conference on Computer Design: VLSI in
Computers and Processors, pages 522–5, 1992.

[2] Clark W. Barrett and Sergey Berezin. Cvc lite: A new implementation of the cooper-
ating validity. In CAV, 2004.

[3] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorloo J. Chapin,
D. Nakahira, J. Baxter, M. Horowitz, A. Gupta, M. Rosenblum, and J. Hennessy. The
stanford flash multiprocessor. In Proceedings of the 21st International Symposium on
Computer Architecture, 1994.

1In the process of doing these experiments, we found a bug (forallExpr) in the CVCL C++ interface.
We hope this bug will be eliminated in the next version of CVCL, and the computation time be roughly the
same as in this experiment.

[4] Steven M. German. Formal design of cache memory protocols in ibm. Form. Methods
Syst. Des., 22(2):133–141, 2003.

[5] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. The MIT
Press, 1999.

[6] S. Graf and H.Sai̇di. Construction of abstract state graphs with pvs. In Conference on
Computer Aided Verification, 1997.

[7] Satyaki Das, David L. Dill, and Seungjoon Park. Experience with predicate abstrac-
tion. In CAV, 1999.

[8] Corina Pasareanu, Radek Pelnek, and Willem Visser. Concrete model checking with
abstract matching and refinement. In CAV, 2005.

[9] R. Kurshan. Computer-Aided Verification of Coordinating Processes: The Automata-
Theoretic Approach. Prentice University Press, 1994.

[10] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement. In Computer Aided Verification,
2000.

[11] Satyaki Das and David L. Dill. Counter-example based predicate discovery in predi-
cate abstraction. In FMCAD, 2002.

[12] Shankar G. Govindaraju and David L. Dill. Approximate symbolic model checking
using overlapping projections. In First International Workshop on Symbolic Model
Checking at Federated Logic Conference, 1999.

[13] Thomas Ball, Rupak Majumdar, Todd Millstein, and Sriram Rajamani. Automatic
predicate abstraction of c programs. In PLDI, 2001.

[14] Anubhav Gupta and Ofer Strichman. Abstraction refinement for bounded model
checking. In Computer Aided Verification, 2005.

[15] O. Grumberg, F. Lerda, O. Strichman, and M. Theobald. Proof-guided
undeapproximation-widening for multi-process systems. In POPL, 2005.

[16] David L. Dill. The murφ verification system. In CAV, 1996.

[17] In-Ho Moon, James H. Kukula, Kavita Ravi, and Fabio Somenzi. To split or to con-
join: The question in image computation. In DAC ’00: Proceedings of the 37th
Conference on Design Automation, 2000.

[18] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Gregoire Sutre. Lazy
abstraction. In POPL, 2002.

	Introduction
	Related Work
	Predicate Abstraction
	The Murphi Model Checker
	Abstraction and Concretization
	Predicate Abstraction Algorithm
	Initial Abstract States
	Generating Next Abstract States

	Implementation
	Rules
	The Concrete Transition Relation

	Statements
	assignment
	proccall

	Expressions
	Obtaining the Next Abstract State
	Optimization and Results

	Conclusion

